
SOLID™Programmer Guide 

June, 2000
Version 3.51

Solid Information Technology Ltd.
www.solidtech.com
sales@solidtech.com;techsupp@solidtech.com



Copyright © 1992, 1993, 1994 by Microsoft Corporation

Copyright © 1992-2000 Solid Information Technology Ltd, Helsinki, Finland.

All rights reserved.  No portion of this product may be used in any way except as expressly authorized in writing by 
Solid Information Technology Ltd.

Solid logo with the text "SOLID" is a registered trademark of Solid Information Technology Ltd.

SOLID SynchroNet™, SOLID Embedded Engine™, SOLID Intelligent Transaction™, and SOLID Bonsai Tree™, 
SOLID SQL Editor™,  and SOLID Remote Control ™ are trademarks of Solid Information Technology Ltd.  

SOLID Intelligent Transaction patent pending Solid Information Technology Ltd.

This product contains the skeleton output parser for bison ("Bison"). Copyright (c) 1984, 1989, 1990 Bob Corbett 
and Richard Stallman.

Java is a Trademark of Sun Microsystems, Inc.

For a period of three (3) years from the date of this license, Solid Information Technology, Ltd. will provide you, the 
licensee, with a copy of the Bison source code upon receipt of your written request and the payment of Solid's rea-
sonable costs for providing such copy.

Document number  SSPG-3.51-0600
Date: June 26,  2000



Contents

Welcome .......................................................................................................................................................    vii

1  Introduction to SOLID APIs

SOLID ODBC Driver ............................................................................................................................    1-1
SOLID Light Client ...............................................................................................................................    1-3
SOLID JDBC Driver .............................................................................................................................    1-3

2  Using SOLID ODBC API

Calling Functions ..................................................................................................................................    2-1
Connecting to a Data Source ...............................................................................................................    2-4
Executing Transactions ........................................................................................................................    2-7
Setting SOLID Parameter Values........................................................................................................    2-8
Retrieving Information About the Data Source’s Catalog................................................................    2-9
Using ODBC Extensions to SQL .......................................................................................................    2-10
Using Cursors......................................................................................................................................    2-15
Using Bookmarks................................................................................................................................    2-18
Error Text Format ..............................................................................................................................    2-18
Terminating Transactions and Connections.....................................................................................    2-20
Constructing an Application..............................................................................................................    2-21
Testing and Debugging an Application .............................................................................................    2-35
Installing and Configuring ODBC Software ....................................................................................    2-35

3  Stored Procedures, Events, Triggers, and Sequences

Stored Procedures .................................................................................................................................    3-1
Using SQL in a Stored Procedure .....................................................................................................    3-15
                                                                               iii



Calling other Procedures....................................................................................................................    3-23
Procedure privileges ...........................................................................................................................    3-27
Using Triggers .....................................................................................................................................    3-28
Triggers and Procedures.....................................................................................................................    3-36
Using Sequences ..................................................................................................................................    3-55
Using Events ........................................................................................................................................    3-56

4  Using UNICODE

What is Unicode? ..................................................................................................................................    4-1
Implementing Unicode .........................................................................................................................    4-3
Setting Up Unicode Data ......................................................................................................................    4-4
SOLID Light Client ...............................................................................................................................    4-6
Unicode and SOLID JDBC Driver.......................................................................................................    4-6

