
WAP WSP Version 30-April-1998

Wireless Application Protocol
Wireless Session Protocol Specification

Disclaimer:

This document is subject to change without notice.

Version 30-April-1998 Page 2(95)

© Copyright Wireless Application Protocol Forum, Ltd. 1998
All rights reserved.

Contents

1 SCOPE... 4

2 DOCUMENT STATUS.. 5

2.1 COPYRIGHT NOTICE... 5
2.2 ERRATA... 5
2.3 COMMENTS ... 5

3 REFERENCES ... 6

3.1 NORMATIVE REFERENCES 6
3.2 INFORMATIVE REFERENCES... 6

4 DEFINITIONS AND ABBREVIATIONS... 7

4.1 DEFINITIONS .. 7
4.2 ABBREVIATIONS .. 8
4.3 DOCUMENTATION CONVENTIONS.. 9

5 WSP ARCHITECTURAL OVERVIEW.. 10

5.1 REFERENCE MODEL .. 10
5.2 WSP/B FEATURES... 11

5.2.1 Basic Functionality... 11
5.2.2 Extended Functionality.. 12

6 WSP ELEMENTS OF LAYER-TO-LAYER COMMUNICATION ... 13

6.1 NOTATIONS USED.. 13
6.1.1 Definition of Service Primitives and Parameters ... 13
6.1.2 Time Sequence Charts .. 13
6.1.3 Primitives Types ... 14
6.1.4 Primitive Parameter Tables.. 14

6.2 SERVICE PARAMETER TYPES... 15
6.2.1 Address ... 15
6.2.2 Body and Headers .. 15
6.2.3 Capabilities... 15
6.2.4 Push Identifier (Push Id) .. 15
6.2.5 Reason .. 15
6.2.6 Request URI.. 16
6.2.7 Status .. 16
6.2.8 Transaction Identifier (Transaction Id).. 16

6.3 CONNECTION-MODE SESSION SERVICE.. 16
6.3.1 Overview... 16
6.3.2 Capabilities... 17
6.3.3 Service Primitives ... 19
6.3.4 Constraints on Using the Service Primitives .. 31
6.3.5 Error Handling... 34

6.4 CONNECTIONLESS SESSION SERVICE ... 35
6.4.1 Overview... 35
6.4.2 Service Primitives ... 35
6.4.3 Constraints on Using the Service Primitives .. 37
6.4.4 Error Handling... 37

Version 30-April-1998 Page 3(95)

© Copyright Wireless Application Protocol Forum, Ltd. 1998
All rights reserved.

7 WSP/B PROTOCOL OPERATIONS... 38

7.1 CONNECTION-MODE WSP/B... 38
7.1.1 Utilisation of WTP .. 38
7.1.2 Protocol Description .. 38
7.1.3 Protocol Parameters... 43
7.1.4 Variables... 43
7.1.5 Event Processing .. 44
7.1.6 State Tables .. 45

7.2 CONNECTIONLESS WSP/B... 58

8 WSP/B DATA UNIT STRUCTURE AND ENCODING... 59

8.1 DATA FORMATS .. 59
8.1.1 Primitive Data Types .. 59
8.1.2 Variable Length Unsigned Integers.. 59

8.2 PROTOCOL DATA UNIT STRUCTURE .. 60
8.2.1 PDU Common Fields.. 60
8.2.2 Session Management Facility ... 61
8.2.3 Method Invocation Facility .. 63
8.2.4 Push and Confirmed Push Facilities .. 66
8.2.5 Session Resume Facility ... 66

8.3 CAPABILITY ENCODING ... 67
8.3.1 Capability Structure ... 67
8.3.2 Capability Definitions... 68
8.3.3 Capability Defaults... 71

8.4 HEADER ENCODING... 71
8.4.1 General ... 71
8.4.2 Header syntax... 73

8.5 MULTIPART DATA ... 84
8.5.1 X-WAP.Multipart Format ... 84
8.5.2 Multipart Header.. 84
8.5.3 Multipart Entry ... 84

APPENDIX A ASSIGNED NUMBERS ... 85

APPENDIX B HEADER ENCODING EXAMPLES .. 92

B.1 HEADER VALUES ... 92
B.1.1 Encoding of primitive value.. 92
B.1.2 Encoding of structured value.. 92
B.1.3 Encoding of well-known list value.. 92
B.1.4 Encoding of date value ... 92
B.1.5 Encoding of Content range... 93
B.1.6 Encoding of a new unassigned token.. 93
B.1.7 Encoding of a new unassigned header field name.. 93
B.1.8 Encoding of a new unassigned list-valued header ... 93

B.2 SHIFT HEADER CODE PAGES... 93
B.2.1 Shift sequence ... 93
B.2.2 Short cut ... 93

APPENDIX C IMPLEMENTATION NOTES .. 94

C.1 CONFIRMED PUSH AND DELAYED ACKNOWLEDGEMENTS ... 94
C.2 HANDLING OF RACE CONDITIONS.. 94
C.3 OPTIMISING SESSION DISCONNECTION AND SUSPENSION... 95
C.4 DECODING THE HEADER ENCODINGS .. 95
C.5 ADDING WELL-KNOWN PARAMETERS AND TOKENS.. 95

Version 30-April-1998 Page 4(95)

© Copyright Wireless Application Protocol Forum, Ltd. 1998
All rights reserved.

1 Scope
The Wireless Application Protocol (WAP) is a result of continuous work to define an industry-wide specification for
developing applications that operate over wireless communication networks. The scope for the WAP Forum is to define
a set of specifications to be used by service applications. The wireless market is growing very quickly, and reaching new
customers and services. To enable operators and manufacturers to meet the challenges in advanced services,
differentiation and fast/flexible service creation WAP Forum defines a set of protocols in transport, security,
transaction, session and application layers. For additional information on the WAP architecture, please refer to
“Wireless Application Protocol Architecture Specification” [WAPARCH].

The Session layer protocol family in the WAP architecture is called the Wireless Session Protocol, WSP. WSP
provides the upper-level application layer of WAP with a consistent interface for two session services. The first is a
connection-mode service that operates above a transaction layer protocol WTP, and the second is a connectionless
service that operates above a secure or non-secure datagram transport service. For more information on the transaction
and transport services, please refer to “Wireless Application Protocol: Wireless Transaction Protocol Specification”
[WAPWTP] and “Wireless Application Protocol: Wireless Datagram Protocol Specification” [WAPWDP].

The Wireless Session Protocols currently offer services most suited for browsing applications (WSP/B). WSP/B
provides HTTP 1.1 functionality and incorporates new features such as long-lived sessions, a common facility for data
push, capability negotiation and session suspend/resume. The protocols in the WSP family are optimised for low-
bandwidth bearer networks with relatively long latency.

Version 30-April-1998 Page 5(95)

© Copyright Wireless Application Protocol Forum, Ltd. 1998
All rights reserved.

2 Document Status
This document is available online in the following formats:

• PDF format at http://www.wapforum.org/.

2.1 Copyright Notice
© Copyright Wireless Application Protocol Forum, Ltd, 1998. All rights reserved.

2.2 Errata
Known problems associated with this document are published at http://www.wapforum.org/.

2.3 Comments
Comments regarding this document can be submitted to WAP Forum in the manner published at
http://www.wapforum.org/.

Version 30-April-1998 Page 6(95)

© Copyright Wireless Application Protocol Forum, Ltd. 1998
All rights reserved.

3 References

3.1 Normative References
[WAPARCH] “WAP Architecture Specification, WAP Forum, 30-April-1998.

URL: http://www.wapforum.org/
[WAPWDP] “Wireless Datagram Protocol Specification”, WAP Forum, 30-April-1998.

URL: http://www.wapforum.org/
[WAPWTP] “Wireless Transaction Protocol Specification”, WAP Forum, 30-April-1998.

URL: http://www.wapforum.org/
[RFC2119] “Key words for use in RFCs to Indicate Requirement Levels”, Bradner, S.,

March 1997, URL: ftp://ftp.isi.edu/in-notes/rfc2119.txt.
[RFC2068] “Hypertext Transfer Protocol -- HTTP/1.1”, Fielding, R., et. al., January 1997,

URL: ftp://ftp.isi.edu/in-notes/rfc2068.txt.
[RFC1521] “MIME (Multipurpose Internet Mail Extensions) Part One: Mechanisms for Specifying and

Describing the Format of Internet Message Bodies”, Borenstein, N., et. al., September 1993,
URL: ftp://ftp.isi.edu/in-notes/rfc1521.txt.

[RFC2047] “MIME (Multipurpose Internet Mail Extensions) Part Three: Message Header Extensions for Non-
ASCII Text”, Moore, K., November 1996, URL: ftp://ftp.isi.edu/in-notes/rfc2047.txt.

[RFC822] “Standard for The Format of ARPA Internet Text Messages”, Crocker, D.,
August 1982, URL: ftp://ftp.isi.edu/in-notes/rfc822.txt.

3.2 Informative References
[ISO7498] “Information technology - Open Systems Interconnection - Basic Reference Model: The Basic

Model”, ISO/IEC 7498-1:1994.
[ISO10731] “Information Technology - Open Systems Interconnection - Basic Reference Model - Conventions

for the Definition of OSI Services”, ISO/IEC 10731:1994.
[RFC1630] “Universal Resource Identifiers in WWW, A Unifying Syntax for the Expression of Names and

Addresses of Objects on the Network as used in the World-Wide Web”, Berners-Lee, T., June
1994, URL:ftp://ftp.isi.edu/in-notes/rfc1630.txt.

[RFC1738] “Uniform Resource Locators (URL)”, Berners-Lee, T., et. al., December 1994,
URL:ftp://ftp.isi.edu/in-notes/rfc1738.txt.

[RFC1808] “Relative Uniform Resource Locators”, Fielding, R., June 1995,
URL:ftp://ftp.isi.edu/in-notes/rfc1808.txt.

[RFC1864] “The Content-MD5 Header Field”, Meyers, J. and Rose, M., October 1995,
URL:ftp://ftp.isi.edu/in-notes/rfc1864.txt.

Version 30-April-1998 Page 7(95)

© Copyright Wireless Application Protocol Forum, Ltd. 1998
All rights reserved.

4 Definitions and Abbreviations

4.1 Definitions
For the purposes of this specification the following definitions apply.

Bearer Network
A bearer network is used to carry the messages of a transport-layer protocol - and ultimately also of the session
layer protocols - between physical devices. During the lifetime of a session, several bearer networks may be
used.

Capability
Capability is a term introduced in section 6.3.2, "Capabilities", to refer to the session layer protocol facilities
and configuration parameters that a client or server supports.

Capability Negotiation
Capability negotiation is the mechanism defined in section 6.3.2.1, "Capability Negotiation", for agreeing on
session functionality and protocol options. Session capabilities are negotiated during session establishment.
Capability negotiation allows a server application to determine whether a client can support certain protocol
facilities and configurations.

Client and Server
The term client and server are used in order to map WSP to well known and existing systems. A client is a
device (or application) which initiates a request for a session. The server is a device that passively waits for
session requests from client devices. The server can either accept the request or reject it.

An implementation of the WSP protocol may include only client or server functions in order to minimise the
footprint. A client or server may only support a subset of the protocol facilities, indicating this during protocol
capability negotiation.

Connectionless Session Service
Connectionless session service (section 6.4) is an unreliable session service. In this mode, only the request
primitive is available to service users, and only the indication primitive is available to the service provider.

Connection-Mode Session Service
Connection-mode session service (section 6.3) is a reliable session service. In this mode, both request and
response primitives are available to service users, and both indication and confirm primitives are available to
the service provider.

Content
The entity body sent with a request or response is referred to as content. It is encoded in a format and encoding
defined by the entity-header fields.

Content Negotiation
Content negotiation is the mechanism the server uses to select the appropriate type and encoding of content
when servicing a request. The type and encoding of content in any response can be negotiated. Content
negotiation allows a server application to decide whether a client can support a certain form of content.

Entity
An entity is the information transferred as the payload of a request or response. An entity consists of meta-
information in the form of entity-header fields and content in the form of an entity-body.

Header
A header contains meta-information. Specifically, a session header contains general information about a
session that remains constant over the lifetime of a session; an entity-header contains meta-information about a
particular request, response or entity body (content).

Version 30-April-1998 Page 8(95)

© Copyright Wireless Application Protocol Forum, Ltd. 1998
All rights reserved.

Layer Entity
In the OSI architecture, the active elements within a layer that participate in providing layer service are called
layer entities.

Method
Method is the type of client request as defined by HTTP/1.1 (eg, Get, Post, etc.). A WSP client uses methods
and extended methods to invoke services on the server.

Null terminated string
A sequence of non-zero octets followed by a zero octet.

Peer Address Quadruplet
Sessions are associated with a particular client address, client port, server address and server port. This
combination of four values is called the peer address quadruplet in the specification.

Proxy
An intermediary program that acts both as a server and a client for the purpose of making request on behalf of
other clients. Requests are serviced internally or by passing them on, with possible translation, to other server.

Pull and Push Data Transfer
Push and pull are common vernacular in the Internet world to describe push transactions and method
transactions respectively. A server “pushes” data to a client by invoking the WSP/B push service, whereas a
client “pulls” data from a server by invoking the WSP/B method service.

Session
A long-lived communication context established between two programs for the purpose of transactions and
typed data transfer.

Session Service Access Point (S-SAP)
Session Service Access Point is a conceptual point at which session service is provided to the upper layer.

Session Service Provider
A Session Service Provider is a layer entity that actively participates in providing the session service via an
S-SAP.

Session Service User
A Session Service User is a layer entity that requests services from a Session Service Provider via an S-SAP.

Transaction
Three forms of transactions are specified herein. We do not use the term transaction to imply the semantics
often associated with database transactions.

� A method transaction is a three-way request-response-acknowledge communication initiated by
the client to invoke a method on the server.

� A push transaction is a two-way request-acknowledge communication initiated by the server to
push data to the client.

� A transport transaction is a lower-level transaction primitive provided by a Transaction
Service Provider.

4.2 Abbreviations
For the purposes of this specification the following abbreviations apply.

API Application Programming Interface
A-SAP Application Service Access Point
HTTP Hypertext Transfer Protocol
ISO International Organization for Standardization
MOM Maximum Outstanding Method requests
MOP Maximum Outstanding Push requests
MRU Maximum Receive Unit
OSI Open System Interconnection

Version 30-April-1998 Page 9(95)

© Copyright Wireless Application Protocol Forum, Ltd. 1998
All rights reserved.

PDU Protocol Data Unit
S-SAP Session Service Access Point
SDU Service Data Unit
SEC-SAP Security Service Access Point
T-SAP Transport Service Access Point
TID Transaction Identifier
TR-SAP Transaction Service Access Point
WDP Wireless Datagram Protocol
WSP Wireless Session Protocol
WSP/B Wireless Session Protocol -- Browsing
WTP Wireless Transaction Protocol

4.3 Documentation Conventions
This specification uses the same keywords as specified in RFC 2119 [RFC2119] for defining the significance of each
particular requirement. These words are:

MUST
This word, or the terms "REQUIRED" or "SHALL", mean that the definition is an absolute requirement of the
specification.

MUST NOT
This phrase, or the phrase "SHALL NOT", mean that the definition is an absolute prohibition of the
specification.

SHOULD
This word, or the adjective “RECOMMENDED”, means that there may exist valid reasons in particular
circumstances to ignore a particular item, but the full implications must be understood and carefully weighed
before choosing a different course.

SHOULD NOT
This phrase, or the phrase "NOT RECOMMENDED" mean that there may exist valid reasons in particular
circumstances when the particular behaviour is acceptable or even useful, but the full implications should be
understood and the case carefully weighed before implementing any behaviour described with this label.

MAY
This word, or the adjective “OPTIONAL”, means that an item is truly optional. One vendor may choose to
include the item because a particular marketplace requires it or because the vendor feels that it enhances the
product while another vendor may omit the same item. An implementation which does not include a particular
option MUST be prepared to interoperate with another implementation which does include the option, though
perhaps with reduced functionality. In the same vein an implementation which does include a particular option
MUST be prepared to interoperate with another implementation which does not include the option (except, of
course, for the feature the option provides.)

Version 30-April-1998 Page 10(95)

© Copyright Wireless Application Protocol Forum, Ltd. 1998
All rights reserved.

5 WSP Architectural Overview
Wireless Session Protocol is a session-level protocol family for remote operations between a client and proxy or server.

5.1 Reference Model

WDP/UDP

Session

S-SAP

Application

A-SAP Application - Service Access Point

Application Layer Protocol

Session - Service Access Point

Session Layer Protocol

Transaction – Service Access Point

Wireless Transaction Protocol

Security-Service Access Point

Security Layer Protocol

Transport - Service Access Point

Wireless Datagram Protocol

A-Management
Entitity

WTP

TR-SAP

S-Management
Entitity

TR-Management
Entitity

SEC-Management
Entitity

T-Management
Entitity

Bearer-Management
Entitity

Underlying
Bearer Service

T-SAP

SEC-SAP

Security

Figure 1. Wireless Application Protocol Reference Model

A model of layering the protocols in WAP is illustrated in Figure 1. WAP protocols and their functions are layered in a
style resembling that of the ISO OSI Reference Model [ISO7498]. Layer Management Entities handle protocol
initialisation, configuration and error conditions (such as loss of connectivity due to the mobile station roaming out of
coverage) that are not handled by the protocol itself.

WSP is designed to function on the transaction and datagram services. Security is assumed to be an optional layer
above the transport layer. The security layer preserves the transport service interfaces. The transaction, session or
application management entities are assumed to provide the additional support that is required to establish security
contexts and secure connections. This support is not provided by the WSP protocols directly. In this regard, the
security layer is modular. WSP itself does not require a security layer; however, applications that use WSP may require
it.

Version 30-April-1998 Page 11(95)

© Copyright Wireless Application Protocol Forum, Ltd. 1998
All rights reserved.

5.2 WSP/B Features
WSP provides a means for organised exchange of content between co-operating client/server applications. Specifically,
it provides the applications means to:

a) establish a reliable session from client to server and release that session in an orderly manner;
b) agree on a common level of protocol functionality using capability negotiation;
c) exchange content between client and server using compact encoding;
d) suspend and resume the session.

The currently defined services and protocols (WSP/B) are most suited for browsing-type applications. WSP/B defines
actually two protocols: one provides connection-mode session services over a transaction service, and another provides
non-confirmed, connectionless services over a datagram transport service. The connectionless service is most suitable,
when applications do not need reliable delivery of data and do not care about confirmation. It can be used without
actually having to establish a session.

In addition to the general features, WSP/B offers means to:

a) provide HTTP/1.1 functionality:
1) extensible request-reply methods,
2) composite objects,
3) content type negotiation;

b) exchange client and server session headers;
c) interrupt transactions in process;
d) push content from server to client in an unsynchronised manner;
e) negotiate support for multiple, simultaneous asynchronous transactions.

5.2.1 Basic Functionality

The core of the WSP/B design is a binary form of HTTP. Consequently the requests sent to a server and responses
going to a client may include both headers (meta-information) and data. All the methods defined by HTTP/1.1 are
supported. In addition, capability negotiation can be used to agree on a set of extended request methods, so that full
compatibility to HTTP/1.1 applications can be retained.

WSP/B provides typed data transfer for the application layer. The HTTP/1.1 content headers are used to define content
type, character set encoding, languages, etc, in an extensible manner. However, compact binary encodings are defined
for the well-known headers to reduce protocol overhead. WSP/B also specifies a compact composite data format that
provides content headers for each component within the composite data object. This is a semantically equivalent binary
form of the MIME “multipart/mixed” format used by HTTP/1.1.

WSP/B itself does not interpret the header information in requests and replies. As part of the session creation process,
request and reply headers that remain constant over the life of the session can be exchanged between service users in the
client and the server. These may include acceptable content types, character sets, languages, device capabilities and
other static parameters. WSP/B will pass through client and server session headers as well as request and response
headers without additions or removals.

The lifecycle of a WSP/B session is not tied to the underlying transport. A session can be suspended while the session
is idle to free up network resources or save battery. A lightweight session re-establishment protocol allows the session
to be resumed without the overhead of full-blown session establishment. A session may be resumed over a different
bearer network.

Version 30-April-1998 Page 12(95)

© Copyright Wireless Application Protocol Forum, Ltd. 1998
All rights reserved.

5.2.2 Extended Functionality

WSP/B allows extended capabilities to be negotiated between the peers. This allows for both high-performance,
feature-full implementation as well as simple, basic and small implementations.

WSP/B provides an optional mechanism for attaching header information (meta-data) to the acknowledgement of a
transaction. This allows the client application to communicate specific information about the completed transaction
back to the server.

WSP/B provides both push and pull data transfer. Pull is done using the request/response mechanism from HTTP/1.1.
In addition, WSP/B provides three push mechanisms for data transfer:

� Confirmed data push within an existing session context
� Non-confirmed data push within an existing session context
� Non-confirmed data push without an existing session

The confirmed data push mechanism allows the server to push data to the client at any time during a session. The server
receives confirmation that the push was delivered.

The non-confirmed data push within an existing session provides a similar function as reliable data push, but without
confirmation. The non-confirmed data push can also without an existing session. In this case, a default session context
is assumed. Non-confirmed out-of-session data push can be used to send one-way messages over an unreliable transport.

WSP/B optionally supports asynchronous requests, so that a client can submit multiple requests to the server
simultaneously. This improves utilisation of airtime in that multiple requests and replies can be coalesced into fewer
messages. This also improves latency as the results of each request can be sent to the client when it becomes available.

