WMLScript Specification

Version 17-Jun-1999

Wireless Application Protocol
WMLScript Language Specification
Version 1.1

Disclaimer:

This document is subject to change without notice.

Version 17-Jun-1999 Page 2(126)

Contents
1 O @] RO PP R 7
2 DOCUMENT ST AT US ..ttt e e e e et et e e e e e e e s s s bbb eeeeeaeesaasbbseeeaeessaassbbaeesaasssanssrsseeeaeesannsses 8
2.1 COPYRIGHT NOTICE. .. i 8
2.2 ERRAT A 8
2.3 COMMENT S .. ittt e aaaaaaaaaaaans 8
3 REFERENGCESottt ettt e e ettt e e e e e e s ettt a e e e e e e e es bbb aeeseeeesaassbbaeeeaeessaaasbbaeesaesesanssbaeeesaeesaansses 9
3.1 NORMATIVE REFERENCES.......ccciiiiiiiieee e e e e et e e et e et e aaaaaaaaaaaaaaaaaaaaaaaaaaaans 9
3.2 INFORMATIVE REFERENCES.......ccci it i i e e i e e e ettt ettt e aaaaaaaaaaaaaaas 9
4 DEFINITIONSAND ABBREVIATIONS. ..ottt ettt e e s et e e e e e e e sabbr e e e e e e e s ssnabbaeeeeaeeaan 10
4.1 DEFINITIONS. ..o it 10
4.2 ABBREVIATIONS ..ottt 11
5 OVERVIEW .ottt ettt e e e e e ettt e e e e e e e bbb e e e e e e e e s e e aabbeeeeeeeesaaasbbaeeeeaeesaasabbreeeeaeesananrrreeess 12
5.1 WHY SCRIPTING?. ... e 12
5.2 BENEFITSOFUSINGWMLSCRIPT ... 12
6. WML SCRIPT COREco oottt ettt e e e e ettt e e e e e s e eabb b aeeeaeeseasabbbeeeeeeessassbbaeeeaeessanssbseneeaeesaansnes 13
B.1 LEXICAL STRUCTUREcciiiiiii i e aaeaaaaaaaaaaaaaans 13
6.1.1 S SENSILIVITY ..ttt ettt ettt ettt b et s h e e s st e e ettt ek e e e ehee e eabe e e a ke e e be e e ebee e eabe e sabeeebeeebaeeaane s 13
6.1.2 WhiteSpace and LiNE BrEakS..........oo ittt sttt be e e saee e sabe e sabe e s beeenees 13
6.1.3 USAQE OF SEMICOIONSeieeete ittt ettt ettt ettt bt e e he e e ea b e e s abe e e abe e e abe e e shee e smbeesmbeeenbeeeabeeesnbeesnbeans 13
6.1.4 COMMENES ... 14
6.1.5 (L= = | KOO PRI 14
6.1.5.1 LR Q1= (= G I = S PRRTR 14
6.1.5.2 FlOating-POINT LItEralS.......ooiieiiiiisieie ettt ettt este e ee et esteeneesseesteeneesseenseeneeaseenseenseaseenseeneeanean 15
LT TR S 1 oo [1 = - SS S SSE 15
6.1.5.4 L2 TeTo L2 AN I = = £ 16
6.1.5.5 L0Yz= Lo H T = = 16
6.1.6 Ko L= 01U 1= OO URRRROPP 17
6.1.7 RESEIVEA VOIS, ...ttt ettt e e e s et e e e e e e s e et a e e e e e e e s eaabbbaeeesaeessassbbeeseaeesaasbbaeeesaeessannees 17
6.1.8 NBIMIE SBCES. ... ettt ettt e ettt e e ettt e e e bttt e e e st et e e sk be e e e aabee e e e aabee e e e bbe e e e aabee e e e anbeeeeanneeeeannes 17
6.2 VARIABLESAND DATA TYPES. .. oo, 18
6.2.1 Variabl @ DECIAIAtiON........coo ittt e e e et e e e e e s e et b b e e e e e e e e saaabbeeeeeeessaasbbeeeeaeessannrreeess 18
6.2.2 Variable SCoPE aNd LITELIME.oi ittt be e ae e e s ab e e st e e s eeeenees 18
6.2.3 VAITADIE ACCESS. ... vttt ettt e e e e s ettt e e e e e e e e e e bbb e e e e eeeesasabbaeeseeessaasbbaeeeaeeesansrreeess 19
6.2.4 V=T aE: Lo LN 1Y, o= TP 19
6.2.5 L-VAIUES. ...ttt ettt e e e e e s et e e e e e e e e e e ebb b e e e e e e e e e aaa bbb aereaeeeeaaabbbeeeeaeeeaaabrreeeeaeeeaanre 19
6.2.6 TYPE EQUIVBIENCY ...ttt ettt bttt a et ettt eb et e shb e e sabe e e mbe e e be e e eabeesmbeesnbeeenres 19
6.2.7 NUIMEITC VAIUEBS........ettieeeie ettt ettt e e e e ettt e e e e e e e e bbb e e e e e e e s saabbbaeeeeaeessaasbbeeeeeeesaasbbaeeeeaeesannsres 20
L T 141 1= o= s - SRS 20
L A o {1 0o o | S = SRS 20
6.2.8 SEFINQG VAIUBS. ...ttt ettt a e et e ettt ek e e e sh e e e sa b e e e abe e et et e ebee e eate e smbeesnbeeebaeesnneas 20
6.2.9 BOOIEAN VAIUES ...ttt ettt e e e e e ettt e e e e e e s e atb b s e e e e eeessasabbbeeeeeeessasbbaeeeeaeessnnnees 21
6.3 OPERATORSAND EXPRESSIONS.cciiiiiiiiii ettt e aaaaaaaaaas 21
6.3.1 ASSIGNIMENT OPEIAEOFS ... teeeatee ettt stte e ettt e bt e et e eerbee e saeeesabeeaabeeabeeaabeeeabeeesabeasabeesmbeeaabeeeaaneessbeesnbeesnneeenses 21
6.3.2 ATTTNMELIC OPEIBLONS. ... e ittt ettt ettt et e bt e et et e abe e e ehee e sabe e sabe e eabeeeabeeeaaeeesnbeesmbeesnbeeantes 22
6.3.3 [Iolo oz @ o/ = (0] = T TR U SRR 22

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Version 17-Jun-1999 Page 3(126)

6.34 S LT (o O o= = (o TP PR 23
6.3.5 100100 0= TR RS o g @]l = 1 (0] =TRSO 23
6.3.6 ATTAY OPEIALOIS ... eteeee ettt e ettt e ettt e e ekttt e e ettt e e s aabee e e sk b e e e e aabee e e s aabeeeeabbe e e e aabeeeeaanbeeeeaanbeeasansbeeesanraeananns 24
6.3.7 COMMEE OPEI LTeeeeeeee ettt e et ee e et ee e e st b et e e e tee e e e aabee e e s abbe e e e aabee e e e aabee e e aabbe e e e ambeeeesnbeeaeanbbeeesanreeaeannnnaass 24
6.3.8 CONAItIONAl OPEILOLeiiiiiietie ettt ettt ettt e bt e e be e e be e e eaee e sabeesabeesabeeabeeeraeeesnbeesmbeesnbeeannes 24
6.3.9 107 €S0 @] o< = Lo SO TOURR USRI 25
B.3.10 ISVAIIT OPEIALON ... ieeiteeetei ettt ettt ettt ettt te e sate e st e e st e e ettt e aae e e sabe e ambe e aabe e e be e e ehee e eabeeenbeeebeeeabeeeaaeeas 25
LS I I A (o === o] SRR ROURR 25
6.3.12 EXPreSSION BiNOINGSveeiieiiiiieieie ettt ettt ettt e st e e sbe e sae e sabe e sabe e s be e e abee e sbeeesabeesmbeeebeeaabeeeanneas 26
.4 FFUNCTIONSeeeiiiiiiiiiiiiieiiiieeeeeeeeeeeeeeeee et eee e e e e e e e e e e se s s e s e e s s s s s e s s sesseaseseseeesssesssesssssasssssessssssssssssasssssssssssssssssnsssnnsnnnnnnns 27
6.4.1 (B Lol = =1 (o o RO PO 27
6.4.2 FUNCEION CaAlIS...uiiiiieiiiiiieeee ettt e e e e e e ettt a e e e e e e s e eabbaeeeeaeessaaabbaeeeaeeesaaasbbaeeeeaaeaan 28
L3 S O oo IS o T o o o TSP 28
6.4.2.2 Lt L = I (T L 29

L3 7 T IR o= VA o £ OSSPSR 29
6.4.3 DEfQUIT REIUIN VAIUEevieieiee ettt e e et e e e e e s e et e e e e e e e s e abbreeeeeeessaanbbaeeeeaeeaan 30
5.5 STATEMENTS ..oeiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeaeeeessesesasasssase s s s s s s e e s s s e s seesssesssssesssaessssesasssssessssanssssssssssssssssssssnnnnnnnnnns 30
6.5.1 EMPLY SEAEEIMENL ...ttt e e b e e e s b e e e e e sk be e e e s bbe e e e aabee e e e anbeeeeanreeeeaanneeans 30
6.5.2 eSS To I P 1= 10 | PRSP 30
6.5.3 (Sl [0 o T = L= 1 0. | RO PP PP 31
6.5.4 Variable SALEMENTuiieiiii et e e e e e e e e e e e e e s e e abbaeeeeeeesaaasbbaeeeeaeessastbaeeeseeessanees 31
6.5.5 NS =1 0< 1= | RO OO PRRRRRIRt 32
6.5.6 L T LS = 1= 1< | SRRSOt 33
6.5.7 O S =1 (= 1 0 = | PP PPPPPPPPPPPPR: 33
6.5.8 Sl S = 1= 1< 0| RO PP 34
6.5.9 CONLINUE STALEIMENT.......cii ittt e ettt e e e e ecb et e e e e e s e et b e e e e eaeesaaaabbaeeeeaeessaasbaeeesaeessasbbreeseaeessansrreeness 34
6.5.10 REUN SAEMENL ... 35
5.8 LIBRARIES.....ciiiiiiiiiiiiiiiieiieeeeeeeeeeeeeeeee e e e e e e e e eee e e e e e s s e s s s e s e sssssessseessesseeseeesesesesssesssassssssesssssssssssnnssssnsnnssssssssssssnnsnnnnnnns 35
6.6.1 S =100 =T I T o= T 1= S O ERRRROPP 35
B.7 PRAGMAS.coiieiiieiiieeieeieeeeeee et e ettt ettt ettt eeeeeeeeeeeeeeeeeeseeseeeeaseeeaeeeeaseeeeeeeestettesesstsatesssesttsttsestssansaseneeasreerrarerrrrnnrrrrrnn 35
6.7.1 External Compilation UNITSoo ittt ettt et sae e be e s b e e e be e e saee e smbeesabeeenees 36
6.7.2 AACCESS CONEION ..ttt ettt e e et et e e e e e et e e e e e e e e s eabbreeeseeesaasabbaeeeeasssaassbbaeeeeaeesaassbaeneseaeesansses 37
6.7.3 Y = e S T 0\ (o] 4°= 1 (Lo o IO RO 38
6.7.3.1 N E= TSRO 38

LA T2 o I I I o 0 S PR 38
6.7.3.3 L0 < N 1= o | USRS PPUUROPRURI 39

7. AUTOMATIC DATA TYPE CONVERSION RULES. ...ttt enrree e 40
7.1 GENERAL CONVERSION RULES......cctittitiiiiiiiiiiietieeeeeeeeeeeeeeeseeeseeeeasesessesssnsnns 40
711 100101V £ Tol 0] (o IS 1o TSRS 40
7.1.2 100101V £ ol 0] (ol 110 o = TSRS 40
7.1.3 ConversionSto FlOatiNG-POINTiiiiiiee i e et e et e e e saee e saee e smbe e sbeeeees 41
7.14 CoNVErSIONSTO BOOIEANuuviiiiiiii ittt e e e e e e e e e e s e ab b b e e e e e e e s sanbbbeeeeaeessennsraeeess 41
7.15 (000 01V £ T 0 oh (o 1 01772 o PO ETRRRRRPP 41
7.1.6 S 100 00T T OO UT U PUPRRPPP 41
7.2 OPERATOR DATA TYPE CONVERSION RULES.....ccoiiiiiiiiiiiiiiiiieiieeeeieeeeeeeeeeeeeeeeeeeaessessssssssssssssasssssssssssssssssssssssssnnnnnn 42
7.3 SUMMARY OF OPERATORS AND CONVERSIONS.....ccctttttttttteeeeeeeeeeeeeeeeeeeeseeeessessnsens 44
731 SINGIE-TYPEA OPEIGLOIS.eeuteeetee et sttt et e et e e et e e e rtee e saee e sabe e e be e e abe e e aaee e aabeesmbeesabeeebeeeraeeesnbeesmbeeanbeeannes 44
7.3.2 MUILT-TYPEA OPEI OISeeueeieitee ettt et ee ettt et e e bt e e be e e saeeesabeeaabeeabee e saseesabeesabeeabeeeaaneesnbessnbeeennes 45
8. WMLSCRIPT GRAMMAR .ottt ettt e ettt e e e e s et e e e e e e e s e eabb b e e e e e eeessaasbbaeeeeesessabbreeeeaaeaan 47
8.1 CONTEXT-FREE (GRAMMARSccotttitiiiiiiiiteeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeesaeasaseesassssssssssassnsnsnns 47
8.11 (€T = = | OO ETRRRRPP 47
8.1.2 LEXICAI GIaIMITIANciiiitiriieee e e e eeeit et e e e e e e ettt et e e e e s e e ab b e e e eeeeessaabbbeeeaaaessassbaeeeeaeessasssbbeeeeeeesaassbaneeeaesnan 47
8.1.3 Y g1 Lot (ol €= T 0o 1= PR SPR 47

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Version 17-Jun-1999 Page 4(126)

8.14 NUMENTC SEFTNG GFAIMIMIAL ... etieiiieeeteeetee e etee e sebe et e be e e bt e e sbeeesabeasabeeabeeaabeeaaaeeesmbeesabeesbeeaabeeesnseesnreasns 48
8.15 GramIMar NOLBLIONvvvieieieee i e e e e e e e e e e b e e e e e e e s e ebbbaeeeeeeesaaabbbaeeseaeesaassbbseeeeaeesaasssrreneeanenan 48
8.1.6 SOUMCE TEXL .. 50
8.2 WMLSCRIPT LEXICAL GRAMMARciiii i e e e e e e e e e e e e e e e e 51
8.3 WMLSCRIPT SYNTACTIC GRAMMARo i e 56
8.4 NUMERIC STRING GRAMMARciiie i i e e e e et e aaaaaaaaaas 61
9. WMVLSCRIPT BYTECODE INTERPRETERooeiiiiii ettt ettt eanbane e e e e e nnnnes 63
9.1 INTERPRETERARCHITECTUREccoiiiiiiiiie e e e e e ettt et e e e e e e e et e aaaaaaaaaaaaaaaaaaaans 63
0.2 CHARACTER SET .. it e e e e e e e e e e e e e e 64
9.3 WMLSCRIPTAND URLS 64
9.3.1 URL SCREIMES ..o oottt ettt e e e ettt e e e e e e e e bbb e e e e e e e e s ea bbb b e e e aaeessaabbbeeseaeessasbbaseeeaeessansres 64
9.3.2 FragmENt ANCRIOIS. ..o ettt b et h et a bt e s be e et e e e abee e ehbe e sabeesmbeeebeeeabeeesnneesnreans 64
9.3.3 URL CAII SYNEAX ..eitieitie ettt ettt ettt ettt ettt et e s be e e be e e e bt e e sabe e s abe e eabe e e abeeeabee e eabeesmbeeenbeeeabeeeanneesnrean 64
9.34 URL Calls and Parameter PASSINGccoceteiueeiieeiiiaaiteeasteeesieeesiteesteassbeeasseessaseessbessbessssessssesssssessnsessns 67
9.35 (O =T (= g s or= o 1 o PRSP ROPR 67
9.3.6 REIGLIVE URLS ...ttt e e e et e e e e e e e et eeeeeeeseaasbbaeeeaeeessaabbaeeseaeessasbbaseseaeessnsres 67
0.4 BYTECODE SEMANTICS ... i i i e e e e e et ettt et e aaaaaaaaaaaaaaaaaaaaans 67
94.1 Passing Of FUNCEION AFQUMENES.......coiiii ettt ettt ettt et e e sbe e e sae e sabe e sabeeebeeesbeeesaneesnbeans 67
9.4.2 AlloCation Of Variable INOEXESoocciiieeee et e e e et e e e e e e s et b re e e e e e e e s ennnrreeees 68
9.4.3 Automatic FUNCLION REIUMN VAIUE..........ovveiiiii ittt e et e e e e e s et r e e e e e e e e s eanrreeeas 68
9.4.4 INItTaliSAtioN OF VArTADIES.oveeiiiiei et e e e e et b b e e e e e e e e nanrbreeeas 68
0.5 ACCESS CONTROL ciiiiiiei e e e et e aaaaaaaaaaaaaaaaaaaaans 68
10. WMLSCRIPT BINARY FORMAT ..ottt ettt e e e e ettt e e e e e e s e eaabba e e e e e e e s e eaabbaeeeeeeesseansraneeas 69
10.1 (@00) AV 2= Nl [\ 69
O R U <o D 7 L= B Y o TR 69
10.1.2 Multi-Dyte INTEOEr FOIMAL.......ei ittt ettt ettt e e sae e e sa b e e s abe e s be e e sbee e sateesmbeesnbeeenees 69
00 G B @ o =T = o (= g =t oo o [o RPN 70
10.1.4 NOtAtioNal CONVENTIONS.uuuiiiieiiiiiitieiee e e e e s eeiree e e e e e e e et e e e e e e e s eeabbaeeeeaessasstaseeeaeessasasbreeeeeesssaassrraeesaesenn 70
10.2 WMLSCRIPT BYTECODEccoiiiiieeeeeeee e, 71
10.3 BY TECODE HEADER........cettttitiiiieeeeieiteeeeeeeeeeeeeeeeesseeeeeeesssesssesssasasssessssssssssssssssssssssassssssssssssssssssssssssssssnsssnnsnnns 71
104 (0] N 1S 17 1 8 @ 71
O St R 00 1 7= | PSSP PPPPPPPPRPPPPPPRt 72
0 R 1 g1 (= (= U R PRSPPI 72

L0 O S =T S o 0= o 11 =0 (= OSSR 72
O O 2 LG = T S o 0o 1= SRR 73

L0 I T 72 = 11 S o 0o 010 SR 73
0 1 2 0= 73
FO.4. 1.3 SHINGS. ueeteeeeeneeateerteaneesseeseeaneeaseesseaneeaseeeeaneeaseeaseanseaseesseenseaseeaseenseaseeaseeneeaseeseenseanseaseenseaneenseenseaneeareenseaneenreens 73
L0 e T L I et S 1TSS 73
F0.4.1.3.2 EIMPLY SHNOGS. .t tteueeiueesteeteaseesteeeeaseesseeeeaseesseaneeaseesseaneeaseesseaneeaseeaseaneeaseenseaneesseenseansessesnseanenssesnsesnsessennsesnees 73
10.4.1.3.3 Strings with External Character ENcoding DEfiNitiONcoviieiienieeiiese e 74

10.5 PRAGMA PPOOL ...eiiiiiiiiiiieteee ettt ettt ettt eeeeeeeeee st eeesseees s e s s s eesessesssesssassssssssssssssssassssssssssssssssssssssnsnnnnnnnnnnnns 74
ORI R o =0 [0 2 1 SO PO U PP UUPPPTRR 74
10.5.1.1 ACCESS CONIOl Pragmas......c.eeueieesieeieeieseeiesteesteeseesseesteeeeaseeseeeeeaseeaseeeeaseesseenseaseeaseeseaneesseenseanensseensesnsessenns 75

O T 30 I X /o] o = o 75

O T T 2 N oo >3 = 1 o 75
10.5.1.2 MetaInformation Pragimas..........coieeeiieriee et ese e st e ee e steeeesseesteeeeaseesseenseeseeaseeseaneesseenseanensseenseaneessenns 75
TO.5.1.2.1 USEr AQENE PrOPEITY ...eeetieitee ettt etee et et etee et e bt et e e sttt e bt e e beeeaeeeaaee e beeambeeaabeasaeeebeeambeeambeesnseeabeeabenanseanns 75
10.5.1.2.2 User Agent Property @and SCREIME..........ooiiiee et teeseesteeseeeseesteeneeaneesseeeeaneesseeneeeneas 75

10.6 FFUNGCTION POOLceiiiiiiiiiieitieeeeeeee ettt ettt ettt eeeee ittt et eeeeeeeeeseesssessssesssessaessssssssssssssssasssssssssssssssssssssssnnnnsnnnnnnnns 76
10.6.1 FUNCHON NAME TADIE.... ...ttt e e e e et e e e e e e s e eabb b e e e e e e e e s esabbbaeeeeeessansbreeesaaeean 76
0 2 700t O o o T A 4T 76
OS2 ¥ (0 Tox 1 0] OO 77
F0O.6.2. 1 COUB ATTAY ..uereueeiteeeeeueeeteeseeaneeateeseeaneeaseeseeaneeaseesseaneeaseesseanseaseeaseenseaseeaseanseaseeseenseameeaseenseaneeaseenseanensseenseanenssenns 77

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Version 17-Jun-1999 Page 5(126)