5  Using SOLID Light Client

What is SOLID Light Client? ...............................................................................................................    5-1
Getting started with SOLID Light Client............................................................................................    5-2
Running SQL Statements on SOLID Light Client .............................................................................    5-5
Special Notes about using SOLID Light Client ................................................................................    5-11
SOLID Light Client Function Summary ...........................................................................................    5-11
SOLID Light Client Samples ..............................................................................................................    5-14
SOLID Light Client Function Reference ...........................................................................................    5-21
SQLAllocConnect (ODBC 1.0, Core) ................................................................................................    5-21
SQLAllocEnv (ODBC 1.0, Core) .......................................................................................................    5-22
SQLAllocStmt (ODBC 1.0, Core) ......................................................................................................    5-22
SQLConnect (ODBC 1.0, Core).........................................................................................................    5-23
SQLDescribeCol (ODBC 1.0, Core) ..................................................................................................    5-24
SQLDisconnect (ODBC 1.0, Core) ....................................................................................................    5-26
SQLError (ODBC 1.0, Core) .............................................................................................................    5-27
SQLExecDirect (ODBC 1.0, Core) ....................................................................................................    5-28
SQLExecute (ODBC 1.0, Core) .........................................................................................................    5-29
SQLFetch (ODBC 1.0, Core) .............................................................................................................    5-29
SQLFreeConnect (ODBC 1.0, Core) .................................................................................................    5-30
SQLFreeEnv (ODBC 1.0, Core).........................................................................................................    5-30
SQLFreeStmt (ODBC 1.0, Core) .......................................................................................................    5-31
iv SOLID Programmer Guide                              



SQLGetCursorName (ODBC 1.0, Core) ..........................................................................................    5-32
SQLGetData (ODBC 1.0, Level 1) ....................................................................................................    5-32
SQLNumResultCols (ODBC 1.0, Core) ............................................................................................    5-35
SQLPrepare (ODBC 1.0, Core) .........................................................................................................    5-35
SQLRowCount (ODBC 1.0, Core) ....................................................................................................    5-36
SQLSetCursorName (ODBC 1.0, Core) ...........................................................................................    5-37
SQLTransact (ODBC 1.0, Core) ........................................................................................................    5-37
Non-ODBC SOLID Light Client Functions ......................................................................................    5-38

6  Using the SOLID JDBC Driver

What is SOLID JDBC Driver? .............................................................................................................    6-1
Getting started with SOLID JDBC Driver..........................................................................................    6-2
Using DatabaseMetadata .....................................................................................................................    6-8
Special Notes About SOLID and JDBC .............................................................................................    6-9
JDBC Driver Interfaces and Methods ...............................................................................................    6-10
Code Examples....................................................................................................................................    6-27
SOLID JDBC Driver Type Conversion Matrix ................................................................................    6-50

A  SOLID Supported ODBC Functions

B  Error Codes

C  SQL Minimum Grammar

SQL Statements ....................................................................................................................................   C-1
SQL Statement Elements .....................................................................................................................   C-2
Data Type Support................................................................................................................................   C-4
Parameter Data Types ..........................................................................................................................   C-4
Literals in ODBC ..................................................................................................................................   C-5
List of Reserved Keywords ..................................................................................................................   C-7

D  Data Types

SQL Data Types ....................................................................................................................................   D-3
C Data Types .........................................................................................................................................   D-8
Numeric Literals .................................................................................................................................   D-12
                                                                    v



Overriding Default Precision and Scale for Numeric Data Types.................................................    D-15
Data Type Identifiers and Descriptors .............................................................................................    D-16
Decimal Digits ....................................................................................................................................    D-17
Transfer Octet Length .......................................................................................................................    D-19
Constraints of the Gregorian Calendar ...........................................................................................    D-21
Converting Data from SQL to C Data Types ..................................................................................    D-21
Converting Data from C to SQL Data Types ..................................................................................    D-37

E  Scalar Functions

ODBC and SQL-92 Scalar Functions .................................................................................................    E-1
String Functions ....................................................................................................................................    E-2
Numeric Functions................................................................................................................................    E-5
Time and Date Functions .....................................................................................................................    E-8
System Functions ................................................................................................................................   E-13
Explicit Data Type Conversion ..........................................................................................................   E-14
SQL-92 CAST Function .....................................................................................................................   E-16

Index
vi SOLID Programmer Guide                              



Welcome

SOLID is a data management product for today’s smart networks.