WSP/B partitions the space of well-known header field names into header code pages. Each code page can define only
a fairly limited number of encodings for well-known field names, which permits them to be represented more
compactly. Running out of identities for well-known field names on a certain code page is still not a problem, since
WSP/B specifies a mechanism for shifting from one header code page to another.

Version 30-April-1998 Page 13(95)

© Copyright Wireless Application Protocol Forum, Ltd. 1998
All rights reserved.

6 WSP Elements of Layer-to-Layer Communication
The session layer in WAP provides both connection-mode and connectionless services. They are defined using an
abstract description technique based on service primitives, which is borrowed from [ISO10731]. Some of the terms and
concepts used to describe the communication mechanisms are borrowed from [ISO7498], whereas the terminology used
for operations and the manipulated data objects is based on [RFC2068].

This service definition specifies the minimum functionality that the WAP session must be able to provide to support its
users. Since this definition is abstract, it does not specify or constrain programming interfaces or implementations. In
fact the same service could be delivered by different protocols.

6.1 Notations Used

6.1.1 Definition of Service Primitives and Parameters

Communications between layers and between entities within the session layer are accomplished by means of service
primitives. Service primitives represent, in an abstract way, the logical exchange of information and control between the
session layer and adjacent layers.

Service primitives consist of commands and their respective responses associated with the particular service provided.
The general syntax of a primitive is:

X-Service.type (Parameters)

where X designates the layer providing the service. For this specification X is “S” for the Session Layer.

Service primitives are not the same as an application-programming interface (API) and are not meant to imply any
specific method of implementing an API. Service primitives are an abstract means of illustrating the services provided
by the protocol layer to the layer above. In particular, the service primitives and their parameters are not intended to
include the information that an implementation might need to route the primitives to each implementation object, which
corresponds to some abstract user or service provider entity instance. The mapping of these concepts to a real API and
the semantics associated with a real API is an implementation issue and beyond the scope of this specification.

6.1.2 Time Sequence Charts

The behaviour of service primitives is illustrated using time sequence charts, which are described in [ISO10731].

Provider

S-indication

S-request

Client Server

Figure 2: A Non-confirmed Service

Version 30-April-1998 Page 14(95)

© Copyright Wireless Application Protocol Forum, Ltd. 1998
All rights reserved.

Figure 2 illustrates a simple non-confirmed service, which is invoked using a request primitive and results in an
indication primitive in the peer. The dashed line represents propagation through the provider over a period of time
indicated by the vertical difference between the two arrows representing the primitives. If the labels Client and Server
are included in the diagram, this indicates that both peers cannot originate a primitive; if the labels are omitted, either
peer can originate the primitive.

6.1.3 Primitives Types

The primitives types defined in this specification are

Type Abbreviation Description
Request req Used when a higher layer is requesting a service from the next lower layer
Indication ind A layer providing a service uses this primitive type to notify the next higher

layer of activities related to the peer (such as the invocation of the request
primitive) or to the provider of the service (such as a protocol generated event)

Response res A layer uses the response primitive type to acknowledge receipt of the
indication primitive type from the next lower layer

Confirm cnf The layer providing the requested service uses the confirm primitive type to
report that the activity has been completed successfully

6.1.4 Primitive Parameter Tables

The service primitives are defined using tables indicating which parameters are possible and how they are used with the
different primitive types. If some primitive type is not possible, the column for it will be omitted.

The entries used in the primitive type columns are defined in the following table:

Table 1. Parameter Usage Legend
M Presence of the parameter is mandatory - it MUST be present

C Presence of the parameter is conditional depending on values of other parameters

O Presence of the parameter is a user option - it MAY be omitted

P Presence of the parameter is a service provider option - an implementation MAY not provide it

– The parameter is absent

* Presence of the parameter is determined by the lower layer protocol

(=) The value of the parameter is identical to the value of the corresponding parameter of the
preceding service primitive

For example, a simple confirmed primitive might be defined using the following:

Primitive S-PrimitiveX
Parameter req Ind res cnf
Parameter 1 M M(=) – –
Parameter 2 – – O C(=)

In the example definition above, Parameter 1 is always present in S-PrimitiveX.request and corresponding
S-PrimitiveX.indication. Parameter 2 MAY be specified in S-PrimitiveX.response and in that case it MUST be present
and have the equivalent value also in the corresponding S-PrimitiveX.confirm; otherwise, it MUST NOT be present.

Version 30-April-1998 Page 15(95)

© Copyright Wireless Application Protocol Forum, Ltd. 1998
All rights reserved.

An example of a simpler primitive is:

Primitive S-PrimitiveY
Parameter req ind
Parameter 2 – M

In this example, S-PrimitiveY.request has no parameters, but the corresponding S-PrimitiveX.indication MUST always
have Parameter 2. S-PrimitiveX.response and S-PrimitiveX.confirm are not defined and so can never occur.

6.2 Service Parameter Types
This section describes the types of the abstract parameters used subsequently in the service primitive definition. The
actual format and encoding of these types is an implementation issue not addressed by this service definition.

In the primitive descriptions the types are used in the names of parameters, and they often have an additional qualifier
indicating where or how the parameter is being used. For example, parameter Push Body is of the type Body, and
parameter Client Address of type Address.

6.2.1 Address
The session layer uses directly the addressing scheme of the layer below. Server Address and Client Address together
form the peer address quadruplet, which identifies the local lower-layer service access point to be used for
communication. This access point has to be prepared for communication prior to invoking the session services; this is
expected to be accomplished with interactions between the service user and management entities in a manner that is not
a part of this specification.

6.2.2 Body and Headers
The Body type is equivalent to the HTTP entity-body [RFC2068]. The Headers type represents a list of attribute
information items, which are equivalent to HTTP headers.

6.2.3 Capabilities
The Capabilities type represents a set of service facilities and parameter settings, which are related to the operation of
the service provider. The predefined capabilities are described in section 6.3.2.2, but the service providers may
recognise additional capabilities.

6.2.4 Push Identifier (Push Id)
The Push Identifier type represents an abstract value, which can be used to uniquely distinguish among the push
transactions of a session that are pending on the service interface.

6.2.5 Reason
The service provider uses the Reason type to report the cause of a particular indication primitive. Each provider MAY
define additional Reason values, but the service user MUST be prepared for the following ones:

Reason Value Description
PROTOERR The rules of the protocol prevented the peer from performing the operation in its

current state. For example, the used PDU was not allowed.
DISCONNECT The session was disconnected while the operation was still in progress.
SUSPEND The session was suspended while the operation was still in progress.
RESUME The session was resumed while the operation was still in progress.
CONGESTION The peer implementation could not process the request due to lack of resources.
CONNECTERR An error prevented session creation.
MRUEXCEEDED The SDU size in a request was larger than the Maximum Receive Unit negotiated

with the peer.

Version 30-April-1998 Page 16(95)

© Copyright Wireless Application Protocol Forum, Ltd. 1998
All rights reserved.

Reason Value Description
MOREXCEEDED The negotiated upper limit on the number of simultaneously outstanding method

or push requests was exceeded.
PEERREQ The service peer requested the operation to be aborted.
NETERR An underlying network error prevented completion of a request.
USERREQ An action of the local service user was the cause of the indication.

6.2.6 Request URI
The Request URI parameter type is intended to have a similar use as the Request-URI in HTTP method requests
[RFC2068]. However, the session user MAY use it as it sees fit, even leaving it empty or including binary data not
compatible with the URI syntax.

6.2.7 Status
The Status parameter type has values equivalent to the HTTP/1.1 status codes [RFC2068].

6.2.8 Transaction Identifier (Transaction Id)
The Transaction Identifier type represents an abstract value, which can be used to uniquely distinguish among the
method invocation transactions of a session that are pending on the service interface.

6.3 Connection-mode Session Service

6.3.1 Overview

The connection-mode session service is divided into facilities, some of which are optional. Most of the facilities are
asymmetric so that the operations available for the client and the server connected by the session are different. The
provided facilities are

� Session Management facility
� Method Invocation facility
� Exception Reporting facility
� Push facility
� Confirmed Push facility
� Session Resume facility

The Session Management and Exception reporting facilities are always available. The others are controlled by
capability negotiation during session establishment.

Session Management allows a client to connect with a server and to agree on the facilities and protocol options to be
used. A server can refuse the connection attempt, optionally redirecting the client to another server. During session
establishment the client and server can also exchange attribute information, which is expected to remain valid for the
duration of the session. Both the server and the client service user can also terminate the session, so that the peer is
eventually notified about the termination. The user is also notified if session termination occurs due to the action of the
service provider or a management entity.

Method Invocation permits the client to ask the server to execute an operation and return the result. The available
operations are the HTTP methods [RFC2068] or user-defined extension operations, which fit into the same request-
reply or transaction pattern. The service users both in the client and the server are always notified about the completion
of the transaction, whether it succeeded or failed. Failure can be caused by an abort initiated either by the service user
or the service provider.

Version 30-April-1998 Page 17(95)

© Copyright Wireless Application Protocol Forum, Ltd. 1998
All rights reserved.

The Exception Reporting facility allows the service provider to notify the user about events that are related to no
particular transaction and do not cause a change in the state of the session.

The Push facility permits the server to send unsolicited information to the client taking advantage of the session
information shared by the client and the server. This facility is a non-confirmed one, so delivery of the information
MAY be unreliable.

The Confirmed Push facility is similar to the Push facility, but the client confirms the receipt of the information. The
client may also choose to abort the push, so that the server is notified.

The Session Resume facility includes means to suspend a session so that the state of the session is preserved, but both
peers know that further communication is not possible until the client resumes the session. This mechanism is also used
to handle the situations in which the service provider detects that further communication is no longer possible, until
some corrective action is taken by the service user or management entities. It can also be used to switch the session to
use an alternate bearer network, which has more appropriate properties than the one being used. This facility SHOULD
be implemented to ensure reasonable behaviour in certain bearer network environments.

6.3.2 Capabilities

Information that is related to the operation of the session service provider is handled using capabilities. Capabilities are
used for a wide variety of purposes, ranging from representing the selected set of service facilities and settings of
particular protocol parameters, to establishing the code page and extension method names used by both peers.

6.3.2.1 Capability Negotiation

Capability negotiation is used between service peers to agree on a mutually acceptable level of service, and to optimise
the operation of the service provider according to the actual requirements of the service user. Capability negotiation is
to be applied only to negotiable capabilities; informational capabilities are to be communicated to the peer service user
without modifications.

The peer which starts the capability negotiation process is called the initiator, and the other peer is called the responder.
Only a one-way capability negotiation is defined, in which the initiator proposes a set of capabilities, and the responder
replies to these. The capability negotiation process is under the control of the initiator, so that the responder MUST
NOT ever reply with any capability setting, which implies a higher level of functionality than the one proposed by the
initiator and supported by the service provider peers. Capability negotiation applies always to all the known capabilities.
If a particular capability is omitted from the set of capabilities carried by a service primitive, this must be interpreted to
mean that the originator of the primitive wants to use the current capability setting, either the default or the value agreed
upon during capability negotiation process. However, the responder may still reply with a different capability value, as
long as this does not imply a higher level of functionality.

The one-way capability negotiation proceeds as follows:

1. Service user in initiator proposes a set of capability values.
2. The service provider in the initiator modifies the capabilities, so that they do not imply a higher level of

functionality than the provider actually can support.
3. The service provider in the responder further modifies the capabilities, so that they do not imply a higher level of

functionality than the provider in the responder actually can support.
4. The service user in the responder receives this modified set of capabilities, and responds with a set of capabilities,

which reflect the level of functionality it actually wishes to use. If a particular capability is omitted, this is
interpreted to mean that the responding service user wants to use the proposed capability setting.

5. The capabilities selected by the service user in the responder are indicated to the service user in the initiator. They
will become the default settings, which will be applicable in the next capability negotiation during the session.

If the operation implied by the service primitive that is used to convey the capability information fails, the capability
settings that were in effect before the operation shall remain in effect.

Version 30-April-1998 Page 18(95)

© Copyright Wireless Application Protocol Forum, Ltd. 1998
All rights reserved.

If a negotiable capability value is a positive integer, the final capability setting shall be the minimum of the values,
which the service users have proposed to use and which the service provider peers are capable of supporting.

If a negotiable capability value is a set, the final capability setting shall contain only those elements, which are all
included in the subsets that the service users have proposed to use and which the service provider peers are capable of
supporting.

6.3.2.2 Defined Capabilities

A service user and a service provider MUST recognise the following capabilities.

Capability Name Class Type Description
Aliases I List of

addresses
A service user can use this capability to indicate, which alternate
addresses the peer may use to access the same service user
instance, that is using the current session. The addresses are
listed in a preference order, with the most preferred alias first.
This information can, for example, be used to facilitate a switch
to a new bearer, when a session is resumed.

Client SDU Size N Positive
integer

The client and server use this capability to agree on the size of
the largest transaction service data unit, which may be sent to the
client during the session.

Extended Methods N Set of method
names

This capability is used to agree on the set of extended methods
(beyond those defined in HTTP/1.1), which are supported both
by the client and the server peer, and may be used subsequently
during the session.

Header Code Pages N Set of code
page names

This capability is used to agree on the set of extension header
code pages, which are supported both by the client and the
server, and shall be used subsequently during the session.

Maximum
Outstanding Method
Requests

N Positive
integer

The client and server use this capability to agree on the maximum
number of method invocations, which can be active at the same
time during the session.

Maximum
Outstanding Push
Requests

N Positive
integer

The client and server use this capability to agree on the maximum
number of confirmed push invocations, which can be active at
the same time during the session.

Protocol Options N Set of
facilities and
features

This capability is used to enable the optional service facilities and
features. It may contain elements from the list: Push, Confirmed
Push, Session Resume, Acknowledgement Headers. The presence
of an element indicates that use of the specific facility or feature
is enabled.

Server SDU Size N Positive
integer

The client and server use this capability to agree on the size of
the largest transaction service data unit, which may be sent to the
server during the session.

In the Class column N stands for negotiable, I for informational.

Version 30-April-1998 Page 19(95)

© Copyright Wireless Application Protocol Forum, Ltd. 1998
All rights reserved.

6.3.3 Service Primitives

This section lists all the abstract service primitives provided by the service and defines their meaning.

6.3.3.1 S-Connect

This primitive is used to initiate session establishment and to notify of its success. It also provides one-way capability
negotiation with the client being the initiator and the server being the responder. It is part of the Session Management
facility.

Primitive S-Connect
Parameter req Ind Res cnf
Server Address M M(=) – –
Client Address M M(=) – –
Client Headers O C(=) – –
Requested Capabilities O M – –
Server Headers – – O C(=)
Negotiated Capabilities – – O M(=)

Server Address identifies the peer with which the session is to be established.

Client Address identifies the originator of the session.

Client Headers and Server Headers represent attribute information compatible with HTTP message headers
[RFC2068], which is communicated without modification between the service users. They can be used for application-
level parameters or to cache request headers and response headers, respectively, that are constant throughout the
session. However, the actual interpretation and use of this information are completely up to the service users. If these
parameters are not provided, applications may rely on application-dependant default session headers to provide a static
form of session-wide information.

Requested Capabilities and Negotiated Capabilities are used to implement the capability negotiation process described
in section 6.3.2.1, "Capability Negotiation". If the rules for capability negotiation are violated, the appropriate action is
to fail the session establishment.

The service user may during session establishment invoke some service primitives that will turn out not to be part of the
finally selected session functionality. When session establishment and the associated capability negotiation completes,
such service requests shall be aborted and the appropriate error shall be indicated to the service user. It is an error, if
such primitives are invoked after the session has been established, and the appropriate action is a local implementation
matter.

The following figure illustrates the primitives used in a successful session establishment. The service user MAY request
a method invocation already while the session is being established. Primitives related to this are shown with dashed
lines.

Version 30-April-1998 Page 20(95)

© Copyright Wireless Application Protocol Forum, Ltd. 1998
All rights reserved.

Provider

S-Connect.ind

S-Connect.res

S-MethodInvoke.res

S-MethodResult.cnf

S-Connect.cnf

S-MethodInvoke.cnf

S-MethodResult.res

S-MethodInvoke.req

S-MethodInvoke.ind

S-MethodResult.req

S-MethodResult.ind

ServerClient

S-Connect.req

Figure 3: Successful Session Establishment

A disconnect indication generated by the service provider can occur also at any time during the session establishment.

6.3.3.2 S-Disconnect

This primitive is used to disconnect a session and to notify the session user that the session could not be established or
has been disconnected. It is part of the Session Management facility. This primitive is always indicated when the
session termination is detected, regardless of whether the disconnection was initiated by the local service user, the peer
service user or the service provider. Before the disconnect indication, the session service provider MUST abort all
incomplete method and push transactions. After the indication further primitives associated with the session MUST
NOT occur.

Primitive S-Disconnect
Parameter req ind
Reason Code M M(=)
Redirect Security C C(=)
Redirect Addresses C C(=)
Error Headers O P(=)
Error Body O P(=)

The Reason Code parameter indicates the cause of disconnection. The possible values are a union of the values
possible for the Reason and Status parameter types.

If Reason Code indicates that the client is being redirected to contact a new server address, the Redirect Security and
Redirect Addresses parameters MUST be present.

Redirect Security indicates whether or not the client MAY reuse the current secure session when redirecting to the new
server or whether it MUST use a different secure session.

Redirect Addresses are the alternate addresses, which the client at the moment MUST use to establish a session with the
same service it initially tried to contact. If Reason Code indicates that the client is being redirected temporarily, it
SHOULD use the original Server Address in future attempts to establish a session with the service, once the subsequent

Version 30-April-1998 Page 21(95)

© Copyright Wireless Application Protocol Forum, Ltd. 1998
All rights reserved.

session with one of the redirect addresses has terminated. If Reason indicates that the client is being redirected
permanently, it SHOULD use one of the Redirect Addresses in future attempts to establish a session with the service.

If Reason Code takes one of the values in the Status type, Error Headers and Error Body SHOULD be included to
provide meaningful information about the error in addition to the Reason Code. The size of the headers and body
MUST NOT cause the SDU to exceed the currently selected Maximum Receive Unit of the peer. The service provider
MAY choose not to communicate the Error Headers and Error Body to the peer service user.

The following figure illustrates the primitives used, when the server rejects or redirects the session. The service user
MAY request a method invocation already while the session is being established. Primitives related to this are shown
with dashed lines.

Provider

S-Connect.req

S-Disconnect.ind

S-Connect.ind

S-Disconnect.req

S-MethodInvoke.req

S-Disconnect.indS-MethodAbort.ind

Client Server

Figure 4: Refused Session Establishment

A disconnect indication generated by the service provider can occur at any time during the session.

Provider
S-Disconnect.req

S-Disconnect.ind

S-Disconnect.ind

Figure 5: Active Session Termination

The primitive sequence for session termination of an active session is shown in Figure 5. The S-Disconnect.indication
indicates that the session has been torn down, and cannot generate any further indications. The service provider shall
abort all outstanding transactions prior to the S-Disconnect.indication.

The service user must be prepared for the session being disconnected at any time; if it wishes to continue
communication, it has to establish the session again and retry the method invocations that may have been aborted.

Version 30-April-1998 Page 22(95)

© Copyright Wireless Application Protocol Forum, Ltd. 1998
All rights reserved.

6.3.3.3 S-Suspend

This primitive is used to request the session to be suspended, so that no other activity can occur on it, until it is either
resumed or disconnected. Before the session becomes suspended, the session service provider MUST abort all
incomplete method and push transactions. This primitive is part of the Session Resume facility.

Primitive S-Suspend
Parameter req ind
Reason – M

Reason provides the reason for the suspension. The service user may have requested it, or the service provider may have
initiated it.

A possible flow of primitives is shown in the Figure 6:

Provider

S-Resume.cnf

S-Suspend.ind

S-Suspend.req

S-Resume.res

S-Resume.req

S-Resume.ind

Client

S-Suspend.ind

Server

Figure 6: Session Suspension and Resume

Typically, the client would suspend a session, when it knows it will not be available to respond to data pushes, for
example, because it will be close a data circuit in the underlying bearer network. A side effect of S-Suspend.request is
that all data transfer transactions are immediately aborted.

Version 30-April-1998 Page 23(95)

© Copyright Wireless Application Protocol Forum, Ltd. 1998
All rights reserved.

Provider

S-Disconnect.ind

S-Suspend.ind

S-Disconnect.req

S-Resume.req

S-Resume.ind

S-Disconnect.ind

Client Server

Figure 7: Suspend by Provider and Refused Resume

The service provider MAY also cause an established session to be suspended at any time, eg, due to the bearer network
becoming unavailable. Figure 7 shows a scenario, in which only one of the peers - in this case the client - is notified
about the suspension. When the client tries to resume the session, the server refuses the attempt by disconnecting the
session. For example, the server may consider the used bearer network to be unsuitable.

Provider

S-Disconnect.req

S-Disconnect.ind

S-Suspend.ind S-Suspend.ind

S-Disconnect.ind

Figure 8: Suspended Session Termination

Figure 8 shows a sequence of events, in which both service users happen to be notified about the suspended session.
However, in this case one service user decides to disconnect instead of trying to resume the session. The service user
may tear down one half of the session at any time by invoking the S-Disconnect.request primitive. However, the other
half of the session will not be notified of this, since the communication path between the service peers is not available.
As shown in the figure, the service provider SHOULD eventually terminate a suspended session. The time a suspended
session is retained is a local implementation matter.

Version 30-April-1998 Page 24(95)

© Copyright Wireless Application Protocol Forum, Ltd. 1998
All rights reserved.

6.3.3.4 S-Resume

This primitive is used to request the session to be resumed using the new service access point identified by the
addresses. It is part of the Session Resume facility.