10.7 I 73010 N 77
11. WMLSCRIPT INSTRUCTION SET ..ottt ettt ettt ee e e e e st eabtaee e e e e e s s enabbseeesaeesssnsbaeeeseesssnnnees 79
111 CONVERSION RULESo 79
11.2 FATAL ERRORS. ...t e e e e e e e e nannnnnnnnnnnnnnnnnsnnnnnnnnnnnnnnnnnnnnnnnn 79
11.3 OPTIMISATIONS ... e aaaaaaaans 80
114 NOTATIONAL CONVENTIONS ... uieieieeeeieeeeaee e e e e eeae e ea e s e e e s e e e s s e e s e s e e s s nnn 81
115 INSTRUGCTIONS. ... tttttttttseeeesssnnnnns 81
11.5.1 Control FIOW INSETUCLIONSuviiiiiieeii ittt e e e e ceettre et e e e e s et e e e e e e e e s eabbbaeeeeeeessessbbseeeeesssaassbreeeseeesasnsses 82
11.5.2 FUNCLION Call INSEIUCLIONSuttiiiiieeiiiciiieee e e ettt e e e e s et e e e e e e e e eabb b e e e e eeeessassbbaeeeeesssaassbseeesasesannnses 86
11.5.3 Variable ACCesS and ManiPUIBLION.........ccuuiiiuiaiiee ettt ettt e et e e sbee e sabe e sbe e s abeeesaeeas 89
R T o0 0 T O] 1 =T 92
11.55 ArithmELIC INSITUCLIONScooiiiiiiiiee ettt ettt e e e e et e e e e e e e ettt b e e e e e eeessessbbseeeeaessaasssbreeesaeesaannses 95
T11.5.6 BitWISE INSITUCLIONS.....uveiiieiiiiiitieee ettt e e e e eeet et e e e e e e e bbb eeeeeeeeessabbbaeeeeesessassbbseeeeaessaassbrenesasesannsses 99
11.5.7 COMPAriSON INSEFUCTIONS.eiitiieieteeitie ettt ettt ettt et e sae e s e e e be e e sbe e e sabe e sabeesabeeebeeesaeeesabeasnreeenees 101
11.5.8 LOQICAl INSIIUCTIONS.tiiitiieitii et tee ettt ettt ettt ettt rbe e sa e st e e s be e e abe e e sate e sabe e ambeeebeeesaeeesabeasnbeeennes 103
T11.5.9 SACK INSITUCTIONSvvvieeieec ettt e ettt e e e e e e et b e e e e e e e e e s eabbaeeeeeeessaabbbeeeeaeessassbreeesaeesaasnes 105
T (O I Yo or=] (o 1 @ o= =T o I Y o =TRSO 106
11.5.11 FUNCtioN RELUMN INSETUCLIONSvveiiieicc ittt ettt e e e e e e st e e e e e e e s snbbseeeeaeesssasbbseeeeaeesannnnes 107
11.5.12 MiSCElANEOUS INSITUCLIONS........vvieiieiiiiciiiieie e e e e ettt e e e e e e et e e e e e e s s eab b e e e e e eeessaabbseeeeaeessasbbseeesaeesaannes 107
12. BYTECODE VERIFICATION ...ttt ettt e ettt e e e e e e s s bbb e e e e e e e e s saabbaeeeaeesssasbaeeeeaesesnnnes 108
12.1 INTEGRITY CHECK ..1utttttutttuusssnnns 108
12.2 RUNTIME WV ALIDITY CHECK S .. ittt e e e e e e e e e e e s e s e nnnnnnnnnnn 109
13. RUN-TIME ERROR DETECTION AND HANDLINGcooiiiiiiiiiiee ettt ettt eaavaee e e e e 110
13.1 Ll] =3 10 = =T 1 N 110
13.2 ERROR HANDLING ...t nnnnnnnnnnnn 110
13.3 FATAL ERRORS. ... e e e e e e e e e e e nnn 110
T I A =Y = ol o [= o] = TR TRRTR 110
T 20 W R V= g 1 Tor= o T = = o R 111
13.3.1.2 Fatal Library FUNCHION EFTOoiiiiiiteesie ettt ettt et ee e e s teeteeneesseeneeeseesseenseaneesseensnaneesseensnsnenn 111
G0 e B 10 \V7 1o I 0 To 1 o I AN 0 8 1= USSR 111
13.3.1.4 External FUNCEION NOt FOUNG.........ooiiiiiei ittt e sttt e et e e s e bt e e s s bae e s sbeeessbaeeesabbesssbeesssasenessanrens 111
13.3.1.5 Unableto Load Compilafion UNit..........ccooiiiieiriiesiene e e ee s esee e e steeseesseesseeeeeneesseeneeaseesseesnaseesseensesnes 111
T T L T N0V AT = (oo R 112
T T T A 7o L [0o [o 1R 112
13.3.2 Program SPeCified ADOMTION.ii ittt st e b e sae e st e s b e ees 112

G TR T2 R = (070 =10 1100T= o AN oo o USSR 112
13.3.3 MemOry EXNAUSHION EXTOS.....ueiiiieiiiieiie ettt ettt ettt et e b e sat e e s abe e st e e e bee e saee e snbe e snbeeeaees 112
TR TR Tt RS 7o S @1 o YR 112
G T T @ 0| 1Y = 2 ¢ To YU SRTR 113
13.3.4 EXEEINal EXCEPLIONS...... .ottt ettt ettt ettt a et e e st e e b e e e sate e sabe e st e e e bee e saeeesmbeasnreeennes 113
TR 20 Tt R U 1= 1T = (<o [113
13.3.4.2 SYSIEM INITIAEEM.....eceeeeeeie ettt et e st e e te s e e s te et e eseesseeneeemeeaeeeneeeseesseenseaneesseeneeaneenseenseanenn 113
134 NON-FATAL ERRORS.......uuiiiiiiiieieee e e e e e e e e nnnnnnnnnnnnnnnnnnnnnnnnnn 113
T R 0o g o101 = o) = T = 0 TSRS 113
3 S R B T 1= o Y274 = o RSP 113

R 2 1 51 1= o 7= @ Y= o o 1 USSR 114
13.4.1.3 Floating-POINt OVEITIOWeiiiiee ettt et e st e te e e s teeneeeseesteeneeaneesseenaeeneenseenseanean 114
13.4.1.4 Floating-PoiNt UNGETIOWcc.ooiiiiiiei ettt e et e e e ee s e sseeteameesseeneeaneesseenseanean 114
13.4.2 CoNStant REFEIENCE EITOIS......uuviiiiie e e i ittt ettt e e e et e e e e e e s ettt e e e e e e e s s sabbbeeeeaeessssbbreeeeaeesannnnes 114
13.4.2.1 Not aNumber Floating-POiNt CONSIANoieeiiiieriere e e eee s see e ste e ee e ste e eeeseesseeneeaseesseeneeaseesseensesnens 114
13.4.2.2 Infinite Floating-POINt CONSIANT........eiieiiiieseerie et e e e e e e s e e ee e e steeeeeneesseenseeseesseeseaseesseeseaseesseensesnes 115
13.4.2.3 lllegal Floating-POiNt REFEIENCE.oiieii ettt et te e te e eeeneesseeeeaneesseeeeaneenseeneeanean 115
13.4.3 CONVEISION EXTOIS .. uutiiiiiieiiiiiiiieee e e e e e eecttre e e e e e e s seibbaeeeeeeessatabbreeeeaeessaabbaeeeaaeesaasbbseeesaeessassbrenesasesannnnes 115

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Version 17-Jun-1999 Page 6(126)

T I R 10 (=0 T= g o o = o= SO U RO RRTR 115
13.4.3.2 FlOating-POINT TOO LaIGE .. .ueiueerteeeeiuiestteeraeeesteeneesseesseeeesseesseaseesseesseaneesseenseanseaseesseaneesseensessessseensesseesseensesnees 115
13.4.3.3 Fl0oating-PoiNt TOO SMallooiiiiiieii ettt e e e ste et e st e e naeeseesseeaeeneesseenseaneesseenseanean 116

13.5 LIBRARY CALLSAND ERRORS.......uutiiiitiiiiittiee ettt ettt e sttt e e et bt e e e sabe e e e s bbe e e e aabee e e s asbeeeeabbeeasaabaeeesanreeanann 116
14. SUPPORT FOR INTEGER ONLY DEVICES..... ..ttt 117
15, CONTENT TYPES. ... ittt ettt e et e e s st et e e e b b e e e e s bee e e e aabe e e e s aabe e e e anbbeeeeanbeeeesanneeaeanreaans 118

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Version 17-Jun-1999 Page 7(126)

1. Scope

Wireless Application Protocol (WAP) isaresult of continuous work to define an industry-wide specification for
developing applications that operate over wireless communication networks. The scope for the WAP Forum isto define a
set of standards to be used by service applications. The wireless market is growing very quickly and reaching new
customers and services. To enable operators and manufacturers to meet the challenges in advanced services,
differentiation and fast/flexible service creation, WAP defines a set of protocolsin transport, session and application
layers. For additional information on the WAP architecture, refer to Wireless Application Protocol Architecture
Soecification [WAP].

This paper is a specification of the WML Script language. It is part of the WAP application layer and it can be used to
add client side procedural logic. The language is based on ECMAScript [ECMA262] but it has been modified to better
support low bandwidth communication and thin clients. WML Script can be used together with Wireless Markup
Language [WML] to provide intelligence to the clients but it has also been designed so that it can be used as a standalone
tool.

One of the main differences between ECMA Script and WML Script is the fact that WML Script has a defined bytecode
and an interpreter reference architecture. This way the narrowband communication channels available today can be
optimally utilised and the memory requirements for the client kept to the minimum. Many of the advanced features of
the ECMA Script language have been dropped to make the language smaller, easier to compile into bytecode and easier
to learn. For example, WML Script is a procedural language and it supports locally installed standard libraries.

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Version 17-Jun-1999 Page 8(126)

2. Document Status

This document is available online in the following formats:

PDF format at http://www.wapforum.org/.

2.1 Copyright Notice

© Wireless Application Protocol Forum Ltd. 1999. Terms and conditions of use are avail able from the Wireless
Application Protocol Forum Ltd. web site (http://mmww.wapforum.org/docs/copyright.htm).

2.2 Errata

Known problems associated with this document are published at http://mww.wapforum.org/.

2.3 Comments

Comments regarding this document can be submitted to WAP Forum in the manner published at
http://mww.wapforum.org/.

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Version 17-Jun-1999 Page 9(126)

3. References

3.1 Normative references

[ECMA262]
[|EEE754]

[1S010646]
[RFC2279]
[RFC2068]
[RFC2119]
[RFC2396]
[UNICODE]
[WAP]
[WML]
[WMLSLibs]

[WSP]
[XML]

Standard ECMA-262: "ECMA Script Language Specification”, ECMA, June 1997

ANSI/IEEE Std 754-1985: "|EEE Standard for Binary Floating-Point Arithmetic”. Ingtitute of
Electrical and Electronics Engineers, New Y ork (1985).

"Information Technology - Universal Multiple-Octet Coded Character Set (UCS) - Part 1:
Architecture and Basic Multilingual Plan€e", 1SO/IEC 10646-1:1993.

"UTF-8, atransformation format of Unicode and 1SO 10646", F. Y ergeau, January 1998. URL:
ftp://ftp.is.edu/in-notes/rfc2279.txt

"Hypertext Transfer Protocol - HTTP/1.1", R. Fielding, et al., January 1997. URL:
ftp://ftp.is.edu/in-notes/rfc2068.txt

"Key words for use in RFCs to Indicate Requirement Levels’, S. Bradner, March 1997. URL:
ftp://ftp.is.edu/in-notes/rfc2119.txt

"Uniform Resource Identifiers (URI): Generic Syntax", T. Berners-Lee, et al., August 1998. URL:
http://info.internet.isi.edu/in-notes/rfc/files/rfc2396.txt

"The Unicode Standard: Version 2.0", The Unicode Consortium, Addison-Wesley Devel opers Press,
1996. URL: http://www.unicode.org/

"Wirdess Application Protocol Architecture Specification”, WAP Forum, 30-April-1998. URL:
http://mww.wapforum.org/

"Wirdess Markup Language Specification”, WAP Forum, 30-April-1998. URL:
http://mww.wapforum.org/

"WML Script Standard Libraries Specification”, WAP Forum, 30-April-1998. URL:
http://mww.wapforum.org/

"Wireless Session Protocol”, WAP Forum, 30-April-1998. URL: http://www.wapforum.org/
"Extensible Markup Language (XML), W3C Proposed Recommendation 10-February-1998, REC-
xml-19980210", T. Bray, et a, February 10, 1998. URL: http://www.w3.org/TR/REC-xml

3.2 Informative References

[HTML4]

[JavaScript]
[WAE]

"HTML 4.0 Specification, W3C Recommendation 18-December-1997, REC-HTML40-971218", D.
Raggett, et al., September 17, 1997. URL: http://mww.w3.0rg/ TR/REC-html40

"JavaScript: The Definitive Guide", David Flanagan. O'Rellly & Associates, Inc. 1997

"Wirdess Application Environment Specification”, WAP Forum, 30-April-1998. URL:
http://mww.wapforum.org/

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Version 17-Jun-1999 Page
10(126)

4. Definitions and abbreviations

4.1 Definitions

The following are terms and conventions used throughout this specification.

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT",
"RECOMMENDED", "MAY" and "OPTIONAL" in this document are to be interpreted as described in [RFC2119].

Bytecode - content encoding where the content istypically a set of low-level opcodes (ie, instructions) and operands for
atargeted hardware (or virtual) machine.

Client - adevice (or application) that initiates a request for connection with a server.

Content - subject matter (data) stored or generated at an origin server. Content istypically displayed or interpreted by a
user agent in response to a user request.

Content Encoding - when used as a verb, content encoding indicates the act of converting a data object from one format
to another. Typically the resulting format requires less physical space than the original, is easier to process or store
and/or is encrypted. When used as a noun, content encoding specifies a particular format or encoding standard or
process.

Content Format — actual representation of content.

Device - anetwork entity that is capable of sending and receiving packets of information and has a unique device
address. A device can act as both a client or a server within a given context or across multiple contexts. For example, a
device can service a number of clients (as a server) while being a client to another server.

JavaScript - a de facto standard language that can be used to add dynamic behaviour to HTML documents. JavaScript
isone of the originating technol ogies of ECM A Script.

Origin Server - the server on which a given resource resides or isto be created. Often referred to as a web server or an
HTTP server.

Resour ce - a network data object or service that can beidentified by a URL. Resources may be available in multiple
representations (e.g. multiple languages, data formats, size and resolutions) or vary in other ways.

Server - adevice (or application) that passively waits for connection requests from one or more clients. A server may
accept or reject a connection request from a client.

User - auser isa person who interacts with a user agent to view, hear or otherwise use a rendered content.

User Agent - auser agent (or content interpreter) is any software or device that interprets WML, WML Script or
resources. This may include textual browsers, voice browsers, search engines, etc.

Web Server - anetwork host that actsas an HTTP server.

WML - the Wireless Markup Language is a hypertext markup language used to represent information for delivery to a
narrowband device, e.g. a phone.

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Version 17-Jun-1999

Page
11(126)

WML Script - a scripting language used to program the mobile device. WML Script is an extended subset of the
JavaScriptO scripting language.

4.2 Abbreviations

For the purposes of this specification, the following abbreviations apply:

API
BNF
ECMA
HTML
HTTP
IANA
LSB
MSB
RFC
ul
URL
UTF
UcCs
W3C
WWW
WSsP
WTP
WAP
WAE
WTA
WTAI
WBMP

Application Programming Interface
Backus-Naur Form

European Computer Manufacturer Association
HyperText Markup Language [HTMLA4]
HyperText Transfer Protocol [RFC2068]
Internet Assigned Number Authority

Least Significant Bits

Most Significant Bits

Request For Comments

User Interface

Uniform Resource Locator [RFC2396]
UCS Transformation Format

Universal Multiple-Octet Coded Character Set
World Wide Web Consortium

World Wide Web

Wireless Session Protocol

Wireless Transport Protocol

Wireless Application Protocol

Wireless Application Environment
Wireless Telephony Applications
Wireless Telephony Applications Interface
Wireless BitMaP

© Wireless Application Protocol Forum, Ltd, 1999

All rights reserved.

Version 17-Jun-1999 Page
12(126)

5. Overview

5.1 Why Scripting?

WML Script is designed to provide general scripting capabilities to the WAP architecture. Specifically, WML Script can
be used to complement the Wireless Markup Language [WML]. WML is a markup language based on Extensible
Markup Language [XML]. It is designed to be used to specify application content for narrowband devices like cellular
phones and pagers. This content can be represented with text, images, selection lists etc. Simple formatting can be used
to make the user interfaces more readable as long as the client device used to display the content can support it. However,
all this content is static and there is no way to extend the language without modifying WML itself. The following list
contains some capabilities that are not supported by WML:

Check the validity of user input (validity checks for the user input)

Access to facilities of the device. For example, on a phone, allow the programmer to make phone calls, send
messages, add phone numbers to the address book, access the SIM card etc.

Generate messages and dialogs locally thus reducing the need for expensive round-trip to show alerts, error
messages, confirmations etc.

Allow extensions to the device software and configuring a device after it has been deployed.

WML Script was designed to overcome these limitations and to provide programmable functionality that can be used over
narrowband communication linksin clients with limited capahilities.

5.2 Benefits of using WMLScript

Many of the services that can be used with thin mobile clients can be implemented with WML. Scripting enhances the
standard browsing and presentation facilities of WML with behavioural capabilities. They can be used to supports more
advanced Ul functions, add intelligence to the client, provide access to the device and its peripheral functionality and
reduces the amount of bandwidth needed to send data between the server and the client.

WML Script isloosdly based on ECMAScript [ECMA262] and does not require the developers to learn new concepts to
be able to generate advanced mobile services.

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Version 17-Jun-1999 Page
13(126)

6. WMLScript Core

One objective for the WML Script language is to be close to the core of the ECMA Script Language specification
[ECMA262]. The part in the ECMA Script Language specification that defines basic types, variables, expressions and
statementsis called core and can almost be used "asis’ for the WML Script specification. This section gives an overview
of the core parts of WML Script.

See chapter WML Script Grammar (8) for syntax conventions and precise language grammar.

6.1 Lexical Structure

This section describes the set of elementary rules that specify how you write programs in WML Script.

6.1.1 Case Sensitivity

WML Script is a case-sensitive language. All language keywords, variables and function names must use the proper
capitalisation of |etters.

6.1.2 Whitespace and Line Breaks

WML Script ignores spaces, tabs, newlines etc. that appear between tokens in programs, except those that are part of
string constants.

Syntax:

WhiteSpace ::
<TAB>
<VT>
<FF>
<S>
<LF>
<CR>

LineTerminator ::
<LF>
<CR>
<CR><LF>

6.1.3 Usage of Semicolons

The following statements in WML Script have to be followed by a semicolon:1

Empty statement (see 6.5.1)
Expression statement (see 6.5.2)
Variable statement (see 6.5.4)

1 Compatibility note: ECMA Script supports optional semicolons.

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Version 17-Jun-1999 Page
14(126)

Break statement (see 6.5.8)
Continue statement (see 6.5.9)
Return statement (see 6.5.10)

6.1.4 Comments

The language defines two comment constructs: line comments (ie, start with // and end in the end of the line) and block
comments (ie, consisting of multiple lines starting with /* and ending with */). It isillegal to have nested block
comments.?

Syntax:

Comment ::

MultiLineComment
SngleLineComment

MultiLineComment ::
/* MultiLineCommentChar sy * /

SngleLineComment ::
/1 SngleLineCommentChar Sy

6.1.5 Literals

6.1.5.1 Integer Literals

Integer literals can be represented in three different ways: decimal, octal and hexadecimal integers.

Syntax:

DecimallntegerLiteral ::
0
NonZeroDigit Decimal Digitsy

NonZeroDigit :: one of
1 2 3 4 5 6 7 8 9

DecimalDigits ::
DecimalDigit
DecimalDigits Decimal Digit

DecimalDigit :: one of
012345672829

HexlIntegerLiteral ::
Ox HexDigit
O0X HexDigit
HexlintegerLiteral HexDigit

2 Compatibility note: ECMAScript also supports HTML comments.

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Version 17-Jun-1999 Page

15(126)

HexDigit :: one of
0 1 2 3 456 7 8 9 aboc def ABUCDEF
OctallntegerLiteral ::

0 OctalDigit
OctallntegerLiteral OctalDigit

OctalDigit :: one of
0 1 2 3 4 5 6 7

The minimum and maximum sizes for integer literals and values are specified in the section 6.2.7.1. An integer literal
that is not within the specified value range must result in a compiletime error.

6.1.5.2 Floating-Point Literals

Floating-point literals can contain a decimal point aswell as an exponent.

Syntax:

Decimal FloatLiteral ::

DecimallntegerLiteral . Decimal Digits,, ExponentPart,y
. Decimal Digits ExponentPar toy
DecimalIntegerLiteral ExponentPart

DecimalDigits ::
DecimalDigit
DecimalDigits Decimal Digit

ExponentPart ::
Exponentindicator Signedinteger

Exponentindicator :: one of
e E

Sgnedinteger ::
DecimalDigits
+ DecimalDigits
- DecimalDigits

The minimum and maximum sizes for floating-point literals and values are specified in the section 6.2.7.2. A floating-
point literal that is not within the specified value range must result in a compiletime error. A floating-point literal
underflow results in afloating-point literal zero (0. 0).

6.1.5.3 StringLiterals

Strings are any sequence of zero or more characters enclosed within double (") or single quotes ().

Syntax:
StringLiteral ::
" DoubleStringCharactersyg "
" SingleStringCharacter sy

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Version 17-Jun-1999

Examples of valid strings are:

" Exanpl e" " Specials: \x00 \'" \b'

"Quot e:

\II n

Page
16(126)

Since some characters are not representable within strings, WML Script supports special escape sequences by which these
characters can be represented:

Sequence | Character represented3 Unicode Symbol
\ Apostrophe or single quote \u0027 '
\" Double quote \u0022 "
\\ Backdash \u005C \
V Slash \u002F /
\b Backspace \u0008
\f Form feed \u000C
\n Newline \uOOOA
\r Carriage return \u000D
\t Horizontal tab \u0009
\xhh The character with the encoding specified by two
hexadecimal digits hh (Latin-1 1SO8859-1)
\ooo The character with the encoding specified by the
three octal digits ooo (Latin-1 1SO8859-1)
\uhhhh | The Unicode character with the encoding specified
by the four hexadecimal digits hhhh.

An escape sequence occurring within a string literal always contributes a character to the string value of the literal and is
never interpreted as a line terminator or as a quote mark that might terminate the string literal.

6.1.5.4 Boolean Literals

A "truth value' in WML Script is represented by a boolean literal. The two boolean literalsare: t r ue and f al se.

Syntax:

BooleanLiteral ::
true
fal se

6.1.5.5 Invalid Literal

WML Script supports a special invalid literal to denote an invalid value.

Syntax:

InvalidLiteral ::
invalid

3 Compatibility note: ECMA Script supports al so non-escape characters preceded by a backd ash.

© Wireless Application Protocol Forum, Ltd, 1999

All rights reserved.

Version 17-Jun-1999 Page
17(126)

6.1.6 Identifiers

Identifiers are used to name and refer to three different elements of WML Script: variables (see 6.2), functions (see 6.4)
and pragmas (see 6.7). ldentifiers* cannot start with a digit but can start with an underscore ().

Syntax:
Identifier ::
I dentifierName but not ReservedWord

IdentifierName ::

I dentifierLetter
I dentifierName | dentifierLetter
| dentifierName DecimalDigit

IdentifierLetter :: one of
abcdef ghij kIl mnopagr st
ABCDEFGHI JKLMNOPQRSTUVWXYZ

DecimalDigit :: one of
012345672829

Examples of legal identifiers are:

timeOfDay speed quality HOVE_ADDRESS var0O _nyNane

The compiler looks for the longest string of characters make up avalid identifier. Identifiers cannot contain any special
characters except underscore (). WML Script keywords and reserved words cannot be used as identifiers. Examples of
illegal identifiers are:

while for if my~name $sys 123 3pieces take.this

Uppercase and lowercase | etters are distinct which means that the identifiers speed and Speed are different.

6.1.7 Reserved Words

WML Script specifies a set of reserved words that have a special meaning in programs and they cannot be used as
identifiers. Examples of such words are (full list can be found from the WML Script grammar specification, see chapter
8):

break continue false true while

6.1.8 Name Spaces

WML Script supports name spaces for identifiers that are used for different purposes. The following name spaces are
supported:

Function names (see 6.4)
Function parameters (see 6.4) and variables (see 6.2)

4 Compatibility note: ECMAScript supports the usage of $ character in any position of the name, too.

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Version 17-Jun-1999 Page
18(126)

Pragmas (see 6.7)

Thus, the same identifiers can be used to specify a function name, variable/parameter name or a name for a pragma
within the same compilation unit:

use url myTest "http://ww. host.com script";

function nyTest (myTest) {
var val ue = nmyTest#nyTest (nyTest);
return val ue;

}

6.2 Variables and Data Types

This section describes the two important concepts of WML Script language: variables and internal data types. A variable
is a name associated with a data value. Variables can be used to store and manipulate program data. WML Script

supports local variables® only declared inside functions or passed as function parameters (see 6.4).

6.2.1 Variable Declaration

Variable declaration is compulsory® in WML Script. Variable declaration is done simply by using the var keyword and a
variable name (see section 6.5.4 for information about variable statements). Variable names follow the syntax defined for
all identifiers (see section 6.1.6):

var X;
var price;
var X,Y;

var size = 3;

Variables must be declared before they can be used. Initialisation of variables is optional. Uninitialised variables are
automatically initialised to contain an empty string (").