SOLID provides support for real-time operating systems such as VxWorks and ChorusOS, 
and for preferred platforms such as Windows 98/NT, Linux, Solaris, HP-UX and other 
UNIX platforms. It also provides the features you would expect to find in any industrial-
strength database server—multithread architecture, stored procedures, optimistic row level 
transaction management, but delivered with the special needs of today’s applications.

About this Guide
The SOLID Programmer Guide contains information about using the different Applica-
tion Programming Interfaces with SOLID Embedded EngineTM or SOLID SynchroNetTM.

SOLID ODBC Driver, SOLID Light Client and SOLID JDBC Driver, are available for 
application development purposes. SOLID’s 32-bit native ODBC Driver conforms to the 
Microsoft ODBC 3.5.x API standard. SOLID Light Client is a lightweight version of the 
SOLID ODBC API and is intended for environments where the footprint of the client appli-
cation is critical. The SOLID JDBC Driver is a SOLID implementation of the JDBC 2.0 
standard. 

Organization
This manual contains the following chapters:

■ Chapter 1, Introduction to SOLID APIs, provides an overview of the application pro-
gramming interfaces available for accessing SOLID databases.

■ Chapter 2, Using SOLID ODBC API, provides SOLID-specific information for develop-
ing applications with ODBC API.

■ Chapter 3, Stored Procedures, Events, Triggers, and Sequences, explains advanced fea-
tures for developing applications using SOLID.
                                                                             vii



■ Chapter 4, Using UNICODE, describes how to implement the UNICODE standard, pro-
viding the capability to encode characters used in the major languages of the world.

■  Chapter 5, Using SOLID Light Client, describes how to use SOLID Light Client, and 
API especially designed for implementing embedded solutions with limited memory 
resources. 

■ Chapter 6, Using the SOLID JDBC Driver, describes how to use the SOLID JDBC 
Driver, a 100% Pure JavaTM implementation of the Java Database Connectivity 
(JDBCTM) standard.

The Appendixes give you detailed information about error messages, data types, and SOLID 
SQL functionality, etc.

Audience
This guide assumes a working knowledge of the C and Java programming languages, gen-
eral DBMS knowledge, and a familiarity with SQL, SOLID Embedded Engine or SOLID 
SynchroNet. 

 Conventions

Product Name
■ In version 3.5, SOLID Server or SOLID Web Engine is now known as SOLID Embed-

ded Engine. Note that this guide may still contain references to the old name SOLID 
Server.

■ In this guide, "Solid server" or "Solid database" is used synonymously to refer to the 
server or database used in either SOLID products, SOLID Embedded Engine or SOLID 
SynchroNet. 

■ In this guide, "SOLID" used alone and in uppercase refers to both products, SOLID 
SynchroNet and SOLID Embedded Engine. In addition, "SOLID" is the short company 
name for Solid Information Technology (SOLID).

Typographic
This manual uses the following typographic conventions.

Format Used for

WIN.INI Uppercase letters indicate filenames, SQL 
statements, macro names, and terms used 
at the operating-system command level.
viii                                                                                      



Other SOLID Documentation
SOLID documentation is distributed as printed material or in an electronic format (PDF, 
HTML, or Windows Help files).

SOLID Online Services on our Web server offer the latest product and technical information 
free of charge. The service is located at:

http://www.solidtech.com/

Electronic Documentation
■ Read Me contains installation instructions and additional information about the spe-

cific product version. This readme.txt file is typically copied onto your system 
when you install the software.

RETCODE SQLFetch(hdbc) This font is used for sample command 
lines and program code.

argument Italicized words indicate information that 
the user or the application must provide, or 
word emphasis.

SQLTransact Bold type indicates that syntax must be 
typed exactly as shown, including func-
tion names.

[ ] Brackets indicate optional items; if in bold 
text, brackets must be included in the syn-
tax.

| A vertical bar separates two mutually 
exclusive choices in a syntax line.

{ } Braces delimit a set of mutually exclusive 
choices in a syntax line; if in bold text, 
braces must be included in the syntax.

... An ellipsis indicates that arguments can be 
repeated several times.