Primitive S-Resume
Parameter req ind res cnf
Server Address M M(=) – –
Client Address M M(=) – –

Server Address identifies the peer with which the session is to be resumed.

Client Address identifies the current origin of the session.

Both the Server Address and Client Address MAY be different than the one that was in effect before the session was
suspended. If the Server Address is different than before suspension, the service user is responsible for providing an
address, which will contact the same server instance that was previously in use.

6.3.3.5 S-Exception

This primitive is used to report events that neither are related to a particular transaction nor cause the session to be
disconnected or suspended. It is part of the Exception Reporting facility.

Primitive S-Exception
Parameter ind
Exception Data M

Exception Data includes information from the service provider. Exceptions may occur for many reasons:

� Changes to the underlying transport (eg, roaming out of coverage)
� Changes to quality of service
� Changes or problems in the security layer

6.3.3.6 S-MethodInvoke

This primitive is used to request an operation to be executed by the server. It can be used only together with the S-
MethodResult primitive. This primitive is part of the Method Invocation facility.

Primitive S-MethodInvoke
Parameter req ind res cnf
Client Transaction Id M – – M(=)
Server Transaction Id – M M(=) –
Method M M(=) – –
Request URI M M(=) – –
Request Headers O C(=) – –
Request Body C C(=) – –

The service user in the client can use Client Transaction Id to distinguish between pending transactions.

The service user in the server can use Server Transaction Id to distinguish between pending transactions.

Method identifies the requested operation: either an HTTP method [RFC2068] or one of the extension methods
established during capability negotiation.

Version 30-April-1998 Page 25(95)

© Copyright Wireless Application Protocol Forum, Ltd. 1998
All rights reserved.

Request URI specifies the entity to which the operation applies.

Request Headers are a list of attribute information semantically equivalent to HTTP headers [RFC2068].

Request Body is the data associated with the request, which is semantically equivalent to HTTP entity body. If the
request Method is not defined to allow an entity-body, Request Body MUST NOT be provided [RFC2068].

6.3.3.7 S-MethodResult

This primitive is used to return a response to an operation request. It can be invoked only after a preceding S-
MethodInvoke primitive has occurred. This primitive is part of the Method Invocation facility.

Primitive S-MethodResult
Parameter req ind res cnf
Server Transaction Id M – – M(=)
Client Transaction Id – M M(=) –
Status M M(=) – –
Response Headers O C(=) – –
Response Body C C(=) – –
Acknowledgement Headers – – O P(=)

The service user in the client can use Client Transaction Id to distinguish between pending transactions. It MUST match
the Client Transaction Id of a previous S-MethodInvoke.request, for which S-MethodResult.indication has not yet
occurred.

The service user in the server can use Server Transaction Id to distinguish between pending transactions. It MUST
match the Server Transaction Id of a previous S-MethodInvoke.response, for which S-MethodResult.request has not yet
occurred.

Status is semantically equivalent to an HTTP status code [RFC2068].

Response Headers are a list of attribute information semantically equivalent to HTTP headers [RFC2068].

Response Body is the data associated with the response, which is semantically equivalent to an HTTP entity body. If
Status indicates an error, Response Body SHOULD provide additional information about the error in a form, which can
be shown to the human user.

Acknowledgement Headers MAY be used to return some information back to the server. However, the provider MAY
ignore this parameter or support the transfer of a very limited amount of data.

The following figure illustrates the flow of primitives in a complete transaction.

Version 30-April-1998 Page 26(95)

© Copyright Wireless Application Protocol Forum, Ltd. 1998
All rights reserved.

Provider

S-MethodInvoke.req
S-MethodInvoke.ind

S-MethodInvoke.res

S-MethodResult.req

S-MethodResult.cnf

S-MethodInvoke.cnf

S-MethodResult.ind

S-MethodResult.res

Client Server

Figure 9: Completed Transaction

If the transaction is aborted for any reason, an S-MethodAbort.indication will be delivered to the service user. It can
occur instead of one of the shown indication or confirm primitives or after one of them. Once the abort indication is
delivered, no further primitives related to the transaction can occur.

The session layer does not provide any sequencing between multiple overlapping method invocations, so the indications
may be delivered in a different order than the corresponding requests. The same applies also to the responses and
confirmations, as well as to the corresponding S-MethodResult primitives. The end result is that the results of method
invocations may be delivered in an order different from the original order of the requests. The following figure
illustrates this (omitting the responses and confirmations for clarity).

Provider

MethodInvoke 1

MethodResult 2

MethodInvoke 2

MethodResult 2

MethodInvoke 2

MethodInvoke 3

MethodInvoke 1

MethodInvoke 3

MethodResult 1

MethodResult 3

MethodResult 3

MethodResult 1

Figure 10: Unordered Asynchronous Requests

Version 30-April-1998 Page 27(95)

© Copyright Wireless Application Protocol Forum, Ltd. 1998
All rights reserved.

6.3.3.8 S-MethodAbort

This primitive is used to abort an operation request, which is not yet complete. It can be invoked only after a preceding
S-MethodInvoke primitive has occurred. It is part of the Method Invocation facility.

Primitive S-MethodAbort
Parameter req ind
Transaction Id M M
Reason – M

The service user in the client uses Transaction Id to distinguish between pending transactions, when invoking
S-MethodAbort.request. It MUST match the Client Transaction Id of a previous S-MethodInvoke.request, for which S-
MethodResult.response has not yet occurred. The Transaction Id of the S-MethodAbort.indication in the server will in
this case match the Server Transaction Id of that transaction.

The service user in the server uses Transaction Id to distinguish between pending transactions, when invoking
S-MethodAbort.request. It MUST match the Server Transaction Id of a previous S-MethodInvoke.indication, for which
S-MethodResult.confirm has not yet occurred. The Transaction Id of the S-MethodAbort.indication in the client will in
this case match the Client Transaction Id of that transaction.

Reason is the reason for aborting the transaction. It will be PEERREQ, if the peer invoked S-MethodAbort.request.

There are two scenarios depending on the timing of the primitives.

Provider

S-MethodInvoke.req

S-MethodAbort.req

S-MethodAbort.ind

Client Server

Figure 11: Abort before S-MethodInvoke.indication

The first scenario is shown in Figure 11. The abort request is submitted, while the method invocation is still being
communicated to the provider peer, before the S-MethodInvoke.indication has occurred. In this case, the transaction is
aborted without the peer user ever being notified about the transaction.

Version 30-April-1998 Page 28(95)

© Copyright Wireless Application Protocol Forum, Ltd. 1998
All rights reserved.

Provider

S-MethodInvoke.req

S-MethodAbort.req

S-MethodInvoke.ind

S-MethodAbort.ind

S-MethodAbort.ind

Figure 12: Abort after S-MethodInvoke.indication

The second scenario is shown in Figure 12. The abort request is communicated to the provider peer after the
S-MethodInvoke.indication has occurred. In this case, the S-MethodAbort.indication will occur as well, and the
application MUST NOT invoke any further S-MethodInvoke or S-MethodResult primitives applying to the aborted
transaction.

The S-MethodAbort primitive may be invoked in the client at any time between S-MethodInvoke.request and
S-MethodResult.response for the transaction to be aborted. Likewise, S-MethodAbort may be invoked in the server at
any time between S-MethodInvoke.indication and S-MethodResult.confirm.

6.3.3.9 S-Push

This primitive is used to send unsolicited information from the server within the session context in a non-confirmed
manner. This primitive is part of the Push facility.

Primitive S-Push
Parameter Req ind

Push Headers O C(=)
Push Body O C(=)

If the location of the pushed entity needs to be indicated, the Content-Location header [RFC2068] SHOULD be
included in Push Headers to ensure interoperability.

Provider

S-Push.req

S-Push.ind

Client Server

Figure 13: Non-confirmed Data Push

Version 30-April-1998 Page 29(95)

© Copyright Wireless Application Protocol Forum, Ltd. 1998
All rights reserved.

Delivery of information to the peer is not assured, so the following scenario is also permitted:

Provider

S-Push.req

Client Server

Figure 14: Failed Non-confirmed Data Push

6.3.3.10 S-ConfirmedPush

This primitive is used send unsolicited information from the server within the session context in a confirmed manner. It
is part of the Confirmed Push facility.

Primitive S-ConfirmedPush
Parameter req ind res cnf
Server Push Id M – – M(=)
Client Push Id – M M(=) –
Push Headers O C(=) – –
Push Body O C(=) – –
Acknowledgement Headers – – O P(=)

The service user in the server can use Server Push Id to distinguish between pending pushes.

The service user in the client can use Client Push Id to distinguish between pending pushes.

If the location of the pushed entity needs to be indicated, the Content-Location header [RFC2068] SHOULD be
included in Push Headers to ensure interoperability.

Acknowledgement Headers MAY be used to return some information back to the server. However, the provider MAY
ignore this parameter or support the transfer of a very limited amount of data.

Provider

S-ConfirmedPush.req

S-ConfirmedPush.ind

S-ConfirmedPush.cnf

S-ConfirmedPush.res

Client Server

Figure 15: Confirmed Data Push

Version 30-April-1998 Page 30(95)

© Copyright Wireless Application Protocol Forum, Ltd. 1998
All rights reserved.

6.3.3.11 S-PushAbort

This primitive is used to reject a push operation. It is part of the Confirmed Push facility.

Primitive S-PushAbort
Parameter req ind
Client Push Id M –
Server Push Id – M
Reason M M(=)

The service user in the client can use Client Push Id to distinguish between pending pushes. It must match the Client
Push Id of a previous S-ConfirmedPush.indication.

The service user in the server can use Server Push Id to distinguish, which push was aborted. It will match the Server
Push Id of a previous S-ConfirmedPush.request, which has not yet been confirmed or indicated as aborted.

Reason is the reason for aborting the push. It will either be the value provided by the peer service user, or a reason code
from the service provider.

The following figure shows the behaviour of S-PushAbort. It can be requested only after an
S-ConfirmedPush.indication, replacing an S-ConfirmedPush.response.

Provider

S-ConfirmedPush.req

S-ConfirmedPush.ind

S-PushAbort.ind

S-PushAbort.req

S-PushAbort.ind

Client Server

Figure 16: Aborted Confirmed Data Push

S-PushAbort.indication can also occur without the user’s request as the result of a provider-initiated abort.

Version 30-April-1998 Page 31(95)

© Copyright Wireless Application Protocol Forum, Ltd. 1998
All rights reserved.

6.3.4 Constraints on Using the Service Primitives

The following tables define the permitted primitive sequences on the service interface. The client and server have
separate tables, since the service is asymmetric.

Only the permitted primitives are listed on the rows; the layer prefix is omitted for brevity. The table entries are
interpreted as follows:

Table 2: Table Entry Legend

Entry: Description
– The indication or confirm primitive cannot occur.

N/A Invoking this primitive is an error. The appropriate action is a local implementation matter.
STATE_NAME Primitive is permitted and moves the service interface view to the named state.

[1] If the number of outstanding transactions is equal to the selected Maximum Outstanding Method Requests
value, invoking this primitive is an error. The appropriate action is a local implementation matter: delivery
of the primitive might be delayed, until it is permitted.

[2] If there is no outstanding transaction with a matching Transaction Id, invoking this primitive is an error.
The appropriate action is a local implementation matter.

[3] If the Confirmed Push facility has not been selected during capability negotiation, invoking this primitive is
an error. Likewise, if there is no outstanding push with a matching Push Id. The appropriate action is a
local implementation matter.

[4] Possible only if the Push facility has been selected during capability negotiation.
[5] Possible only if the Confirmed Push facility has been selected during capability negotiation.
[6] If the Push facility has not been selected during capability negotiation, invoking this primitive is an error.

The appropriate action is a local implementation matter.
[7] If the Confirmed Push facility has not been selected during capability negotiation, invoking this primitive is

an error. The appropriate action is a local implementation matter.
[8] If the Confirmed Push facility has not been selected during capability negotiation, invoking this primitive is

an error. The appropriate action is a local implementation matter. Also if the number of outstanding pushes
is equal to the selected Maximum Outstanding Push Requests value, invoking this primitive is an error. The
appropriate action is a local implementation matter: delivery of the primitive might be delayed, until it is
permitted.

[9] If the Session Resume facility has not been selected during capability negotiation, invoking this primitive is
an error. The appropriate action is a local implementation matter.

[10] Possible only if the Session Resume facility has been selected during capability negotiation.

Version 30-April-1998 Page 32(95)

© Copyright Wireless Application Protocol Forum, Ltd. 1998
All rights reserved.

Table 3: Permitted Client Session Layer Primitives

CLIENT Session States
S-Primitive NULL CONNECTING CONNECTED CLOSING SUSPENDING SUSPENDED RESUMING

Connect.req CONNECTING N/A N/A N/A N/A N/A N/A
Disconnect.req N/A CLOSING CLOSING N/A CLOSING CLOSING CLOSING
MethodInvoke.req N/A [1] [1] N/A N/A N/A [1]
MethodResult.res N/A N/A [2] N/A N/A N/A N/A
MethodAbort.req N/A [2] [2] N/A N/A N/A [2]
ConfirmedPush.res N/A N/A [3] N/A N/A N/A N/A
PushAbort.req N/A N/A [3] N/A N/A N/A N/A
Suspend.req N/A N/A SUSPENDING

[9]
N/A N/A N/A SUSPENDING

[9]
Resume.req N/A N/A RESUMING

[9]
N/A RESUMING

[9]
RESUMING

[9]
N/A

Connect.cnf – CONNECTED – – – – –
Exception.ind – CONNECTING CONNECTED CLOSING SUSPENDING – RESUMING
Disconnect.ind – NULL NULL NULL NULL NULL NULL
MethodInvoke.cnf – – CONNECTED – – – –
MethodResult.ind – – CONNECTED – – – –
MethodAbort.ind – CONNECTING CONNECTED CLOSING SUSPENDING – RESUMING
Push.ind – – CONNECTED

[4]
CLOSING

[4]
SUSPENDING

[4]
– –

ConfirmedPush.ind – – CONNECTED
[5]

– – – –

PushAbort.ind – – CONNECTED
[5]

– SUSPENDING
[5]

– –

Suspend.ind – – SUSPENDED
[10]

– SUSPENDED
[10]

– SUSPENDED
[10]

Resume.cnf – – – – – – CONNECTED
[10]

Version 30-April-1998 Page 33(95)

© Copyright Wireless Application Protocol Forum, Ltd. 1998
All rights reserved.

Table 4: Permitted Server Session Layer Primitives

SERVER Session States
S-Primitive NULL CONNECTING CONNECTED CLOSING SUSPENDING SUSPENDED RESUMING

Connect.res N/A CONNECTED N/A N/A N/A N/A N/A
Disconnect.req N/A CLOSING CLOSING N/A CLOSING NULL CLOSING
MethodInvoke.res N/A N/A [2] N/A N/A N/A N/A
MethodResult.req N/A N/A [2] N/A N/A N/A N/A
MethodAbort.req N/A N/A [2] N/A N/A N/A N/A
Push.req N/A N/A [6] N/A N/A N/A N/A
ConfirmedPush.req N/A N/A [8] N/A N/A N/A N/A
Resume.res N/A N/A N/A N/A N/A N/A CONNECTED

[9]

Connect.ind CONNECTING – – – – – –
Exception.ind – CONNECTING CONNECTED CLOSING SUSPENDING – RESUMING
Disconnect.ind – NULL NULL NULL NULL NULL NULL
MethodInvoke.ind – – CONNECTED – – – –
MethodResult.cnf – – CONNECTED – – – –
MethodAbort.ind – – CONNECTED CLOSING SUSPENDING – –
ConfirmedPush.cnf – – CONNECTED

[5]
– CONNECTED

[5]
– –

PushAbort.ind – – CONNECTED
[5]

CLOSING
[5]

CONNECTED
[5]

– –

Suspend.ind – – SUSPENDED
[10]

– SUSPENDED
[10]

– SUSPENDED
[10]

Resume.ind – – RESUMING
[10]

– RESUMING RESUMING
[10]

–

The life cycles of transactions in the client and the server are defined by the following two tables. Once again, only the
permitted primitives are listed on the rows.

Table 5: Permitted Client Transaction Primitives

CLIENT Transaction States
S-Primitive NULL REQUESTING WAITING COMPLETING ABORTING

MethodInvoke.req REQUESTING N/A N/A N/A N/A
MethodResult.res N/A N/A N/A NULL N/A
MethodAbort.req N/A ABORTING ABORTING ABORTING N/A

MethodInvoke.cnf - WAITING - - -
MethodResult.ind - - COMPLETING - -
MethodAbort.ind - NULL NULL NULL NULL

Version 30-April-1998 Page 34(95)

© Copyright Wireless Application Protocol Forum, Ltd. 1998
All rights reserved.

Table 6: Permitted Server Transaction Primitives

SERVER Transaction States
S-Primitive NULL REQUESTING PROCESSING REPLYING ABORTING

MethodInvoke.res N/A PROCESSING N/A N/A N/A
MethodResult.req N/A N/A REPLYING N/A N/A
MethodAbort.req N/A ABORTING ABORTING ABORTING N/A

MethodInvoke.ind REQUESTING - - - -
MethodResult.cnf - - - NULL -
MethodAbort.ind - NULL NULL NULL NULL

The life cycles of confirmed push transactions in the server and the client are defined by the following two tables. Once
again, only the permitted primitives are listed on the rows.

Table 7: Permitted Server Confirmed Push Primitives

SERVER Confirmed Push States
S-Primitive NULL PUSHING

ConfirmedPush.req PUSHING N/A

ConfirmedPush.cnf - NULL
PushAbort.ind - NULL

Table 8: Permitted Client Confirmed Push Primitives

CLIENT Confirmed Push States
S-Primitive NULL RECEIVING ABORTING

ConfirmedPush.res N/A NULL N/A
PushAbort.req N/A ABORTING N/A

ConfirmedPush.ind RECEIVING - -
PushAbort.ind - NULL NULL

6.3.5 Error Handling

The connection-mode session service provider uses a four-tier strategy in handling errors and other exceptional
conditions:

1. If an exceptional condition is not related to any particular transaction, it is reported through the Exception
Reporting facility without disturbing the overall state of the session.

2. Errors related to a particular transaction cause a method or push abort indication with the appropriate reason code
without disturbing the overall state of the session.

3. Conditions which prevent the session peers from communicating with each other will cause suspend indications, if
the Session Resume facility is selected. Otherwise they will cause a disconnection to be indicated.

4. Other errors will cause a session disconnect to be indicated with the appropriate reason code.

Certain race conditions may cause the abort reason code of a method or push transaction to be reported as DISCONNECT,
but this must not be interpreted as indicating that the session has been disconnected; session disconnection is indicated
always only using the S-Disconnect primitive.

Version 30-April-1998 Page 35(95)

© Copyright Wireless Application Protocol Forum, Ltd. 1998
All rights reserved.

6.4 Connectionless Session Service

6.4.1 Overview

The connectionless session service provides non-confirmed facilities, which can be used to exchange content entities
between layer users. The provided service is asymmetric in a manner similar to the connection-mode service.

Only the Method Invocation and Push facilities are available. The facilities are non-confirmed, so the communication
between the peer entities MAY be unreliable.

6.4.2 Service Primitives

The service primitives are defined using types from the Service Parameter Types section.

6.4.2.1 S-Unit-MethodInvoke

This primitive is used to invoke a method in the server in a non-confirmed manner. It is part of the Method Invocation
facility.

Primitive S-Unit-MethodInvoke
Parameter req ind
Server Address M M(=)
Client Address M M(=)
Transaction Id M M(=)
Method M M(=)
Request URI M M(=)
Request Headers O C(=)
Request Body C C(=)

Server Address identifies the peer to which the request is to be sent.

Client Address identifies the originator of the request.

The service users MAY use Transaction Id to distinguish between transactions. It is communicated transparently from
service user to service user.

Method identifies the requested operation, which must be one of the HTTP methods [RFC2068].

Request URI specifies the entity to which the operation applies.

Request Headers are a list of attribute information semantically equivalent to HTTP headers [RFC2068].

Request Body is the data associated with the request, which is semantically equivalent to HTTP entity body. If the
request Method is not defined to allow an entity-body, Request Body MUST NOT be provided [RFC2068].

Version 30-April-1998 Page 36(95)

© Copyright Wireless Application Protocol Forum, Ltd. 1998
All rights reserved.

6.4.2.2 S-Unit-MethodResult

This primitive is used to return the result of a method invocation from the server in a non-confirmed manner. It is part of
the Method Invocation facility.

Primitive S-Unit-MethodResult
Parameter req ind
Client Address M M(=)
Server Address M M(=)
Transaction Id M M(=)
Status M M(=)
Response Headers O C(=)
Response Body C C(=)

Client Address identifies the peer to which the result is to be sent.

Server Address identifies the originator of the result.

The service users MAY use Transaction Id to distinguish between transactions.

Status is semantically equivalent to an HTTP status code [RFC2068].

Response Headers are a list of attribute information semantically equivalent to HTTP headers [RFC2068].

Response Body is the data associated with the response, which is semantically equivalent to an HTTP entity body. If
Status indicates an error, Response Body SHOULD provide additional information about the error in a form, which can
be shown to the human user.

6.4.2.3 S-Unit-Push

This primitive is used to send unsolicited information from the server to the client in a non-confirmed manner. It is part
of the Push facility.

Primitive S-Unit-Push
Parameter req ind
Client Address M M(=)
Server Address M M(=)
Push Id M M(=)
Push Headers O C(=)
Push Body O C(=)

Client Address identifies the peer to which the push is to be sent.

Server Address identifies the originator of the push.

The service users MAY use Push Id to distinguish between pushes.