6.2.2 Variable Scope and Lifetime

The scope of WML Script variablesis the remainder of the function (see 6.4) in which they have been declared. All
variable names within a function must be unique. Block statements (see 6.5.3) are not used for scoping.

function priceCheck(givenPrice) {
if (givenPrice > 100) {
var newPrice = givenPrice;
} else {
newPrice = 100;
}

return newPrice;

}

Thelifetime of a variable is the time between the variable declaration and the end of the function.

5 Compatibility note: ECMA Script supports global variables, too.
6 Compatibility note: ECMA Script supports automatic declaration, too.

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Version 17-Jun-1999 Page
19(126)

function foo() {

X = 1; /1l Error: usage before declaration
var X,Y;
it o(x) {
var vy; /] Error: redeclaration
H

b

6.2.3 Variable Access

Variables are accessible only within the function in which they have been declared. Accessing the content of avariableis
done by using the variable name:

var nyAge
var your Age
var our Age

37,
63;
myAge + your Age;

6.2.4 Variable Type

WML Script is aweakly typed language. The variables are not typed but internally the following basic data types are
supported: boolean, integer, floating-point and string. In addition to these, a fifth data typeinvalid is specified to be used
in cases an invalid data type is needed to separate it from the other internal data types. Since these data types are
supported only internally, the programmer does not have to specify variable types and any variable can contain any type
of data at any given time. WML Script will attempt automatically convert between the different types as needed.

var flag = true; // Bool ean
var nunber = 12; /1l 1nteger
var tenperature = 37.7, /! Fl oat

nunber ="XlI"; /1l String
var except = invalid; /] Invalid

6.2.5 L-Values

Some operators (see 6.3.1 for more information about assignment operators) require that the left operand is areference to
avariable (L-value) and not the variable value. Thus, in addition to the five data types supported by WML Script, a sixth
type variable is used to specify that a variable name must be provided.

result += 111; // += operator requires a variable

6.2.6 Type Equivalency

WML Script supports operations on different data types. All operators (see section 6.3) specify the accepted data types for
their operands. Automatic data type conversions (see chapter 7) are used to convert operand values to required data

types.

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Version 17-Jun-1999 Page
20(126)

6.2.7 Numeric Values

WML Script supports two different numeric variable values: integer and floating-point values’. Variables can be
initialised with integer and floating-point literals and several operators can be used to modify their values during the run-
time. Conversion rules between integer and floating-point values are specified in chapter 7.

var pi = 3. 14;
var length = 0;
var radius = 2.5;

| engt h 2*pi *r adi us;

6.2.7.1 Integer Size

The size of the integer is 32 bits (two's complement). This means that the supported value range® for integer valuesis:
-2147483648 and 2147483647. Lang [WMLSLibs] library functions can be used to get these values during the run-time:

Lang. maxI nt () Maximum representable integer value
Lang. m nl nt () Minimum representable integer value

6.2.7.2 Floating-point Size

The minimum/maximum values® and precision for floating-point values are specified by [|EEE754]. WML Script
supports 32-bit single precision floating-point format:

Maximum value: 3.40282347E+38
Minimum positive nonzero value (at least the normalised precision must be supported): 1.17549435E-38 or
smaller

The Float [WMLSLibs] library can be used to get these values during the run-time:

Fl oat . maxFl oat () Maximum representabl e floating-point value supported.
Fl oat . m nFl oat () Smallest positive nonzero floating-point val ue supported.

The specia floating-point number types are handled by using the following rules:

If an operation resultsin a floating-point number that is not part of the set of finite real numbers (not a number,
positive infinity etc.) supported by the single precision floating-point format then theresultisan i nval i d value.
If an operation resultsin a floating-point underflow the result is zero (0.0).

Negative and positive zero are equal and undistinguishable.

6.2.8 String Values

WML Script supports strings that can contain letters, digits, special characters etc. Variables can be initialised with string
literals and string values can be manipulated both with WML Script operators and functions specified in the standard
Sring library [WMLSLibg].

7 Convention: In cases where the value can be either an integer or afloating-point, amore generic term number is used instead.
8 Compatibility note: ECMA Script does not specify maximum and minimum values for integers. All numbers are represented as floating-point values.
9 Compatibility note: ECMA Script uses double-precision 64-bit format [|IEEE754] floating-point values for all numbers.

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Version 17-Jun-1999 Page
21(126)

var nsg = "Hell o";
var len = String. | ength(nsg);
nsg = nmeg + ' Wrlds!';

6.2.9 Boolean Values

Boolean values can be used to initialise or assign a value to a variable or in statements which require a boolean value as
one of the parameters. Boolean value can be aliteral or the result of alogical expression evaluation (see 6.3.3 for more
information).

var truth = true;
var lie = ltruth;

6.3 Operators and Expressions

The following sections describe the operators supported by WML Script and how they can be used to form complex
expressions.

6.3.1 Assignment Operators

WML Script supports several ways to assign avalue to a variable. The simplest one is the regular assignment (=) but
assignments with operation are al so supported:

Operator Operation
= assign
+= add (numbers)/concatenate (strings) and assign
-= subtract and assign
*= multiply and assign
/= divide and assign
div= divide (integer division) and assign
%= remainder (the sign of the result equals the sign of the dividend) and
assign
<<= bitwise left shift and assign
>>= bitwise right shift with sign and assign
>>>= bitwise right shift zero fill and assign
&= bitwise AND and assign
N= bitwise XOR and assign
|= bitwise OR and assign

Assignment does not necessarily imply sharing of structure nor does assignment of one variable change the binding of
any other variable.

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Version 17-Jun-1999

var a
var b

n abC";
a,
"def"; [/ Value of ais

n n

abc

6.3.2 Arithmetic Operators

WML Script supports all the basic binary arithmetic operations:

Operator Operation
+ add (numbers)/concatenation (strings)
- subtract
* multiply
/ divide
div integer division

In addition to these, a set of more complex binary operations are supported, too:

Operator Operation
% remainder, the sign of the result equals the sign of the dividend
<< bitwise |eft shift
>> bitwise right shift with sign
>>> bitwise shift right with zero fill
& bitwise AND
| bitwise OR
N bitwise XOR

The basic unary operations supported are:

Examples:

Operator Operation
+ plus
- minus
-- pre-or-post decrement
++ pre-or-post increment
~ bitwise NOT

var y = 1/3;

var X = y*3+(++b);

6.3.3 Logical Operators

WML Script supports the basic logical operations:

Operator Operation
&& logical AND
I logical OR

Page
22(126)

© Wireless Application Protocol Forum, Ltd, 1999

All rights reserved.

Version 17-Jun-1999 Page
23(126)

Operator Operation

! logical NOT (unary)

Logical AND operator evaluates the first operand and tests the result. If theresult isf al se, theresult of the operation is
f al se and the second operand is not evaluated. If the first operand evaluatestot r ue, the result of the operation isthe
result of the evaluation of the second operand. If the first operand evaluatestoi nval i d, the second operand is not
evaluated and the result of the operation isi nval i d.

Similarly, the logical OR evaluates the first operand and tests the result. If theresult ist r ue, the result of the operation
ist r ue and the second operand is not evaluated. If thefirst operand evaluatesto f al se, the result of the operation is
the result of the evaluation of the second operand. If the first operand evaluatestoi nval i d, the second operand is not
evaluated and the result of the operation isi nval i d.

weAgree = (i AnRi ght && your AreRi ght) |
('i ArRi ght && !youAreRi ght);

WML Script requires a value of boolean type for logical operations. Automatic conversions from other types to boolean
type and vice versa are supported (see 7).

Notice: If the value of the first operand for logical AND or ORisi nval i d, the second operand is not evaluated and the
result of the operandisi nval i d:

var a = (1/0) || foo(); // result: invalid, no call to foo()
var b = true || (1/0); // true
var ¢ = false || (1/0); // invalid

6.3.4 String Operators

WML Script supports string concatenation as a built-in operation. The + and += operators used with strings perform a
concatenation on the strings. Other string operations! are supported by a standard String library (see [WMLSLibs)).

var str
var chr

"Begi nning" + "End";
String.charAt(str,10); // chr = "E"

6.3.5 Comparison Operators

WML Script supports all the basic comparison operations:

Operator Operation
< less than
<= less than or equal
== equal
>= greater or equal
> greater than
I= inequality

Comparison operators use the following rules:

10 Compatibility note: ECMA Script supports String objects and a length attribute for each string. WML Script does not support objects. However, similar
functionality is provided by WML Script libraries.

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Version 17-Jun-1999 Page
24(126)

Boolean: t r ue islarger thanf al se

Integer: Comparison is based on the given integer values

Floating-point: Comparison is based on the given floating-point values

Sring: Comparison is based on the order of character codes of the given string values. Character codes are
defined by the character set supported by the WML Script Interpreter

Invalid: If at least one of the operandsisi nval i d then the result of the comparisonisi nval i d

Examples:
var res
var val

(myAmount > your Anount) ;
((2/0) ==invalid); /1 val = invalid

6.3.6 Array Operators

WML Script does not support arrays!! as such. However, the standard String library (see [WMLSLibs]) supports
functions by which array like behaviour can be implemented by using strings. A string can contain eements that are
separated by a separator specified by the application programmer. For this purpose, the String library contains functions
by which creation and management of string arrays can be done.

function dumy() {
var str = "Mary had a little lanb";
var word = String.elenentAt(str,4," ");

}

6.3.7 Comma Operator

WML Script supports the comma (,) operator by which multiple evaluations can be combined into one expression. The
result of the comma operator is the value of the second operand:

for (a=1, b=100; a < 10; a++, b++) {
...do sonet hi ng

b

Commas used in the function call to separate parameters and in the variable declarations to separate multiple variable
declarations are not comma operators. In these cases, the comma operator must be placed inside the parenthesis:

var a=2;
var b=3, c=(a, 3);
nyFunction("Nanme", 3*(b*a,c)); // Two paraneters: "Nanme",9

6.3.8 Conditional Operator

WML Script supports the conditional (?:) operator which takes three operands. The operator selectively evaluates one of
the given two operands based on the boolean value of the first operand. If the value of the first operand (condition) is

t r ue then theresult of the operation isthe result of the evaluation of the second operand. If the value of thefirst
operandisf al se ori nval i d then the result of the operation isthe result of the evaluation of the third operand.

1 Compatibility note: ECMAScript supports arrays.

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Version 17-Jun-1999 Page
25(126)

nyResult = flag ? "OFf" : "On (value=" + level + ")";

Notice: This operator behaves like an if statement (see 6.5.5). The third operand is evaluated if the evaluation of the
condition resultsinf al se ori nval i d.

6.3.9 typeof Operator

Although WML Script is aweakly typed language, internally the following basic data types are supported: boolean,
integer, floating-point, string and invalid. Typeof (typeof) operator returns an integer valuel? that describes the type of
the given expression. The possible results are:

Type Code
Integer: 0
Floating-point: 1
String: 2
Boolean: 3
Invalid: 4

Typeof operator does not try to convert the result from one type to another but returnsthe type as it is after the evaluation
of the expression.

var str
var nyType

"123";
typeof str; // nyType = 2

6.3.10 isvalid Operator

This operator can be used to check the type of the given expression. It returns a boolean valuef al se if the type of the
expression isinvalid, otherwiset r ue isreturned. isvalid operator does not try to convert the result from one type to
another but returns the type asit is after the evaluation of the expression.

var str = "123";
var ok = isvalid str; /] true
var tst = isvalid (1/0); // false

6.3.11 Expressions

WML Script supports most of the expressions supported by other programming languages. The smplest expressions are
constants and variable names, which simply evaluate to either the value of the constant or the variable.

567

66. 77

"This is too sinple”
" This works too'

true

my Account

Expressions that are more complex can be defined by using simple expressions together with operators and function
cals.

12 Compatibility note: ECMA Script specifies that the typeof operator returns a string representing the variable type.

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Version 17-Jun-1999

myAccount + 3

(a + b)/3
i nitial Val ue + next Val ue(nmyVal ues);

6.3.12 Expression Bindings

Page

26(126)

The following table contains all operators supported by WML Script. The table also contains information about operator
precedence (the order of evaluation) and the operator associativity (left-to-right (L) or right-to-left (R)):

Preced | Associa- Operator Operand types Result type Operation performed
encel3 tivity
1 R ++ number number’ pre- or post-increment (unary)
1 R -- number number’ pre- or post-decrement (unary)
1 R + number number” | unary plus
1 R - number number’ unary minus (negation)
1 R ~ integer integer’ bitwise NOT (unary)
1 R ! boolean boolean” | logical NOT (unary)
1 R typeof any integer return internal datatype
(unary)
1 R isvalid any boolean check for validity (unary)
2 L * numbers number’ | multiplication
2 L / numbers floating- division
point’
2 L div integers integer’ integer division
2 L % integers integer’ remainder
3 L - numbers number” | subtraction
3 L + numbers or strings number or | addition (numbers) or string
string’ concatenation
4 L << integers integer’ bitwise | eft shift
4 L >> integers integer’ bitwise right shift with sign
4 L >>> integers integer’ bitwise right shift with zerofill
5 L <, <= numbers or strings boolean’ less than, less than or equal
5 L > >= numbers or strings boolean’ greater than, greater or equal
6 L == numbers or strings boolean’ equal (identical values)
6 L I= numbers or strings boolean’ not equal (different values)
7 L & integers integer’ bitwise AND
8 L A integers integer’ bitwise XOR
9 L | integers integer’ bitwise OR
10 L && booleans boolean” | logical AND
11 L I booleans boolean” | logical OR
12 R ?: boolean, any, any any’ conditional expression
13 R = variable, any any assignment
13 R *= = variable, number number” assignment with numeric
operation
13 R /= variable, number floating- assignment with numeric
point’ operation
13 R %=, div= variable, integer integer’ assignment with integer
operation

13 Binding: 0 bindstightest

© Wireless Application Protocol Forum, Ltd, 1999

All rights reserved.

Version 17-Jun-1999 Page

27(126)

Preced | Associa- Operator Operand types Result type Operation performed
encel3 tivity

13 R += variable, number or number or | assignment with addition or

string string’ concatenation
13 R <<=, >>=, variable, integer integer’ assignment with bitwise
>>>= &=, operation
A=) |:
14 L , any any multiple evaluation

" The operator can return ani nval i d valuein case the data type conversions fail (see chapter 7 for
more information about conversion rules) or one of the operandsisi nval i d.

6.4 Functions

A WMLScript function is a named part of the WML Script compilation unit that can be called to perform a specific set of
statements and to return a value. The following sections describe how WML Script functions can be declared and used.

6.4.1 Declaration

Function declaration can be used to declare a WML Script function name (Identifier) with the optional parameters
(Formal ParameterList) and a block statement that is executed when the function is called. All functions have the
following characterigtics:

Function declarations cannot be nested.

Function names must be unique within one compilation unit.

All parameters to functions are passed by value.

Function calls must pass exactly the same number of arguments to the called function as specified in the function
declaration.

Function parameters behave like local variables that have been initialised before the function body (block of
statements) is executed.

A function always returns a value. By default it isan empty string (" "). However, areturn statement can be used
to specify other return values.

Functionsin WML Script are not data types!4 but a syntactical feature of the language.

Syntax:

FunctionDeclaration :
externg function Identifier (FormalParameterListyy) Block ; op

Formal ParameterList :

Identifier
Formal ParameterList, ldentifier

Arguments: The optional ext er n keyword can be used to specify a function to be externally accessible. External
functions can be called from outside the compilation unit in which they are defined. Identifier isthe name specified for
the function. Formal ParameterList (optional) is a comma-separated list of argument names. Block is the body of the
function that is executed when the function is called and the parameters have been initialised by the passed arguments.

14 Compatibility note: Functionsin ECMAScript are actual data types.

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Version 17-Jun-1999 Page
28(126)

Examples:
function currencyConverter(currency, exchangeRate) {

return currency*exchangeRat e;

b
extern function testlt() {

var UDS = 10;

var FIM = currencyConverter(USD, 5.3);
b

6.4.2 Function Calls

The way afunction is called depends on where the called (target) function is declared. The following sections describe
the three function calls supported by WML Script: local script function call, external function call and library function
cal.

6.4.2.1 Local Script Functions

Local script functions (defined inside the same compilation unit) can be called simply by providing the function name
and a comma separated list of arguments (number of arguments must match the number of parameters!® accepted by the
function).

Syntax:

Local ScriptFunctionCall :
FunctionName Arguments

FunctionName :
Identifier

Arguments :

()
(ArgumentList)

ArgumentList :
AssignmentExpression
ArgumentList , AssignmentExpression

Functions inside the same compilation unit can be called before the function has been declared:

15 Compatibility note: ECMA Script supports a variable number of argumentsin afunction call.

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Version 17-Jun-1999 Page
29(126)

function test2(param {
return testl(param+l);
b

function test1(val) {
return val *val ;

}

6.4.2.2 External Functions

External function calls must be used when the called function is declared in an external compilation unit. The function
call issimilar to alocal function call but it must be prefixed with the name of the external compilation unit.
Syntax:

External ScriptFunctionCall :
External ScriptName # FunctionName Arguments

External ScriptName :
Identifier

Pragmause url (see6.7) must be used to specify the external compilation unit. It defines the mapping between the
external unit and a name that can be used within function declarations. This name and the hash symbol (#) are used to
prefix the standard function call syntax:

use url O herScript "http://ww. host.conlfscript”;

function test3(paranm {
return Ot herScri pt#test2(paranmtl);

}

6.4.2.3 Library Functions

Library function calls must be used when the called function isa WML Script standard library function [WMLSLibs].

Syntax:

LibraryFunctionCall :
LibraryName . FunctionName Arguments

LibraryName :
Identifier

A library function can be called by prefixing the function name with the name of the library (see 6.6 for more
information) and the dot symboal (.):

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Version 17-Jun-1999 Page
30(126)

function test4(paranm {
return Float.sqgrt(Lang. abs(param +1);

i
6.4.3 Default Return Value

The default return value for afunction is an empty string (" "). Return values of functions can beignored (ie, function
call as a statement):

function test5() {
test4(4);

6.5 Statements

WML Script statements consist of expressions and keywords used with the appropriate syntax. A single statement may
span multiple lines. Multiple statements may occur on asingle line.

The following sections define the statements available in WML Script16: empty statement, expression statement, block
statement, break, continue, for, if...else, return, var, while,
6.5.1 Empty Statement

Empty statement is a statement that can be used where a statement is needed but no operation isrequired.

Syntax:
EmptyStatement :

Examples:
while (!poll(device)) ; // Wait until poll() is true

6.5.2 Expression Statement

Expression statements are used to assign values to variables, cal culate mathematical expressions, make function calls etc.

Syntax:

ExpressionStatement :
Expression ;

Expression :
AssignmentExpression
Expression, AssignmentExpression

16 Compatibility note: ECMA Script supports also for..in and with statements.

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Version 17-Jun-1999 Page

31(126)
Examples:
str = "Hey " + your Nane;
val 3 = prevval + 4;
count er ++;

myVal uel = counter, nyValue2 = val 3;
alert("Watch out!");
retVal = 16*Lang. max(val 3, counter);

6.5.3 Block Statement

A st of statements enclosed in the curly bracketsis a block statement. It can be used anywhere a single statement is
needed.

Syntax:

Block :
{ StatementListoy }

SatementList :

Satement
SatementList Satement

Example:

{ .
var i = 0;
var x = Lang. abs(b);
popUp(" Renenber! ") ;

6.5.4 Variable Statement

This statement declares variables with initialisation (optional, variables are initialised to empty string (" *) by default).
The scope of the declared variable is the rest of the current function (see section 6.2.2 for more information about
variable scoping).

Syntax:

VariableSatement :
var VariableDeclarationList ;

VariableDeclarationList :

VariableDeclaration
VariableDeclarationList, VariableDeclaration

VariableDeclaration :
Identifier Variablelnitializer gy

Variablelnitializer :
= Conditional Expression

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Version 17-Jun-1999 Page
32(126)

Arguments: Identifier isthe variable name. It can be any legal identifier. Conditional Expression istheinitial value of
the variable and can be any legal expression. This expression (or the default initialisation to an empty string) is evaluated
every time the variable statement is executed.

Variable names must be unique within a single function.

Examples:
function count(str) {
var result = 0; [/ Initialized once
while (str !'="") {
var ind = O; /1l Initialized every tine
/1 nodify string
H
return result
}
function exanpl e(paran) {
var a = 0;
if (param > a) {
var b = a+1; /] Variables a and b can be used
} else {
var ¢ = at2; // Variables a, b and ¢ can be used
H
return a; /[l Variable a, b and ¢ are accessible
}

6.5.5 If Statement

This statement is used to specify conditional execution of statements. It consists of a condition and one or two statements
and executes the first statement if the specified condition istrue. If the condition is false, the second (optional) statement
is executed.

Syntax:

IfSatement :

i f (Expression) Satement el se Statement
i f (Expression) Satement

Arguments: Expression (condition) can be any WML Script expression that evaluates (directly or after conversion) to a
boolean or an invalid value. If condition evaluatesto t r ue, the first statement is executed. If condition evaluates to
fal se orinval i d, thesecond (optional) el se statement is executed. Satement can be any WML Script statement,
including another (nested) i f statement. el se isalwaystied totheclosesti f .

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Version 17-Jun-1999 Page
33(126)

Example:
i f (sunShines) {
nyDay = " CGood";
goodDays++;
} else
myDay = "Ch well...";

6.5.6 While Statement

This statement is used to create aloop that evaluates an expression and, if itist r ue, execute a statement. The loop
repeats as long as the specified condition ist r ue.

Syntax:

WhileStatement :
whi | e (Expression) Statement

Arguments: Expression (condition) can be any WML Script expression that evaluates (directly or after the conversion) to
aboolean or an invalid value. The condition is evaluated before each execution of the loop statement. If this condition
evaluatestot r ue, the Statement is performed. When condition evaluatestof al se or i nval i d, execution continues
with the statement following Statement. Statement is executed as long as the condition evaluatestot r ue.

Example:
var counter
var total
while (counter < 3) {

count er ++;

total += c;

}

:0;
:0;

6.5.7 For Statement

This statement is used to create loops. The statement consists of three optional expressions enclosed in parentheses and
separated by semicolons followed by a statement executed in the loop.

Syntax:

ForSatement :
for (Expressiong ; Expressiong ; Expressiong,) Statement
for (var VariableDeclarationList ; Expressiony ; Expressiong,) Statement

Arguments: Thefirst Expression or VariableDeclarationList (initialiser) istypically used to initialise a counter variable.
This expression may optionally declare new variables with the var keyword. The scope of the defined variablesisthe rest
of the function (see section 6.2.2 for more information about variable scoping).

The second Expression (condition) can be any WML Script expression that evaluates (directly or after the conversion) to
aboolean or an invalid value. The condition is evaluated on each pass through the loop. If this condition evaluatesto
t r ue, the Statement is performed. This conditional test is optional. If omitted, the condition always evaluatestot r ue.

The third Expression (increment-expression) is generally used to update or increment the counter variable. Satement is
executed as long as the condition evaluatestot r ue.

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Version 17-Jun-1999 Page

34(126)

Example:
for (var index = 0; index < 100; index++) {
count += i ndex;
myFunc(count) ;

6.5.8 Break Statement

This statement is used to terminate the current while or for loop and continue the program execution from the statement
following the terminated loop. It is an error to use break statement outside awhile or afor statement.

Syntax:

BreakSatement :
break ;

Example:
function testBreak(x) {
var index = 0O;
while (index < 6) {
if (index == 3) break;
i ndex++;
3
return i ndex*x;

}

6.5.9 Continue Statement

This statement is used to terminate execution of a block of statementsin awhile or for loop and continue execution of the
loop with the next iteration. Continue statement does not terminate the execution of the loop:

In awhile loop, it jumps back to the condition.
In afor loop, it jumps to the update expression.

It isan error to use continue statement outside awhile or a for statement.