.

.

.

A column of three dots indicates continua-
tion of previous lines of code.
                                                                                   ix



■ Release Notes contains additional information about the specific product version. This 
relnotes.txt file is typically copied onto your system when you install the soft-
ware.

■ SOLID SynchroNet Guide describes administrative procedures for SOLID Synchro-
Net. It also provides information about SOLID SQL functionality.

■ SOLID Embedded Engine Administrator Guide describes administrative procedures 
for SOLID Embedded Engine, including tools and utilities, and also reference informa-
tion.

Where to Find Additional Information
For more information about SQL, the following standards are available:

■ Database Language — SQL with Integrity Enhancement, ANSI, 1989 ANSI X3.135-
1989.

■ Database Language — SQL: ANSI X3H2 and ISO/IEC JTC1/SC21/WG3 9075:1992 
(SQL-92).

■ X/Open CAE Specification, Structured Query Language (SQL), C201 (X/Open Com-
pany Ltd., U.K., 1992).

In addition to standards and vendor-specific SQL guides, there are many books that 
describe SQL, including:

■ Date, C. J, with Darwen, Hugh.: A Guide to the SQL Standard (Addison-Wesley, 1989).

■ Emerson, Sandra L., Darnovsky, Marcy, and Bowman, Judith S.: The Practical SQL 
Handbook (Addison-Wesley, 1989).

■ Groff, James R. and Weinberg, Paul N.: Using SQL (Osborne McGraw-Hill, 1990).

■ Gruber, Martin: Understanding SQL (Sybex, 1990).

■ Hursch, Jack L. and Carolyn J.: SQL, The Structured Query Language (TAB Books, 
1988).

■ Melton, Jim and Simon, Alan R.: Understanding the new SQL: A Complete Guide 
(Morgan Kaufmann, 1993).

■ Pascal, Fabian: SQL and Relational Basics (M & T Books, 1990).

■ Trimble, J. Harvey, Jr. and Chappell, David: A Visual Introduction to SQL (Wiley, 
1989).

■ Van der Lans, Rick F.: Introduction to SQL (Addison-Wesley, 1988).
x                                                                                      



■ Vang, Soren: SQL and Relational Databases (Microtrend Books, 1990).

■ Viescas, John: Quick Reference Guide to SQL (Microsoft Corp., 1989).
                                                                                   xi



xii                                                                                      



1 

Introduction to SOLID APIs 

This chapter provides an overview of the application programming interfaces available to 
you for accessing SOLID databases. These APIs include:

■ SOLID ODBC Driver

■ SOLID Light Client

■ SOLID JDBC Driver

SOLID ODBC Driver
SOLID’s 32-bit native ODBC Driver conforms to the Microsoft ODBC 3.5.x API standard. 
The SOLID ODBC Driver maintains a transaction for each active database connection. For 
differences in SOLID implementation, refer to the appropriate topic in this manual. 

You can download the SOLID ODBC Driver Package as a part of the SDK from the SOLID 
Web site. For other environments that support the ODBC Driver as an option, see the SOLID 
Web site.

Depending on the applications request, the SOLID ODBC Driver can automatically commit 
each SQL statement or wait for an explicit commit or rollback request. When the driver per-
forms a commit or rollback operation, the driver resets all statement requests associated with 
the connection. 

The Driver Manager, which applies to Windows NT/2000/98/95 environments, manages the 
work of allowing an application to switch connections while transactions are in progress on 
the current connection.

Using SOLID ODBC Driver Functions
Users on all platforms can also access ODBC Driver supported functions with SOLID 
ODBC API. The SOLID ODBC API is the native call level interface (CLI) for SOLID data-
                                                            Introduction to SOLID APIs 1-1



SOLID ODBC Driver
bases. It is a DLL for Windows and a library for other environments. SOLID ODBC API is 
compliant with ANSI X3H2 SQL CLI.