If the location of the pushed entity needs to be indicated, the Content-Location header [RFC2068] SHOULD be
included in Push Headers to ensure interoperability.

Version 30-April-1998 Page 37(95)

© Copyright Wireless Application Protocol Forum, Ltd. 1998
All rights reserved.

6.4.3 Constraints on Using the Service Primitives

The service user MAY invoke the permitted request primitives at any time, once the underlying layers have been
prepared for communication. This is expected to occur through the appropriate interactions with management entities,
which are not part of this specification. A failure to do so is an error, and the appropriate action is a local
implementation matter.

The service provider SHOULD deliver an indication primitive when it is notified that the corresponding request
primitive has been invoked by a peer user entity.

The following table defines the primitives, which the client and server entities are permitted to invoke.

Table 9: Connectionless service primitives

Generic Name Type Description
req ind res cnf

S-Unit-MethodInvoke C S - - Invoke a method in the server with no confirmation
S-Unit-MethodResult S C - - Return response from the server with no confirmation
S-Unit-Push S C - - Push content with no confirmation
- – Primitive may not occur
C – Primitive may occur on the client
S – Primitive may occur on the server

A failure to conform to these restrictions is an error. The appropriate action is a local implementation matter.

6.4.4 Error Handling

If a request cannot be communicated to the provider peer, the connectionless session service provider will not generate
any indication primitive. Detection of exceptional conditions and appropriate actions are a local implementation matter.

Version 30-April-1998 Page 38(95)

© Copyright Wireless Application Protocol Forum, Ltd. 1998
All rights reserved.

7 WSP/B Protocol Operations
This section describes the protocols used between session service peers to realise functions described in the abstract
service interface definition.

7.1 Connection-Mode WSP/B
This section describes the operations of WSP/B over the WTP transaction service [WAPWTP].

7.1.1 Utilisation of WTP

The WTP transaction classes utilised by each WSP facility is summarised in Table 10.

Table 10. Utilisation of WTP
WSP Facility WTP Transaction Classes
Session Management Class 0 and Class 2
Method Invocation Class 2
Session Resume Class 0 and Class 2
Push Class 0
Confirmed Push Class 1

A connection-mode WSP/B client MUST support initiation of WTP Class 0 and Class 2 transactions. The client
SHOULD accept Class 0 transaction invocations from the server, so that the server is able to disconnect the session
explicitly. If the client is to support the push facilities, it MUST accept transactions in the class, which the table above
defines to be used by each push facility.

7.1.2 Protocol Description

The following diagrams illustrate the use of a transaction service by the session facilities. The specific details of how
the protocol works are expressed in the state tables in section 7.1.6, “State Tables”, below. Any discrepancy between
the diagrams and the state tables shall be decided in favour of the state tables.

The dashed arrows represent the WTP protocol messages carrying acknowledgements and WSP/B PDUs as their data;
the messages indicated by parallel arrows are likely to be concatenated into a single transport datagram.

Version 30-April-1998 Page 39(95)

© Copyright Wireless Application Protocol Forum, Ltd. 1998
All rights reserved.

7.1.2.1 Session Management Facility

Normal session creation proceeds without any error or redirection as shown in Figure 17.

S-Connect.req

Connect

S-Connect.ind

S-Connect.cnf

WTP Class 2 Transaction

Client Server

S-Connect.res

ConnectReply

Figure 17. Normal Session Creation

Session creation wherein the client is redirected to another server is shown in Figure 18.

S-Connect.req

Connect

S-Connect.ind

S-Disconnect.ind

WTP Class 2 Transaction

Client Server

S-Disconnect.ind

S-Disconnect.req
(Status == Moved …)Redirect

Figure 18. Session Creation with Redirect

Version 30-April-1998 Page 40(95)

© Copyright Wireless Application Protocol Forum, Ltd. 1998
All rights reserved.

Session creation wherein the server session user refuses to accept the session is shown in Figure 19.

S-Connect.req

Connect

S-Connect.ind

S-Disconnect.ind

WTP Class 2 Transaction

Client Server

S-Disconnect.ind

S-Disconnect.req

Reply

Figure 19. Session Creation with Server Error

Session termination is shown in Figure 20.

S-Disconnect.req

Disconnect

S-Disconnect.ind

S-Disconnect.ind

WTP Class 0 Transaction

Client/Server Server/Client

Figure 20. Session Termination

7.1.2.2 Session Resume Facility

Session suspend is shown in Figure 21.

S-Suspend.req

Suspend

S-Suspend.ind

S-Suspend.ind

WTP Class 0 Transaction

Client Server

Figure 21. Session Suspend

Version 30-April-1998 Page 41(95)

© Copyright Wireless Application Protocol Forum, Ltd. 1998
All rights reserved.

When session resume succeeds, it proceeds as shown in Figure 22.

S-Resume.req

Resume

S-Resume.ind

S-Resume.cnf

WTP Class 2 Transaction

Client Server

S-Resume.res

Reply

Figure 22. Normal Session Resume

A session resume wherein the server session user refuses to resume the session is shown in Figure 23.

S-Resume.req

Resume

S-Resume.ind

S-Disconnect.ind

WTP Class 2 Transaction

Client Server

S-Disconnect.ind

S-Disconnect.req

Reply

Figure 23. Session Resume with Server Error

Version 30-April-1998 Page 42(95)

© Copyright Wireless Application Protocol Forum, Ltd. 1998
All rights reserved.

7.1.2.3 Method Invocation Facility

A method invocation is shown in Figure 24.

S-MethodInvoke.req

Method

S-MethodInvoke.ind

S-MethodInvoke.res

S-MethodResult.ind

WTP Class 2 Transaction

Client Server

S-MethodResult.cnf

S-MethodResult.req

Reply
S-MethodInvoke.cnf

S-MethodResult.res

Figure 24. Normal Method Invocation

7.1.2.4 Push Facility

An unconfirmed push is shown in Figure 25.

S-Push.req

WTP Class 0 Transaction

Client Server

S-Push.ind

Push

Figure 25. Push Invocation

Version 30-April-1998 Page 43(95)

© Copyright Wireless Application Protocol Forum, Ltd. 1998
All rights reserved.

7.1.2.5 Confirmed Push Facility

A confirmed push is shown in Figure 26.

S-ConfirmedPush.ind

WTP Class 1 Transaction

Client Server

S-ConfirmedPush.cnf

S-ConfirmedPush.req

ConfirmedPush

S-ConfirmedPush.res

Figure 26. Confirmed Push Invocation

7.1.3 Protocol Parameters

The protocol state machine uses the following parameters.

7.1.3.1 Maximum Receive Unit (MRU)

The Maximum Receive Unit (MRU) is the size of the largest SDU the session layer can accept from the underlying
service provider. The initial value is set to the default SDU sizes as specified in section 8.3.3, “Capability Defaults”,
below. The value can be modified during capability negotiation.

7.1.3.2 Maximum Outstanding Method Requests (MOM)

The Maximum Outstanding Method Requests (MOM) is the number of method transactions that can be outstanding at a
given time. The initial value is set to the default MOM as specified in section 8.3.3, “Capability Defaults”, below. The
value can be modified during capability negotiation.

7.1.3.3 Maximum Outstanding Push Requests (MOP)

The Maximum Outstanding Push Requests (MOP) is the number of push transactions that can be outstanding at a given
time. The initial value is set to the default MOP as specified in section 8.3.3, “Capability Defaults”, below. The value
can be modified during capability negotiation.

7.1.4 Variables

The protocol state machine uses the following variables.

7.1.4.1 N_Methods

N_Methods keeps track of the number of method transactions in process in the server.

7.1.4.2 N_Pushes

N_Pushes keeps track of the number of push transactions in process in the client.

Version 30-April-1998 Page 44(95)

© Copyright Wireless Application Protocol Forum, Ltd. 1998
All rights reserved.

7.1.4.3 Session_ID

Session_ID saves the session identifier assigned by the server in both the client and the server. The method used to
assign the identifiers must be chosen so that a session identifier value cannot be repeated during the lifetime of a
message in the used transport network; otherwise the session management logic may be confused.

7.1.5 Event Processing

Sessions are associated with a peer address quadruplet, ie, the client address, client port, server address, and server port.
Incoming transactions are assigned to a particular session based on the peer address quadruplet. As a consequence, the
peer address quadruplet is the true unique protocol-level identifier of a session. There can be only one session bound to
a peer address quadruplet at a time.

In order to create a new session for a particular peer address quadruplet when one already appears to exist, the server
session provider must allow for the creation of a proto-session. This is a second, constrained instance of a session that
is used to process the session creation transaction on the server, ie, the Connect and ConnectReply PDUs; this is
detailed in the table below.

Indications and confirmations from the transaction layer are termed events. Each event is validated and then processed
according to the protocol state tables. The protocol state tables also use pseudo-events to trigger state changes within
the protocol implementation itself. Pseudo-events are generated by the actions in protocol state machines or by the
implementation itself, whenever this is considered appropriate. For instance, they may represent the effect of a
management operation, which destroys a session that has been inactive for too long a period.

These pseudo-events are identified by names in Italics, and are defined as follows:

Pseudo-Event Description
Abort Abort a method or push transaction
Release Allow a method transaction to proceed
Suspend Suspend the session
Disconnect Disconnect the session

Incoming transaction invocations are validated before being processed according to the state tables; the following tests
are performed; and if no action is taken, the event is processed according to the state table.

Test Action
TR-Invoke.ind with SDU size > MRU TR-Abort.req(MRUEXCEEDED) the TR-Invoke
Class 2 TR-Invoke.ind, on server, Connect PDU a) Create a new proto-session that is responsible for processing the

remainder of the Connect transaction.
b) The proto-session signals S-Connect.indication to the session user.
c) If the session user accepts the new session by invoking

S-Connect.response, the proto-session is turned into a new session for
the peer address quadruplet. Disconnect is invoked on any old
sessions bound to that quadruplet.

Class 2 TR-Invoke.ind, on server, Resume PDU Pass to session identified by the SessionId in Resume PDU instead of the
session identified by the peer address quadruplet.
If the SessionId is not valid, ie, the session does not exist,
TR-Abort.req(DISCONNECT) the TR-Invoke.

Class 1-2 TR-Invoke.ind, no session matching the peer
address quadruplet

TR-Abort.req(DISCONNECT) the TR-Invoke

Class 1-2 TR-Invoke.ind PDU not handled by state
tables

TR-Abort.req(PROTOERR) the TR-Invoke

Class 0 TR-Invoke.ind PDU not handled by state tables Ignore
Any other event not handled by state tables TR-Abort.req(PROTOERR) if it is some other transaction event than abort

Abort(PROTOERR) all method and push transactions
S-Disconnect.ind(PROTOERR)

Version 30-April-1998 Page 45(95)

© Copyright Wireless Application Protocol Forum, Ltd. 1998
All rights reserved.

The service provided by the underlying transaction layer is such that a protocol entity cannot reliably detect that the
peer has discarded the session state information, unless a method or push transaction is in progress. This may eventually
result in a large number of sessions, which no longer have any peer protocol entity. The implementation SHOULD be
able to Disconnect sessions, which are considered to be in such a state.

7.1.6 State Tables

The following state tables define the actions of connection-mode WSP/B. Because multiple methods and pushes can
occur at the same time, there are three state tables defined for client and server: one for the session states, one for the
states of a method and one for the states of a push.

The state names used in the tables are logically completely separate from the states defined for the abstract service
interface, although the names may be similar. Typically a particular state at the service interface maps into a protocol
state with the same name, but a state also may map into multiple or no protocol states at all.

A single Event may have several entries in the Condition column. In such a case the conditions are expected to be
evaluated row by row from top to bottom with the most specific condition being the first one. A single Condition entry
may contain several conditions separated with a comma ",". In this case all of these have to be satisfied in order for the
condition to be true.

Version 30-April-1998 Page 46(95)

© Copyright Wireless Application Protocol Forum, Ltd. 1998
All rights reserved.

7.1.6.1 Client Session State Tables

The following tables show the session states and event processing that occur on the client when using a transaction
service.

Client Session NULL
Event Conditions Action Next State
S-Connect.req Disconnect any other session for the peer address quadruplet.

TR-Invoke.req(Class 2, Connect)
N_PUSHES = 0

CONNECTING

Client Session CONNECTING
Event Conditions Action Next State
S-Disconnect.req TR-Abort.req(DISCONNECT) the Connect

Abort(DISCONNECT) all outstanding method transactions
S-Disconnect.ind(USERREQ)

NULL

Disconnect TR-Abort.req(DISCONNECT) the Connect
Abort(DISCONNECT) all outstanding method transactions
S-Disconnect.ind(DISCONNECT)

NULL

S-MethodInvoke.req Start a new method transaction with this event
(see method state table)

S-MethodAbort.req See method state table
Suspend TR-Abort.req(SUSPEND) the Connect

Abort(SUSPEND) all method transactions
S-Disconnect.ind(SUSPEND)

NULL

TR-Invoke.ind Class 1,
ConfirmedPush PDU

TR-Abort.req(DISCONNECT) the TR-Invoke

Connect transaction,
SDU size > MRU

TR-Abort.req(MRUEXCEEDED) the Connect
Abort(CONNECTERR) all outstanding method transactions
S-Disconnect.ind(MRUEXCEEDED)

NULL

Connect transaction,
ConnectReply PDU

TR-Result.res
Session_ID = SessionId from PDU
S-Connect.cnf

CONNECTED

Connect transaction,
Redirect PDU

TR-Result.res
Abort(CONNECTERR) all method transactions
S-Disconnect.ind(Redirect parameters)

NULL

Connect transaction,
Reply PDU

TR-Result.res
Abort(CONNECTERR) all method transactions
S-Disconnect.ind(Reply parameters)

NULL

TR-Result.ind

Other TR-Abort.req(PROTOERR)
Abort(CONNECTERR) all outstanding method transactions
S-Disconnect.ind(PROTOERR)

NULL

Connect transaction IgnoreTR-Invoke.cnf
Method transaction Abort(DISCONNECT) method transaction
Connect transaction Abort(CONNECTERR) all outstanding method transactions

S-Disconnect.ind(abort reason)
NULLTR-Abort.ind

Method transaction See method state table

Version 30-April-1998 Page 47(95)

© Copyright Wireless Application Protocol Forum, Ltd. 1998
All rights reserved.

Client Session CONNECTED
Event Conditions Action Next State
S-Disconnect.req Abort(DISCONNECT) all method and push transactions

TR-Invoke.req(Class 0, Disconnect)
S-Disconnect.ind(USERREQ)

NULL

Disconnect Abort(DISCONNECT) all method and push transactions
S-Disconnect.ind(DISCONNECT)

NULL

S-MethodInvoke.req Start a new method transaction with this event
S-MethodResult.res See method state table
S-MethodAbort.req See method state table
S-ConfirmedPush.res See push state table
S-PushAbort.req See push state table
S-Suspend.req Abort(SUSPEND) all method and push transactions

TR-Invoke.req(Class 0, Suspend)
S-Suspend.ind(USERREQ)

SUSPENDED

Session Resume facility
disabled

Abort(SUSPEND) all method and push transactions
S-Disconnect.ind(SUSPEND)

NULLSuspend

Session Resume facility
enabled

Abort(SUSPEND) all method and push transactions
S-Suspend.ind(SUSPEND)

SUSPENDED

S-Resume.req Abort(USERREQ) all method and push transactions
Bind session to the new peer address quadruplet
TR-Invoke(Class 2, Resume)

RESUMING

Class 0,
Disconnect PDU

Abort(DISCONNECT) all method and push transactions
S-Disconnect.ind(DISCONNECT)

NULL

Class 0,
Push PDU,
Push facility enabled

S-Push.ind

TR-Invoke.ind

Class 1,
ConfirmedPush PDU,
Confirmed Push facility
enabled

Start a new push transaction with this event

TR-Result.ind Method transaction See method state table
TR-Invoke.cnf Method transaction See method state table

Method transaction See method state tableTR-Abort.ind
Push transaction See push state table

Client Session SUSPENDED
Event Conditions Action Next State
S-Disconnect.req S-Disconnect.ind(USERREQ) NULL
Disconnect S-Disconnect.ind(DISCONNECT) NULL
S-Resume.req TR-Invoke.req(Class 2, Resume) RESUMING

Class 0,
Disconnect PDU

S-Disconnect.ind(DISCONNECT) NULLTR-Invoke.ind

Class 1,
ConfirmedPush PDU,
Confirmed Push facility
enabled

TR-Abort.req(SUSPEND) the TR-Invoke

TR-Invoke.cnf Ignore
TR-Abort.ind Ignore

Version 30-April-1998 Page 48(95)

© Copyright Wireless Application Protocol Forum, Ltd. 1998
All rights reserved.

Client Session RESUMING
Event Conditions Action Next State
S-Disconnect.req TR-Abort.req(DISCONNECT) the Resume

Abort(DISCONNECT) all outstanding method transactions
S-Disconnect.ind(USERREQ)

NULL

Disconnect TR-Abort.req(DISCONNECT) the Resume
Abort(DISCONNECT) all outstanding method transactions
S-Disconnect.ind(DISCONNECT)

NULL

S-MethodInvoke.req Start a new method transaction with this event
(see method state table)

S-MethodAbort.req See method state table
S-Suspend.req TR-Abort.req(SUSPEND) the Resume

Abort(SUSPEND) all outstanding method transactions
TR-Invoke.req(Class 0, Suspend)
S-Suspend.ind(USERREQ)

SUSPENDED

Suspend TR-Abort.req(SUSPEND) the Resume
Abort(SUSPEND) all outstanding method transactions
S-Suspend.ind(SUSPEND)

SUSPENDED

Class 0,
Disconnect PDU

TR-Abort.req(DISCONNECT) the Resume
Abort(DISCONNECT) all outstanding method transactions
S-Disconnect.ind(DISCONNECT)

NULLTR-Invoke.ind

Class 1,
ConfirmedPush PDU,
Confirmed Push facility
enabled

TR-Abort.req(SUSPEND) the TR-Invoke

Resume transaction,
SDU size > MRU

TR-Abort.req(MRUEXCEEDED) the TR-Result
Abort(SUSPEND) all outstanding method transactions
S-Suspend.ind(MRUEXCEEDED)

NULL

Resume transaction,
Reply PDU (status == OK)

TR-Result.res
S-Resume.cnf

CONNECTED

Resume transaction,
Reply PDU (status != OK)

TR-Result.res
Abort(DISCONNECT) all outstanding method transactions
S-Disconnect.ind(Reply parameters)

NULL

TR-Result.ind

Other TR-Abort.req(PROTOERR) the TR-Result
Abort(SUSPEND) all outstanding method transactions
S-Suspend.ind(PROTOERR)

SUSPENDED

Resume transaction IgnoreTR-Invoke.cnf
Method transaction Abort(SUSPEND) method transaction
Resume transaction,
Reason == DISCONNECT

Abort(DISCONNECT) all outstanding method transactions
S-Disconnect.ind(DISCONNECT)

NULL

Resume transaction Abort(SUSPEND) all outstanding method transactions
S-Suspend.ind(abort reason)

SUSPENDED

TR-Abort.ind

Method transaction See method state table

Version 30-April-1998 Page 49(95)

© Copyright Wireless Application Protocol Forum, Ltd. 1998
All rights reserved.

7.1.6.2 Client Method State Table

The following tables show the method states and event processing that occur on the client when using a transaction
service.

Client Method NULL
Event Conditions Action Next State
S-MethodInvoke.req TR-Invoke.req(Class 2, Method)

Note: “Method” means either the Get or Post PDU using the
PDU type assigned to the particular method.

REQUESTING

Client Method REQUESTING
Event Conditions Action Next State
S-MethodAbort.req TR-Abort.req(PEERREQ) the Method

S-MethodAbort.ind(USERREQ)
NULL

Abort TR-Abort.req(abort reason) the Method
S-MethodAbort.ind(USERREQ)

NULL

TR-Invoke.cnf S-MethodInvoke.cnf WAITING
Reason == DISCONNECT Disconnect the session NULL
Reason == SUSPEND Suspend the session NULL

TR-Abort.ind

Other S-MethodAbort.ind(abort reason) NULL

Client Method WAITING
Event Conditions Action Next State
S-MethodAbort.req TR-Abort.req(PEERREQ) the Method

S-MethodAbort.ind(USERREQ)
NULL

Abort TR-Abort.req(abort reason) the Method
S-MethodAbort.ind(abort reason)

NULL

SDU size > MRU TR-Abort.req(MRUEXCEEDED)
S-MethodAbort.ind(MRUEXCEEDED)

NULL

Reply PDU S-MethodResult.ind COMPLETING

TR-Result.ind

Other TR-Abort.req(PROTOERR)
S-MethodAbort.ind(PROTOERR)

NULL

Reason == DISCONNECT Disconnect the session NULL
Reason == SUSPEND Suspend the session NULL

TR-Abort.ind

Other S-MethodAbort.ind(abort reason) NULL

Client Method COMPLETING
Event Conditions Action Next State
S-MethodResult.res TR-Result.res(Exit Info = Acknowledgement Headers)

Note:support for Acknowledgement Headers is optional
NULL

S-MethodAbort.req TR-Abort.req(PEERREQ) the Method
S-MethodAbort.ind(USERREQ)

NULL

Abort TR-Abort.req(abort reason) the Method
S-MethodAbort.ind(abort reason)

NULL

Reason == DISCONNECT Disconnect the session NULL
Reason == SUSPEND Suspend the session NULL

TR-Abort.ind

Other S-MethodAbort.ind(abort reason) NULL

Version 30-April-1998 Page 50(95)

© Copyright Wireless Application Protocol Forum, Ltd. 1998
All rights reserved.

7.1.6.3 Client Push State Table

The following tables show the push states and event processing that occur on the client when using a transaction service.