Syntax:

ContinueStatement :
conti nue ;

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Version 17-Jun-1999 Page

35(126)
Example:

var i ndex = 0O;
var count = O;
while (index < 5) {

i ndex++;

if (index == 3)

conti nue;

count += i ndex;

b

6.5.10 Return Statement

This statement can be used inside the function body to specify the function return value. If no return statement is
specified or none of the function return statements is executed, the function returns an empty string by default.

Syntax:
ReturnSatement :
return EXxpressiong;
Example:
function square(x)
if (!(Lang.isFloat(x))) return invalid;
return x * Xx;
3
6.6 Libraries

WML Script supports the usage of libraries!’. Libraries are named collections of functions that belong logically together.
These functions can be called by using adot (*.") separtor with the library name and the function name with parameters:

An example of alibrary function call:

function dumy(str) {
var i = String.elenmentAt(str,3," ");

}

6.6.1 Standard Libraries

Standard libraries are specified in more detail in the WMLScript Standard Libraries Specification [WMLSLibs)].

6.7 Pragmas

WML Script supports the usage of pragmas that specify compilation unit level information. Pragmas are specified at the
beginning of the compilation unit before any function declaration. All pragmas start with the keyword use and are
followed by pragma specific attributes.

17 Compatibility note: ECMA Script does not support libraries. It supports a set of predefined objects with attributes. WML Script useslibraries to support
similar functionality.

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Version 17-Jun-1999 Page
36(126)

Syntax:

CompilationUnit :
Pragmas,,: FunctionDeclarations

Pragmas :
Pragma
Pragmas Pragma

Pragma :
use PragmaDeclaration;

PragmaDeclaration :

External CompilationUnitPragma
AccessControl Pragma
MetaPragma

The following sections contain more information about the supported pragmas.

6.7.1 External Compilation Units

WML Script compilation units can be accessed by using a URL. Thus, each WML Script function can be accessed by
specifying the URL of the WML Script resource and itsname. A use ur| pragmamust be used when calling a function
in an external compilation unit.

Syntax:

External CompilationUnitPragma :
url Identifier SringLiteral

Theuse url pragma specifiesthe location (URL) of the external WML Script resource and givesit alocal name. This
name can then be used inside the function declarations to make external function calls (see section 6.4.2.2).

use url O herScript "http://ww. host.com app/script"”;

function test(parl, par2) {
return O herScri pt#check(par1-par?2);

b
The behaviour of the previous example is the following:

The pragma specifies a URL to a WML Script compilation unit.
The function call loads the compilation unit by using the given URL (ht t p: / / www. host . conf app/ scri pt)
The content of the compilation unit is verified and the specified function (check) is executed

Theuse url pragma hasits own name space for local names. However, the local names must be unique within one
compilation unit. The following URLSs are supported:

Uniform Resource Locators [RFC2396] without a hash mark (#) or a fragment identifier. The schemes supported
are specified in [WAE].

Relative URLs [RFC2396] without a hash mark (#) or a fragment identifier: The base URL isthe URL that
identifies the current compilation unit.

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Version 17-Jun-1999 Page
37(126)

The given URL must be escaped according to the URL escaping rules. No compile time automatic escaping, URL syntax
or URL validity checking is performed.

6.7.2 Access Control

A WML Script compilation unit can protect its content by using an access control pragma. Access control must be
performed before calling external functions. It isan error for a compilation unit to contain more than one access control

pragma.

Syntax:

AccessControlPragma :
access AccessControl Specifier

AccessControl Specifier :
domai n StringLiteral
pat h SringLiteral
domai n StringLiteral pat h SringLiteral

Every time an external function isinvoked an access control check is performed to determine whether the destination
compilation unit allows access from the caller. Access control pragmais used to specify domain and path attributes
against which these access control checks are performed. If a compilation unit has a domain and/or path attribute, the
referring compilation unit's URL must match the values of the attributes. Matching is done as follows: the access domain
is suffix-matched against the domain name portion of the referring URL and the access path is prefix-matched against
the path portion of the referring URL. Domain and path attributes follow the URL capitalisation rules.

Domain suffix matching is done using the entire element of each sub-domain and must match each element exactly (e.g.
www. wapf or um or g shall match wapf or um or g, but shall not match f or um or g).

Path prefix matching is done using entire path e ements and must match each element exactly (e.g. / X/ Y matches/ X,
but does not match / XZ).

The domain attribute defaults to the current compilation unit's domain. The path attribute defaults to the value ™ / " .

To smplify the development of applications that may not know the absol ute path to the current compilation unit, the
path attribute accepts relative URLS [RFC2396]. The user agent converts the relative path to an absolute path and then
performs prefix matching against the path attribute.

Given the following access control attributes for a compilation unit:
use access domain "wapforumorg" path "/finance";

Thefollowing referring URLs would be allowed to call the external functions specified in this compilation unit:
htt p: // wapf orum or g/ fi nance/ noney. cgi

htt ps: // ww. wapf orum or g/ fi nance/ mar ket s. cgi
ht t p: / / wwww. wapf orum or g/ fi nance/ denos/ packages. cgi ?x=123&y=456

The following referring URLs would not be allowed to call the external functions:

http://ww. test.net/finance
htt p: / / www. wapf orum or g/ i nternal /f oo. wrl

By default, access control is disabled (ie, al external functions have public access).

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Version 17-Jun-1999 Page
38(126)

6.7.3 Meta-Information

Pragmas can also be used to specify compilation unit specific meta-information. Meta-information is specified with
property names and values. This specification does not define any properties, nor does it define how user agents must
interpret meta-data. User agents are not required to act on the meta-data.

Syntax:

MetaPragma :
met a MetaSpecifier

MetaSpecifier :
MetaName
MetaHttpEquiv
MetaUser Agent

MetaName :
nane MetaBody

MetaHttpEquiv :
http equi v MetaBody

MetaUserAgent :
user agent MetaBody

MetaBody :
MetaPropertyName MetaContent MetaScheme,,:

Meta-pragmas have three attributes: property name, content (the value of the property) and optional scheme (specifies a
form or structure that may be used to interpret the property value — the values vary depending on the type of meta-data).
The attribute values are string literals.

6.7.3.1 Name

Name meta-pragma is used to specify meta-information intended to be used by the origin servers. The user agent should
ignore any meta-data named with this attribute. Network servers should not emit WML Script content containing meta-
name pragmas.

use neta nanme "Created"” "18-March-1998";

6.7.3.2 HTTP Equiv

HTTP equiv meta-pragmais used to specify meta-information that indicates that the property should be interpreted as an
HTTP header (see [RFC2068]). Meta-data named with this attribute should be converted to a WSP or HTTP response
header if the compilation unit is compiled before it arrives at the user agent.

use nmeta http equiv "Keywords" "Script, Language";

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Version 17-Jun-1999 Page

39(126)
6.7.3.3 User Agent

User agent meta-pragma is used to specify meta-information intended to be used by the user agents. This meta-data must
be delivered to the user agent and must not be removed by any network intermediary.

use neta user agent "Type" "Test";

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Version 17-Jun-1999 Page
40(126)

7. Automatic Data Type Conversion Rules

In some cases, WML Script operators require specific data types as their operands. WML Script supports automatic data
type conversions to meet the requirements of these operators. The following sections describe the different conversionsin
detail.

7.1 General Conversion Rules

WML Script is aweakly typed language and the variable declarations do not specify a type. However, internally the
language handles the following data types:

Boolean: represents a boolean value true or false.
Integer: represents an integer value

Floating-point: represents a floating-point value
Sring: represents a sequence of characters

Invalid: represents atype with asinglevaluei nval i d

A variable at any given time can contain a value of one of these types. WML Script provides an operator typeof, which
can be used to determine what is the current type of a variable or any expression (no conversions are performed).

Each WML Script operator accepts a predefined set of operand types. If the provided operands are not of the right data
type an automatic conversion must take place. The following sections specify the legal automatic conversions between
two data types.

7.1.1 Conversions to String

Legal conversions from other data typesto string are:

Integer value must be converted to a string of decimal digits that follows the numeric string grammar rules for
decimal integer literals. See section 8.4 for more information about the numeric string grammar.

Floating-point value must be converted to an implementation-dependent string representation that follows the
numeric string grammar rules for decimal floating-point literals (see section 8.4 for more information about the
numeric string grammar). The resulting string representation must be equal to the original value (ie. 5 can be
representedas" 0. 5", ".5e0", etc.).

The boolean valuet r ue is converted to string " t r ue” and thevaluef al se isconvertedto string " f al se”.
I nval i d can not be converted to a string value.

7.1.2 Conversions to Integer

Legal conversions from other data typesto integer are:

A string can be converted into an integer value only if it contains a decimal representation of an integer number
(see section 8.4 for the numeric string grammar rules for a decimal integer literal).

Floating-point value cannot be converted to an integer value.

The boolean valuet r ue is converted to integer value 1, f al se to 0.

I nval i d can not be converted to an integer value.

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Version 17-Jun-1999 Page
41(126)

7.1.3 Conversions to Floating-Point

Legal conversions from other data typesto floating-point are:

A string can be converted into a floating-point value only if it contains a valid representation of a floating-point
number (see section 8.4 for the numeric string grammar rules for a decimal floating-point literal).

An integer valueis converted to a corresponding floating-point value.

The boolean valuet r ue is converted to a floating-point value 1.0, f al se to 0.0.

I nval i d can not be converted to a floating-point value.

The conversions between a string and a floating-point type must be transitive within the ability of the data typesto
accurately represent the value. A conversion could result in loss of precision.

7.1.4 Conversions to Boolean

Legal conversions from other data types to boolean are:

Theempty string (" ") isconverted tof al se. All other strings are converted tot r ue.

An integer value O isconverted tof al se. All other integer numbers are converted tot r ue.

A floating-point value 0.0 is converted to f al se. All other floating-point numbers are convertedtot r ue.
I nval i d can not be converted to a boolean value.

7.1.5 Conversions to Invalid

There are no legal conversion rules for converting any of the other datatypesto an invalid type. | nval i d iseither a
result of an operation error or aliteral value. In most cases, an operator that hasan i nval i d value as an operand
evaluatestoi nval i d (seethe operatorsin sections 6.3.8, 6.3.9 and 6.3.10 for the exceptionsto thisrule).

7.1.6 Summary

The following table contains a summary of the legal conversions between data types:

Given\ Used as. | Boolean I nteger Floating-point String

Boolean true - 1 1.0 "true"

Boolean false - 0 0.0 "false"

Integer O false - 0.0 "Q"

Any other true - floating-point string representation of
integer value of number adecimal integer
Floating-point false Illegal - implementation-

0.0 dependent string

representation of a
floating-point value, e.g.

"0.0"
Any other true Illegal - implementation-
floating-point dependent string

representation of a
floating-point value
Empty string false Illega Illega -

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Version 17-Jun-1999 Page
42(126)
Given\ Used as. | Boolean I nteger Floating-point String
Non-empty true integer value of floating-point -
string itsstring value of its string
representation (if | representation (if
valid — see valid — see
section 8.4 for section 8.4 for
numeric string numeric string
grammar for grammar for
decimal integer decimal floating-
literals) or illegal | point literals) or
illegal
invalid Illega Illega Illega lllegal

7.2

The previous conversion rules specify when alegal conversion is possible between two data types. WML Script operators
use these rules, the operand data type and values to select the operation to be performed (in case the typeis used to
specify the operation) and to perform the data type conversions needed for the selected operation. The rules are specified
in the following way:

Operator Data Type Conversion Rules

The additional conversion rules are specified in steps. Each step is performed in the given order until the
operation and the data types for its operands are specified and the return val ue defined.
If the type of the operand value matches the required type then the value is used as such.
If the operand value does not match the required type then a conversion from the current data type to the required
oneis attempted:
- Legal conversion: Conversion can be done only if the general conversion rules (see section 7.1) specify a
legal conversion from the current operator data type to the required one.
- lllegal conversion: Conversion can not be done if the general conversion rules (see section 7.1) do not specify
alegal conversion from the current type to the required type.
If alegal conversion ruleis specified for the operand (unary) or for all operands then the conversion is performed,
the operation performed on the converted values and the result returned as the value of the operation. If alegal
conversion resultsin ani nval i d value then the operation returnsan i nval i d value.
If no legal conversion is specified for one or more of the operands then no conversion is performed and the next
step in the additional conversion rulesis performed.

The following table contains the operator data type conversion rules based on the given operand data types:

Operand types | Additional conversion rules Examples

true & 3.4 => bool ean
Boolean(s) = If the operand is of type boolean or can be 1 & 0 => bool ean
converted into a boolean valuel8 then perform a "A" || "" => bool ean
: : 142 => bool ean

boolean operation and return its value, . ge T ¢
. linvalid => invalid
otherwise 3 & invalid => invalid

= returninvalid

18 Conversion can be doneif the general conversion rules (see section 7.1) specify alegal conversion from the current type to the required type.

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Version 17-Jun-1999

Page
43(126)
Operand types | Additional conversion rules Examples
"7" << 2 => integer
Integer(s) If the operand is of type integer or can be true << 2 => integer
converted into an integer valuel8 then perform 7.2 >> 3 =>invalid
anint : : 2.1 div 4 =>invalid
eger operation and return its value,
otherwise
returni nval i d
FI(_)atmg- If the operand is of type floating-point or can be]
point(s)) | ! 8
converted into a floating-point value!8 then
perform a floating-point operation and return its
value, otherwise
returni nval i d
String(s) If the operand is of type string or can be)
converted into a string valuel8 then perform a
string operation and return its value, otherwise
returni nval i d
+10 => i nt eger
;P;:Sre]r ?roint If the operand is of type integer or can be -10.3 => £l oat
(unar)g b converted into an integer value then perform an -"33" => integer
y integer operation and return its value, otherwise +'47.3" => ~ float
+true => integer 1
if the operand is of type floating-point or can be -fal se => integer 0
converted into a floating-point valuel® then "o ABC => invalid
_ ng-point _ "9e9999" => invalid
perform a floating-point operation and return its
value, otherwise
returni nval i d
100/ 10.3 => fl oat
;In;:tgilﬁrs-ocr)ints If at least one of the operandsis of type 33*44 => integer
gp floating-point then convert the remaining "10"*3 => integer
. - * 1 [
operand to a floating-point value, perform a 3.4x"4.3" => float
floating-point operation and return its value, 10,2, =2 integer
g-point op : "2.3"*"3" => float
otherwise 3.2*"A" => invalid
. . .9%"9e999" => invalid
if the operands are of type integer or can be invalid*1l => invalid

converted into integer values!8 then perform an
integer operation and return its value, otherwise

if the operands can be converted into floating-
point values!8 then perform a floating-point
operation and return its value, otherwise

returni nval i d

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Version 17-Jun-1999

Page
44(126)
Operand types | Additional conversion rules Examples
12+3 => i nt eger
][P;;.Sre]rs oints = If at least one of the operandsis of type string 32.4+65 => fl oat
or strir?g then convert the remaining operand to a string "12"+5.4 => string
9 value, perform a string operation and return its 1 43.2<77 => float
. Hey"<56 => string
value, otherwise 2.7+"4.2" => string
= if atleast one of the operandsis of type 9'32;';[22 g inI ng:
floating-point then convert the remaining "A'+invalid => invalid
operand to afloating-point value, perform a
floating-point operation and return its value,
otherwise
= if the operands are of typeinteger or can be
converted into integer values!8 then perform an
integer operation and return its value, otherwise
= returninvalid
Any) a =37.3 => float
= Anytypeisaccepted b = typeof "s" => string

7.3

Summary of Operators and Conversions

The following sections contain a summary on how the conversion rules are applied to WML Script operators and what

are their possible return value types.

7.3.1 Single-Typed Operators

Operators that accept operands of one specific type use the general conversion rules directly. The following list contains

all single type WML Script operators:

Operator | Operand types Result typel® | Operation performed
! boolean boolean logical NOT (unary)
&& bool eans boolean logical AND
Il bool eans boolean logical OR
~ integer integer bitwise NOT (unary)
<< integers integer bitwise left shift
>> integers integer bitwise right shift with sign
>>> integers integer bitwise right shift with zerofill
& integers integer bitwise AND
N integers integer bitwise XOR
| integers integer bitwise OR
% integers integer remainder
div integers integer integer division
<<=, >>=, | first operand: variable integer assignment with bitwise operation
>>>=, second operand: integer
&=, "=, |:
%=, first operand: variable integer assignment with numeric operation
div= second operand: integer

19 a1 operators may have an invalid result type.

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Version 17-Jun-1999

7.3.2 Multi-Typed Operators

The following sections contain the operators that accept multi-typed operands:

Oper ator Operand types Result type?0 Operation performed
++ integer or floating-point | integer/floating- | pre- or post-increment (unary)
point
-- integer or floating-point | integer/floating- | pre- or post-decrement (unary)
point
+ integer or floating-point | integer/floating- | unary plus
point
- integer or floating-point | integer/floating- | unary minus (negation)
point
* integers or floating- integer/floating- | multiplication
points point
/ integers or floating- floating-point division
points
- integers or floating- integer/floating- | subtraction
points point
+ integers, floating-points | integer/floating- | addition or string concatenation
or strings point/string
<, <= integers, floating-points boolean less than, lessthan or equal
or strings
> >= integers, floating-points boolean greater than, greater or equal
or strings
== integers, floating-points boolean equal (identical values)
or strings
I= integers, floating-points boolean not equal (different values)
or strings
*= = first operand: variable | integer/floating- | assignment with numeric operation
second operand: integer point
or floating-point
/= first operand: variable floating-point assignment with division
second operand: integer
or floating-point
+= first operand: variable | integer/floating- | assignment with addition or
second operand: integer, point/string concatenation
floating-point or string
typeof any integer?! return internal data type (unary)
isvalid any boolean??! check for validity (unary)
?2: first operand: boolean any conditional expression
second operand: any
third operand: any
= first operand: variable any assignment
second operand: any
, first operand: any any multiple evaluation
second operand: any

20) operators (unless otherwise stated) may have an invalid result type.
21 Operator does not generate an invalid result type.

Page
45(126)

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Version 17-Jun-1999 Page
46(126)

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Version 17-Jun-1999 Page
47(126)

8. WMLScript Grammar

The grammars used in this specification are based on [ECMA262]. Since WML Script is not compliant with
ECMAScript, the standard has been used only as the basis for defining WML Script language.

8.1 Context-Free Grammars

This section describes the context-free grammars used in this specification to define the lexical and syntactic structure of
a WML Script program.

8.1.1 General

A context-free grammar consists of a number of productions. Each production has an abstract symbol called a
nonterminal asits left-hand side and a sequence of one or more nonterminal and terminal symbols as its right-hand side.
For each grammar, the terminal symbols are drawn from a specified alphabet.

A given context-free grammar specifies alanguage. It begins with a production consisting of a single distinguished
nonterminal called the goal symbol followed by a (perhaps infinite) set of possible sequences of terminal symbols. They
are the result of repeatedly replacing any nonterminal in the sequence with a right-hand side of a production for which
the nonterminal is the left-hand side.

8.1.2 Lexical Grammar

A lexical grammar for WML Script is given in section 8.2. This grammar has asits terminal symbols the characters of
the Universal Character set of 1SO/IEC-10646 ([1S0O10646]). It defines a set of productions, starting from the goal
symboal Input that describes how sequences of characters are trand ated into a sequence of input elements.

Input elements other than white space and comments form the terminal symbols for the syntactic grammar for

WML Script and are called WML Script tokens. These tokens are the reserved words, identifiers, literals and punctuators
of the WML Script language. Simple white space and single-line comments are simply discarded and do not appear in the
stream of input elements for the syntactic grammar. Likewise, a multi-line comment is simply discarded if it contains no
line terminator; but if a multi-line comment contains one or more line terminators, then it is replaced by asingle line
terminator, which becomes part of the stream of input e ements for the syntactic grammar.

Productions of the lexical grammar are distinguished by having two colons ": : " as separating punctuation.

8.1.3 Syntactic Grammar

The syntactic grammar for WML Script is given in section 8.3. This grammar has WML Script tokens defined by the
lexical grammar asitsterminal symbols. It defines a set of productions, starting from the goal symbol CompilationUnit,
that describe how sequences of tokens can form syntactically correct WML Script programs.

When a stream of Unicode charactersisto be parsed asa WML Script, it isfirst converted to a stream of input elements
by repeated application of the lexical grammar; this stream of input elementsis then parsed by a single application of the
syntax grammar. The program is syntactically in error if the tokens in the stream of input elements cannot be parsed as a
single instance of the goal nonterminal CompilationUnit, with no tokens | eft over.

Productions of the syntactic grammar are distinguished by having just one colon ": " as punctuation.

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Version 17-Jun-1999 Page
48(126)

8.1.4 Numeric String Grammar

A third grammar is used for trandating strings into numeric values. This grammar issimilar to the part of the lexical
grammar having to do with numeric literals and has asits terminal symbols the characters of the Unicode character set.
This grammar appearsin section 8.4.

Productions of the numeric string grammar are distinguished by having three colons“: : : ” as punctuation.

8.1.5 Grammar Notation

Terminal symbols of the lexical and string grammars and some of the terminal symbols of the syntactic grammar, are
showninfixed wi dt h font, both in the productions of the grammars and throughout this specification whenever the
text directly refersto such aterminal symbol. These are to appear in a program exactly as written.

Nonterminal symbols are shown in italic type. The definition of a nonterminal isintroduced by the name of the
nonterminal being defined followed by one or more colons. (The number of colons indicates to which grammar the
production belongs.) One or more alternative right-hand sides for the nonterminal then follow on succeeding lines. For
example, the syntactic definition:
WhileStatement :
whil e (Expression) Satement
states that the nonterminal WhileStatement represents the token whi | e, followed by a left parenthesis token, followed by
an Expression, followed by a right parenthesis token, followed by a Statement. The occurrences of Expression and
Statement are themselves nonterminals. As another example, the syntactic definition:
ArgumentList :
AssignmentExpression
ArgumentList , AssignmentExpression
states that an ArgumentList may represent either a single AssignmentExpression or an ArgumentList, followed by a
comma, followed by an AssignmentExpression. This definition of ArgumentList isrecursive, that isto say, it isdefined in

terms of itself. Theresult isthat an ArgumentList may contain any positive number of arguments, separated by commas,
where each argument expression is an AssignmentExpression. Such recursive definitions of nonterminals are common.

The subscripted suffix "opt", which may appear after aterminal or nonterminal, indicates an optional symbol. The
alternative containing the optional symbol actually specifies two right-hand sides, one that omits the optional element
and one that includesit. This means that:

VariableDeclaration :
Identifier Variablelnitializer gy

is a convenient abbreviation for:

VariableDeclaration :

Identifier
Identifier Variablelnitializer

and that:

IterationSatement :
for (Expressiong: ; EXxpression,, ; Expressiong) Statement

is a convenient abbreviation for:

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Version 17-Jun-1999 Page
49(126)

IterationSatement :
for (; Expressiony: ; Expressony) Statement
for (Expression ; Expressiony, ; Expressiony:) Statement

which in turn is an abbreviation for:

IterationStatement :

for (; ; Expressiony) Statement
for (; Expression ; Expression,:) Statement
for (Expression ; ; Expressiony) Statement

for (Expression ; Expresson ; Expressony) Statement
which in turn is an abbreviation for:

IterationStatement :

for (; ;) Satement

for (; ; Expression) Satement

for (; Expresson ;) Satement

for (; Expresson ; Expresson) Satement

for (Expression ; ;) Satement

for (Expresson ; ; Expresson) Satement

for (Expresson ; Expresson ;) Satement

for (Expresson ; Expresson ; Expresson) Satement

therefore, the nonterminal IterationStatement actually has eight alternative right-hand sides.

Any number of occurrences of LineTerminator may appear between any two consecutive tokens in the stream of input
elements without affecting the syntactic acceptability of the program.