SOLID’s implementation of ODBC API supports a rich set of database access operations 
sufficient for creating robust database applications, including:

■ Allocating and deallocating handles

■ Getting and setting attributes

■ Opening and closing database connections

■ Accessing descriptors

■ Executing SQL statements

■ Accessing schema metadata

■ Controlling transactions

■ Accessing diagnostic information

ODBC API Basic Application Steps
A database application calls the SOLID ODBC API directly or through the ODBC Driver 
Manager, to perform all interactions with a database. These interfaces enable applications to 
establish multiple database connections simultaneously and to process multiple statements 
simultaneously.

An application using ODBC API performs the following tasks:

1. The application allocates memory for an environment handle (henv) and a connection 
handle (hdbc); both are required to establish a database connection.

An application may request multiple connections for one or more data sources. Each 
connection is considered a separate transaction space.

2. The SQLConnect call establishes the database connection, specifying the server name, 
user id, and password. 

3. The application then allocates memory for a statement handle and calls either SQLEx-
ecDirect, which both prepares and executes a SQL statement, or SQLPrepare and 
SQLExecute, which allows statements to be executed multiple times.

4. If the statement was a SELECT, the resulting columns need to be bound to variables in 
the application. This is done by using SQLBindCol. The rows can then be fetched using 
SQLFetch repeatedly. SELECT statements need to be committed, as soon as process-
ing of the resultset is done.
1-2 SOLID Programmer Guide                              



SOLID JDBC Driver
5. If the statement was a UPDATE, DELETE or INSERT, the application needs to check if 
the execution succeeded and call SQLTransact to commit the transaction. 

6. Finally the application closes the connection.

Read Chapter 2,“Using SOLID ODBC API,” for more information on using these APIs.

SOLID Light Client
SOLID Light Client allows you to develop small-footprint applications using C (or any tool 
that conforms to the C function call conversion). It is a 20-function subset of the ODBC API, 
providing full SQL capabilities for application developers accessing data from SOLID data-
bases. It provides functions for controlling database connections, executing SQL statements, 
retrieving result sets, committing transactions, and other data management functionality. 
Read Chapter 5,“Using SOLID Light Client,”for more details.

SOLID JDBC Driver
SOLID JDBC Driver allows you to develop your application with a Java tool that accesses 
the database using JDBC. The JDBC API, the core API for JDK 1.2, defines Java classes to 
represent database connections, SQL statements, result sets, database metadata, etc. It allows 
you to issue SQL statements and process the results. JDBC is the primary API for database 
access in Java. Read Chapter 6,“Using the SOLID JDBC Driver,” for more details.
                                                                    Introduction to SOLID APIs 1-3



SOLID JDBC Driver
1-4 SOLID Programmer Guide                              



2 

Using SOLID ODBC API

This chapter contains SOLID-specific information for developing applications with ODBC 
API. In general, SOLID conforms to the Microsoft ODBC 3.5.x standard. This chapter 
details those areas where SOLID-specific usage applies and where support for options, 
datatypes, and functions differ.

NoteNote

This Programmer Guide does not contain a full ODBC API reference. This chapter provides 
SOLID-specific additions, supplements, and usage samples to that material.

For details on developing applications with ODBC API, refer to the Microsoft® Data Access 
SDK Online ODBC Programmer’s Reference. For your convenience, the main portions of 
this reference are available in PDF format on the SOLID Web site. This reference includes 
usage chapters describing how to develop applications with ODBC API, as well as a com-
prehensive function reference. 

Calling Functions
Programs that call standard Microsoft ODBC functions must include the SQL.H, 
SQLEXT.H header files. These files define ODBC constants and types and provide function 
prototypes for all standard ODBC functions. Functions defined in these header files provide 
support for ASCII character data types only.

Programs that call SOLID ODBC API specific functions must include the Microsoft ODBC 
standard header SQLUCODE.H and the Microsoft Visual C++ (or devstudio) package 
INCLUDE file, WCHAR.H. These files define constants and types and provide function 
                                                            Using SOLID ODBC API 2-1



Calling Functions
prototypes for all SOLID ODBC API functions. Functions defined in these header files pro-
vide support for ASCII and Unicode character data types.