Client Push NULL
Event Conditions Action Next State

Class 1,
ConfirmedPush PDU,
N_PUSHES == MOP

TR-Abort.req(MOREXCEEDED) the TR-Invoke NULLTR-Invoke.ind

Class 1,
ConfirmedPush PDU,
N_PUSHES < MOP

Increment N_PUSHES
S-ConfirmedPush.ind

RECEIVING

Client Push RECEIVING
Event Conditions Action Next State
S-ConfirmedPush.res TR-Invoke.res(Exit Info = Acknowledgement Headers)

Note:support for Acknowledgement Headers is optional
Decrement N_PUSHES

NULL

S-PushAbort.req TR-Abort.req(abort reason) the TR-Invoke
Decrement N_PUSHES

NULL

Abort TR-Abort.req(abort reason) the TR-Invoke
Decrement N_PUSHES

NULL

Reason == DISCONNECT Disconnect the session NULL
Reason == SUSPEND Suspend the session NULL

TR-Abort.ind

Other S-PushAbort.ind(abort reason)
Decrement N_PUSHES

NULL

Version 30-April-1998 Page 51(95)

© Copyright Wireless Application Protocol Forum, Ltd. 1998
All rights reserved.

7.1.6.4 Server Session State Table

The following tables show the session states and event processing that occur on the server when using a transaction
service.

Server Session NULL
Event Conditions Action Next State
TR-Invoke.ind Class 2,

Connect
TR-Invoke.res
N_Methods = 0
S-Connect.ind

CONNECTING

Server Session CONNECTING
Event Conditions Action Next State
S-Connect.res Disconnect any other session for this peer address quadruplet.

Assign a Session_ID for this session.
TR-Result.req(ConnectReply)
Release all method transactions in HOLDING state

CONNECTING_2

Reason == Moved
Permanently or Moved
Temporarily

TR-Result.req(Redirect)
Abort(DISCONNECT) all method transactions
S-Disconnect.ind(USERREQ)

TERMINATINGS-Disconnect.req

Other TR-Result.req(Reply(status = reason))
Abort(DISCONNECT) all method transactions
S-Disconnect.ind(USERREQ)

TERMINATING

Disconnect TR-Abort.req(DISCONNECT) the Connect transaction
Abort(DISCONNECT) all method transactions
S-Disconnect.ind(DISCONNECT)

NULL

Suspend TR-Abort.req(DISCONNECT) the Connect transaction
Abort(DISCONNECT) all method transactions
S-Disconnect.ind(SUSPEND)

NULL

Class 2,
Method

Start new method transaction (see method state table)TR-Invoke.ind

Class 2,
Resume

TR-Abort.req(DISCONNECT) the TR-Invoke

TR-Abort.ind Abort(DISCONNECT) all method transactions
S-Disconnect.ind(abort reason)

NULL

Server Session TERMINATING
Event Conditions Action Next State
Disconnect TR-Abort.req(DISCONNECT) remaining transport transaction NULL
Suspend TR-Abort.req(SUSPEND) remaining transport transaction NULL
TR-Result.cnf Ignore NULL
TR-Abort.ind Ignore NULL

Version 30-April-1998 Page 52(95)

© Copyright Wireless Application Protocol Forum, Ltd. 1998
All rights reserved.

Server Session CONNECTING_2
Event Conditions Action Next State
S-Disconnect.req TR-Abort.req(DISCONNECT) the Connect transaction

Abort(DISCONNECT) all method and push transactions
TR-Invoke.req(Class 0, Disconnect)
S-Disconnect.ind(USERREQ)

NULL

Disconnect TR-Abort.req(DISCONNECT) the Connect transaction
Abort(DISCONNECT) all method and push transactions
S-Disconnect.ind(DISCONNECT)

NULL

S-MethodInvoke.res See method state table
S-MethodResult.req See method state table
S-Push.req TR-Invoke.req(Class 0, Push)
S-ConfirmedPush.req Start new push transaction (see push state table)

Session Resume facility
disabled

TR-Abort.req(DISCONNECT) the Connect transaction
Abort(DISCONNECT) all method and push transactions
S-Disconnect.ind(SUSPEND)

NULLSuspend

Session Resume facility
enabled

TR-Abort.req(SUSPEND) the Connect transaction
Abort(SUSPEND) all method and push transactions
S-Suspend.ind(SUSPEND)

SUSPENDED

Class 2,
Method

Start new method transaction (see method state table)
Release the new method transaction

Class 2,
Resume,
Session Resume facility
disabled

TR-Abort.req(DISCONNECT) the TR-Invoke

Class 2,
Resume,
Session Resume facility
enabled

TR-Invoke.res
TR-Abort.req(RESUME) the Connect transaction
Abort(RESUME) all method and push transactions
S-Suspend.ind(RESUME)
S-Resume.ind

RESUMING

Class 0,
Disconnect

TR-Abort.req(DISCONNECT) the Connect transaction
Abort(DISCONNECT) all method and push transactions
S-Disconnect.ind(DISCONNECT)

NULL

TR-Invoke.ind

Class 0,
Suspend,
Session Resume facility
enabled

TR-Abort.req(SUSPEND) the Connect transaction
Abort(SUSPEND) all method and push transactions
S-Suspend.ind(SUSPEND)

SUSPENDED

TR-Invoke.cnf Push transaction See push state table
Connect transaction CONNECTEDTR-Result.cnf
Method transaction See method state table
Connect transaction Abort(DISCONNECT) all method and push transactions

S-Disconnect.ind(abort reason)
NULL

Push transaction See push state table

TR-Abort.ind

Method transaction See method state table

Version 30-April-1998 Page 53(95)

© Copyright Wireless Application Protocol Forum, Ltd. 1998
All rights reserved.

Server Session CONNECTED
Event Conditions Action Next State
S-Disconnect.req Abort(DISCONNECT) all method and push transactions

TR-Invoke.req(Class 0, Disconnect)
S-Disconnect.ind(USERREQ)

NULL

Disconnect Abort(DISCONNECT) all method and push transactions
S-Disconnect.ind(DISCONNECT)

NULL

S-MethodInvoke.res See method state table
S-MethodResult.req See method state table
S-Push.req TR-Invoke.req(Class 0, Push)
S-ConfirmedPush.req Start new push transaction (see push state table)

Session Resume facility
disabled

Abort(SUSPEND) all method and push transactions
S-Disconnect.ind(SUSPEND)

NULLSuspend

Session Resume facility
enabled

Abort(SUSPEND) all method and push transactions
S-Suspend.ind(SUSPEND)

SUSPENDED

Class 2,
Method

Start new method transaction (see method state table)
Release the new method transaction

Class 2,
Resume,
Session Resume facility
disabled

TR-Abort.req(DISCONNECT) the TR-Invoke

Class 2,
Resume,
Session Resume facility
enabled

TR-Invoke.res
Abort(RESUME) all method and push transactions
S-Suspend.ind(RESUME)
S-Resume.ind

RESUMING

Class 0,
Disconnect

Abort(DISCONNECT) all method and push transactions
S-Disconnect.ind(DISCONNECT)

NULL

TR-Invoke.ind

Class 0,
Suspend,
Session Resume facility
enabled

Abort(SUSPEND) all method and push transactions
S-Suspend.ind(SUSPEND)

SUSPENDED

TR-Invoke.cnf Push transaction See push state table
TR-Result.cnf Method transaction See method state table

Push transaction See push state tableTR-Abort.ind
Method transaction See method state table

Server Session SUSPENDED
Event Conditions Action Next State
S-Disconnect.req S-Disconnect.ind(USERREQ) NULL
Disconnect S-Disconnect.ind(DISCONNECT) NULL

Class 2,
Method

TR-Abort.req(SUSPEND) the TR-Invoke

Class 2,
Resume

TR-Invoke.res
S-Resume.ind

RESUMING

TR-Invoke.ind

Class 0,
Disconnect

S-Disconnect.ind(DISCONNECT) NULL

Version 30-April-1998 Page 54(95)

© Copyright Wireless Application Protocol Forum, Ltd. 1998
All rights reserved.

Server Session RESUMING
Event Conditions Action Next State
S-Disconnect.req TR-Abort.req(DISCONNECT) the Resume transaction

Abort(DISCONNECT) all method transactions
TR-Invoke.req(Class 0, Disconnect)
S-Disconnect.ind(USERREQ)

NULL

Disconnect TR-Abort.req(DISCONNECT) the Resume transaction
Abort(DISCONNECT) all method transactions
S-Disconnect.ind(DISCONNECT)

NULL

S-Resume.res Disconnect any other session for the peer address quadruplet.
Bind session to new peer address quadruplet
TR-Result.req(Reply)
Release all method transactions in HOLDING state

RESUMING_2

Suspend TR-Abort.req(SUSPEND) the Resume transaction
Abort(SUSPEND) all method transactions
S-Suspend.ind(SUSPEND)

SUSPENDED

Class 2,
Method

Start new method transaction (see method state table)

Class 2,
Resume

TR-Invoke.res
TR-Abort.req(RESUME) the old Resume transaction
Abort(RESUME) all method transactions
S-Suspend.ind(RESUME)
S-Resume.ind

Class 0,
Suspend

TR-Abort.req(SUSPEND) the Resume transaction
Abort(SUSPEND) all method transactions
S-Suspend.ind(SUSPEND)

SUSPENDED

TR-Invoke.ind

Class 0,
Disconnect

TR-Abort.req(DISCONNECT) the Resume transaction
Abort(DISCONNECT) all method transactions
S-Disconnect.ind(DISCONNECT)

NULL

TR-Abort.ind Resume transaction Abort(SUSPEND) all method transactions
S-Suspend.ind(abort reason)

SUSPENDED

Version 30-April-1998 Page 55(95)

© Copyright Wireless Application Protocol Forum, Ltd. 1998
All rights reserved.

Server Session RESUMING_2
Event Conditions Action Next State
S-Disconnect.req TR-Abort.req(DISCONNECT) the Resume transaction

Abort(DISCONNECT) all method and push transactions
TR-Invoke.req(Class 0, Disconnect)
S-Disconnect.ind(USERREQ)

NULL

Disconnect TR-Abort.req(DISCONNECT) the Resume
Abort(DISCONNECT) all method and push transactions
S-Disconnect.ind(DISCONNECT)

NULL

S-MethodInvoke.res See method state table
S-MethodResult.req See method state table
S-Push.req TR-Invoke.req(Class 0, Push)
S-ConfirmedPush.req Start new push transaction (see push state table)
Suspend TR-Abort.req(SUSPEND) the Resume transaction

Abort(SUSPEND) all method and push transactions
S-Suspend.ind(SUSPEND)

SUSPENDED

Class 2,
Method

Start new method transaction (see method state table)
Release the new method transaction

Class 2,
Resume

TR-Invoke.res
TR-Abort.req(RESUME) the old resume transaction
Abort(RESUME) all method and push transactions
S-Suspend.ind(RESUME)
S-Resume.ind

RESUMING

Class 0,
Suspend

Abort(SUSPEND) all method and push transactions
S-Suspend.ind(SUSPEND)

SUSPENDED

TR-Invoke.ind

Class 0,
Disconnect

TR-Abort.req(DISCONNECT) the Resume
Abort(DISCONNECT) all method and push transactions
S-Disconnect.ind(DISCONNECT)

NULL

TR-Invoke.cnf Push transaction See push state table
Resume transaction CONNECTEDTR-Result.cnf
Method transaction See method state table
Resume transaction Abort(SUSPEND) all method and push transactions

S-Suspend.ind(abort reason)
SUSPENDED

Push transaction See push state table

TR-Abort.ind

Method transaction See method state table

7.1.6.5 Server Method State Table

The following tables show the method states and event processing that occur on the server when using a transaction
service.

Server Method NULL
Event Conditions Action Next State
TR-Invoke.ind Class 2,

Method PDU,
N_Methods == MOM

TR-Abort.req(MOREXCEEDED) NULL

Class 2,
Method PDU

Increment N_Methods HOLDING

Server Method HOLDING
Event Conditions Action Next State
Release S-MethodInvoke.ind REQUESTING
Abort Decrement N_Methods

TR-Abort.req(abort reason) the method
NULL

Reason == DISCONNECT Disconnect the session
Reason == SUSPEND Suspend the session

TR-Abort.ind

Other Decrement N_Methods NULL

Version 30-April-1998 Page 56(95)

© Copyright Wireless Application Protocol Forum, Ltd. 1998
All rights reserved.

Server Method REQUESTING
Event Conditions Action Next State
S-MethodInvoke.res TR-Invoke.res PROCESSING
S-MethodAbort.req Decrement N_Methods

TR-Abort.req(PEERREQ) the method
S-MethodAbort.ind(USERREQ)

NULL

Abort Decrement N_Methods
TR-Abort.req(abort reason) the method
S-MethodAbort.ind(abort reason)

NULL

Reason == DISCONNECT Disconnect the session
Reason == SUSPEND Suspend the session

TR-Abort.ind

Other Decrement N_Methods
S-MethodAbort.ind(abort reason)

NULL

Server Method PROCESSING
Event Conditions Action Next State
S-MethodResult.req TR-Result.req REPLYING
S-MethodAbort.req Decrement N_Methods

TR-Abort.req(PEERREQ) the method
S-MethodAbort.ind(USERREQ)

NULL

Abort Decrement N_Methods
TR-Abort.req(abort reason) the method
S-MethodAbort.ind(abort reason)

NULL

Reason == DISCONNECT Disconnect the session
Reason == SUSPEND Suspend the session

TR-Abort.ind

Other Decrement N_Methods
S-MethodAbort.ind(abort reason)

NULL

Server Method REPLYING
Event Conditions Action Next State
S-MethodAbort.req Decrement N_Methods

TR-Abort.req(PEERREQ) the method
S-MethodAbort.ind(USERREQ)

NULL

Abort Decrement N_Methods
TR-Abort.req(abort reason) the method
S-MethodAbort.ind(abort reason)

NULL

TR-Result.cnf Decrement N_Methods
S-MethodResult.cnf(Acknowledgement Headers = Exit Info)
Note:support for Acknowledgement Headers is optional

NULL

Reason == DISCONNECT Disconnect the session
Reason == SUSPEND Suspend the session

TR-Abort.ind

Other Decrement N_Methods
S-MethodAbort.ind(abort reason)

NULL

Version 30-April-1998 Page 57(95)

© Copyright Wireless Application Protocol Forum, Ltd. 1998
All rights reserved.

7.1.6.6 Server Push State Table

The following tables show the push states and event processing that occur on the server when using a transaction
service.

Server Push NULL
Event Conditions Action Next State
S-ConfirmedPush.req TR-Invoke.req(Class 1, Push) PUSHING

Server Push PUSHING
Event Conditions Action Next State
Abort TR-Abort.req(abort reason) the push transaction

S-PushAbort.ind(abort reason)
NULL

TR-Invoke.cnf S-ConfirmedPush.cnf(Acknowledgement Headers = Exit Info)
Note:support for Acknowledgement Headers is optional

NULL

Reason == DISCONNECT Disconnect the session
Reason == SUSPEND Suspend the session

TR-Abort.ind

Other S-PushAbort.ind(abort reason) NULL

Version 30-April-1998 Page 58(95)

© Copyright Wireless Application Protocol Forum, Ltd. 1998
All rights reserved.

7.2 Connectionless WSP/B
This section is written as if the session service provider is using the Transport SAP directly. However, this section also
applies to the use of the Security SAP. There is a one-to-one mapping of connectionless transport primitives
[WAPWDP] to Security primitives. For example, T-DUnitdata.request maps directly to SEC-UnitData.request. To
allow for this ambiguity, the layer prefixes (“T-D“ or “SEC-“) have been omitted from the primitive names.

The connectionless WSP/B protocol does not require state machines. Each primitive of the connectionless WSP/B
service interface maps directly to sending a WSP/B PDU with the underlying Unitdata primitive as shown in the
following table.

Event Condition Action
S-Unit-MethodInvoke.req Unitdata.req(Method)

Note: “Method” means either the Get or Post PDU
using the PDU type assigned to the particular method.

S-Unit-MethodResult.req Unitdata.req(Reply)
S-Unit-Push.req Unitdata.req(Push)
T-DError.ind Ignore

Method PDU
Note: “Method” means either the Get
or Post PDU using the PDU type
assigned to the particular method.

S-Unit-MethodInvoke.ind

Reply PDU S-Unit-MethodResult.ind

Unitdata.ind

Push PDU S-Unit-MethodPush.ind

Protocol parameters, such as the Maximum Receive Unit and the persistent session headers in effect, are defined by
mutual agreement between the service users. No particular mechanism for this is required, but the well-known port of
the server MAY be used to imply the parameter settings.

Version 30-April-1998 Page 59(95)

© Copyright Wireless Application Protocol Forum, Ltd. 1998
All rights reserved.

8 WSP/B Data Unit Structure and Encoding
This section describes the structure of the data units used to exchange WSP/B data units between client and server.

8.1 Data Formats
The following data types are used in the data format definitions.

8.1.1 Primitive Data Types

Table 11. Format Definition Data Types

Data Type Definition
bit 1 bit of data
octet 8 bits of opaque data
uint8 8-bit unsigned integer
uint16 16-bit unsigned integer
uint32 32-bit unsigned integer
uintvar variable length unsigned integer (see below)

Network octet order for multi-octet integer values is “big-endian”. In other words, the most significant octet is
transmitted on the network first followed subsequently by the less significant octets.

Network bit ordering for bit fields within an octet is “big-endian”. In other words, bit fields described first are placed in
the most significant bits of the octet and are transmitted first followed subsequently by the less significant bits.

8.1.2 Variable Length Unsigned Integers

Many fields in the data unit formats are of variable length. Typically, there will be an associated field that specifies the
size of the variable length field. In order to keep the data unit formats as small as possible, a variable length unsigned
integer encoding is used to specify lengths. The larger the unsigned integer, the larger the size of its encoding.

Each octet of the variable length unsigned integer is comprised of a single Continue bit and 7 bits of payload as shown
in Figure 27.

Payload0

7 bits

Continue bit

Figure 27. Variable Length Integer Octet

To encode a large unsigned integer, split it into 7-bit fragments and place them in the payloads of multiple octets. The
most significant bits are placed in the first octets with the least significant bits ending up in the last octet. All octets
MUST set the Continue bit to 1 except the last octet, which MUST set the Continue bit to 0.

Version 30-April-1998 Page 60(95)

© Copyright Wireless Application Protocol Forum, Ltd. 1998
All rights reserved.

For example, the number 0x87A5 (1000 0111 1010 0101) is encoded in three octets as shown in Figure 28.

00000101 00011111 01001010

Figure 28. Long Field Length

The unsigned integer MUST be encoded in the smallest encoding possible. In other words, the encoded value MUST
NOT start with an octet with the value 0x80.

In the data unit format descriptions, the data type uintvar will be used to indicate a variable length integer field. The
maximum size of a uintvar is 32 bits. It will be encoded in no more than five octets.

8.2 Protocol Data Unit Structure
WSP/B generates WTP SDUs which contain a single WSP/B protocol data unit. Each PDU serves a particular function
in the protocol and contains type-specific information.

8.2.1 PDU Common Fields

This section describes fields that are common across all or many PDUs.

TID Type Type-Specific Contents

Figure 29. PDU Structure

Every PDU starts with a conditional transaction identifier and a type identifier.

Table 12. PDU Header Fields
Name Type Source
TID uint8 S-Unit-MethodInvoke.req::Transaction Id or

S-Unit-MethodResult.req::Transaction Id or
S-Unit-Push.req::Push Id

Type uint8 PDU type

The TID field is used to associate requests with replies in the connectionless session service. The presence of the TID is
conditional. It MUST be included in the connectionless WSP/B PDUs, and MUST NOT be present in the connection-
mode PDUs. In connectionless WSP/B, the TID is passed to and from the session user as the “Transaction Id” or “Push
Id” parameters of the session primitives.

The Type field specifies the type and function of the PDU. The type numbers for the various PDUs are defined in Table
34 in Assigned Numbers. The rest of the PDU is type-specific information, referred to as the contents.

The following sections describe the format of the contents for each PDU type. In the interest of brevity, the PDU header
has been omitted from the description of each PDU in the sections that follow.

Version 30-April-1998 Page 61(95)

© Copyright Wireless Application Protocol Forum, Ltd. 1998
All rights reserved.

8.2.2 Session Management Facility

8.2.2.1 Connect

The Connect PDU is sent to initiate the creation of a session.

Table 13. Connect Fields
Name Type Source
Version uint8 WSP/B protocol version
CapabilitiesLen uintvar Length of the Capabilities field
HeadersLen uintvar Length of the Headers field
Capabilities CapabilitiesLen

octets
S-Connect.req::Requested Capabilities

Headers HeadersLen
octets

S-Connect.req::Client Headers

The Version field identifies the version of the WSP/B protocol. This is used to determine the formats of this and all
subsequent PDUs. The version number is encoded as follows: The major number of the version is stored in the high-
order 4 bits, and the minor number is stored in the low-order 4 bits. This version number used for this specification is
1.0, ie, 0x10.

The CapabilitiesLen field specifies the length of the Capabilities field.

The HeadersLen field specifies the length of the Headers field.

The Capabilities field contains encoded capability settings requested by the sender. Each capability has capability-
specific parameters associated with it. For more information on the encoding of this field, see section 8.3, “Capability
Encoding”, below.

The Headers field contains headers sent from client to server that apply to the entire session.

8.2.2.2 ConnectReply

The ConnectReply PDU is sent in response to the Connect PDU.