When the words "one of" follow the colon(s) in a grammar definition, they signify that each of the terminal symbols on
thefollowing line or linesis an alternative definition. For example, the lexical grammar for WML Script contains the
production:

ZeroToThree :: one of
0 1 2 3

which is merely a convenient abbreviation for:

ZeroToThree ::
0

1

2

3
When an alternative in a production of the lexical grammar or the numeric string grammar appearsto be a
multicharacter token, it represents the sequence of characters that would make up such a token.
The right-hand side of a production may specify that certain expansions are not permitted by using the phrase "but not"
and then indicating the expansions to be excluded. For example, the production:

Identifier ::
IdentifierName but not ReservedWord

means that the nonterminal Identifier may be replaced by any sequence of characters that could replace IdentifierName
provided that the same sequence of characters could not replace ReservedWord.

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Version 17-Jun-1999 Page
50(126)

Finally, afew nonterminal symbols are described by a descriptive phrase in roman type in cases where it would be
impractical tolist all the alternatives:

SourceCharacter:
any Unicode character

8.1.6 Source Text

WML Script source text is represented as a sequence of characters representable using the Universal Character set of
I SO/IEC-10646 ([1S010646]). Currently, this character set isidentical to Unicode 2.0 ([UNICODE]). Within this
document, the terms 1SO10646 and Unicode are used interchangeably and will indicate the same document character set.

SourceCharacter ::
any Unicode character

Thereis no requirement that WML Script documents be encoded using the full Unicode encoding (e.g. UCS-4). Any
character encoding ("charset") that contains an inclusive subset of the charactersin Unicode may be used (e.g. US
ASCII, 1SO-8859-1, etc.).

Every WML Script program can be represented using only ASCII characters (which are equivalent to thefirst 128
Unicode characters). Non-ASCII Unicode characters may appear only within comments and string literals. In string
literals, any Unicode character may also be expressed as a Unicode escape sequence consisting of six ASCII characters,
namely \ u plus four hexadecimal digits. Within a comment, such an escape sequence is effectively ignored as part of the
comment. Within a string literal, the Unicode escape sequence contributes one character to the string value of the literal.

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Version 17-Jun-1999 Page
51(126)

8.2 WMLScript Lexical Grammar

The following contains the specification of the lexical grammar for WML Script:

SourceCharacter ::
any Unicode character

WhiteSpace ::
<TAB>
<VT>
<FF>
<S>
<LF>
<CR>

LineTerminator ::
<LF>
<CR>
<CR><LF>

Comment ::

MultiLineComment
SngleLineComment

MultiLineComment ::
/* MultiLineCommentChar sy * /

MultiLineCommentChars ::

MultiLineNotAsteriskChar MultiLineCommentChar s,
* PostAsteriskCommentChar sy

PostAsteriskCommentChars ::

MultiLineNotForwardSashOrAsteriskChar MultiLineCommentChar s,
* PostAsteriskCommentChar sy

MultiLineNotAsteriskChar ::
SourceCharacter but not asterisk *

MultiLineNotForwardS ashOrAsteriskChar ::
SourceCharacter but not forward-slash/ or asterisk *

SngleLineComment ::
/1 SngleLineCommentChar Sy

SngleLineCommentChars ::
SngleLineCommentChar SngleLineCommentChar Sy

SngleLineCommentChar ::
SourceCharacter but not LineTerminator

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Version 17-Jun-1999

Token ::

ReservedWord
Identifier
Punctuator
Literal

ReservedWord ::
Keyword

KeywordNotUsedByWML Script

FutureReservedWord
BooleanLiteral
InvalidLiteral

Keyword :: one of
access
agent
br eak
conti nue
div
div=
donmai n
el se

equi v
extern
for
function
header
http

i f
isvalid

KeywordNotUsedByWML Script :: one of

del et e
in
lib
new

FutureReservedWord :: one of
case

catch
cl ass
const

debugger

Identifier ::

nul |
this
voi d
W th

def aul t
do
enum
export

ext ends

I dentifierName but not ReservedWord

IdentifierName ::
I dentifierLetter

IdentifierName Identifier Letter
| dentifierName DecimalDigit

IdentifierLetter :: one of22
abocdef

g h j k'l mnopagr st
ABCDEFGHI JKLMNOPQRST

22 Compatibility note: ECMA Script supports the usage of dollar sign ($) in identifier names, too.

net a
nane
pat h
return
t ypeof
use
user
var

finally
i mport
private
public

si zeof

Page
52(126)

while
url

struct
super
switch

t hr ow

try

© Wireless Application Protocol Forum, Ltd, 1999

All rights reserved.

Version 17-Jun-1999

DecimalDigit :: one of

012345672829

Punctuator :: one of23

= >

I = ,
&&

_ *

% <<

* = =

<<= >>=

} ;

Literal ::24
InvalidLiteral

BooleanLiteral
NumericLiteral
StringLiteral

InvalidLiteral ::25
invalid

BooleanLiteral ::26
true
fal se

NumericLiteral ::
DecimallntegerLiteral
HexlntegerLiteral
OctallntegerLiteral
DecimalFloatLiteral

DecimallntegerLiteral ::
0

NonZeroDigit Decimal Digitsy

NonZeroDigit :: one of
1 2 3

HexlIntegerLiteral ::
Ox HexDigit
O0X HexDigit
HexlintegerLiteral HexDigit

HexDigit :: one of

< ==
] ~

[] ++
/ &
>> >>>
&= | =
>>>= (

#

4 5

0 1 2 3 45 6 7 8 9 aob

23 Compatibility note: ECMA Script supports arrays and square brackets ([1), too.
24 Compatibility note: ECMA Script supports Null literal, too.
25 Compatibility note: ECMA Script does not support invalid.

26 Compatibility note: ECMA Script supports both lower and upper case boolean literals.

c

f

A B C D E F

Page
53(126)

© Wireless Application Protocol Forum, Ltd, 1999

All rights reserved.

Version 17-Jun-1999 Page
54(126)

OctallntegerLiteral ::
0 OctalDigit
OctallntegerLiteral OctalDigit

OctalDigit :: one of
0 1 2 3 4 5 6 7

Decimal FloatLiteral ::

DecimallntegerLiteral . Decimal Digits,, ExponentPart,y
. Decimal Digits ExponentPar toy
DecimalIntegerLiteral ExponentPart

DecimalDigits ::
DecimalDigit
DecimalDigits Decimal Digit

ExponentPart ::
Exponentindicator Signedinteger

Exponentindicator :: one of
e E

Sgnedinteger ::
DecimalDigits
+ DecimalDigits
- DecimalDigits

StringLiteral ::
" DoubleStringCharactersyg; "
' SingleStringCharacter sy

DoubleSringCharacters ::
DoubleStringCharacter DoubleStringCharacter sy

SngleStringCharacters ::
SngleStringCharacter SingleStringCharacter Sy,

DoubleStringCharacter ::

SourceCharacter but not double-quote " or backdash\ or LineTerminator
EscapeSequence

SngleStringCharacter ::
SourceCharacter but not single-quote ' or backslash\ or LineTerminator
EscapeSequence

EscapeSequence ::

CharacterEscapeSequence
Octal EscapeSequence
HexEscapeSequence
UnicodeEscapeSequence

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Version 17-Jun-1999

CharacterEscapeSequence ::
\ SingleEscapeCharacter

SngleEscapeCharacter :: one of
' " \ /

HexEscapeSequence ::
\ x HexDigit HexDigit

Octal EscapeSequence ::
\ OctalDigit
\ OctalDigit OctalDigit
\ ZeroToThree OctalDigit OctalDigit

ZeroToThree :: one of
0 1

UnicodeEscapeSequence ::
\ u HexDigit HexDigit HexDigit HexDigit

Page
55(126)

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Version 17-Jun-1999

8.3 WMLScript Syntactic Grammar

The following contains the specification of the syntactic grammar for WML Script:

PrimaryExpression :27
Identifier
Literal
(Expression)

CallExpression : 28
PrimaryExpression
Local ScriptFunctionCall
External ScriptFunctionCall
LibraryFunctionCall

Local ScriptFunctionCall :
FunctionName Arguments

External ScriptFunctionCall :
External ScriptName # FunctionName Arguments

LibraryFunctionCall :
LibraryName . FunctionName Arguments

FunctionName :
Identifier

External ScriptName :
Identifier

LibraryName :
Identifier

Arguments :

()
(ArgumentList)

ArgumentList :
AssignmentExpression
ArgumentList , AssignmentExpression

PostfixExpression :
CallExpression
Identifier ++
Identifier - -

27 Compatibility note: ECMA Script supports objects and this, too.

Page
56(126)

28 Compatibility note: ECMAScript support for arrays ([]) and object allocation (new) removed. Member Expression is used for specifying library functions,

eg.String. |l ength("abc") , notfor accessng members of an object.

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Version 17-Jun-1999 Page
57(126)

UnaryExpression :29
PostfixExpression
t ypeof UnaryExpression
i sval i d UnaryExpression
++ Identifier
- - ldentifier
+ UnaryExpression
- UnaryExpression
~ UnaryExpression
I UnaryExpression

MultiplicativeExpression :30
UnaryExpression
MultiplicativeExpression * UnaryExpression
MultiplicativeExpression / UnaryExpression
MultiplicativeExpression di v UnaryExpression
MultiplicativeExpression %UnaryExpression

AdditiveExpression :
MultiplicativeExpression
AdditiveExpression + MultiplicativeExpression
AdditiveExpression - MultiplicativeExpression

ShiftExpression :
AdditiveExpression
ShiftExpression << AdditiveExpression
ShiftExpression >> AdditiveExpression
ShiftExpression >>> AdditiveExpression

Relational Expression :
ShiftExpression
Relational Expression < ShiftExpression
Relational Expression > ShiftExpression
Relational Expression <= ShiftExpression
Relational Expression >= ShiftExpression

EqualityExpression :
Relational Expression
EqualityExpression == Relational Expression
EqualityExpression ! = Relational Expression

BitwiseANDEXxpression :
EqualityExpression
BitwiseANDEXxpression & EqualityExpression

BitwiseXOREXxpression :
BitwiseANDEXxpression
BitwiseXORExpression M BitwiseANDEXxpression

29 Compatibility note: ECMA Script operators delete and void are not supported. parselnt and parseFloat are supported aslibrary functions. ECMA Scipt
does not support operator isvalid.

30 Compatibility note: Integer division (div) is not supported by ECMA Script.

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Version 17-Jun-1999 Page
58(126)

BitwiseOREXxpression :
Bitwi seXORExpression
BitwiseORExpression | BitwiseXORExpression

Logical ANDExpression :
Bitwi seORExpression
Logical ANDExpression && Bitwi seORExpression

Logical ORExpression :
Logical ANDExpression

Logical ORExpression | | Logical ANDExpression

Conditional Expression :
Logical ORExpression
Logical ORExpression ? AssignmentExpression : AssignmentExpression

AssignmentExpression :
Conditional Expression
Identifier AssignmentOperator AssignmentExpression

AssignmentOperator :: one of

= *= [= O += -= <<= >>= >>>= &= = |: di v=
Expression :
AssignmentExpression

Expression, AssignmentExpression

Satement ;31
Block
VariableSatement
EmptyStatement
ExpressionSatement
IfSatement
IterationSatement
ContinueStatement
BreakSatement
ReturnSatement

Block :
{ StatementListoy }

SatementList :

Satement
SatementList Satement

VariableSatement :
var VariableDeclarationList ;

31 Compatibility note: ECMA Script with statement is not supported.

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Version 17-Jun-1999 Page
59(126)

VariableDeclarationList :

VariableDeclaration
VariableDeclarationList, VariableDeclaration

VariableDeclaration :
Identifier Variablelnitializer gy

Variablelnitializer :
= Conditional Expression

EmptyStatement :

ExpressionStatement :
Expression ;

[fSatement :32

i f (Expression) Satement el se Statement
i f (Expression) Satement

IterationSatement :33

WhileSatement
ForSatement

WhileStatement :
whi | e (Expression) Statement

ForSatement :
for (Expressiong ; Expressiong ; Expressiong,) Statement
for (var VariableDeclarationList ; Expressiony ; Expressiong,) Statement

ContinueSatement :34
conti nue ;

BreakSatement :3°
break ;

ReturnStatement :
return EXpressiong;

FunctionDeclaration ;36
externg function Identifier (FormalParameterListyy) Block ; op

32 g e is always tied to the closest if.

33 Compatibility note: ECMAScript for in statement is not supported.
34 Continue statement can only be used insde awhile or afor statement.
35 Break statement can only be used inside awhile or afor statement.
36 Compatihility note: ECMAScript does not support keyword extern.

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Version 17-Jun-1999

Formal ParameterList :

Identifier
Formal ParameterList, Identifier

CompilationUnit :
Pragmas,,: FunctionDeclarations

Pragmas :37
Pragma
Pragmas Pragma

Pragma :
use PragmaDeclaration;

PragmaDeclaration :

External CompilationUnitPragma
AccessControl Pragma
MetaPragma

External CompilationUnitPragma :
url ldentifier SringLiteral

AccessControl Pragma :38
access AccessControl Specifier

AccessControl Specifier :
domai n StringLiteral
pat h SringLiteral
domai n SringLiteral pat h SringLiteral

MetaPragma :
met a MetaSpecifier

MetaSpecifier :
MetaName
MetaHttpEquiv
MetaUser Agent

MetaName :
nane MetaBody

MetaHttpEquiv :
http equi v MetaBody

MetaUserAgent :
user agent MetaBody

37 Compatibility note: ECMA Script does not support pragmas.
38 Compilation unit can contain only one access control pragma.

Page
60(126)

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Version 17-Jun-1999 Page
61(126)

MetaBody :
MetaPropertyName MetaContent MetaScheme,,:

MetaPropertyName :
StringLiteral

MetaContent :
StringLiteral

MetaScheme :
StringLiteral

FunctionDeclarations :

FunctionDeclaration
FunctionDeclarations FunctionDeclaration

8.4 Numeric String Grammar

The following contains the specification of the numeric string grammar for WML Script. This grammar is used for
trandating strings into numeric values. This grammar is similar to the part of the lexical grammar having to do with
numeric literals and has as its terminal symbols the characters of the US-ASCII character set.

The following grammar can be used to convert strings into the following numeric literal values:

Decimal Integer Literal: Use the following productions starting from the goal symbol
StringDecimalIntegerLiteral.

Decimal Floating-Point Literal: Use the following productions starting from the goal symbol
StringDecimal FloatingPointLiteral .

StringDecimal IntegerLiteral :::
SrwhiteSpace,,: StrSignedDecimal IntegerLiteral StrivhiteSpace,

StringDecimal FloatingPointLiteral :::
StrwhiteSpace,,: StrSignedDecimal IntegerLiteral StrivhiteSpace,
StrwhiteSpace,,: StrSignedDeci mal FloatingPointLiteral StrwhiteSpace,y

SrwhiteSpace :::
StriwhiteSpaceChar StriwhiteSpace,:

SrwhiteSpaceChar :::
<TAB>
<VT>
<FF>
<S>
<LF>
<CR>

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Version 17-Jun-1999

SrSgnedDecimal IntegerLiteral :::

SrDecimal Digits
+ SrDecimalDigits
- SrDecimalDigits

StrSgnedDecimal FloatingPointLiteral :::

StrDecimal FloatingPointLiteral
+ SrDecimalFloatingPointLiteral
- SrDecimalFloatingPointLiteral

StrDecimal FloatingPointLiteral :::
SirDecimal Digits . StrDecimal Digits,,: StrExponentPartqy
. StrDecimal Digits StrExponentPartog
StrDecimal Digits StrExponentPart

SrDecimalDigits :::
StrDecimal Digit
StrDecimal Digits SrDecimal Digit

SrDecimalDigit ::: one of
0123456172829

SrExponentPart :::
StrExponentindicator StrSgnedinteger

StrExponentIndicator ::: one of
e E

SrSgnedinteger :::
SrDecimalDigits
+ SrDecimalDigits
- SrDecimalDigits

Page
62(126)

© Wireless Application Protocol Forum, Ltd, 1999

All rights reserved.

Version 17-Jun-1999 Page
63(126)

9. WMLScript Bytecode Interpreter

The textual format of WML Script language must be compiled into a binary format before it can be interpreted by the
WML Script bytecode interpreter. WMLScript compiler encodes one WML Script compilation unit into WML Script
bytecode using the encoding format presented in the chapter 10. A WML Script compilation unit (see section 8.1.3) isa
unit containing pragmas and any number of WML Script functions. WML Script compiler takes one compilation unit as
input and generates the WML Script bytecode as its output.

9.1 Interpreter Architecture

WMLScript interpreter takes WML Script bytecode as its input and executes encoded functions as they are called. The
following figure contains the main parts related to WML Script bytecode interpretation:

call http://ww.host.com script#nyFunc(“Test”, 12)

www.host.com/script:
WML Script WML Script
Libraries Bytecode
Functions Functions
Interpreter
myFunc()
State
IP Operand
Stack

Call Stack || Variables

Figure 1: General architecture of the WML Script interpreter

The WMLScript interpreter can be used to call and execute functions in a compilation unit encoded as WML Script
bytecode. Each function specifies the number of parametersit accepts and the instructions used to express its behaviour.
Thus, acall toaWMLScript function must specify the function, the function call arguments and the compilation unit in
which the function is declared. Once the execution completes normally, the WML Script interpreter returns the control
and the return value back to the caller.

Execution of a WML Script function means interpreting the instructions residing in the WML Script bytecode. While a
function is being interpreted, the WML Script interpreter maintains the following state information:

IP (Instruction Pointer): This pointsto an instruction in the bytecode that is being interpreted.

Variables: Maintenance of function parameters and variables.

Operand stack: It is used for expression evaluation and passing arguments to called functions and back to the
caller.

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Version 17-Jun-1999 Page
64(126)

Function call stack: WML Script function can call other functionsin the current or separate compilation unit or
make calls to library functions. The function call stack maintains the information about functions and their return
addresses.

9.2 Character Set

The WMLScript Interpreter must use only one character set (native character set) for al of its string operations.
Transcoding between different character sets and their encodingsis allowed as long as the WML Script string operations
are performed using only the native character set. The native character set can be requested by using the Lang library
function Lang.character Set() (see [WMLSLibsg])

9.3 WMLScript and URLs

The World Wide Web is a network of information and devices. Three areas of specification ensure widespread
interoperability:

A unified naming model. Naming is implemented with Uniform Resource Locators (URLS), which provide
standard way to name any network resource. See [RFC2396].

Standard protocols to transport information (e.g. HTTP).

Standard content types (e.g. HTML, WML Script).

WML Script assumes the same reference architecture as HTML and the World Wide Web. WML Script compilation unit
isnamed using URLs and can be fetched over standard protocols that have HT TP semantics, such as[WSP]. URLs are
defined in [RFC2396]. The character set used to specify URLsis aso defined in [RFC2396].

In WML Script, URLs are used in the following situations:

When a user agent wants to make a WML Script call (see 9.3.4)
When specifying external compilation units (see 6.7.1)
When specifying access control information (see 6.7.2)

9.3.1 URL Schemes

A WMLScript interpreter must implement the URL schemes specified in [WAE].

9.3.2 Fragment Anchors

WML Script has adopted the HTML de facto standard of naming locations within a resource. A WML Script fragment
anchor is specified by the document URL, followed by a hash mark (#), followed by a fragment identifier. WML Script
uses fragment anchors to identify individual WML Script functions within a WML Script compilation unit. The syntax of
the fragment anchor is specified in the following section.

9.3.3 URL Call Syntax

This section contains the grammar for specifying the syntactic structure of the URL call. This grammar issimilar to the
part of the WML Script lexical and syntactic grammars having to do with function calls and literals and has as its
terminal symbols the characters of the US-ASCII character set.

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Version 17-Jun-1999 Page
65(126)

http: //ww. host. com scr#foo(1,-3," hello") Il K
htt p: // ww. host . coml scr#bar (1, -3+1, "' good') /'l Error
http://ww. host. com scr#test(foo(1,-3,"hello")) // Error

Only the syntax for the fragment anchor (#) is specified (see [RFC2396] for more information about URL syntax).

URLCallFragmentAnchor :::
FunctionName()
FunctionName(ArgumentList)

FunctionName :::

FunctionNameL etter
FunctionName FunctionNameL etter
FunctionName Decimal Digit

FunctionNameLetter ::: one of
abcdef ghij kIl mnopagr st
ABCDEFGHI JKLMNOPQRSTUVWXYZ

DecimalDigit ::: one of
012345672829

ArgumentList :

Argument
ArgumentList , Argument

Argument :::
WhiteSpaces,; Literal WhiteSpaces,

WhiteSpaces :
WhiteSpace
White Spaces WhiteSpace

WhiteSpace :::
<TAB>
<VT>
<FF>
<SP>
<LF>
<CR>

Literal :::
InvalidLiteral
BooleanLiteral
NumericLiteral
StringLiteral

InvalidLiteral :::
invalid

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Version 17-Jun-1999 Page
66(126)

BooleanLiteral :::
true
fal se

NumericLiteral :::
SgnedDecimal IntegerLiteral
SgnedDecimal FloatLiteral

SgnedDecimalIntegerLiteral :::
DecimallntegerLiteral
+ DecimallntegerLiteral
- DecimallntegerLiteral

DecimallntegerLiteral :::
Decimal Digit Decimal Digitsyg

SgnedDecimal FloatLiteral :::

Decimal FloatLiteral
+ DecimalFloatLiteral
- DecimalFloatLiteral

Decimal FloatLiteral :::

DecimallntegerLiteral . Decimal Digits,, ExponentPart,y
. Decimal Digits ExponentPar toy
DecimallntegerLiteral ExponentPart

DecimalDigits:::
DecimalDigit
DecimalDigits Decimal Digit

ExponentPart :::
Exponentindicator Signedinteger

Exponentindicator ::: one of
e E

Sgnedinteger :::
DecimalDigits
+ DecimalDigits
- DecimalDigits

StringLiteral :::
" DoubleStringCharactersyg "
' SingleStringCharacter sy '

DoubleStringCharacters :::
DoubleStringCharacter DoubleStringCharacter sy

SngleStringCharacters:::
SngleStringCharacter SingleStringCharacter Sy,

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Version 17-Jun-1999 Page
67(126)

DoubleStringCharacter :::
SourceCharacter but not double-quote "

SngleStringCharacter :::
SourceCharacter but not single-quote’

9.3.4 URL Calls and Parameter Passing

A user agent can make a call to an external WML Script function by providing the following information using URLS
and fragment anchors:

URL of the compilation unit (e.g. htt p: / / wwww. X. coml nyScri pts. scr)
Function name and parameters as the fragment anchor (e.g. t est Func(' Test %20ar gunent ' , - 8))

The final URL with the fragment is:

http: //ww. x. comi nyScri pts. scr#test Func(' Test %20ar gunent ', - 8)
If the given URL denotes avalid WML Script compilation unit then:

Access control checks are performed (see 6.7.2). The call failsif the caller does not have rightsto call the
compilation unit.

The function name specified in the fragment anchor is matched against the external functions in the compilation
unit. The call failsif no match is found.

The parameter list in the fragment anchor (see 9.3.2) is parsed and the given arguments with their appropriate
types (string literals as string data types, integer literals as integer data types etc.) are passed to the function. The
call failsif the parameter list has an invalid syntax.

9.3.5 Character Escaping

URL calls can use URL escaping (see [RFC2396]) and any other escaping mechanism provided by the content format
containing the URL call to specify the URL. However, the URL Call Syntax is applied to the URL fragment only after it
has been properly unescaped.