For details on driver, API, and SQL conformance levels, refer to the Microsoft ODBC API 
Specification (Part I PDF file), "Introduction to ODBC" available on the SOLID Web site.

Using the ODBC Driver Manager
In the Windows platform, the Driver Manager is a DLL to gain access to the SOLID ODBC 
Driver. An application typically links with the Driver Manager import library (ODBC.LIB) 
to gain access to the Driver Manager. In other platforms, SOLID provides the same driver 
library to be dynamically /statically linked to the application. 

NoteNote

Applications accessing ODBC API may bypass the Driver Manager to access data from 
SOLID databases by directly linking with the driver. The Driver Manager only applies to 
Windows NT/2000/98/95 environments. Other platforms do not use the Driver Manager; 
however, the Driver Manager is required if applications that connect to SOLID use OLE DB 
or ADO APIs or if database tools that require the Driver Manager, such as Microsoft Access, 
FoxPro, or Crystal Reports are to be used.

For basic application steps that occur whenever an application calls an ODBC function and 
details on calling ODBC functions, refer to the Microsoft ODBC API Specification (Part I 
PDF file), "Introduction to ODBC" available on the SOLID Web site.

Data Types
Appendix D, “Data Types” provides information about SOLID supported data types. The C 
standard Microsoft ODBC data types are defined in SQL.H and SQLEXT.H. The functions 
defined in these header files provide support for ASCII character string data types only.

NoteNote

The C data types of SOLID ODBC API are defined in SQLUCODE.H and WCHAR.H. 
These files provide unicode format.
2-2 SOLID Programmer Guide                              



Calling Functions
Scalar Functions
Scalar functions return a value for each row. For example, the absolute value scalar function 
takes a numeric column as an argument and returns the absolute value of each value in the 
column. For a list of functions that can be invoked with the following ODBC escape 
sequence, refer to Appendix E, “Scalar Functions”:

{fn scalar-function}

SOLID Native Scalar Functions
SOLID provides the following native scalar functions, which cannot be invoked using the 
ODBC escape sequence. They are:

■ CURRENT_CATALOG() - returns WVARCHAR string. which contains the current 
active catalog name. This name is the same as ODBC scalar function {fn DATA-
BASE()}.

■ LOGIN_CATALOG() - returns WVARCHAR string, which contains the login catalog 
for the connected user (currently the login catalog is the same as the system catalog).

■ CURRENT_SCHEMA() - returns WVARCHAR string, which contains the current 
active schema name.

Function Return Codes
When an application calls a function, the driver executes the function and returns a pre-
defined code. These return codes indicate success, warning, or failure status. The return 
codes are:

SQL_SUCCESS

SQL_SUCCESS_WITH_INFO

SQL_NO_DATA_FOUND

SQL_ERROR

SQL_INVALID_HANDLE

SQL_STILL_EXECUTING

SQL_NEED_DATA

If the function returns SQL_SUCCESS_WITH_INFO or SQL_ERROR, the application can 
call SQLError to retrieve additional information about the error. 
                                                                    Using SOLID ODBC API 2-3



Connecting to a Data Source
Connecting to a Data Source
A data source consists of the data a user wants to access, its associated DBMS, the platform 
on which the DBMS resides, and the network (if any) used to access that platform. Each data 
source requires that a driver provide certain information in order to connect to it. At the core 
level, this is defined to be the name of the data source, a user ID, and a password. ODBC 
extensions allow drivers to specify additional information such as a network address or addi-
tional passwords.

For example, the section that describes the SOLID data source might be:

[soliddb]
DRIVER32=C:\WINNT\System32\bocw3235.dll

Notes

1. If the used data source name can be interpreted as a valid SOLID (server) network 
name, the client first connects using the information given in the data source name. A 
valid network name consists of a communication protocol, and optional host computer 
name and a server name. See the SOLID Embedded Engine Administrator Guide or 
SOLID SynchroNet Guide for more information about listen names.