Table 14. ConnectReply Fields
Name Type Source
ServerSessionId Uintvar Session_ID variable
CapabilitiesLen Uintvar Length of Capabilities field
HeadersLen Uintvar Length of the Headers field
Capabilities CapabilitiesLen

octets
S-Connect.res::Negotiated Capabilities

Headers HeadersLen
octets

S-Connect.res::Server Headers

The ServerSessionId contains the server session identifier. It is used to identify the session in subsequently sent PDUs
used for session management. In particular, the client uses this session identifier, if it wants to resume the session after a
change in the underlying transport.

The CapabilitiesLen field specifies the length of the Capabilities field.

The HeadersLen field specifies the length of the Headers field.

Version 30-April-1998 Page 62(95)

© Copyright Wireless Application Protocol Forum, Ltd. 1998
All rights reserved.

The Capabilities field contains zero or more capabilities accepted by the sender. For more information on capabilities,
see section 8.3, “Capability Encoding”, below.

The Headers field contains headers that apply to the entire session.

8.2.2.3 Redirect

The Redirect PDU may be returned in response to a Connect PDU, when the session establishment attempt is refused.
It can be used to migrate clients from servers whose addresses have changed or to perform a crude form of load
balancing at session creation time.

Table 15. Redirect Fields
Name Type Source
Flags uint8 S-Disconnect.req::Redirect Security

and S-Disconnect.req::Reason
Redirect
Addresses

multiple octets S-Disconnect.req::Redirect Addresses

The Flags field indicates the nature of the redirect. Flags that are unassigned MUST be set to 0 by the server and
MUST be ignored by the client. The flags are defined as follows:

Flag bit Description
0x80 Permanent Redirect
0x40 Reuse Security Session

If the Permanent Redirect flag is set, the client SHOULD store the redirect addresses and use them to create all future
sessions with the server. If the Reuse Security Session flag is set, the client can use the current security session when
requesting a session from the server it is being redirected to.

The Redirect Addresses field contains one or more new addresses for the server. Subsequent Connect PDUs should be
sent to these addresses instead of the server address, which caused the Redirect PDU to be sent. The length of the
Redirect Addresses field is determined by the SDU size as reported from the underlying transport. Each redirect address
is coded in the following format:

Table 16. AddressType
Name Type Purpose
NetworkType
Included

1 bit Flag indicating inclusion of NetworkType field

PortNumber
Included

1 bit Flag indicating inclusion of PortNumber field

Address Len 6 bits Length of the Address field
BearerType uint8 Type of bearer network to use
PortNumber uint16 Port number to use
Address AddressLen

octets
Bearer address to use

The BearerType Included and PortNumber Included fields indicate the inclusion of the BearerType and PortNumber
fields, respectively. The BearerType and PortNumber SHOULD be excluded, if the session establishment attempt is
redirected to the same type of bearer network and same destination port number as used for the initial Connect PDU.

The AddressLen field contains the length of the Address field.

Version 30-April-1998 Page 63(95)

© Copyright Wireless Application Protocol Forum, Ltd. 1998
All rights reserved.

The BearerType field indicates the type of bearer network to be used. The bearer type codes are defined in
[WAPWDP].

The PortNumber field contains the destination port number.

The Address field contains the bearer address to use. The BearerType implies also the bearer-dependent address format
used to encode this field. The encoding shall use the native address transmission format defined in the applicable bearer
specifications. If this format uses a number of bits, which is not a multiple of eight, the address shall be encoded as a
big-endian multi-octet integer; the necessary number of zero fill bits shall be included in the most significant octet so
that the fill bits occupy the most significant bits. The used bearer address formats are defined in [WAPWDP] together
with the bearer type codes.

8.2.2.4 Disconnect

The Disconnect PDU is sent to terminate a session.

Table 17. Disconnect Fields
Name Type Source
ServerSessionId uintvar Session_ID variable

The ServerSessionId contains the session identifier of the session to be disconnected.

8.2.2.5 Reply

The Reply PDU is used by the session creation facility, and it is defined in section 8.2.3.3, “Reply”, below.

8.2.3 Method Invocation Facility

There are two PDUs used to invoke a method in the server, Get and Post, depending on the parameters required.

Methods defined in HTTP/1.1 [RFC2068] are assigned a specific PDU type number. PDU type numbers for methods
not defined in HTTP/1.1 are established during capability negotiation. These methods use either the Get or Post PDU
depending on whether the method includes request content or not. Methods using Get use PDU type numbers in the
range 0x40-0x5F. Methods using Post use numbers in the range 0x60-0x7F.

8.2.3.1 Get

The Get PDU is used for the HTTP/1.1 GET, OPTIONS, HEAD, DELETE and TRACE methods, as well as extension
methods that do not send request content to the server.

Table 18. Get Fields
Name Type Source
URILen uintvar Length of the URI field
HeadersLen uintvar Length of the Headers field
URI URILen octets S-MethodInvoke.req::Request URI or

S-Unit-MethodInvoke.req::Request URI
Headers HeadersLen

octets
S-MethodInvoke.req::Request Headers or
S-Unit-MethodInvoke.req::Request Headers

The URILen field specifies the length of the URI field.

The HeadersLen field specifies the length of the Headers field.

Version 30-April-1998 Page 64(95)

© Copyright Wireless Application Protocol Forum, Ltd. 1998
All rights reserved.

The URI field contains the URI. If the URI is a normally stored as a null-terminated string, the implementation MUST
NOT include the null in the field.

The Headers field contains the headers associated with the request.

8.2.3.2 Post

The Post PDU is used for the HTTP/1.1 POST and PUT methods, as well as extended methods that send request
content to the server.

Table 19. Post Fields
Name Type Source
UriLen uintvar Length of the URI field
HeadersLen uintvar Length of the ContentType and Headers fields

combined
Uri UriLen octets S-MethodInvoke.req::Request URI or

S-Unit-MethodInvoke.req::Request URI
ContentType multiple octets S-MethodInvoke.req::Request Headers or

S-Unit-MethodInvoke.req::Request Headers
Headers (HeadersLen – length of

ContentType) octets
S-MethodInvoke.req::Request Headers or
S-Unit-MethodInvoke.req::Request Headers

Data multiple octets S-MethodInvoke.req::Request Body or
S-Unit-MethodInvoke.req::Request Body

The UriLen field specifies the length of the Uri field.

The HeadersLen field specifies the length of the ContentType and Headers fields combined.

The Uri field contains the Uri. If the URI is a normally stored as a null-terminated string, the implementation MUST
NOT include the null in the field.

The ContentType field contains the content type of the data. It conforms to the Content-Type value encoding specified
in section 8.4.2.24, “Content type field”, below.

The Headers field contains the headers associated with the request.

The Data field contains the data associated with the request. The length of the Data field is determined by the SDU size
as provided to and reported from the underlying transport. The Data field starts immediately after the Headers field
and ends at the end of the SDU.

Version 30-April-1998 Page 65(95)

© Copyright Wireless Application Protocol Forum, Ltd. 1998
All rights reserved.

8.2.3.3 Reply

Reply is the generic response PDU used to return information from the server in response to a request. Reply is used in
the S-Connect primitive to indicate an error during session creation.

Table 20. Reply Fields
Name Type Source
Status uint8 S-MethodResult.req::Status or

S-Disconnect.req::Reason or
S-Unit-MethodResult.req::Status

HeadersLen uintvar Length of the ContentType and Headers fields
combined

ContentType multiple octets S-MethodResult.req::Response Headers or
S-Disconnect.req::Error Headers or
S-Unit-MethodResult.req::Response Headers

Headers (HeadersLen – length of
ContentType) octets

S-MethodResult.req::Response Headers or
S-Disconnect.req::Error Headers or
S-Unit-MethodResult.req::Response Headers

Data multiple octets S-MethodResult.req::Response Body or
S-Disconnect.req::Error Body or
S-Unit-MethodResult.req::Response Body

The Status field contains a result code of the attempt to understand and satisfy the request. The status codes have been
defined by HTTP/1.1 [RFC2068] and have been mapped into single-octet values listed in Table 36 in Assigned
Numbers.

The HeadersLen field specifies the length of the ContentType and Headers fields combined.

The ContentType field contains the content type of the data. It conforms to the Content-Type value encoding specified
in section 8.4.2.24, “Content type field”, below.

The Headers field contains the reply headers.

The Data field contains the data returned from the server. The length of the Data field is determined by the SDU size
as provided to and reported from the underlying transport. The Data field starts immediately after the Headers field
and ends at the end of the SDU.

8.2.3.4 Acknowledgement Headers

Acknowledgement Headers is not an actual PDU: it may be carried by the Exit Info parameter of the TR-Result
primitive. The service provider uses it to carry the data needed by the optional Acknowledgement Headers feature.

Table 21. Acknowledgement Headers Fields
Name Type Source
Headers multiple octets S-MethodResult.res::Acknowledgement Headers or

S-ConfirmedPush.res::Acknowledgement Headers

The Headers field contains information encoded in the manner defined in Section 8.4, “Header Encoding”, below. The
size of the field is implied by the size of the transaction Exit Data.

Version 30-April-1998 Page 66(95)

© Copyright Wireless Application Protocol Forum, Ltd. 1998
All rights reserved.

8.2.4 Push and Confirmed Push Facilities

8.2.4.1 Push and ConfirmedPush

The Push and ConfirmedPush PDUs are used for sending unsolicited information from the server to the client. The
formats of the two PDUs are the same, only the PDU type is different.

Table 22. Push and ConfirmedPush Fields
Name Type Source
HeadersLen uintvar Length of the ContentType and Headers fields

combined
ContentType multiple octets S-Push.req::Push Headers or

S-ConfirmedPush.req::Push Headers or
S-Unit-Push.req::Push Headers

Headers (HeadersLen – length of
ContentType) octets

S-Push.req::Push Headers or
S-ConfirmedPush.req::Push Headers or
S-Unit-Push.req::Push Headers

Data multiple octets S-Push.req::Push Body or
S-ConfirmedPush.req::Push Body or
S-Unit-Push.req::Push Body

The HeadersLen field specifies the length of the ContentType and Headers fields combined.

The ContentType field contains the content type of the data. It conforms to the Content-Type value encoding specified
in section 8.4.2.24, “Content type field”, below.

The Headers field contains the push headers.

The Data field contains the data pushed from the server. The length of the Data field is determined by the SDU size as
provided to and reported from the underlying transport. The Data field starts immediately after the Headers field and
ends at the end of the SDU.

8.2.4.2 Acknowledgement Headers

If the service provider implements the optional Acknowledgement Headers feature with the Confirmed Push facility,
Acknowledgement Headers are used to carry the associated data. It is defined in Section 8.2.3.4 above.

8.2.5 Session Resume Facility

8.2.5.1 Suspend

The Suspend PDU is sent to suspend a session.

Table 23. Suspend Fields
Name Type Source
SessionId Uintvar Session_ID variable

The SessionId field contains the session identifier of the session to be suspended.

Version 30-April-1998 Page 67(95)

© Copyright Wireless Application Protocol Forum, Ltd. 1998
All rights reserved.

8.2.5.2 Resume

The Resume PDU is sent to resume an existing session after a change in the underlying transport protocol.

Table 24. Resume Fields
Name Type Purpose
SessionId uintvar Session_ID variable

The SessionId field contains the session identifier returned from the server when the session was originally created. The
server looks up the session based on the session identifier. It then binds that session to the transaction service instance
identified by the peer address quadruplet of the transaction that carried the PDU.

8.2.5.3 Reply

The Reply PDU is used by the session resume facility, and it is defined in section 8.2.3.3, “Reply”, above

8.3 Capability Encoding
Capabilities allow the client and server to negotiate characteristics and extended behaviours of the protocol. A general
capability format is defined so capabilities that are not understood can be ignored.

A set of capability values is encoded as a sequence of capability structures described below. If the sender wants to
provide the receiver with a set of alternative values for a particular capability, one of which can be chosen, it sends
multiple instances of the capability, each with different parameters and with the most preferred alternative first. A
responder must not encode and send the value of a capability, unless the initiator is known to recognise it, as indicated
by either the version number of the session protocol or by the initiator already having sent that capability during the
session.

When the initiator of capability negotiation encodes a capability defined in Section 8.3.2 "Capability Definitions",
below, and the value is equal to the capability setting (default or negotiated) currently in effect, the capability structure
MAY be omitted. In this case the responder MUST interpret this in the same way, as if it had received the explicitly
encoded value. When the responder encodes a capability defined in Section 8.3.2 "Capability Definitions", and the
value is equal to the capability setting proposed by the initiator, the capability structure MAY be omitted; the initiator
MUST interpret this in the same way, as if it had received the explicitly encoded value.

8.3.1 Capability Structure

The format of a capability is described using a table similar to the ones used in PDU definitions:

Table 25. Capability Fields
Name Type Purpose
Length uintvar Length of the Identifier and Parameters fields

combined
Identifier multiple octets Capability identifier
Parameters (Length – length

of Identifier)
octets

Capability-specific parameters

The Length field specifies the length of the Identifier and Parameters fields combined.

The Identifier field identifies the capability. The capability indentifier values defined in this protocol version are listed
in Table 37 in Assigned Numbers. It is encoded in the same way as the header field names, ie, using the Field-name
BNF rule specified in Section 8.4.2.6, “Header”, below.

The Parameters field (if not empty) contains capability-specific parameters.

Version 30-April-1998 Page 68(95)

© Copyright Wireless Application Protocol Forum, Ltd. 1998
All rights reserved.

If a capability with an unknown Identifier field is received during capability negotiation, its value must be ignored. The
responder must also reply with the same capability with an empty Parameters field, which indicates that the capability
was not recognised and did not have any effect. As a consequence, the encodings for any provider-specific additional
capabilities MUST BE chosen so that an empty Parameters field either is illegal (as for capabilities with integer values)
or indicates that no extended functionality is enabled.

8.3.2 Capability Definitions

8.3.2.1 Service Data Unit Size

There are two Service Data Unit (SDU) size capabilities, one for the client and one for the server:

• Client-SDU-Size
• Server-SDU-Size

These capabilities share the same parameter format.

Table 26. SDU Size Capability Fields
Name Type Purpose
MaxSize uintvar Maximum Size

The MaxSize field specifies the maximum SDU size that can be received or will be sent by the client or server,
depending on the context of the capability, as described below. A MaxSize of 0 (zero) means there is no limit to the
SDU size.

When the client sends the Client-SDU-Size capability, it is indicating the maximum size SDU it can receive (ie, the
client MRU). When the server sends the Client-SDU-Size capability, it is indicating the maximum SDU size it will
send.

When the client sends the Server-SDU-Size capability, it is indicating the maximum size SDU it will send. When the
server sends the Server-SDU-Size capability, it is indicating the maximum SDU size it can receive (ie, the server
MRU).

The default SDU sizes are specified in section 8.3.3, “Capability Defaults”, below. The default SDU size SHOULD be
treated as an implementation minimum. Otherwise a method request sent during session establishment would risk being
aborted, since the server cannot indicate its true MRU until session has been established.

8.3.2.2 Protocol Options

The Protocol Options capability is used to enable extended, optional protocol functions.

Table 27. Protocol Options Capability Fields
Name Type Purpose
Flags multiple octets Option flags

When the client sends the Protocol Options capability to the server, the Flags field specifies the options the client will
accept. When the server sends the Protocol Options capability back to the client, the Flags field specifies the options
the server will perform. Although the Flags field may be multiple octets long, the currently defined flag bits fit into a
single octet, and an implementation SHOULD send only one octet. All undefined bits must be set to zero, and the
receiver MUST ignore them, including all additional trailing octets. As more flag bits are defined in the future, new
octets can then be appended to the field.

Version 30-April-1998 Page 69(95)

© Copyright Wireless Application Protocol Forum, Ltd. 1998
All rights reserved.

A flag bit set to one (1) indicates that the associated optional function is enabled; a flag bit cleared to zero (0) indicates
that it is disabled. The flags are defined as follows:

Flag bit Description
0x80 Confirmed Push Facility
0x40 Push Facility
0x20 Session Resume Facility
0x10 Acknowledgement Headers

When the client enables the Confirmed Push and/or Push facilities, it is advertising that it is able to and also wants to
accept data pushes. If the client can receive data pushes, but the service provider in the server cannot send pushes, the
appropriate push flags MUST be cleared when replying with the negotiated capabilities. If the service user in the server
will not send any data pushes of a certain type, the appropriate push flag SHOULD be cleared in the reply: this will
allow the client to free up any resources that would otherwise be dedicated to receiving data pushes.

When the client enables the Session Resume facility, it is advertising that it would like to suspend and resume the
session. If the server is not able or willing to support the Session Resume facility, it MUST clear the Session Resume
facility flags when replying with the negotiated capabilities.

When the client sets the Acknowledgement Headers flag, it is advertising whether or not it would like to send
Acknowledgement headers. The server indicates with the Acknowledgement Headers flag in the reply, whether or not it
is able to process Acknowledgement Headers. If the server is not able to process the headers, the client SHOULD not
send them; if the client still sends them, the headers shall be ignored.

8.3.2.3 Maximum Outstanding Requests (MOR)

There are two MOR capabilities, one for methods and one for pushes:

• Method-MOR
• Push-MOR

The Method-MOR and Push-MOR capabilities respectively indicate the number of outstanding method or push
transactions that may occur simultaneously.

Table 28. Maximum Outstanding Requests Capability Fields
Name Type Purpose
MOR uint8 Maximum Outstanding Requests

When the client is able to submit multiple outstanding method requests, it indicates the maximum number of
simultaneous requests it will ever send in the Method-MOR capability. The server replies with the lesser of the client’s
Method-MOR and the number of method transactions the server can simultaneously process.

Similarly, when the client is able to process multiple outstanding push requests, it indicates the maximum number of
simultaneous requests it can process in the Push-MOR capability. The server replies with the lesser of the client’s
Push-MOR and the maximum number of simultaneous push transactions the server will ever send.

8.3.2.4 Extended Methods

The Extended Methods capability declares the set of extended methods to be used during the session and assigns PDU
types to them.

Table 29. Extended Methods Capability Field Entries
Name Type Purpose
PDU Type uint8 PDU Type for method
Method Name multiple octets Null terminated method name

Version 30-April-1998 Page 70(95)

© Copyright Wireless Application Protocol Forum, Ltd. 1998
All rights reserved.

When sent from client to server in the Connect PDU, the capability-specific parameters for the Extended Methods
capability contain zero or more PDU Type to Method Name assignments. The end of the list of assignments is
determined from the end of the capability as specified in the capability length. Each capability assignment contains a
PDU Type and a Method Name. The PDU types are assigned by the client from the range 0x50-0x5F for methods that
use the Get PDU format and the range 0x70-0x7F for methods that use the Post PDU format. The method name is a
null terminated string.

When sent from server to client in the ConnectReply PDU, the capability-specific parameters for the Extended Methods
capability contain the zero or more PDU type codes (without the method names) that the server accepts and can receive.

8.3.2.5 Header Code Pages

The Header Code Pages capability declares the set of header code pages to be used during the session and assigns page
codes to them.

Table 30. Header Code Pages Capability Field Entries
Name Type Purpose
Page Code uint8 Code for header page
Page Name multiple octets Name of header page

When sent from client to server in the Connect PDU, the capability-specific parameters for the Header Code Pages
capability contain zero or more header page name to code assignments. The end of the list of assignments is determined
from the end of the capability as specified in the capability length. Each capability assignment contains a Page Code
and a Page Name. The Page Name is a null terminated string.

When sent from server to client in the ConnectReply PDU, the capability-specific parameters for the Header Code
Pages capability contain the zero or more Page Codes (without the Page Names), that the server can and will use.

When the client sends this capability, it is indicating its desire to use the named header code pages. The response from
the server indicates, which of these pages actually shall be used during the remainder of the session. Once the use of an
extension header code page has been negotiated, the headers belonging to it MUST be sent encoded using the binary
syntax defined by the code page. If the server declines to use a particular header code page, the (application-specific)
headers MUST be sent in textual format, unless some other code page defines an encoding syntax for them.

If the server agrees to use a header code page, the Page Code selected by the client shall be used during the remainder
of the session, when the header code page needs to be identified in a code page shift sequence.

8.3.2.6 Aliases

The Aliases capability declares a list of alternate addresses for the sender.

Table 31. Aliases Capability Fields
Name Type Purpose
Addresses multiple octets Alternate addresses

The Addresses field is encoded in the same format as the Redirect Addresses field in the Redirect PDU, described in
Section 8.2.2.3. The addresses sent by a server may be used to facilitate a switch to an alternate bearer network, when a
session is resumed. The addresses sent by a client may be used to facilitate the use of the connectionless session service.

Version 30-April-1998 Page 71(95)

© Copyright Wireless Application Protocol Forum, Ltd. 1998
All rights reserved.

8.3.3 Capability Defaults

Unless otherwise specified for a specific bearer or well-known application port, the capability defaults are as follows:

Name Setting
Aliases None
Client SDU Size 1400 octets
Extended Methods None
Header Code Pages None
Protocol Options 0x00
Maximum Outstanding Method Requests 1
Maximum Outstanding Push Requests 1
Server SDU Size 1400 octets

8.4 Header Encoding

8.4.1 General

WSP/B header fields are included in WSP/B PDUs or in multi-part data objects. The header fields contain general
information, request information, response information, or entity information. Each header field consists of a field name
followed by a field value.

Field Name Field Value

Figure 30. Header field comprised of field name and field value

WSP/B defines a compact format for encoding header fields that is compatible with HTTP/1.1 header fields.

The following procedures are used to reduce the size of the headers:

• Well-known tokens are mapped to binary values.
• Date values, integer values, quality factors and delta second values are coded in binary format.
• Redundant information is removed.