9.3.6 Relative URLs

WML Script has adopted the use of relative URLS, as specified in [RFC2396]. [RFC2396] specifies the method used to
resolve relative URLs in the context of a WML Script compilation unit. The base URL of a WML Script compilation unit
isthe URL that identifies the compilation unit.

9.4 Bytecode Semantics

The following sections describe the general encoding rules that must be used to generate WML Script bytecode. These
rules specify what the WML Script compiler can assume from the behaviour of the WML Script interpreter.

9.4.1 Passing of Function Arguments

Arguments must be present in the operand stack in the same order as they are presented in a WML Script function
declaration at the time of a WML Script or library function call. Thus, the first argument is pushed into the operand stack

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Version 17-Jun-1999 Page
68(126)

firgt, the second argument is pushed next, etc. Theinstruction executing the call must pop the arguments from the
operand stack and use them to initialise the appropriate function variables.

9.4.2 Allocation of Variable Indexes

A WMLScript function refers to variables by using unique variable indexes. These indexes must match with the
information specified for each called WML Script function: the number of arguments the function accepts and the
number of local variables used by the function. Thus, the variable index allocation must be done using the following
rules:

1) Function Arguments: Indexes for function arguments must be allocated first. The allocation must be donein
the same order as the arguments are pushed into the operand stack (O is allocated for the first argument, 1 for
the second argument, etc.). The number of indexes allocated for function arguments must match the number of
arguments accepted by the function. Thus, if the function accepts N arguments then the last variable index
must be N-1. If the function does not accept any arguments (N = 0) then no variable indexes are all ocated.

2) Local variables: Indexes for local variables must be all ocated subsequently from thefirst variable index (N)
that is not used for function arguments. The number of indexes allocated for local variables must match the
number of local variables used by the function.

9.4.3 Automatic Function Return Value

WML Script function must return an empty string in case the end of the function is encountered without a return
statement. The compiler can rely on the WML Script interpreter to automatically return an empty string every time the
interpreter reaches the end of the function without encountering a return instruction.

9.4.4 Initialisation of Variables

The WML Script compiler should rely on the WML Script interpreter to initialise all function local variablesinitially to
an empty string. Thus, the compiler does not have to generate initialization code for variables declared without
initialisation.

9.5 Access Control

WML Script provides two mechanisms for controlling the access to the functions in the WML Script compilation unit:
external keyword and a specific access control pragma. Thus, the WML Script interpreter must support the following
behaviour:

External functions: Only functions specified as external can be called from other compilation units (see 6.4).
Access control: Access to the external functions defined inside a compilation unit is allowed from other
compilation units that match the given access domain and access path definitions (see 6.7.2).

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Version 17-Jun-1999 Page
69(126)

10. WMLScript Binary Format

The following sections contain the specifications for the WML Script bytecode, a compact binary representation for
compiled WML Script functions. The format was designed to allow for compact transmission over narrowband channels,
with no loss of functionality or semantic information.

10.1 Conventions

The following sections describe the general encoding conventions and data types used to generate WML Script bytecode.

10.1.1 Used Data Types

The following data types are used in the specification of the WML Script Bytecode:

Data Type Definition

bit 1 bit of data

byte 8 hits of opague data

int8 8 hit signed integer (two's complement encoding)

u int8 8 hit unsigned integer

int16 16 hit signed integer (two's complement encoding)

u intl6 16 hit unsigned integer

mb_u_int16 16 hit unsigned integer, in multi-byte integer format. See 10.1.2 for more
information.

int32 32 bit signed integer (two's complement encoding)

u int32 32 bit unsigned integer

mb_u_int32 32 bit unsigned integer, in multi-byte integer format. See 10.1.2 for more
information.

float32 32 bit signed floating-point value in ANSI/IEEE Std 754-1985 [IEEE754] format.

Network byte order for multi-byte integer valuesis "big-endian”. In other words, the most significant byte is transmitted
on the network first followed subsequently by the less significant bytes. Network bit ordering for bit fields within a byte
is"big-endian". In other words, bit fields described first are placed in the most significant bits of the byte.

10.1.2 Multi-byte Integer Format

This encoding uses a multi-byte representation for integer values. A multi-byte integer consists of a series of octets,
where the most significant bit is the continuation flag and the remaining seven bits are a scalar value. The continuation
flag is used to indicate that an octet is not the end of the multi-byte sequence. A singleinteger value is encoded into a
sequence of N octets. Thefirst N-1 octets have the continuation flag set to a value of one (1). The final octet in the series
has a continuation flag value of zero.

The remaining seven bitsin each octet are encoded in a big-endian order, e.g., most significant bit first. The octets are
arranged in abig-endian order, e.g. the most significant seven bits are transmitted first. In the situation where the initial
octet has less than seven bits of value, all unused bits must be set to zero (0).

For example, the integer value 0x A0 would be encoded with the two-byte sequence 0x81 0x20. The integer value
0x60 would be encoded with the one-byte sequence 0x60.

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Version 17-Jun-1999 Page
70(126)

10.1.3 Character Encoding

WML Script bytecode supports the following character encoding:
UTF-8 (see [RFC2279])

Other character sets and their encodings are supported by a special string type (string with external character encoding
definition, see 10.4.1) that does not explicitly specify the used character set or its encoding but assumes that this
information is provided either as part of the compilation unit itself (constant pool), as part of the content access
mechanism (WSP headers etc.) or asthe default setting for the compilation unit. The following rules must be applied
when defining the used character encoding for these special strings:

If the value of the character set number in the constant pool is non-zero then this number defines the used
character encoding (the number denctes the MIBEnum value assigned by the IANA for all character sets).

If the value of the character set number in the constant poal is zero (0) then the character encoding information
provided by the content access mechanism (WSP headers etc.) define the character encoding.

If the content access mechanism does not provide any information about the used character encoding then UTF-8
is assumed as the default character encoding.

The compiler must select one of these encodings to encode character stringsin the WML Script bytecode.
WML Script language constructs, such as function namesin WML Script, are written by using only a subset of Unicode

character set i.e, a subset of US-ASCII characters. Thus, function namesin the WML Script bytecode must use a fixed
UTF-8 encoding.

10.1.4 Notational Conventions

WML Script bytecode is a set of bytes that represent WML Script functionsin a binary format. It contains all the
information needed by the WML Script interpreter to execute the encoded functions as specified. The bytecode can be
divided into sections and subsections each of which containing a binary representation of alogical WML Script unit.

The WML Script bytecode structure and content is presented using the foll owing table based notation:

Name Data type and size Comment
Thisisaname of a section This specifies a data type This gives a general overview of the
inside the bytecode. and its size reserved for a meaning of this section.

section in case it cannot be
divided into smaller
subsections. Subsection
specification isgiven in a
separate table. Reference to
thetableis provided.

The name of the next section.
Any number of sections can be
presented in one table.

The following conventions apply:

Sections of bytecode are represented asrowsin atable.

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Version 17-Jun-1999 Page
71(126)

Each section may be divided into subsections and represented in separate tables. In such case areference to the

subsection tableis provided.
Repetitive sections are denoted by section name followed by three dots (...).

10.2 WMLScript Bytecode

The WML Script encoding contains two major elements. constant literals and the constructs needed to describe the
behaviour of each WML Script function. Thus, the WML Script bytecode consists of the following sections:

Name Data type and size Comment

HeaderInfo See 10.3 Contains general information related to the
bytecode.

ConstantPool See10.4 Contains the information of all constants

specified as part of the WML Script compilation
unit that are encoded into bytecode.
PragmaPool See 10.5 Contains the information related to pragmas
specified as part of the WML Script compilation
unit that are encoded into bytecode.
FunctionPool See 10.6 Contains all the information related to the
encoding of functions and their behaviour.

The following sections define the encoding of these sections and their subsectionsin detail.

10.3 Bytecode Header

The header of the WML Script bytecode contains the following information:

Name Data type and size Comment

VersionNumber byte Version number of the WML Script bytecode.
The version byte contains the major version
minus one in the upper 4 bits and the minor
version in the lower 4 bits.

The current version is 1.1. Thus, the version
number must be encoded as 0x01.

CodeSize mb_u_int32 The size of the rest of the bytecode (not including
the version number and this variable) in bytes

10.4 Constant Pool

Constant pool contains all the constants used by the WML Script functions. Each of the constants has an index number
starting from zero that is defined by its position in the list of constants. The instructions use this index to refer to specific
constants.

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Version 17-Jun-1999 Page
72(126)
Name Data type and size Comment
NumberOfConstants mb_u_int16 Specifies how many constants are encoded in this
poal.
Character Set mb_u_int16 Specifies the character set used by the string
constants in the constant pool. The character set
is specified as an integer that denotes a
MIBEnum value assigned by the IANA for all
character sets (see [WSP] for more information).
Constants... See10.4.1 Contains the definitions for each constant in the
constant pool. The number of constantsis
specified by NumberOfConstants.

10.4.1 Constants

Constants are stored into the bytecode one after each other. Encoding of each constant starts with the definition of its
type (integer, floating-point, string etc.). It is being followed by constant type specific data that represents the actual

value of the constant:

Name Data type and size Comment

ConstantType u int8 The type of the constant.

ConstantValue See10.4.1.1, 10.4.1.2 and | Type specific value definition.
10.4.1.3

The following encoding for constant typesis used:

Code | Type Encoding
0 8 hit signed integer 104.1.1.1
1 16 hit signed integer 10.4.1.1.2
2 32 bit signed integer 10.4.1.1.3
3 32 bit signed floating-point 10.4.1.2
4 UTF-8 String 10.4.1.3.1
5 Empty String 10.4.1.3.2
6 String with external character encoding definition 10.4.1.3.3

7-255 Reserved for future use

10.4.1.1 Integers

WML Script bytecode supports 8 hit, 16 bit and 32 bit signed integer constants. The compiler can optimise the

WML Script bytecode size by selecting the smallest integer constant type that can still hold the integer constant value.

10.4.1.1.1 8 Bit Signed Integer

8 bit signed integer constants are represented in the following format:

Name

Data type and size

Comment

Constantinteger8 int8

The value of the 8 hit signed integer constant.

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Version 17-Jun-1999 Page

73(126)

10.4.1.1.2 16 Bit Signed I nteger
16 hit signed integer constants are represented in the following format:

Name Data type and size Comment

ConstantInteger16 int16 The value of the 16 bit signed integer constant.
10.4.1.1.3 32 Bit Signed I nteger
32 bit signed integer constants are represented in the following format:

Name Data type and size Comment

ConstantInteger32 int32 The value of the 32 bit signed integer constant.
10.4.1.2 Floats
Floating-point constants are represented in 32-bit ANSI/IEEE Std 754-1985 [|EEE754] format:

Name Data type and size Comment

ConstantFl oat32 float32 The value of the 32 bit floating point constant.

10.4.1.3 Strings

WML Script bytecode supports several ways to encode string constants3? into the constant pool. The compiler can select
the most suitable character encoding supported by the client and optimise the WML Script bytecode size by selecting the
smallest string constant type that can still hold the string constant value.

10.4.1.3.1 UTF-8 Strings

Strings that use UTF-8 encoding are encoded into the bytecode by first specifying their length and then the content:

Name Data type and size Comment

StringSizeUTF8 mb_u_int32 The size of the following string in bytes (not
containing this variable).

ConstantStringUTF8 StringSizeUTFS8 bytes The value of the Unicode string (non-null

terminated) constant encoded using UTF-8. See
10.1.3 for more information about transfer
encoding of strings.

10.4.1.3.2 Empty Strings

Empty strings do not need any additional encoding for their value.

39 Note that string constants can contain embedded null characters.

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Version 17-Jun-1999 Page
74(126)

10.4.1.3.3 Strings with External Character Encoding Definition

Strings that use external character encoding definition are encoded into the bytecode by first specifying their length and
then the content:

Name Data type and size Comment

StringSizeExt mb_u_int32 The size of the following string in bytes (not
containing thisfield).

ConstantStringExt StringSizeExt bytes The value of the string (non-null terminated)

constant using external character encoding
definition. See 10.1.3 for more information
about transfer encoding of strings.

10.5 Pragma Pool

The pragma pool contains the information for pragmas defined in the compiled compilation unit.

Name Data type and size Comment
NumberOfPragmas mb_u int16 The number of pragmas.
Pragmas... See10.5.1 Contains the definitions for each pragmain the

pragma pool. The number of pragmasis
specified by NumberOf Pragmas.

10.5.1 Pragmas

Pragmas are stored into the bytecode one after each other. Encoding of each pragma starts with the definition of its type.
It is being followed by pragma type specific data that represents the actual value of the pragma:

Name Data type and size Comment
PragmaType u int8 The type of the pragma following pragma value.
PragmaVaue See 10.5.1.1 and 10.5.1.2 | Pragma type specific value definition.

The following encoding for pragmatypesis used:

Code | Type Encoding
0 Access Domain 105.1.1.1
1 Access Path 10.5.1.1.2
2 User Agent Property 10.5.1.2.1
3 User Agent Property and Scheme 10.5.1.2.2
4-255 | Reserved for future use

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Version 17-Jun-1999 Page
75(126)

10.5.1.1 Access Control Pragmas

Access control information is encoded into the bytecode using two different pragma types: access domain and access
path. The pragma pool can contain only one entry for each access control pragma type.

10.5.1.1.1 Access Domain

This pragma specifies the access domain to be used for the access contral.

Name Data type and size Comment

AccessDomainlndex mb_u_int16 Constant pool index to a string constant
containing the value of the access domain. The
referred constant type must be between 4 and 6.

10.5.1.1.2 Access Path

This pragma specifies the access path to be used for access control.

Name Data type and size Comment

AccessPathlndex mb_u_int16 Constant pool index to a string constant
containing the value of the access path. The
referred constant type must be between 4 and 6.

10.5.1.2 Meta-Information Pragmas

These pragmas contain meta-information that is mean for the WML Script interpreter. Meta-information contains
following entities: name, content and scheme (optional)

10.5.1.2.1 User Agent Property

User agent properties are encoded by first specifying their name and then their value as indexes to the constant pool:

Name Data type and size Comment

PropertyNamel ndex mb_u_int16 Constant pool index to a string constant
(constant types 4 to 6) containing the property
name.

Contentlndex mb_u_int16 Constant pool index to a string constant
(constant types 4 to 6) containing the property
value.

10.5.1.2.2 User Agent Property and Scheme
This pragma is encoded by specifying the property name, the value and the additional scheme:

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Version 17-Jun-1999 Page
76(126)
Name Data type and size Comment
PropertyNamel ndex mb_u_int16 Constant pool index to a string constant
(constant types 4 to 6) containing the property
name.
Contentlndex mb_u_int16 Constant pool index to a string constant
(constant types 4 to 6) containing the property
value.
Schemel ndex mb_u_int16 Constant pool index to a string constant
(constant types 4 to 6) containing the property
schema.

10.6 Function Pool

The function pool contains the function definitions. Each of the functions has an index number starting from zero that is
defined by its position in the list of functions. The instructions use thisindex to refer to specific functions.

Name Data type and size Comment

NumberOfFunctions u_int8 The number of functions specified in this
function poal.

FunctionNameT able See 10.6.1 Function name table contains the names of all
external functions present in the bytecode.

Functions... See 10.6.2 Contains the bytecode for each function.

10.6.1 Function Name Table

The names of the functions that are specified as external (ext er n) are stored into a function name table. The names
must be presented in the same order as the functions are represented in the function pool. Functions that are not specified
as external are not represented in the function name table. The format of the table is the following:

Name Data type and size Comment

NumberOfFunctionNames | u_int8 The number of function names stored into the
following table.

FunctionNames... See10.6.1.1 Each external function name represented in the

same order asthe functions are stored into the
function poal.

10.6.1.1 Function Names

Function name is provided only for functions that are specified as external in WML Script. Each nameis represented in

the following manner:

Name

Data type and size

Comment

Functionlndex

u_int8

Theindex of the function for which the
following nameis provided.

© Wireless Application Protocol Forum, Ltd, 1999

All rights reserved.

Version 17-Jun-1999

Page
77(126)

Name Data type and size

Comment

FunctionNameSize u_int8

The size of the following function namein bytes
(not including this variable).

FunctionName

FunctionNameSi ze bytes

The characters of the function name encoded by
using UTF-8. See 10.1.3 for more information
about function name encoding.

10.6.2 Functions

Each function is defined by its prologue and code array:

Name Data type and size Comment

NumberOf Arguments u_int8 The number of arguments accepted by the
function.

NumberOfLocalVariables | u_int8 The number of local variables used by the
function (not including arguments).

FunctionSize mb_u_int32 Size of the following CodeArray (not including
thisvariable) in bytes.

CodeArray See 10.6.2.1 Contains the code of the function.

10.6.2.1 Code Array

Code array contains all instructions that are needed to implement the behaviour of a WML Script function. See 11 for

more information about WML Script instruction set.

Name Data type and size

Comment

Instructions... See chapter 11

The encoded instructions.

10.7 Limitations

The following table contains the limitations inherent in the selected bytecode format and instructions:

Maximum size of the bytecode 4294967295 bytes
Maximum number of constantsin the constant pool 65535

Maximum number of different constant types 256

Maximum size of a constant string 4294967295 bytes
Maximum size of a constant URL 4294967295 bytes
Maximum length of function name 255

Maximum number of different pragma types 256

Maximum number of pragmas in the pragma pool 65536

Maximum number of functions in the function pool 255

Maximum number of function parameters 255

Maximum number of local variables/ function 255

Maximum number of local variables and function parameters 256

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Version 17-Jun-1999 Page
78(126)

Maximum number of libraries 65536
Maximum number of functions/ library 256

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Version 17-Jun-1999 Page
79(126)

11. WMLScript Instruction Set

The WML Script instruction set specifies a set of assembly level instructions that must be used to encode all WML Script
language constructs and operations. These instructions are defined in such a way that they are easy to implement
efficiently on avariety of platforms.

11.1 Conversion Rules

The following table contains a summary of the conversion rules specified for the WML Script interpreter:

Rule — Operand type(s) Conversions

1 —Boolean(s) See the conversion rules for Boolean(s) in section
Operator Data Type Conversion Rules (7.2)

2 —Integer(s) See the conversion rules for Integer(s) in section
Operator Data Type Conversion Rules (7.2)

3 — Floating-point(s) See the conversion rules for Floating-point(s) in
section Operator Data Type Conversion Rules (7.2)

4 — String(s) See the conversion rules for Sring(s) in section
Operator Data Type Conversion Rules (7.2)

5 — Integer or floating-point (unary) | Seethe conversion rulesfor Integer or floating-
point (unary) in section Operator Data Type
Conversion Rules (7.2)

6 — Integers or floating-points See the conversion rules for Integers or floating-
points in section Operator Data Type Conversion
Rules (7.2)

7 — Integers, floating-points or See the conversion rules for Integers, floating-

strings points or strings in section Operator Data Type

Conversion Rules (7.2)

8 - Any See the conversion rules for Any in section
Operator Data Type Conversion Rules (7.2)

11.2 Fatal Errors

The following table contains a summary of the fatal errors specified for the WML Script interpreter:

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Version 17-Jun-1999 Page

80(126)
Error code: Fatal Error:
1 (Verification Failed) See section Verification Failed (13.3.1.1)
for details
2 (Fatal Library Function Error) See section Fatal Library Function Error

(13.3.1.2) for details

3 (Invalid Function Arguments) See section Invalid Function Arguments
(13.3.1.3) for details

4 (External Function Not Found) See section External Function Not Found
(13.3.1.4) for details

5 (Unable to Load Compilation Unit) | See section Unable to Load Compilation
Unit (13.3.1.5) for details

6 (Access Violation) See section Access Violation (13.3.1.6) for
details

7 (Stack Underflow) See section Stack Underflow (13.3.1.7) for
details

8 (Programmed Abort) See section Programmed Abort (13.3.2.1)
for details

9 (Stack Overflow) See section Sack Overflow (13.3.3.1) for
details

10 (Out of Memory) See section Out of Memory (13.3.3.2) for
details

11 (User Initiated) See section User Initiated (13.3.4.1) for
details

12 (System Initiated) See section System Initiated (13.3.4.2) for
details

" These fatal errors are not related to computation but can be generated as a result of memory
exhaustion or external signals.

11.3 Optimisations

WML Script instruction set has been defined so that it provide at least the minimal set of instructions by which

WML Script |anguage operations can be presented. Since the WML Script bytecode is being transferred from the gateway
to the client through a narrowband connection, the selected instructions have been optimised so that the compilers can
generate code of minimal size. In some cases, this has meant that several instructions with different parameters have
been introduced to perform the same operation. The compiler should use the one that generates optimal code.

Inline parameters have been used to optimally pack information into as few bytes as possible. The following inline
parameter optimisations have been introduced:

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Version 17-Jun-1999 Page

81(126)
Signature Available Used for
instructions
1XXPPPPP 4 JUMP FW S, JUMP BW S, TIUMP FW S LOAD VAR S
010XPPPP 2 STORE VAR S, LOAD CONST S
011XXPPP 4 CALL S, CALL LIB S, INCR VAR S
OOXXXXXX 63 Therest of the instructions

11.4 Notational Conventions

The following sections contain the definitions of instructions in the WML Script instruction set. For each instruction, the
following information is provided:

Instruction: A symbolic name given to the instruction and its parameters.

Opcode: The 8-bit encoding of the instruction.

Parameters: Parameter description specifying their ranges and semantics. Some instructions are optimised and
can contain an implicit parameter as part of the encoding, ie, a set of bits from the 8 bit encoding is reserved for a
parameter value.

Operation: Description of the operation of the instruction, its parameters and the effects they have on the
execution and the operand stack.

Operands: Specifies the number of operands required by the instruction and all acceptable operand types.
Conversion: Specifiesthe used conversion rule (see section 11.1).

Result: Specifies the result and its type.

Operand stack: Specifies the effect on the operand stack. It is described by using notation where the part before
the arrow (=>) represents the stack before the instruction has been executed and the part after the arrow the stack
after the execution.

Errors: Specifies the possible fatal errorsthat can occur during the execution of the instruction (see section 11.2).

All instructions except the control flow instructions continue the execution at the following instruction. Control flow
instructions specify the next instruction explicitly.

Fatal errorsthat can be encountered at any time (see section External Exceptionsin 13.3.4 and Memory Exhaustion
Errorsin 13.3.3) are assumed to be possible with every instruction.

The result of the instruction can bean i nval i d value. Thisis not explicitly stated with each instruction but is assumed

to be the result of the used conversion rule, aload of an invalid or unsupported floating-point constant or a result of an
operation with an i nval i d operand.

11.5 Instructions

The following sections contain the descriptions of each instruction divided into subcategories.

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Version 17-Jun-1999

Page
82(126)

11.5.1 Control Flow Instructions

Instruction: JUMP FW_S

Opcode: 100iiiii (iiiii istheimplicit unsigned offset)

Parameter: Offset is an unsigned 5-bit integer in the range of 0..31.

Operation: Jumps forward to an offset. Execution proceeds at the given offset from the address of thefirst byte
following thisinstruction. More specifically, if the address of thisinstruction is n and the value of
the offset is offset then the next instruction to be executed is at address:
n+ 1+ offset.

Operands: -

Conversion: -

Result: -

Operand stack: No change

Errors: 1 (Verification Failed)

Instruction: JUMP_FW offset

Opcode: 00000001

Parameter: Offset is an unsigned 8-hit integer in the range of 0..255.

Operation: Jumps forward to an offset. Execution proceeds at the given offset from the address of thefirst byte
following thisinstruction. More specifically, if the address of thisinstruction is n and the value of
the offset is offset then the next instruction to be executed is at address:
n+ 2 + offset.

Operands: -

Conversion: -

Operand stack: No change

Errors: 1 (Verification Failed)

Instruction: JUMP_FW_W <offsetl,offset2>

Opcode: 00000010

Parameter: Offset isan unsigned 16-bit integer <offsetl, offset2> in the range of 0..65535.