2. If the data source name is not a valid SOLID (server) listen name, the information 
needed to locate a server in the network is read from the ODBC.INI file or registry.

The connection information for each data source is stored in the ODBC.INI file or regis-
try, which is created during installation and maintained with an administration program. 
A section in this file lists the available data sources. Additional sections describe each 
data source in detail, specifying the driver name, a description, and any additional infor-
mation the driver needs in order to connect to the data source.

3. Applications that bypass the Driver Manager to access data from SOLID databases by 
directly linking with the driver must connect to the server using a valid listen name. If 
the data source name is not a valid SOLID (server) listen name, all SOLID client appli-
cations search for a valid listen name from:

a) the SOLID.INI file
b) the ODBC.INI or registry

See SOLID Embedded Engine Administrator Guide or SOLID SynchroNet Guide 
for more information about the use of data source names.
______________________________________________________________________
2-4 SOLID Programmer Guide                              



Connecting to a Data Source
NoteNote

When an application uses ODBC API directly and calls SQLConnect and does not specify a 
SOLID Embedded Engine or SOLID SynchroNet network name, it is read from the parame-
ter Connect in the [Com] section of the solid.ini file. The solid.ini file must reside 
in the current working directory of the application or in path specified by the SOLIDDIR 
environment variable.

Configuring the SOLID ODBC Data Source for Windows
To configure an ODBC data source for Windows, users perform the following steps:

1. Invoke ODBC32 Data Sources from the Control Panel.

2. Select the SOLID ODBC 3.50 Driver.

3. Enter the Data Source configuration in the SOLID ODBC Driver Setup box as shown in 
the following example. Note that the NetworkName entry should be compliant with the 
database server listen addresses defined in solid.ini.
                                                                    Using SOLID ODBC API 2-5



Connecting to a Data Source
Retrieving User Login Information
If the application calls SQLDriverConnect and requests that the user be prompted for infor-
mation, the Driver Manager displays a dialog box similar to the following example:
2-6 SOLID Programmer Guide                              



Executing Transactions
On request from the application, the driver retrieves login information by displaying the fol-
lowing dialog box:

Executing Transactions
In auto-commit mode, every SQL statement is a complete transaction, which is automati-
cally committed when the next statement is executed. Please refer to the important note 
below on SELECT statements and autocommit mode.

In manual-commit mode, a transaction consists of one or more statements. In manual-com-
mit mode, when an application submits a SQL statement and no transaction is open, the 
driver implicitly begins a transaction. The transaction remains open until the application 
commits or rolls back the transaction with SQLEndTran. 

Cursors and Autocommit

Important

Note that committing SELECT/read-only transactions is required in SOLID, even if you 
plan to use the AUTOCOMMIT ON mode. 

If a transaction is not committed, it stays alive until the client disconnects or the transaction 
is timed out. This can result in a long-running transaction that can cause significant perfor-
mance problems. SOLID saves the ’read-level’ of a transaction in memory. All subsequent 
transactions from other connections are also maintained in the memory. (This behavior is 
part of the advanced predicate validation and row versioning in the Bonsai Tree technology.)
                                                                    Using SOLID ODBC API 2-7



Setting SOLID Parameter Values
Committing transactions keeps the amount of needed memory small. If a transaction is not 
committed, memory growth (due, for example, to a non-committed ’select transaction’) may 
become large and exceed the available resources, eventually causing a performance problem.

AUTOCOMMIT mode set to "on" amplifies this issue because SELECTs in AUTOCOM-
MIT mode are committed automatically only when the next statement is executed. To pre-
vent this problem from occurring, users should explicitly close the cursor, which allows for 
the commit to occur and prevents unwarranted Bonsai Tree growth.