The encoding utilises the fact that the first octet of the text strings in HTTP headers is typically in the range 32-126,
except for some rare cases when a text string is initiated with an 8-bit character value (eg, national characters). Range 0-
31 and 127-255 can be used for binary values, quote characters or length indicators of binary data. This makes it
possible to mix binary data and text strings efficiently, which is an advantage when the generic parts of HTTP/1.1
headers shall be encoded.

8.4.1.1 Field name

Field names with assigned integer encoding values MUST be encoded using the integer value. Field names without
assigned integer values MUST be encoded as text. The representation of the integer encodings is made more compact
by dividing them into header code pages. Each header code page encodes up to 128 identities of well-known field
names, so that the integer encoding value is represented using a single octet. The most common well-known header
names are defined in the default header code page, but additional encoding values can be made available by shifting
between code pages.

Version 30-April-1998 Page 72(95)

© Copyright Wireless Application Protocol Forum, Ltd. 1998
All rights reserved.

The header code pages used during a session are identified with numeric codes. Header code page 1 is the default page
and is always active at the beginning of a set of headers. A shift to a new code page is accomplished by sending a shift
sequence between two header fields. The new header code page remains active until the end of the set of headers being
decoded. This procedure applies to the header fields in each WSP/B PDUs, as well as to the header fields of each entity
embedded in a multipart entity.

The default header code pages defines all HTTP/1.1 field names and WAP specific header fields. The numbers for
header code pages are assigned in the following way:

• 1, default header code page, including HTTP/1.1 and WAP specific headers
• 2-15, reserved for WAP specific header code pages
• 16-127, reserved for application specific code pages
• 128-255, reserved for future use

An application-specific header code page is identified by a textual name (string). However, when capability negotiation
is used to agree on the set of extension header code pages (see Section 8.3.2.5), which shall be used during the session,
each application-specific code page is also assigned a numeric identity from the range reserved for them. This identity
remains in effect to the end of the session and MUST be used to identify the page in a shift sequence.

If capability negotiation leads to an agreement on the use of a header code page, then the application-specific field
names MUST be sent using the well-known single-octet values defined by the page. If there is no agreement on the use
of a header code page, the application-specific field names MUST be encoded using the Token-text rule from Section
8.4.2.1 below.

For example, a sequence of well-known headers and application specific header can be structured as follows:

<WSP header 1>
.
.
<WSP header n>
<Shift to application specific code page>
<Application specific header 1>
.
.
<Application specific header m>

8.4.1.2 Field values

The syntax of encoded field values is defined by the field name. Well-known field values MUST be encoded using the
compact binary formats defined by the header syntax below; the textual values shall be used only, if no other encoding
is available. The WSP field values are encoded so that the length of the field value can always be determined, even if
the detailed format of a specific field value is not known. This makes it possible to skip over individual header fields
without interpreting their content. The header syntax in Section 8.4.2 below is defined so, that the first octet in all the
field values can be interpreted as follows:

Value Interpretation of First Octet
0 - 30 This octet is followed by the indicated number (0 –30) of data octets

31 This octet is followed by a uintvar, which indicates the number of data octets after it
32 - 127 The value is a text string, terminated by a zero octet (NUL character)
128 - 255 It is an encoded 7-bit value; this header has no more data

It is up to the application to define how application-specific field values shall be encoded, but the encodings MUST
adhere to the general format described in the table above.

If there is a mutual agreement between server and client on the used extension header code pages, then there is also a
mutual agreement on, how application-specific field values defined by these code pages shall be encoded. In this case
the applicable field values MUST be encoded according to the syntax rules defined by these code pages.

Version 30-April-1998 Page 73(95)

© Copyright Wireless Application Protocol Forum, Ltd. 1998
All rights reserved.

If the client and server cannot agree on the use of a header code page during capability negotiation, application-specific
field values MUST be encoded using the Application-specific-value rule from Section 8.4.2.6.

8.4.1.3 Encoding of list values

If the syntax defined by RFC2068 for a header field with a well-known field name permits a comma-separated list using
1#rule, the header MUST be converted into a sequence of headers. Each shall have the original field name and contain
one of the values in the original list. The order of the headers shall be the same as the order of their values in the
original list value. The encoding rule for the well-known header shall be applied only after this transformation.

8.4.2 Header syntax

This section defines the syntax and semantics of all HTTP/1.1 header fields in WSP/B. The mechanisms specified in
this document are described in augmented BNF similar to that used by [RFC2068].

The notation <Octet N> is used to represent a single octet with the value N in the decimal system. The notation
<Any octet M-N> is used for a single octet with the value in the range from M to N, inclusive.

8.4.2.1 Basic rules

The following rules are used through this specification to describe the basic parsing constructs. The rules for Token,
TEXT and OCTET have the same definition as per [RFC2068].

Text-string = [Quote] TEXT End-of-string
; If the first character in the TEXT is in the range of 128-255, a Quote character must precede it.
; Otherwise the Quote character must be omitted. The Quote is not part of the contents.

Token-text = Token End-of-string

Quoted-string = <Octet 34> TEXT End-of-string
;The TEXT encodes an RFC2068 Quoted-string with the enclosing quotation-marks <"> removed

Short-integer = OCTET
; Integers in range 0-127 shall be encoded as a one octet value with the most significant bit set
; to one (1xxx xxxx) and with the value in the remaining least significant bits.

Long-integer = Short-length Multi-octet-integer
; The Short-length indicates the length of the Multi-octet-integer

Multi-octet-integer = 1*30 OCTET
; The content octets shall be an unsigned integer value
; with the most significant octet encoded first (big-endian representation).
; The minimum number of octets must be used to encode the value.

Uintvar-integer = 1*5 OCTET
; The encoding is the same as the one defined for uintvar in Section 8.1.2.

Constrained-encoding = Token-text | Short-integer
; This encoding is used for token values, which have no well-known binary encoding, or when
; the assigned number of the well-known encoding is small enough to fit into Short-integer.

Quote = <Octet 127>
End-of-string = <Octet 0>

Version 30-April-1998 Page 74(95)

© Copyright Wireless Application Protocol Forum, Ltd. 1998
All rights reserved.

8.4.2.2 Length

The following rules are used to encode length indicators.

Value-length = Short-length | (Length-quote Length)
; Value length is used to indicate the length of the value to follow

Short-length = <Any octet 0-30>

Length-quote = <Octet 31>

Length = Uintvar-integer

8.4.2.3 Parameter Values

The following rules are used in encoding parameter values.

No-value = <Octet 0>
; Used to indicate that the parameter actually has no value,
; eg, as the parameter "bar" in ";foo=xxx; bar; baz=xyzzy".

Text-value = No-value | Token-text | Quoted-string

Integer-Value = Short-integer | Long-integer

Date-value = Long-integer
; The encoding of dates shall be done in number of seconds from
; 1970-01-01, 00:00:00 GMT.

Delta-seconds-value = Integer-value

Q-value = 1*2 OCTET
; The encoding is the same as in Uintvar-integer, but with restricted size. When quality factor 0
; and quality factors with one or two decimal digits are encoded, they shall be multiplied by 100
; and incremented by one, so that they encode as a one-octet value in range 1-100,
; ie, 0.1 is encoded as 11 (0x0B) and 0.99 encoded as 100 (0x64). Three decimal quality
; factors shall be multiplied with 1000 and incremented by 100, and the result shall be encoded
; as a one-octet or two-octet uintvar, eg, 0.333 shall be encoded as 0x83 0x31.
; Quality factor 1 is the default value and shall never be sent.

Version-value = Short-integer | Text-string
; The three most significant bits of the Short-integer value are interpreted to encode a major
; version number in the range 1-7, and the four least significant bits contain a minor version
; number in the range 0-14. If there is only a major version number, this is encoded by
; placing the value 15 in the four least significant bits. If the version to be encoded fits these
; constraints, a Short-integer must be used, otherwise a Text-string shall be used.

Uri-value = Text-string
; URI value should be encoded per [RFC2068], but service user may use a different format.

8.4.2.4 Parameter

The following rules are used to encode parameters.

Parameter = Typed-parameter | Untyped-parameter

Typed-parameter = Well-known-parameter-token Typed-value
; the actual expected type of the value is implied by the well-known parameter

Well-known-parameter-token = Integer-value
; the code values used for parameters are specified in the Assigned Numbers appendix

Version 30-April-1998 Page 75(95)

© Copyright Wireless Application Protocol Forum, Ltd. 1998
All rights reserved.

Typed-value = Compact-value | Text-value
; In addition to the expected type, there may be no value.
; If the value cannot be encoded using the expected type, it shall be encoded as text.

Compact-value = Integer-value |
Date-value | Delta-seconds-value | Q-value | Version-value |
Uri-value

Untyped-parameter = Token-text Untyped-value
; the type of the value is unknown, but it shall be encoded as an integer, if that is possible.

Untyped-value = Integer-value | Text-value

8.4.2.5 Authorization

The following common rules are used for authentication and authorisation.

Credentials = (Basic Basic-cookie) | (Authentication-scheme *Auth-param)

Basic = <Octet 128>

Basic-cookie = User-id Password

User-id = Text-string

Password = Text-string
; Note user identity and password shall not be base 64 encoded.

Authentication-scheme = Token-text

Auth-param = Parameter

Challenge = (Basic Realm-value) | (Authentication-scheme Realm-value *Auth-param)

Realm-value = Text-string
; shall be encoded without the quote characters <"> in the corresponding RFC2068 Quoted-string

8.4.2.6 Header

The following rules are used to encode headers.

Header = Message-header | Shift-sequence

Shift-sequence = (Shift-delimiter Page-identity) | Short-cut-shift-delimiter

Shift-delimiter = <Octet 127>
Page-identity = <Any octet 1-255>
Short-cut-shift-delimiter = <Any octet 1-31>

Message-header = Well-known-header | Application-header

Well-known-header = Well-known-field-name Wap-value

Application-header = Token-text Application-specific-value

Field-name = Token-text | Well-known-field-name

Well-known-field-name = Short-integer

Application-specific-value = Text-string

Version 30-April-1998 Page 76(95)

© Copyright Wireless Application Protocol Forum, Ltd. 1998
All rights reserved.

Wap-value =
Accept-value |
Accept-charset-value |
Accept-encoding-value |
Accept-language-value |
Accept-ranges-value |
Age-value |
Allow-value |
Authorization-value |
Cache-control-value |
Connection-value |
Content-base-value |
Content-encoding-value |
Content-language-value |
Content-length-value |
Content-location-value |
Content-MD5-value |
Content-range-value |
Content-type-value |
Date |
Etag-value |
Expires-value |
From-value |
Host-value |
If-modified-since-value |
If-match-value |
If-none-match-value |
If-range-value |
If-unmodified-since-value |
Location-value |
Last-modified |
Max-forwards-value |
Pragma-value |
Proxy-authenticate-value |
Proxy-authorization-value |
Public-value |
Range-value |
Referer-value |
Retry-after-value |
Server-value |
Transfer-encoding-value |
Upgrade-value |
User-agent-value |
Vary-value |
Via-value |
Warning |
WWW-authenticate-value |
Content-disposition-value

8.4.2.7 Accept field

The following rules are used to encode accept values.

Accept-value = Constrained-media | Accept-general-form

Accept-general-form = Value-length Media-range [Accept-parameters]

Media-range = (Well-known-media | Token-text) *(Parameter)

Accept-parameters = Q-token Q-value *(Accept-extension)

Accept-extension = Parameter

Constrained-media = Constrained-encoding
Well-known-media = Integer-value
; Both are encoded using values from Content Type Assignments table in Assigned Numbers

Q-token = <Octet 128>

Version 30-April-1998 Page 77(95)

© Copyright Wireless Application Protocol Forum, Ltd. 1998
All rights reserved.

8.4.2.8 Accept charset field

The following rules are used to encode accept character set values.

Accept-charset-value = Constrained-charset | Accept-charset-general-form

Accept-charset-general-form = Value-length (Well-known-charset | Token-text) [Q-value]

Constrained-well-known-charset = Constrained-encoding
Well-known-charset = Integer-value
; Both are encoded using values from Character Set Assignments table in Assigned Numbers

8.4.2.9 Accept encoding field

The following rules are used to encode accept encoding values.

Accept-encoding-value = Content-encoding-value

8.4.2.10 Accept language field

The following rules are used to encode accept language values.

Accept-language-value = Constrained-language | Accept-language-general-form

Accept-language-general-form = Value-length (Well-known-language | Text-string) [Q-value]

Constrained-language = Any-language | Constrained-encoding
Well-known-language = Any-language | Integer-value
; Both are encoded using values from Character Set Assignments table in Assigned Numbers

Any-language = <Octet 128>
; Equivalent to the special RFC2068 language range "*"

8.4.2.11 Accept ranges field

The following rules are used to encode accept range values.

Accept-ranges-value = (None | Bytes | Token-text)

None = <Octet 128>
Bytes = <Octet 129>

8.4.2.12 Age field

The following rule is used to encode age values.

Age-value = Delta-seconds-value

8.4.2.13 Allow field

The following rules are used to encode allow values.

Allow-value = Well-known-method

Well-known-method = Short-integer
; Any well-known method or extended method in the range of 0x40-0x7F

8.4.2.14 Authorization field

The following rule is used to encode authorisation values.

Authorization-value = Value-length Credentials

Version 30-April-1998 Page 78(95)

© Copyright Wireless Application Protocol Forum, Ltd. 1998
All rights reserved.

8.4.2.15 Cache-control field

The following rules are used to encode cache control values.

Cache-control-value = No-cache |
No-store |
Max-stale |
Only-if-cached |
Private |
Public |
No-transform |
Must-revalidate |
Proxy-revalidate |
Cache-extension |
Value-length Cache-directive

Cache-directive = No-cache 1*(Field-name) |
Max-age Delta-second-value |
Max-stale Delta-second-value |
Min-fresh Delta-second-value |
Private 1*(Field-name) |
Cache-extension Parameter

No-cache = <Octet 128>
No-store = <Octet 129>
Max-age = <Octet 130>
Max-stale = <Octet 131>
Min-fresh = <Octet 132>
Only-if-cached = <Octet 133>
Public = <Octet 134>
Private = <Octet 135>
No-transform = <Octet 136>
Must-revalidate = <Octet 137>
Proxy-revalidate = <Octet 138>
Cache-extension = Token-text

8.4.2.16 Connection field

The following rules are used to encode connection values.

Connection-value = (Close | Token-text)

Close = <Octet 128>

8.4.2.17 Content-base field

The following rule is used to encode content base values.

Content-base-value = Uri-value

8.4.2.18 Content encoding field

The following rules are used to encode content encoding values.

Content-encoding-value = (Gzip | Compress | Deflate | Token-text)

Gzip = <Octet 128>
Compress = <Octet 129>
Deflate = <Octet 130>

8.4.2.19 Content language field

The following rule is used to encode content language values.

Version 30-April-1998 Page 79(95)

© Copyright Wireless Application Protocol Forum, Ltd. 1998
All rights reserved.

Content-language-value = (Well-known-language | Token-text)

8.4.2.20 Content length field

The following rule is used to encode content length values. Normally the information in the content length header is
redundant and MAY not be sent -- the content length is available in the PDU or can be calculated when the transport
layer provides the PDU size.

If the PDU contains no entity body at all (response to HEAD), then the Content-Length SHOULD be encoded in the
header fields, so that the client can learn the size of the entity.

Content-length-value = Integer-value

8.4.2.21 Content location field

The following rule is used to encode content location values.

Content-location-value = Uri-value

8.4.2.22 Content MD5 field

The following rules are used to encode content MD5 values.

Content-MD5-value = Value-length Digest
; 128-bit MD5 digest as per [RFC1864]. Note the digest shall not be base-64 encoded.
Digest = 16*16 OCTET

8.4.2.23 Content range field

The following rules are used to encode content range values. Last-byte-pos available in the HTTP/1.1 header is
redundant. The content range length is available in the PDU or can be calculated when the transport layer provides the
PDU size. Last-byte-pos can be calculated by adding together First-byte-pos with size of content range.

Content-range = Value-length First-byte-pos Entity-length

First-byte-pos = Uintvar-integer

Entity-length = Uintvar-integer

8.4.2.24 Content type field

The following rules are used to encode content type values. The short form of the Content-type-value MUST only be
used when the well-known media is in the range of 0-127 or a text string. In all other cases the general form MUST be
used.

Content-type-value = Constrained-media | Content-general-form

Content-general-form = Value-length Media-type

Media-type = (Well-known-media | Token-text) *(Parameter)

8.4.2.25 Date field

The following rule is used to encode date values.

Date = Date-value

8.4.2.26 Etag field

The following rule is used to encode entity tag values.

Version 30-April-1998 Page 80(95)

© Copyright Wireless Application Protocol Forum, Ltd. 1998
All rights reserved.

Etag-value = Text-string
; The value shall be encoded as per [RFC2068]

8.4.2.27 Expires field

The following rule is used to encode expires values.

Expires-value = Date-value

8.4.2.28 From field

The following rule is used to encode from values.

From-value = Text-string
; The value shall be encoded as an e-mail address as per [RFC822]

8.4.2.29 Host field

The following rule is used to encode host values.

Host-value = Text-string
; The value shall be encoded as per [RFC2068]

8.4.2.30 If modified since field

The following rule is used to encode if modified since values.

If-modified-since-value = Date-value

8.4.2.31 If match field

The following rule is used to encode if match values.

If-match-value = Text-string
; The value shall be encoded as per [RFC2068]

8.4.2.32 If none match field

The following rule is used to encode if none match values.

If-none-match-value = Text-string
; The value shall be encoded as per [RFC2068]

8.4.2.33 If range field

The following rule is used to encode if range values.

If-range = Text-string | Date-value
; The value shall be encoded as per [RFC2068]

8.4.2.34 If unmodified since field

The following rule is used to encode if unmodified since values.

If-unmodified-since-value = Date-value

Version 30-April-1998 Page 81(95)

© Copyright Wireless Application Protocol Forum, Ltd. 1998
All rights reserved.

8.4.2.35 Last modified field

The following rule is used to encode last modified values.

Last-modified-value = Date-value

8.4.2.36 Location field

The following rule is used to encode location values.

Location-value = Uri-value

8.4.2.37 Max forwards field

The following rule is used to encode max forwards values.

Max-forwards-value = Integer-value

8.4.2.38 Pragma field

The following rule is used to encode pragma values.

Pragma-value = No-cache | Parameter
; The quoted text string shall be encoded as per [RFC2068]

8.4.2.39 Proxy-authenticate

The following rules are used to encode proxy authenticate values.

Proxy-authenticate-value = Value-length Challenge

8.4.2.40 Proxy authorization field

The following rules are used to encode proxy authorization values.

Proxy-authorization-value = Value-length Credentials

8.4.2.41 Public field

The following rule is used to encode public values.

Public-value = (Well-known-method | Token-text)

8.4.2.42 Range field

The following rules are used to encode range values.

Range-value = Value-Length (Byte-range-spec | Suffix-byte-range-spec)

Byte-range-spec = Byte-range First-byte-pos [Last-byte-Pos]

Suffix-byte-range-spec = Suffix-byte-range Suffix-length

First-byte-pos = Uintvar-integer

Last-byte-pos = Uintvar-integer

Suffix-length = Uintvar-integer

Byte-range = <Octet 128>
Suffix-byte-range = <Octet 129>

Version 30-April-1998 Page 82(95)

© Copyright Wireless Application Protocol Forum, Ltd. 1998
All rights reserved.

8.4.2.43 Referer field

The following rule is used to encode referrer values.

Referer-value = Uri-value

8.4.2.44 Retry after field

The following rules are used to encode retry after values.

Retry-after-value = Value-length (Retry-date-value | Retry-delta-seconds)

Retry-date-value = Absolute-time Date-value

Retry-delta-seconds = Relative-time Delta-seconds-value

Absolute-time = <Octet 128>
Relative-time = <Octet 129>

8.4.2.45 Server field

The following rule is used to encode server values.

Server-value = Text-string
; The value shall be encoded as per [RFC2068]

8.4.2.46 Transfer encoding field

The following rules are used to encode transfer-encoding values.

Transfer-encoding-values = Chunked | Token-text

Chunked = <Octet 128>

8.4.2.47 Upgrade field

The following rule is used to encode upgrade values.

Upgrade-value = Text-string
; The value shall be encoded as per [RFC2068]

8.4.2.48 User agent field

The following rule is used to encode user agent values.

User-agent-value = Text-string
; The value shall be encoded as per [RFC2068]

8.4.2.49 Vary field

The following rule is used to encode vary values.

Vary-value = Field-name

8.4.2.50 Via field

The following rule is used to encode via values.

Via-value = Text-string
; The value shall be encoded as per [RFC2068]

Version 30-April-1998 Page 83(95)

© Copyright Wireless Application Protocol Forum, Ltd. 1998
All rights reserved.

8.4.2.51 Warning field

The following rules are used to encode warning values. The warning code values are defined in [RFC2068].

Warning = Warn-code | Warning-value

Warning-value = Value-length Warn-code Warn-agent Warn-text

Warn-code = Short-integer

Warn-agent = Text-string
; The value shall be encoded as per [RFC2068]

Warn-text = Text-string

8.4.2.52 WWW-authenticate field

The following rule is used to encode WWW authenticate values.

Proxy-authenticate-value = Value-length Challenge

8.4.2.53 Content-disposition field

The following rule is used to encode the Content-disposition fields used when submitting form data.

Content-disposition-value = Value-length Disposition *(Parameter)
Disposition = Form-data | Attachment

Form-data = <Octet 128>
Attachment = <Octet 129>

Version 30-April-1998 Page 84(95)

© Copyright Wireless Application Protocol Forum, Ltd. 1998
All rights reserved.