Operation: Jumps forward to an offset. Execution proceeds at the given offset from the address of thefirst byte
following thisinstruction. More specifically, if the address of thisinstruction is n and the value of
the offset is offset then the next instruction to be executed is at address:
n+ 3 + offset.

Operands: -

Conversion: -

Result: -

Operand stack: No change

Errors: 1 (Verification Failed)

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Version 17-Jun-1999

Page
83(126)

Instruction: JUMP BW_S

Opcode: 102iiiii (iiiii istheimplicit unsigned offset)

Parameter: Offset is an unsigned 5-bit integer in the range of 0..31.

Operation: Jumps backward to an offset. Execution proceeds at the given offset from the address of this
instruction. More specifically, if the address of thisinstruction is n and the value of the offset is
offset then the next instruction to be executed is at address: n - offset.

Operands: -

Conversion: -

Result: -

Operand stack: No change

Errors: 1 (Verification Failed)

Instruction: JUMP_BW offset

Opcode: 00000011

Parameter: Offset is an unsigned 8-hit integer in the range of 0..255.

Operation: Jumps backward to an offset. Execution proceeds at the given offset from the address of this
instruction. More specifically, if the address of thisinstruction is n and the value of the offset is
offset then the next instruction to be executed is at address: n - offset.

Operands: -

Conversion: -

Result: -

Operand stack: No change

Errors: 1 (Verification Failed)

Instruction: JUMP_BW_W <offsetl,offset2>

Opcode: 00000100

Parameter: Offset isan unsigned 16-bit integer <offsetl, offset2> in the range of 0..65535.

Operation: Jumps backward to an offset. Execution proceeds at the given offset from the address of this
instruction. More specifically, if the address of thisinstruction is n and the value of the offset is
offset then the next instruction to be executed is at address: n - offset.

Operands: -

Conversion: -

Result: -

Operand stack: No change

Errors: 1 (Verification Failed)

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Version 17-Jun-1999

Page
84(126)

Instruction: TIJUMP_FW_S

Opcode: 110iiiii (iiiii istheimplicit unsigned offset)

Parameter: Offset is an unsigned 5-bit integer in the range of 0..31.

Operation: Pops a value from the operand stack and jumps forward to an offset if the value is either f al se or
i nval i d. Execution proceeds at the given offset from the address of the first byte following this
instruction (more specifically, if the address of thisinstruction is n and the value of the offset is
offset then the next instruction to be executed is at address: n + 1 + offset). Otherwise, the
execution continues at the next instruction.

Operand: Boolean

Conversion: 1 — Boolean(s)

Result: -

Operand stack: ..., value => ...

Errors: 1 (Verification Failed), 7 (Stack Underflow)

Instruction: TIJUMP_FW offset

Opcode: 00000101

Parameter: Offset is an unsigned 8-hit integer in the range of 0..255.

Operation: Pops a value from the operand stack and jumps forward to an offset if the value is either f al se or
i nval i d. Execution proceeds at the given offset from the address of the first byte following this
instruction (more specifically, if the address of thisinstruction is n and the value of the offset is
offset then the next instruction to be executed is at address: n + 2 + offset). Otherwise, the
execution continues at the next instruction.

Operand: Boolean

Conversion: 1 — Boolean(s)

Result: -

Operand stack: ..., value => ...

Errors: 1 (Verification Failed), 7 (Stack Underflow)

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Version 17-Jun-1999

Page
85(126)

Instruction: TIJUMP_FW_W <offsetl,offset2>

Opcode: 00000110

Parameter: Offset isan unsigned 16-bit integer <offsetl, offset2> in the range of 0..65535.

Operation: Pops a value from the operand stack and jumps forward to an offset if the value is either f al se or
i nval i d. Execution proceeds at the given offset from the address of the first byte following this
instruction (more specifically, if the address of thisinstruction is n and the value of the offset is
offset then the next instruction to be executed is at address: n + 3 + offset). Otherwise, the
execution continues at the next instruction.

Operand: Boolean

Conversion: 1 — Boolean(s)

Result: -

Operand stack: ..., value => ...

Errors: 1 (Verification Failed), 7 (Stack Underflow)

Instruction: TJUMP_BW offset

Opcode: 00000111

Parameter: Offset is an unsigned 8-hit integer in the range of 0..255.

Operation: Pops a value from the operand stack and jumps backward to an offset if the value is either f al se
ori nval i d. Execution proceeds at the given offset from the address of this instruction (more
specifically, if the address of thisinstruction is n and the value of the offset is offset then the next
instruction to be executed is at address. n - offset). Otherwise, the execution continues at the next
instruction.

Operand: Boolean

Conversion: 1 — Boolean(s)

Result: -

Operand stack: ..., value => ...

Errors: 1 (Verification Failed), 7 (Stack Underflow)

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Version 17-Jun-1999 Page

86(126)
Instruction: TIJUMP_BW_W <offsetl,offset2>
Opcode: 00001000
Parameter: Offset isan unsigned 16-bit integer <offsetl, offset2> in the range of 0..65535.
Operation: Pops a value from the operand stack and jumps backward to an offset if the value is either f al se

ori nval i d. Execution proceeds at the given offset from the address of this instruction (more
specifically, if the address of thisinstruction isn and the value of the offset is offset then the next
instruction to be executed is at address. n - offset). Otherwise, the execution continues at the next

instruction.
Operand: Boolean
Conversion: 1 — Boolean(s)
Result: -
Operand stack: ..., value => ...
Errors: 1 (Verification Failed), 7 (Stack Underflow)

11.5.2 Function Call Instructions

Instruction: CALL_S

Opcode: 01100Giii (iii istheimplicit findex)

Parameter: Findex is an unsigned 3-bit integer in the range of 0..7.

Operation: Pops function arguments from the operand stack, initialises the function variables (arguments and

local variables) and calls alocal function defined in the same function pool. Execution proceeds
from the first instruction of the function findex.

Operands: Variable number, any type

Conversion: -

Result: Any (function return value)

Operand stack: ..., [argl, [arg2 ...]] => ..., ret-value
Errors: 1 (Verification Failed), 7 (Stack Underflow)

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Version 17-Jun-1999 Page
87(126)

Instruction: CALL findex

Opcode: 00001001

Parameter: Findex is an unsigned 8-bit integer in the range of 0..255.

Operation: Pops function arguments from the operand stack, initialises the function variables (arguments and
local variables) and calls alocal function defined in the same function pool. Execution proceeds
from the first instruction of the function findex.

Operands: Variable number, any type

Conversion: -

Result: Any (function return value)

Operand stack: ..., [argl, [arg2 ...]] => ..., ret-value

Errors: 1 (Verification Failed), 7 (Stack Underflow)

Instruction: CALL_LIB_Slindex

Opcode: 01101iii (iii istheimplicit findex)

Parameters: Findex is an unsigned 3-bit integer in the range of 0..7.

Lindex is an unsigned 8-bit integer in the range of 0..255.

Operation: Pops function arguments from the operand stack, initialises the function variables (arguments and
local variables) and calls alibrary function findex defined in the specified library lindex.

Operands: Variable number (specified by the called library function), any type

Conversion: -

Result: Any (function return value)

Operand stack: ..., [argl, [arg2 ...]] => ..., ret-value

Errors: 1 (Verification Failed), 2 (Fatal Library Function Error),

7 (Stack Underflow), 8 (Programmed Abort)

Instruction: CALL_LIB findex lindex

Opcode: 00001010

Parameters: Findex is an unsigned 8-bit integer in the range of 0..255.

Lindex is an unsigned 8-bit integer in the range of 0..255.

Operation: Pops function arguments from the operand stack, initialises the function variables (arguments and
local variables) and calls alibrary function findex defined in the specified library lindex.

Operands: Variable number (specified by the called library function), any type

Conversion: -

Result: Any (function return value)

Operand stack: ..., [argl, [arg2 ...]] => ..., ret-value

Errors: 1 (Verification Failed), 2 (Fatal Library Function Error),

7 (Stack Underflow), 8 (Programmed Abort)

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Version 17-Jun-1999

Page
88(126)

Instruction: CALL_LIB_W findex <lindexl, lindex2>

Opcode: 00001011

Parameters: Findex is an unsigned 8-hit integer in the range of 0..255.

Lindex is an unsigned 16-hit integer <lindex1,lindex2> in the range of 0..65535.

Operation: Pops function arguments from the operand stack, initialises the function variables (arguments and
local variables) and calls alibrary function findex defined in the specified library lindex.

Operands: Variable number (specified by the called library function), any type

Conversion: -

Result: Any (function return value)

Operand stack: ..., [argl, [arg2 ...]] => ..., ret-value

Errors: 1 (Verification Failed), 2 (Fatal Library Function Error),

7 (Stack Underflow), 8 (Programmed Abort)

Instruction: CALL_URL urlindex findex args

Opcode: 00001100

Parameters: Urlindex isan unsigned 8-hit integer in the range of 0..255 that must point to the constant pool
containing avalid URL. The referred constant type must be between 4 and 6.

Findex is an unsigned 8-hit integer in the range of 0..255 that must point to the constant pool
containing a valid function name. The referred constant type must be 4.

Argsisan unsigned 8-hit integer in the range of 0..255 that must contain the number of function
arguments pushed on the operand stack.

Operation: Pops function arguments from the operand stack, initialises the function variables (arguments and
local variables) and calls a function specified by findex defined in the specified URL address
urlindex.

Operands: Variable number (specified by args), any type

Conversion: -

Result: Any (function return value)

Operand stack: ..., [argl, [arg2 ...]] => ..., ret-value

Errors: 1 (Verification Failed), 3 (Invalid Function Arguments),

4 (External Function Not Found), 5 (Unable to Load Compilation Unit),
6 (Access Violation), 7 (Stack Underflow)

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Version 17-Jun-1999 Page

89(126)
Instruction: CALL_URL_W <urlindex1,urlindex2> <findex1,findex2> args
Opcode: 00001101
Parameters: Urlindex is an unsigned 16-hit integer <urlindex1,urlindex2> in the range of 0..65535 that must
point to the constant pool containing avalid URL. The referred constant type must be between 4
and 6.

Findex is an unsigned 16-bit integer <findex1,findex2> in the range of 0..65535 that must point to
the constant pool containing a valid function name. The referred constant type must be 4.

Argsisan unsigned integer in the range of 0..255 that must contain the number of function
arguments pushed on the operand stack.

Operation: Pops function arguments from the operand stack, initialises the function variables (arguments and
local variables) and calls a function specified by findex defined in the specified URL address
urlindex.

Operands: Variable number (specified by args), any type

Conversion: -

Result: Any (function return value)

Operand stack: ..., [argl, [arg2 ...]] => ..., ret-value

Errors: 1 (Verification Failed), 3 (Invalid Function Arguments),

4 (External Function Not Found), 5 (Unable to Load Compilation Unit),
6 (Access Violation), 7 (Stack Underflow)

11.5.3 Variable Access and Manipulation

Instruction: LOAD VAR S

Opcode: 1117iiiii (iiiii isthe implicit vindex)

Parameter: Vindex is an unsigned 5-bit integer in the range of 0..31.
Operation: Pushes the value of the variable vindex on the operand stack.
Operands: -

Conversion: -

Result: Any (content of the variable)

Operand stack: ... => ..., value

Errors: 1 (Verification Failed)

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Version 17-Jun-1999

Page
90(126)
Instructions: LOAD_VAR vindex
Opcode: 00001110
Parameter: Vindex is an unsigned 8-bit integer in the range of 0..255.
Operation: Pushes the value of the variable vindex on the operand stack.
Operands: -
Conversion: -
Result: Any (content of the variable)
Operand stack: . => ..., value
Errors: 1 (Verification Failed)
Instruction: STORE_VAR_S
Opcode: 0100iiii (iiii isthe implicit vindex)
Parameter: Vindex is an unsigned 4-bit integer in the range of 0..15.
Operation: Pops the value from the operand stack and storesit into the variable vindex.
Operand: Any
Conversion: 8 - Any
Result: -
Operand stack: ..., value => ...
Errors: 1 (Verification Failed), 7 (Stack Underflow)
Instruction: STORE_VAR vindex
Opcode: 00001111
Parameter: Vindex is an unsigned 8-bit integer in the range of 0..255.
Operation: Pops the value from the operand stack and storesit into the variable vindex.
Operand: Any
Conversion: 8 - Any
Result: -
Operand stack: ..., value => ...
Errors: 1 (Verification Failed), 7 (Stack Underflow)

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Version 17-Jun-1999

Page
91(126)
Instruction: INCR_VAR_S
Opcode: 01110iii (iii istheimplicit vindex)
Parameter: Vindex is an unsigned 3-bit integer in the range of 0..7.
Operation: Increments the value of a variable vindex by one.
Operands: -
Conversion: 5 — Integer or floating-point (unary)
Result: -
Operand stack: No change
Errors: 1 (Verification Failed)
Instruction: INCR_VAR vindex
Opcode: 00010000
Parameter: Vindex is an unsigned 8-bit integer in the range of 0..255.
Operation: Increments the value of a variable vindex by one.
Operands: -
Conversion: 5 — Integer or floating-point (unary)
Result: -
Operand stack: No change
Errors: 1 (Verification Failed)
Instruction: DECR_VAR vindex
Opcode: 00010001
Operation: Decrements the value of a variable vindex by one.
Parameter: Vindex is an unsigned 8-bit integer in the range of 0..255.
Operands: -
Conversion: 5 — Integer or floating-point (unary)
Result: -
Operand stack: No change
Errors: 1 (Verification Failed)

© Wireless Application Protocol Forum, Ltd, 1999

All rights reserved.

Version 17-Jun-1999

Page
92(126)

11.5.4 Access To Constants

Instruction: LOAD _CONST_S

Opcode: 0101iiii (iiii isthe implicit cindex)

Parameter: Cindex is an unsigned 4-bit integer in the range of 0..15 that points to the constant pool containing
the actual constant. The referred constant type must be between 0 and 6.

Operation: Pushes the value of the constant denoted by cindex on the operand stack.

Operands: -

Conversion: -

Result: Any (content of the constant)

Operand stack: . => ..., value

Errors: 1 (Verification Failed)

Instruction: LOAD_CONST cindex

Opcode: 00010010

Parameter: Cindex is an unsigned 8-hit integer in the range of 0..255 that points to the constant pool
containing the actual constant. The referred constant type must be between 0 and 6.

Operation: Pushes the value of the constant denoted by cindex on the operand stack.

Operands: -

Conversion: -

Result: Any (content of the constant)

Operand stack: . => ..., value

Errors: 1 (Verification Failed)

Instruction: LOAD_CONST_W <cindex1,cindex2>

Opcode: 00010011

Parameter: Cindex is an unsigned 16-bit integer <cindex1,cindex2> in the range of 0..65535 that points to the
constant pool containing the actual constant. The referred constant type must be between 0 and 6.

Operation: Pushes the value of the constant cindex on the operand stack.

Operands: -

Conversion: -

Result: Any (content of the constant)

Operand stack: . => ..., value

Errors: 1 (Verification Failed)

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Version 17-Jun-1999 Page
93(126)
Instruction: CONST_0
Opcode: 00010100
Parameters: -
Operation: Pushes an integer value 0 on the operand stack.
Operands: -
Conversion: -
Result: Integer
Operand stack: . => ...,value_0
Errors: -
Instruction: CONST 1
Opcode: 00010101
Parameters: -
Operation: Pushes an integer value 1 on the operand stack.
Operands: -
Conversion: -
Result: Integer
Operand stack: . => ..., value_1
Errors: -
Instruction: CONST_M1
Opcode: 00010110
Parameters: -
Operation: Pushes an integer value —1 on the operand stack.
Operands: -
Conversion: -
Result: Integer
Operand stack: . => ..., value_-1
Errors: -

© Wireless Application Protocol Forum, Ltd, 1999

All rights reserved.

Version 17-Jun-1999

Page
94(126)
Instruction: CONST _ES
Opcode: 00010111
Parameters: -
Operation: Pushes an empty string on the operand stack.
Operands: -
Conversion: -
Result: String
Operand stack: . => ..., value_™
Errors: -
Instruction: CONST_INVALID
Opcode: 00011000
Parameters: -
Operation: Pushesani nval i d value on the operand stack.
Operands: -
Conversion: -
Result: Invalid
Operand stack: . => ..., invalid
Errors: -
Instruction: CONST_TRUE
Opcode: 00011001
Parameters: -
Operation: Pushes a boolean valuet r ue on the operand stack.
Operands: -
Conversion: -
Result: Boolean
Operand stack: . => ..., value_true
Errors: -

© Wireless Application Protocol Forum, Ltd, 1999

All rights reserved.

Version 17-Jun-1999

Page
95(126)

Instruction:
Opcode:
Parameters:
Operation:
Operands:
Conversion:

Result:

Operand stack:

Errors:

CONST_FALSE
00011010
Pushes a boolean value f al se on the operand stack.

Boolean

. => ..., value false

11.5.5 Arithmetic Instructions

Instruction: INCR

Opcode: 00011011

Parameters: -

Operation: Increments the value on the top of the operand stack by one.
Operand: Integer or floating-point

Conversion: 5 — Integer or floating-point (unary)

Result: Integer or floating-point (incremented by one)

Operand stack: ..., value => ..., value+l

Errors: 7 (Stack Underflow)

Instruction: DECR

Opcode: 00011100

Parameters: -

Operation: Decrements the value on the top of the operand stack by one.
Operand: Integer or floating-point

Conversion: 5 — Integer or floating-point (unary)

Result: Integer or floating-point (decremented by one)

Operand stack: ..., value => ..., value-1

Errors: 7 (Stack Underflow)

© Wireless Application Protocol Forum, Ltd, 1999

All rights reserved.

Version 17-Jun-1999

Page
96(126)
Instruction: ADD_ASG vindex
Opcode: 00011101
Parameter: Vindex is an unsigned 8-bit integer in the range of 0..255.
Operation: Pops a value from the operand stack and adds the value to the variable vindex.
Operands: Integers, floating-points or strings
Conversion: 7 — Integers, floating-points or strings
Result: For integers or floating-points; variable containing the result of the addition
For strings: variable containing the result of string concatenation
Operand stack: ..., value => ...
Errors: 1 (Verification Failed), 7 (Stack Underflow)
Instruction: SUB_ASG vindex
Opcode: 00011110
Parameter: Vindex is an unsigned 8-bit integer in the range of 0..255.
Operation: Pops a value (subtractor) from the operand stack and subtracts the value from the variable vindex.
Operands: Integers or floating-points
Conversion: 6 — Integers or floating-points
Result: Variable containing the result of the subtraction
Operand stack: ..., value => ...
Errors: 1 (Verification Failed), 7 (Stack Underflow)
Instruction: UMINUS
Opcode: 00011111
Parameters: -
Operation: Pops a value from the operand stack and performs a unary minus operation on it and pushes the
result back on the operand stack.
Operand: Integer or floating-point
Conversion: 5 — Integer or floating-point (unary)
Result: Integer or floating-point (negated)
Operand stack: ..., value => ..., -value
Errors: 7 (Stack Underflow)

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Version 17-Jun-1999 Page
97(126)

Instruction: ADD

Opcode: 00100000

Parameters: -

Operation: Pops two values from the operand stack and performs an add operation on them and pushes the
result back on the operand stack.

Operands: Integers, floating-points or strings

Conversion: 7 — Integers, floating-points or strings

Result: For integers or floating-points. the result of the addition
For strings: the result of the concatenation

Operand stack: ..., valuel, value2 => ..., valuel + value2

Errors: 7 (Stack Underflow)

Instruction: SUB

Opcode: 00100001

Parameters: -

Operation: Pops two values from the operand stack and performs a subtract operation on them and pushes the
result back on the operand stack.

Operands: Integers or floating-points

Conversion: 6 — Integers or floating-points

Result: Integer or floating-point

Operand stack: ..., valuel, value2 => ..., valuel - value2

Errors: 7 (Stack Underflow)

Instruction: MUL

Opcode: 00100010

Parameters: -

Operation: Pops two values from the operand stack, performs a multiplication operation on them and pushes
the result back on the operand stack.

Operands: Integers or floating-points

Conversion: 6 — Integers or floating-points

Result: Integer or floating-point

Operand stack: ..., valuel, value2 => ..., valuel * value2

Errors: 7 (Stack Underflow)

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Version 17-Jun-1999

Page
98(126)

Instruction: DIV

Opcode: 00100011

Parameters: -

Operation: Pops two values from the operand stack, performs a division operation on them and pushes the
result back on the operand stack.

Operands: Integers or floating-points

Conversion: 6 — Integers or floating-points

Result: Floating-point

Operand stack: ..., valuel, value2 => ..., valuel /value2

Errors: 7 (Stack Underflow)

Instruction: IDIV

Opcode: 00100100

Parameters: -

Operation: Pops two values from the operand stack, performs an integer division operation on them and
pushes the result back on the operand stack.

Operands: Integers

Conversion: 2 — Integer(s)

Result: Integer

Operand stack: ..., valuel, value2 => ..., valuel IDIV value2

Errors: 7 (Stack Underflow)

Instruction: REM

Opcode: 00100101

Parameters: -

Operation: Pops two values from the operand stack, performs a reminder operation on them (the sign of the
result equals the sign of the dividend) and pushes the result back on the operand stack.

Operands: Integers

Conversion: 2 — Integer(s)

Result: Integer

Operand stack: ..., valuel, value2 => ..., valuel % value2

Errors: 7 (Stack Underflow)

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Version 17-Jun-1999 Page

99(126)

11.5.6 Bitwise Instructions

Instruction: B_AND

Opcode: 00100110

Parameters: -

Operation: Pops two values from the operand stack and performs a bitwise and operation on them and pushes
the result back on the operand stack.

Operands: Integers

Conversion: 2 — Integer(s)

Result: Integer

Operand stack: ..., valuel, value2 => ..., valuel & value2

Errors: 7 (Stack Underflow)

Instruction: B OR

Opcode: 00100111

Parameters: -

Operation: Pops two values from the operand stack and performs a bitwise or operation on them and pushes
the result back on the operand stack.

Operands: Integers

Conversion: 2 — Integer(s)

Result: Integer

Operand stack: ..., valuel, value2 => ..., valuel | value2

Errors: 7 (Stack Underflow)

Instruction: B _XOR

Opcode: 00101000

Parameters: -

Operation: Pops two values from the operand stack, performs a bitwise xor operation on them and pushes the
result back on the operand stack.

Operands: Integers

Conversion: 2 — Integer(s)

Result: Integer

Operand stack: ..., valuel, value2 => ..., valuel ”~ value2

Errors: 7 (Stack Underflow)

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Version 17-Jun-1999

Page
100(126)
Instruction: B_NOT
Opcode: 00101001
Parameters: -
Operation: Pops a value from the operand stack and performs a bitwise complement operation on it and
pushes the result back on the operand stack.
Operands: Integer
Conversion: 2 — Integer(s)
Result: Integer
Operand stack: ..., value => ..., ~value
Errors: 7 (Stack Underflow)
Instruction: B LSHIFT
Opcode: 00101010
Parameters: -
Operation: Pops two values from the operand stack, performs a bitwise | eft-shift operation on them and pushes
the result back on the operand stack.
Operands: Integers
Conversion: 2 — Integer(s)
Result: Integer
Operand stack: ..., value, amount => ..., value << amount
Errors: 7 (Stack Underflow)
Instruction: B_RSSHIFT
Opcode: 00101011
Parameters: -
Operation: Pops two values from the operand stack, performs a bitwise signed right-shift operation on them
and pushes the result back on the operand stack.
Operands: Integers
Conversion: 2 — Integer(s)
Result: Integer
Operand stack: ..., value, amount => ..., value >> amount
Errors: 7 (Stack Underflow)

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Version 17-Jun-1999

Page
101(126)

Instruction:
Opcode:
Parameters:

Operation:

Operands:
Conversion:
Result:
Operand stack:

Errors:

B_RSZSHIFT
00101100

Pops two values from the operand stack and performs a bitwise right-shift with zero operation on
them and pushes the result back on the operand stack.