8.5 Multipart Data
HTTP/1.1 has adopted the MIME multipart format to transport composite data objects (eg, “multipart/mixed”). WSP/B
defines a compact binary form of the MIME multipart entity. There is a straightforward translation of both the
multipart entity and the content type. After translation, a “multipart/mixed” entity becomes an “x-wap.multipart/mixed”
entity. Thus, all MIME “multipart/*” content types can be converted into “x-wap.multipart/*” content types. No
information is lost in the translation.

8.5.1 X-WAP.Multipart Format

Header Entries

Figure 31. X-WAP.Multipart Format

The x-wap.multipart content type consists of a header followed by 0 or more entries.

8.5.2 Multipart Header

The multipart header format is as follows:

Table 32. Multipart Header Fields
Name Type Purpose
nEntries uintvar The number of entries in the multipart entity

The nEntries field specifies the number of entries in the multipart entity.

8.5.3 Multipart Entry

The multipart entry format is as follows:

Table 33. Multipart Entry Fields
Name Type Purpose
HeadersLen uintvar Length of the ContentType and Headers

fields combined
DataLen uintvar Length of the Data field
ContentType multiple octets The content type of the data
Headers (HeadersLen – length of

ContentType) octets
The headers

Data DataLen octets The data

The HeadersLen field specifies the length of the ContentType and Headers fields combined.

The DataLen field specifies the length of the Data field in the multipart entry.

The ContentType field contains the content type of the data. It conforms to the Content-Type value encoding specified
in section 8.4.2.24, “Content type field”, above.

The Headers field contains the headers of the entry.

The Data field contains the data of the entry.

Version 30-April-1998 Page 85(95)

© Copyright Wireless Application Protocol Forum, Ltd. 1998
All rights reserved.

Appendix A Assigned Numbers
This section contains tables of the WSP/B assigned numbers. The WAP Architecture Group is responsible for
administering the values.

Table 34. PDU Type Assignments
Name Assigned

Number
Reserved 0x00
Connect 0x01
ConnectReply 0x02
Redirect 0x03
Reply 0x04
Disconnect 0x05
Push 0x06
ConfirmedPush 0x07
Suspend 0x08
Resume 0x09
Unassigned 0x10–0x3F
Get 0x40
Options (Get PDU) 0x41
Head (Get PDU) 0x42
Delete (Get PDU) 0x43
Trace (Get PDU) 0x44
Unassigned (Get PDU) 0x45-0x4F
Extended Method (Get PDU) 0x50-0x5F
Post 0x60
Put (Post PDU) 0x61
Unassigned (Post PDU) 0x62–0x6F
Extended Method (Post PDU) 0x70-0x7F
Reserved 0x80-0xFF

Table 35. Abort Reason Code Assignments
Name Description Assigned

Number
PROTOERR Protocol error, illegal PDU received 0xE0
DISCONNECT Session has been disconnected 0xE1
SUSPEND Session has been suspended 0xE2
RESUME Session has been resumed 0xE3
CONGESTION The peer is congested and can not process the SDU 0xE4
CONNECTERR The session connect failed 0xE5
MRUEXCEEDED The Maximum Receive Unit size was exceeded 0xE6
MOREXCEEDED The Maximum Outstanding Requests was exceeded 0xE7
PEERREQ Peer request 0xE8
NETERR Network error 0xE9
USERREQ User request 0xEA

Version 30-April-1998 Page 86(95)

© Copyright Wireless Application Protocol Forum, Ltd. 1998
All rights reserved.

Table 36. Status Code Assignments
HTTP Status
Code

Description Assigned
Number

none reserved 0x00 to 0x0F

100 Continue 0x10
101 Switching Protocols 0x11

200 OK, Success 0x20

201 Created 0x21
202 Accepted 0x22
203 Non-Authoritative Information 0x23
204 No Content 0x24
205 Reset Content 0x25
206 Partial Content 0x26

300 Multiple Choices 0x30
301 Moved Permanently 0x31
302 Moved temporarily 0x32
303 See Other 0x33
304 Not modified 0x34
305 Use Proxy 0x35

400 Bad Request - server could not understand request 0x40
401 Unauthorized 0x41
402 Payment required 0x42
403 Forbidden - operation is understood but refused 0x43
404 Not Found 0x44
405 Method not allowed 0x45
406 Not Acceptable 0x46
407 Proxy Authentication required 0x47
408 Request Timeout 0x48
409 Conflict 0x49
410 Gone 0x4A
411 Length Required 0x4B
412 Precondition failed 0x4C
413 Requested entity too large 0x4D
414 Request-URI too large 0x4E
415 Unsupported media type 0x4F

500 Internal Server Error 0x60
501 Not Implemented 0x61
502 Bad Gateway 0x62
503 Service Unavailable 0x63
504 Gateway Timeout 0x64
505 HTTP version not supported 0x65

Version 30-April-1998 Page 87(95)

© Copyright Wireless Application Protocol Forum, Ltd. 1998
All rights reserved.

Table 37. Capability Assignments
Capability Assigned Number
Client-SDU-Size 0x00
Server-SDU-Size 0x01
Protocol Options 0x02
Method-MOR 0x03
Push-MOR 0x04
Extended Methods 0x05
Header Code Pages 0x06
Aliases 0x07
Unassigned 0x08 to 0x7F

Table 38. Well-Known Parameter Assignments
Token Assigned Number Expected BNF Rule for Value
Q 0x00 Q-value
Charset 0x01 Well-known-charset
Level 0x02 Version-value
Type 0x03 Integer-value
Uaprof 0x04 Untyped-value
Name 0x05 Text-string
Filename 0x06 Text-string
Differences 0x07 Field-name
Padding 0x08 Short-integer

Version 30-April-1998 Page 88(95)

© Copyright Wireless Application Protocol Forum, Ltd. 1998
All rights reserved.

Table 39. Header Field Name Assignments
Name Assigned Number
Accept 0x00
Accept-Charset 0x01
Accept-Encoding 0x02
Accept-Language 0x03
Accept-Ranges 0x04
Age 0x05
Allow 0x06
Authorization 0x07
Cache-Control 0x08
Connection 0x09
Content-Base 0x0A
Content-Encoding 0x0B
Content-Language 0x0C
Content-Length 0x0D
Content-Location 0x0E
Content-MD5 0x0F
Content-Range 0x10
Content-Type 0x11
Date 0x12
Etag 0x13
Expires 0x14
From 0x15
Host 0x16
If-Modified-Since 0x17
If-Match 0x18
If-None-Match 0x19
If-Range 0x1A
If-Unmodified-Since 0x1B
Location 0x1C
Last-Modified 0x1D
Max-Forwards 0x1E
Pragma 0x1F
Proxy-Authenticate 0x20
Proxy-Authorization 0x21
Public 0x22
Range 0x23
Referer 0x24
Retry-After 0x25
Server 0x26
Transfer-Encoding 0x27
Upgrade 0x28
User-Agent 0x29
Vary 0x2A
Via 0x2B
Warning 0x2C
WWW-Authenticate 0x2D
Content-Disposition 0x2E

Version 30-April-1998 Page 89(95)

© Copyright Wireless Application Protocol Forum, Ltd. 1998
All rights reserved.

Table 40. Content Type Assignments
Content-Type Assigned Number
/ 0x00
text/* 0x01
text/html 0x02
text/plain 0x03
text/x-hdml 0x04
text/x-ttml 0x05
text/x-vCalendar 0x06
text/x-vCard 0x07
text/x-wap.wml 0x08
text/x-wap.wmlscript 0x09
text/x-wap.wta-event 0x0A
multipart/* 0x0B
multipart/mixed 0x0C
multipart/form-data 0x0D
multipart/byteranges 0x0E
multipart/alternative 0x0F
application/* 0x10
application/java-vm 0x11
application/x-www-form-urlencoded 0x12
application/x-hdmlc 0x13
application/x-wap.wmlc 0x14
application/x-wap.wmlscriptc 0x15
application/x-wap.wta-eventc 0x16
application/x-wap.uaprof 0x17
application/x-wap.wtls-ca-certificate 0x18
application/x-wap.wtls-user-certificate 0x19
application/x-x509-ca-cert 0x1A
application/x-x509-user-cert 0x1B
image/* 0x1C
image/gif 0x1D
image/jpeg 0x1E
image/tiff 0x1F
image/png 0x20
image/x-wap.wbmp 0x21
x-wap.multipart/* 0x22
x-wap.multipart/mixed 0x23
x-wap.multipart/form-data 0x24
x-wap.multipart/byteranges 0x25
x-wap.multipart/alternative 0x26
Unassigned 0x27-0x7F

Version 30-April-1998 Page 90(95)

© Copyright Wireless Application Protocol Forum, Ltd. 1998
All rights reserved.

Table 41. ISO 639 Language Assignments
Language Short Assigned

Number
Language Short Assigned

Number
Afar 0x01 Maori 0x47
Abkhazian 0x02 Macedonian mk 0x48
Afrikaans af 0x03 Malayalam 0x49
Amharic 0x04 Mongolian 0x4A
Arabic 0x05 Moldavian 0x4B
Assamese 0x06 Marathi 0x4C
Aymara 0x07 Malay 0x4D
Azerbaijani 0x08 Maltese 0x4E
Bashkir 0x09 Burmese 0x4F
Byelorussian be 0x0A Nauru 0x50
Bulgarian bg 0x0B Nepali 0x51
Bihari 0x0C Dutch nl 0x52
Bislama 0x0D Norwegian no 0x53
Bengali; Bangla 0x0E Occitan 0x54
Tibetan 0x0F (Afan) Oromo 0x55
Breton 0x10 Oriya 0x56
Catalan ca 0x11 Punjabi 0x57
Corsican 0x12 Polish po 0x58
Czech cs 0x13 Pashto, Pushto 0x59
Welsh 0x14 Portuguese pt 0x5A
Danish da 0x15 Quechua 0x5B
German de 0x16 Rhaeto-Romance 0x5C
Bhutani 0x17 Kirundi 0x5D
Greek el 0x18 Romanian ro 0x5E
English en 0x19 Russian ru 0x5F
Esperanto 0x1A Kinyarwanda 0x60
Spanish es 0x1B Sanskrit 0x61
Estonian 0x1C Sindhi 0x62
Basque eu 0x1D Sangho 0x63
Persian 0x1E Serbo-Croatian 0x64
Finnish fi 0x1F Sinhalese 0x65
Fiji 0x20 Slovak sk 0x66
Faeroese fo 0x21 Slovenian sl 0x67
French fr 0x22 Samoan 0x68
Frisian 0x23 Shona 0x69
Irish ga 0x24 Somali 0x6A
Scots Gaelic gd 0x25 Albanian sq 0x6B
Galician gl 0x26 Serbian sr 0x6C
Guarani 0x27 Siswati 0x6D
Gujarati 0x28 Sesotho 0x6E
Hausa 0x29 Sundanese 0x6F
Hebrew (formerly iw) 0x2A Swedish sv 0x70
Hindi 0x2B Swahili 0x71
Croatian hr 0x2C Tamil 0x72
Hungarian hu 0x2D Telugu 0x73
Armenian 0x2E Tajik 0x74
Interlingua 0x2F Thai 0x75
Indonesian (formerly in) id 0x30 Tigrinya 0x76
Interlingue 0x31 Turkmen 0x77

Version 30-April-1998 Page 91(95)

© Copyright Wireless Application Protocol Forum, Ltd. 1998
All rights reserved.

Language Short Assigned
Number

Language Short Assigned
Number

Inupiak 0x32 Tagalog 0x78
Icelandic is 0x33 Setswana 0x79
Italian it 0x34 Tonga 0x7A
Inuktitut 0x35 Turkish tr 0x7B
Japanese ja 0x36 Tsonga 0x7C
Javanese 0x37 Tatar 0x7D
Georgian 0x38 Twi 0x7E
Kazakh 0x39 Uighur 0x7F
Greenlandic 0x3A Ukrainian uk 0x81
Cambodian 0x3B Urdu 0x82
Kannada 0x3C Uzbek 0x83
Korean ko 0x3D Vietnamese 0x84
Kashmiri 0x3E Volapuk 0x85
Kurdish 0x3F Wolof 0x86
Kirghiz 0x40 Xhosa 0x87
Latin 0x41 Yiddish (formerly ji) 0x88
Lingala 0x42 Yoruba 0x89
Laothian 0x43 Zhuang 0x8A
Lithuanian 0x44 Chinese zh 0x8B
Latvian, Lettish 0x45 Zulu 0x8C
Malagasy 0x46

The character set encodings are done using the MIBEnum values assigned by the IANA in the registry available in
<URL:ftp://ftp.isi.edu/in-notes/iana/assignments/character-sets>. The following table provides just a quick reference:

Table 42. Character Set Assignment Examples
Character set Assigned Number IANA MIBEnum value
big5 0x07EA 2026
iso-10646-ucs-2 0x03E8 1000
iso-8859-1 0x04 4
iso-8859-2 0x05 5
iso-8859-3 0x06 6
iso-8859-4 0x07 7
iso-8859-5 0x08 8
iso-8859-6 0x09 9
iso-8859-7 0x0A 10
iso-8859-8 0x0B 11
iso-8859-9 0x0C 12
shift_JIS 0x11 17
us-ascii 0x03 3
utf-8 0x6A 106
gsm-default-alphabet Not yet assigned Not yet assigned

Version 30-April-1998 Page 92(95)

© Copyright Wireless Application Protocol Forum, Ltd. 1998
All rights reserved.

Appendix B Header encoding examples
This section contains some illustrative examples for how header encoding shall be applied.

B.1 Header values
The header values are given in HTTP/1.1 syntax together with the corresponding WSP/B header encoded octet stream.

B.1.1 Encoding of primitive value

HTTP/1.1 header: Accept: application/x-wap.wmlc

Encoded header:

0x80 -- Well-known field name ”Accept” coded as a short integer
0x94 -- Well-known media ”application/x-wap.wmlc” coded as a short integer

B.1.2 Encoding of structured value

HTTP/1.1 header: Accept-Language: en;q=0.7

Encoded header:

0x83 -- Well-known field name ”Accept-Language”
0x02 -- Value length, general encoding must be applied.
0x99 -- Well-known language ”English”
0x47 -- Quality factor 0.7 (0.7 * 100 + 1 = 0x47)

B.1.3 Encoding of well-known list value

HTTP/1.1 header: Accept-Language: en, sv

Encoded header:

0x83 -- Well-known field name ”Accept-Language”
0x99 -- Well-known language ”English”
0x83 -- Well-known field name ”Accept-Language”
0xF0 -- Well-known language ”Swedish”

B.1.4 Encoding of date value

HTTP/1.1 header: Date: Thu, 23 Apr 1998 13:41:37 GMT

Encoded header:

0x92 -- Well-known field name ”Date”
0x04 -- Length of multi-octet integer
0x35 -- 4 date octets encoded as number of seconds from 1970-01-01,
0x3f -- 00:00:00 GMT. The most significant octet shall be first.
0x45 --
0x11 --

Version 30-April-1998 Page 93(95)

© Copyright Wireless Application Protocol Forum, Ltd. 1998
All rights reserved.

B.1.5 Encoding of Content range

HTTP/1.1 header: Content-range: bytes 0-499/1025

Encoded header:

0x90 -- Well-known field name ”Content-range”
0x03 -- Value length
0x00 -- First octet position
0x88 -- Entity length
0x01 -- Entity length

B.1.6 Encoding of a new unassigned token

HTTP/1.1 header: Accept-ranges: new-range-unit

Encoded header:

0x84 -- Well-known field name ”Accept-ranges”
’n’’e’’w’’-’’r’’a’’n’’g’’e’’-’’u’’i’’n’’t’ 0x00 -- Token coded as a null terminated text string

B.1.7 Encoding of a new unassigned header field name

HTTP/1.1 header: X-New-header: foo

Encoded header:

'X' '-' ‘N’’e’’w’’-’’h’’e’’a’’d’’e’’r’ 0x00 -- Field name coded as a null terminated text string
’f’’o’’o’ 0x00 -- Field value coded as null terminated text string

B.1.8 Encoding of a new unassigned list-valued header

HTTP/1.1 header: X-New-header: foo, bar

Encoded header:

'X' '-' ‘N’’e’’w’’-’’h’’e’’a’’d’’e’’r’ 0x00 -- Field name coded as a null terminated text string
’f’’o’’o’ ’,’ ’b’ ’a’ ’r’ 0x00 -- Field value coded as null terminated text string

B.2 Shift header code pages
This section illustrates how header code pages can be shifted.

B.2.1 Shift sequence

Shift to header code page 64

Encoded shift sequence:

0x7F -- Shift delimiter
0x40 -- Page identity

B.2.2 Short cut

Shift to header code page 16

Encoded shift sequence:

0x10 -- Short cut shift delimiter

Version 30-April-1998 Page 94(95)

© Copyright Wireless Application Protocol Forum, Ltd. 1998
All rights reserved.

Appendix C Implementation Notes
The following implementation notes are provided to identify areas where implementation choices may impact the
performance and effectiveness of the WSP protocols. These notes provide guidance to implementers of the protocols.

C.1 Confirmed Push and Delayed Acknowledgements
One of the features of the Wireless Transaction Protocol is delayed acknowledgement of transactions, which may
significantly reduce the number of messages sent over the bearer network. However, this feature may also result in poor
throughput for push traffic, especially if the server waits for a confirmed push to be acknowledged before starting the
next confirmed push transaction. Use of delayed acknowledgements will make the push cycle to take at least one round-
trip time plus the duration of the delayed acknowledgement timer. This effect will be even more pronounced when the
bearer network has a long round-trip delay, since then WTP will typically use a larger delayed acknowledgement timer
value.

The session layer protocol does not address this issue, because the WTP service interface does not include a means to
effect the delayed acknowledgement timer. Rather, the control of that timer is a matter local to the implementation. If
the performance implications are considered significant, an implementation should provide the service user with means
to specify the largest acceptable acknowledgement delay for each push transaction. Forcing the delayed
acknowledgement timer always to have a value that is small enough to provide good push throughput is not a good
solution. This will prevent the remaining WTP message traffic associated with method requests from being optimised,
and the number of messages sent over the air-interface will be doubled.

C.2 Handling of Race Conditions
Connection-mode WSP/B is layered on top of the service provided by the Wireless Transaction Protocol, which does
not guarantee that transaction invocations and results arrive to the peer in the same order as in which the service user
has submitted them. This results in certain race conditions, if method or push transactions are initiated while the session
creation procedure has not yet been fully completed. In order to reduce protocol complexity WSP/B does not attempt to
handle all of these gracefully, but in many cases simply chooses to abort the transaction caught in the race condition.
As a consequence the reason for an aborted transaction may be reported to be DISCONNECT, ie, non-existent session,
although the session actually exists and can be used. In such a case the service user should simply retry the transaction
request.

This policy was chosen, since these race conditions were not considered frequent enough to make the cost of the
additional protocol complexity worthwhile. However, if the problem is considered significant, it can still be alleviated
using certain implementation strategies. First of all, if session management, method and push transactions are initiated
so close together that the race conditions are possible, then WTP concatenation procedures should be capable of
combining the resulting PDUs into the same transport datagram. WTP should also handle the concatenation and
separation in such a manner that the order of operations is preserved, if the resulting PDUs are carried by the same
datagram. This will ensure that the state machine of WSP/B will not need to react to primitives related to method and
push transactions before it has had a chance to complete creation of the session.

If an implementation wants to prevent completely these kinds of race conditions, it can postpone the initiation of
method and push transactions until the session creation process is fully complete – this is quite legal as far as the
protocol peer is concerned. However, the resulting user experience may be considered unacceptably poor, if the used
bearer has a very long round-trip time.

Version 30-April-1998 Page 95(95)

© Copyright Wireless Application Protocol Forum, Ltd. 1998
All rights reserved.

C.3 Optimising Session Disconnection and Suspension
The protocol requires all pending method and push transactions to be aborted, when a peer starts disconnecting or
suspending a session. This may result in a burst of very short messages containing transaction abort PDUs being sent in
addition to the actual Disconnect or Suspend PDU. However, all these PDUs are so short, that typically it will be
possible to concatenate them into a single transport datagram. An implementation should ensure that it is able to
concatenate the PDUs at the WTP level at least in this special case, so that the impact on the network will be minimised.

C.4 Decoding the Header Encodings
WSP/B defines compact binary encodings for HTTP/1.1 headers. One method used to achieve this is the use of context
information to define, how a particular encoding is supposed to be interpreted, instead of encoding it explicitly. For
instance, the header field name implies the format of the header field value. In a structured value, the position of each
item implies its type, even if the binary encodings used to represent the values of different types may in fact be identical.
The most obvious method, which an implementation can use to support this, is using a top-down strategy when parsing
the header encoding.

C.5 Adding Well-known Parameters and Tokens
The header encoding defined by WSP/B imposes a strict syntax on the header field values. Within it only such values
that have been assigned well-known binary identities in advance can be encoded very compactly. If an application turns
out to use extensively token values and especially parameters, which have not been foreseen, the overhead of the
required textual encoding may eventually be considered prohibitive. If updating the WSP/B specification so that a new
protocol version is produced is not a viable approach, then more efficient encodings can still be implemented within the
WSP/B framework. The application may introduce an extension header code page, which redefines the syntax for the
appropriate standard HTTP/1.1 header so that the needed new well-known values are recognised. The application peers
can then use WSP/B capability negotiation to agree on using this new code page. Once this has been done, the
application can modify its header processing so, that the header defined on the new code page will be used instead of
the standard header with the same name. The cost of shifting to the new code page should be only one extra octet,
which should be more than offset by the more compact value encoding.