Integers

2 — Integer(s)

Integer

..., value, amount =>

7 (Stack Underflow)

..., value >>> amount

11.5.7 Comparison Instructions

Instruction: EQ

Opcode: 00101101

Parameters: -

Operation: Pops two values from the operand stack, performs a logical equality operation on them and pushes
the result back on the operand stack.

Operands: Integers, floating-points or strings

Conversion: 7 — Integers, floating-points or strings

Result: Boolean

Operand stack: ..., valuel, value2 => ..., valuel EQ value2

Errors: 7 (Stack Underflow)

Instruction: LE

Opcode: 00101110

Parameters: -

Operation: Pops two values from the operand stack, performs a logical less-or-equal operation on them and
pushes the result back on the operand stack.

Operands: Integers, floating-points or strings

Conversion: 7 — Integers, floating-points or strings

Result: Boolean

Operand stack: ..., valuel, value2 => ..., valuel LE value2

Errors: 7 (Stack Underflow)

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Version 17-Jun-1999

Page
102(126)

Instruction: LT

Opcode: 00101111

Parameters: -

Operation: Pops two values from the operand stack, performs alogical less-than operation on them and
pushes the result back on the operand stack.

Operands: Integers, floating-points or strings

Conversion: 7 — Integers, floating-points or strings

Result: Boolean

Operand stack: ..., valuel, value2 => ..., valuel LT value2

Errors: 7 (Stack Underflow)

Instruction: GE

Opcode: 00110000

Parameters: -

Operation: Pops two values from the operand stack, performs a logical greater-or-equal operation on them and
pushes the result back on the operand stack.

Operands: Integers, floating-points or strings

Conversion: 7 — Integers, floating-points or strings

Result: Boolean

Operand stack: ..., valuel, value2 => ..., valuel GE value2

Errors: 7 (Stack Underflow)

Instruction: GT

Opcode: 00110001

Parameters: -

Operation: Pops two values from the operand stack, performs a greater-than operation on them and pushes the
result back on the operand stack.

Operands: Integers, floating-points or strings

Conversion: 7 — Integers, floating-points or strings

Result: Boolean

Operand stack: ..., valuel, value2 => ..., valuel GT value2

Errors: 7 (Stack Underflow)

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Version 17-Jun-1999

Page
103(126)
Instruction: NE
Opcode: 00110010
Parameters: -
Operation: Pops two values from the operand stack, performs alogical not-equal operation on them and
pushes the result back on the operand stack.
Operands: Integers, floating-points or strings
Conversion: 7 — Integers, floating-points or strings
Result: Boolean
Operand stack: ..., valuel, value2 => ..., valuel NE value2
Errors: 7 (Stack Underflow)
11.5.8 Logical Instructions
Instruction: NOT
Opcode: 00110011
Parameters: -
Operation: Pops a value from the operand stack and performs a logical complement operation on it and pushes
the result back on the operand stack.
Operands: Boolean
Conversion: 1 — Boolean(s)
Result: Boolean
Operand stack: ..., value => ..., lvalue
Errors: 7 (Stack Underflow)

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Version 17-Jun-1999

Page
104(126)

Instruction: SCAND

Opcode: 00110100

Parameters: -

Operation: Pops a value from the operand stack and converts it to a boolean value. If the converted valueis
fal se orinval i d then the converted value itself is pushed on the operand stack and the
boolean value f al se is pushed on the operand stack. If the converted valueist r ue then the
converted valueitself is pushed on the operand stack.

Operands: Any

Conversion: 1 — Boolean(s)

Result: Boolean

Operand stack: ..., value => ..., false, false (in casethevalueisf al se)

..., value => ..., true (in casethevalueist r ue)
..., value => ..., invalid, false (in casethevalueisi nval i d)

Errors: 7 (Stack Underflow)

Instruction: SCOR

Opcode: 00110101

Parameters: -

Operation: Pops a value from the operand stack and converts it to a boolean value. If the converted valueis
f al se then the boolean valuet r ue is pushed on the operand stack. If the converted valueis
true ori nval i d then the converted value itself is pushed on the operand stack and the boolean
valuef al se is pushed on the operand stack.

Operands: Any

Conversion: 1 — Boolean(s)

Result: Boolean

Operand stack: ..., value => ..., true (in casethevalueisf al se)

..., value => ..., true, false (in casethevalueist r ue)
..., value => ..., invalid, false (in casethevalueisi nval i d)

Errors: 7 (Stack Underflow)

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Version 17-Jun-1999

Page
105(126)

Instruction:
Opcode:
Parameters:

Operation:

Operands:
Conversion:
Result:

Operand stack:

Errors:

TOBOOL
00110110

Pops a value from the operand stack and converts the value to a boolean value and pushes the
converted value on the operand stack. If the popped valueisi nval i d thenani nval i d valueis

pushed back on the operand stack.
Any

1 — Boolean(s)

Boolean

..., value => ..., tobool

7 (Stack Underflow)

11.5.9 Stack Instructions

Instruction:
Opcode:
Parameters:
Operation:
Operands:
Conversion:
Result:

Operand stack:

Errors:

POP
00110111

Pops a value from the operand stack.

Any

..., value => ...

7 (Stack Underflow)

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Version 17-Jun-1999

Page
106(126)

11.5.10 Access to Operand Type

Instruction: TYPEOF

Opcode: 00111000

Parameters: -

Operation: Pops a value from the operand stack and checks its type. Pushes the result as an integer on the
operand stack. The possible results are: 0 = Integer, 1 = Floating-point, 2 = String, 3 = Boolean, 4
= Invalid

Operands: Any

Conversion: -

Result: Integer

Operand stack: ..., value => ..., typeof?

Errors: 7 (Stack Underflow)

Instruction: ISVALID

Opcode: 00111001

Parameters: -

Operation: Pops a value from the operand stack and checks itstype. If the type isinvalid a boolean value
f al se ispushed on the operand stack, otherwise a boolean valuet r ue is pushed on the operand
stack.

Operands: Any

Conversion: -

Result: Boolean

Operand stack: ..., value => ..., valid?

Errors: 7 (Stack Underflow)

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Version 17-Jun-1999

Page

107(126)

11.5.11 Function Return Instructions

Instruction: RETURN

Opcode: 00111010

Parameters: -

Operation: Returns the control back to the caller. Thereturn valueis on the top of the operand stack. The
execution continues at the next instruction following the function call of the calling function.

Operands: Any

Conversion: -

Result: -

Operand stack: ..., ret-value => ..., ret-value

Errors: 7 (Stack Underflow)

Instruction: RETURN_ES

Opcode: 00111011

Parameters: -

Operation: Pushes an empty string on the operand stack and returns the control back to the caller. The
execution continues at the next instruction following the function call of the calling function.

Operands: -

Conversion: -

Result: -

Operand stack: = ...,"

Errors: -

11.5.12 Miscellaneous Instructions

Instruction:
Opcode:
Parameters:
Operation:
Operands:
Conversion:

Result:

Operand stack:

Errors:

DEBUG
00111100
No operation. Reserved for debugging and profiling purposes.

No change

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Version 17-Jun-1999 Page
108(126)

12. Bytecode Verification

Bytecode verification takes place before or while the bytecode is used for execution. The purpose of the verification isto
make sure that the content foll ows the WML Script bytecode specification. In case of verification failure, the failed
bytecode should not be used for execution or the execution must be aborted and failure signalled to the caller of the
WML Script interpreter.

The following checks are to be executed in the WML Script Interpreter either before the execution is started or during the
execution of WML Script bytecode.

12.1 Integrity Check

Thefollowing list contains checks that must be used to verify the integrity of the WML Script bytecode before it is
executed:

Check that the version number is correct: The bytecode version number must be compared with the bytecode
version number supported by the WML Script interpreter. The major version numbers must match. The minor
version number of the bytecode must be less than or equal to the minor version number supported by the
WML Script interpreter.

Check that the size of the bytecode is correct: The size specified in the bytecode must match exactly the byte size
of the content.

Check the constant pool:

- The number of constantsis correct: The number of constants specified in the constant pool must match the
number of constants stored into the constant pool.

- Thetypes of constants are valid: The numbers used to specify the constant types in the constant pool must
match the supported constant types. Reserved constant types (7-255) result in a verification failure.

- The sizes of constants are valid: Each constant must allocate only the correct number of bytes specified by the
WML Script bytecode specification (fixed size constants such as integers) or the size parameter provided as
part of the constant entity (constants of varying size such as strings).

Check the pragma pool:
- The number of pragmas s correct: The number of pragmas specified in the pragma pool must match the
number of pragmas stored into the pragma pool.
- Thetypes of pragmas are valid: The numbers used to specify the pragma types in the pragma pool must
match the supported pragma types. Reserved pragma types (4-255) result in a verification failure.
- The constant pool indexes are valid:
- The access control domain and path must point to string constants.
- The constant pool indexes used in meta-information pragmas must point to string constants.

Check the function pool:
- The number of functionsis correct: The number of functions specified in the function pool must match the
number of functions stored into the function pool.
- Thefunction name table is correct:
- The number of function namesis correct: The number of function names specified in the function name
table must match the number of function names stored into the function name table.
. The function name indexes are correct: Theindexes must point to existing functions in the function pool.
- The function names contain only valid function name characters: Function names must follow the
WML Script function name syntax.

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Version 17-Jun-1999 Page
109(126)

- The function prologue is correct:
- The number of arguments and local variablesis correct: The sum of the number of arguments and local
variables must be less or equal to 256.
- The size of the function is correct: The size specified in the function prologue must match exactly the byte
size of the function.

12.2 Runtime Validity Checks

Thefollowing list contains the checks that must be done during the execution to verify that the used instructions are
valid and they use valid parameter values:

Check that the bytecode contains only valid instructions: Only instructions that are defined in chapter 11 are
valid.
Check that local variable references are valid: The references must be within the boundaries specified by the
number of function local variablesin the function prologue.
Check that constant references are valid:
- Thereferences must be within the boundaries specified by the number of constants in the constant pool.
- Thereferences must point to the valid constant types specified by each instruction:
In case of URL references, the referred constant strings must contain avalid URL (see [RFC2396]).
In case of Function Name references, the referred constant strings must contain a valid WML Script
function name.
Check that the standard library indexes and library function indexes are valid: The indexes must be within the
boundaries specified by the WML Script Standard Libraries specification [WMLSLibg].
Check that local function call indexes are valid: The function indexes must match with the number of functions
specified in the function pool.
Check that the jumps are within function boundaries: All jumps must have a target inside the function in which
they are specified.
Check that the targets of jumps are valid: The target of all jumps must be the beginning of an instruction.
Check that the ends of the functions are valid: Functions must not end in the middle of an instruction.

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Version 17-Jun-1999 Page
110(126)

13. Run-time Error Detection and Handling

Since WML Script functions are used to implement services for users that expect the terminals (in particular mobile
phones) to work properly in all situations, error handling is of utmost importance. This means that while the language
does not provide, for example, an exception mechanism, it should provide toolsto either prevent errors from happening
or tools to notice them and take appropriate actions. Aborting a program execution should be the last resort used only in
cases where nothing elseis possible.

The following section lists errors that can happen when downloading bytecode and executing it. It does not contain
programming errors (such as infinite loop etc.). For these cases a user controlled abortion mechanism is needed.

13.1 Error Detection

The goal of error detection isto give tools for the programmer to detect errors (if possible) that would lead to erroneous
behaviour. Since WML Script is aweakly typed language, special functionality has been provided to detect errorsthat are
caused by invalid data types:

Check that the given variable contains the right value: WML Script supports type validation library [WMLSLibs]|
functions such as Lang.isInt(), Lang.isFloat(), Lang.parselnt() and Lang.parseFloat().

Check that the given variable contains a value that is of right type: WML Script supports the operators typeof and
isvalid that can be used for this purpose.

13.2 Error Handling

Error handling takes place after an error has already happened. Thisis the case when the error could not be prevented by
error detection (memory limits, external signals etc.) or it would have been too difficult to do so (overflow, underflow
etc.). These cases can be divided into two classes:

Fatal errors: These are errorsthat cause the program to abort. Since WML Script functions are always called from
some other user agents, program abortion should always be signalled to the calling user agent. It isthen its
responsibility to take the appropriate actions to signal the user of errors.

Non-fatal errors: These are errorsthat can be signalled back to the program as special return values and the
program can decide on the appropriate action.

Thefollowing error descriptions are divided into sections based on their fatality.

13.3 Fatal Errors

13.3.1 Bytecode Errors

These errors are related to the bytecode and the instructions being executed by the WML Script Bytecode I nterpreter.
They are indications of erroneous constant pool e ements, invalid instructions, invalid arguments to instructions or
instructions that cannot be completed.

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Version 17-Jun-1999

13.3.1.1 Verification Failed

Description:

Generated:
Example:
Severity:
Predictable:
Solution:

Page
111(126)

Reports that the specified bytecode for the called compilation unit did not passthe
verification (see chapter 12 for more information about bytecode verification).

At any time when a program attemptsto call an external function.

var a = 3*Qther Scri pt #doThi s(param ;

Fatal.

I's detected during the bytecode verification.

Abort program and signal an error to the caller of the WML Script interpreter.

13.3.1.2 Fatal Library Function Error

Description:
Gener ated:

Example:
Severity:
Predictable:
Solution:

Reportsthat a call to alibrary function resulted in afatal error.

At any time when a call to alibrary function isused (CALL_LIB). Typically, this
isan unexpected error in the library function implementation.

var a = String.fornat(paran);

Fatal.

No.

Abort program and signal an error to the caller of the WML Script interpreter.

13.3.1.3 Invalid Function Arguments

Description:

Generated:
Example:

Severity:
Predictable:
Solution:

Reports that the number of arguments specified for a function call do not match
with the number of arguments specified in the called function.

At any time a call to an external function isused (CALL_URL).

Compiler generates an invalid parameter to an instruction or the number of
parameters in the called function has changed.

Fatal.

No.

Abort program and signal an error to the caller of the WML Script interpreter.

13.3.1.4 External Function Not Found

Description:

Generated:
Example:
Severity:
Predictable:
Solution:

Reportsthat a call to an external function could not be found from the specified
compilation unit.

At any time, when a program attemptsto call an external function (CALL_URL).
var a = 3*Qt her Scri pt #doThi s(paranj ;

Fatal.

No.

Abort program and signal an error to the caller of the WML Script interpreter.

13.3.1.5 Unableto Load Compilation Unit

Description:

Generated:
Example:
Severity:
Predictable:
Solution:

Reports that the specified compilation unit could not be loaded due to
unrecoverable errors in accessing the compilation unit in the network server or the
specified compilation unit does not exist in the network server.

At any time, when a program attemptsto call an external function (CALL_URL).
var a = 3*Qt her Scri pt #doThi s(paranj ;

Fatal.

No.

Abort program and signal an error to the caller of the WML Script interpreter.

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Version 17-Jun-1999

13.3.1.6 AccessViolation

Page
112(126)

Description: Reports an access violation. The called external function resides in a protected
compilation unit.

Generated: At any time when a program attempts to call an external function (CALL_URL).

Example: var a = 3*Qther Scri pt #doThi s(param ;

Severity: Fatal.

Predictable: No.

Solution: Abort program and signal an error to the caller of the WML Script interpreter.

13.3.1.7 Stack Underflow

Description: Indicates a stack underflow because of a program error (compiler generated bad
code).

Generated: At any time when a program attempts to pop an empty stack.

Example: Only generated if compiler generates bad code.

Severity: Fatal.

Predictable: No.

Solution: Abort program and signal an error to the caller of the WML Script interpreter.

13.3.2 Program Specified Abortion

Thiserror is generated when a WML Script function calls the library function Lang.abort() (see [WMLSLibs]) to abort
the execution.

13.3.2.1 Programmed Abort

Description: Reports that the execution of the bytecode was aborted by a call to Lang.abort()
function.

Generated: At any time when a program makes a cal to Lang.abort() function..

Example: Lang. abort ("Unrecoverable error");

Severity: Fatal.

Predictable: No.

Solution: Abort program and signal an error to the caller of the WML Script interpreter.

13.3.3 Memory Exhaustion Errors

These errors are related to the dynamic behaviour of the WML Script interpreter (see section 9.1 for more information)
and its memory usage.

13.3.3.1 Stack Overflow

Description: Indicates a stack overflow.

Generated: At any time when a program recourses too deep or attempts to push too many
variables onto the operand stack.

Example: function f(x) { f(x+1); };

Severity: Fatal.

Predictable: No.

Solution: Abort program and signal an error to the caller of the WML Script interpreter.

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Version 17-Jun-1999

13.3.3.2 Out of Memory

Page
113(126)

Description: Indicates that no more memory resources are available to the interpreter.
Generated: At any time when the operating system fails to allocate more space for the
interpreter.
Example: function f(x) {
x=x+"abcdef ghi j kIl mopqr st uvzyxy”;
f(x);
b
Severity: Fatal.
Predictable: No.
Solution: Abort program and signal an error to the caller of the WML Script interpreter.

13.3.4 External Exceptions

The following exceptions are initiated outside of the WML Script Bytecode Interpreter.

13.3.4.1 User Initiated

Description: Indicates that the user wants to abort the execution of the program (reset button
etc.)

Generated: At any time.

Example: User presses reset button while an application is running.

Severity: Fatal.

Predictable: No.

Solution: Abort program and signal an error to the caller of the WML Script interpreter.

13.3.4.2 System Initiated

Description: Indicates that an external fatal exception occurred while a program is running and
it must be aborted. Exceptions can be originated from a low battery, power off, etc.

Generated: At any time.

Example: The system is automatically switching off due to alow battery.

Severity: Fatal.

Predictable: No.

Solution: Abort program and signal an error to the caller of the WML Script interpreter.

13.4 Non-Fatal Errors

13.4.1 Computational Errors

These errors are related to arithmetic operations supported by the WML Script.

13.4.1.1 Divideby Zero

Indicates a division by zero.
At any time when a program attemptsto divide by O (integer or floating-point
division or remainder).

Description:
Gener ated:

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Version 17-Jun-1999

Example:

Severity:
Predictable:
Solution:

13.4.1.2 Integer Overflow

Description:
Gener ated:
Example:

Severity:
Predictable:
Solution:

Page
114(126)

var
var
var
var
var
al=b;

Non-fatal.

Yes.

Theresultisani nval i d value.

N X TD
I
QoY OR
g<g
o

o ~
&

Reports an arithmetic integer overflow.
At any time when a program attempts to execute an integer operation.
var a = Lang. maxInt();

var b = Lang. maxInt();
var ¢ = a + b;
Non-fatal.

Yes (but difficult in certain cases).
Theresultisani nval i d value.

13.4.1.3 Floating-Point Over flow

Description:
Gener ated:
Example:

Severity:
Predictable:
Solution:

Reports an arithmetic floating-point overflow.
At any time when a program attempts to execute a fl oating-point operation.

var a = 1.6e308;
var b = 1. 6e308;
var ¢ = a * b;
Non-fatal.

Yes (but difficult in certain cases).
Theresultisani nval i d value.

13.4.1.4 Floating-Point Under flow

Description:
Gener ated:

Example:

Severity:
Predictable:
Solution:

Reports an arithmetic underflow.

At any time when the result of a floating-point operation is smaller than what can
be represented.

var a Fl oat . preci sion();

var b Fl oat . preci sion();

var ¢ a* b;

Non-fatal.

Yes (but difficult in certain cases).

The result isafloating-point value 0. O.

13.4.2 Constant Reference Errors

These errors are related to run-time references to constants in the constant pool.

13.4.2.1 Not a Number Floating-Point Constant

Description:

Reports a reference to a floating-point literal in the constant pool that is Not a
Number [IEEE754].

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Version 17-Jun-1999

Gener ated:

Example:
Severity:
Predictable:
Solution:

Page
115(126)

At any time when a program attempts to access a floating-point literal and the
compiler has generated a Not a Number as a floating-point constant.

A reference to afloating-point literal.

Non-fatal.

Yes.

Theresultisani nval i d value.

13.4.2.2 Infinite Floating-Point Constant

Description:

Gener ated:

Example:
Severity:
Predictable:
Solution:

Reports a reference to a floating-point literal in the constant pool that is either
positive or negative infinity [|EEE754].

At any time when a program attempts to access a floating-point literal and the
compiler has generated a floating-point constant with a value of positive or
negative infinity.

A reference to afloating-point literal.

Non-fatal.

Yes.

Theresultisani nval i d value.

13.4.2.3 Illegal Floating-Point Reference

Description:
Gener ated:

Example:
Severity:
Predictable:
Solution:

Reports an erroneous reference to a floating-point value in the constant pool.
At any time when a program attempts to use floating-point values and the
environments supports only integer values.

var a = 3. 14;

Non-fatal.

Can be detected during the run-time.

Theresultisani nval i d value.

13.4.3 Conversion Errors

These errors are related to automatic conversions supported by the WML Script.

13.4.3.1 Integer Too Large

Description:
Gener ated:

Example:
Severity:
Predictable:
Solution:

Indicates a conversion to an integer value where the integer value istoo large
(positive/negative).

At any time when an application attempts to make an automatic conversion to an
integer value.

var a = -"99";
Non-fatal.

No.

Theresultisani nval i d value.

13.4.3.2 Floating-Point Too Large

Description:
Gener ated:

Example:

Indicates a conversion to a floating-point value where the floating-point value is
too large (positive/negative).
At any time when an application attempts to make an automatic conversion to a

floating-point value.
var a = -"9999999. 9999999999e99999";

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Version 17-Jun-1999 Page

116(126)

Severity: Non-fatal.

Predictable: No.

Solution: Theresultisani nval i d value.

13.4.3.3 Floating-Point Too Small

Description: Indicates a conversion to a floating-point value where the floating-point valueis
too small (positive/negative).

Generated: At any time when an application attempts to make an automatic conversion to a
floating-point value.

Examp|e: var a = -"0.01le-99";

Severity: Non-fatal.

Predictable: No.

Solution: Theresult isafloating-point value 0. O.

13.5 Library Calls and Errors

Since WML Script supports the usage of libraries, there is a possihility that errors take place inside the library functions.
Design and the behaviour of the library functions are not part of the WML Script |anguage specification. However,
following guidelines should be followed when designing libraries:

Provide the library users mechanisms by which errors can be detected before they happen.

Use the same error handling mechanisms as WML Script operators in cases where error should be reported back to
the caller.

Minimise the possibility of fatal errorsin all library functions.

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Version 17-Jun-1999 Page
117(126)

14. Support for Integer Only Devices

The WML Script language has been designed to run also on devices that do not support floating-point operations. The
following rules apply when WML Script is used with such devices:

Variables can only contain the following internal data types:
- Boolean
- Integer
- String
- Invalid
Any LOAD_CONST bytecode that refers to a floating point constant in the constant pool will push ani nval i d
value on the operand stack instead of the constant value.
Division (/) operation returnsalwaysan i nval i d value.
Assignment with division (/=) operation alwaysresultsinani nval i d value.
All conversion rules related to floating-points are ignored.
URL call with afloating-point value as an argument resultsin afailure to execute the call dueto an invalid URL
syntax.

The programmer can use Lang.float() [WMLSLibs] to test (during the run-time) if floating-point operations are
supported.

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Version 17-Jun-1999 Page
118(126)

15. Content Types

The content types specified for WML Script compilation unit and its textual and binary encoding are:

Textual form: t ext / vnd. wap. wr scri pt
Binary form: appl i cati on/ vnd. wap. wm scri ptc

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