Setting SOLID Parameter Values
To set a parameter value, an application performs the following steps in any order:

■ Calls SQLBindParameter to bind a storage location to a parameter marker and specify 
the data types of the storage location and the column associated with the parameter, as 
well as the precision and scale of the parameter.

■ Places the parameter’s value in the storage location.

These steps can be performed before or after a statement is prepared, but must be performed 
before a statement is executed.

Parameter values must be placed in storage locations in the C data types specified in SQL-
BindParameter. For example:

Parameter Value SQL Data Type C Data Type Stored Value

ABC SQL_CHAR SQL_C_CHAR ABC\0 a

10 SQL_INTEGER SQL_C_SLONG 10

10 SQL_INTEGER SQL_C_CHAR 10\0 a

1 P.M. SQL_TIME SQL_C_TIME 13,0,0 b

1 P.M. SQL_TIME SQL_C_CHAR {t '13:00:00'}\0a,c

a “\0” represents a null-termination byte; the null termination byte is required only if the 
parameter length is SQL_NTS.

b The numbers in this list are the numbers stored in the fields of the TIME_STRUCT struc-
ture.

c The string uses the ODBC date escape clause. For more information, see “Date, Time, and 
Timestamp Data” later in this chapter.
2-8 SOLID Programmer Guide                              



Retrieving Information About the Data Source’s Catalog
Storage locations remain bound to parameter markers until the application calls SQLFree-
Handle or SQLFreeStmt with the SQL_RESET_PARAMS option. An application can bind 
a different storage area to a parameter marker at any time by calling SQLBindParameter. 
An application can also change the value in a storage location at any time. When a state-
ment is executed, the driver uses the current values in the most recently defined storage loca-
tions.

Retrieving Information About the Data Source’s Catalog
The following functions, known as catalog functions, return information about a data 
source’s catalog:

■ SQLTables returns the names of tables stored in a data source.

■ SQLTablePrivileges returns the privileges associated with one or more tables.

■ SQLColumns returns the names of columns in one or more tables.

■ SQLColumnPrivileges returns the privileges associated with each column in a single 
table.

■ SQLPrimaryKeys returns the names of columns that comprise the primary key of a 
single table.

■ SQLForeignKeys returns the names of columns in a single table that are foreign keys. 
It also returns the names of columns in other tables that refer to the primary key of the 
specified table.

■ SQLSpecialColumns returns information about the optimal set of columns that 
uniquely identify a row in a single table or the columns in that table that are automati-
cally updated when any value in the row is updated by a transaction.

■ SQLStatistics returns statistics about a single table and the indexes associated with that 
table.

■ SQLProcedures returns the names of procedures stored in a data source.

■ SQLProcedureColumns returns a list of the input and output parameters, as well as the 
names of columns in the result set, for one or more procedures.

Each function returns the information as a result set. An application retrieves these results by 
calling SQLBindCol and SQLFetch.
                                                                    Using SOLID ODBC API 2-9



Using ODBC Extensions to SQL
Executing Functions Asynchronously

NoteNote

ODBC drivers for SOLID Embedded Engine or SOLID SynchroNet do not support asynchro-
nous execution. 

Using ODBC Extensions to SQL
ODBC defines extensions to SQL, which are common to most DBMS’s. For details on SQL 
extensions, refer to "Escape Sequences in ODBC" in the Microsoft ODBC API Specifica-
tion (Part I PDF file that is available on the SOLID Web site) which contains the introduc-
tory part of the Microsoft ODBC Programmer’s Reference. 

Included in the ODBC extensions to SQL are:

■ Procedures

■ Hints

Details on SOLID usage for these extensions are described in the following sections.

Procedures
Stored procedures are procedural program code containing typically a single or several SQL 
statements and program logic. They are stored in the database and executed with one call 
from the application or another stored procedure. Read “Stored Procedures” on page 3-1 for 
a full description of SOLID stored procedures.

An application can call a procedure in place of a SQL statement. The escape clause ODBC 
uses for calling a procedure is:

{[?=] call procedure-name

[([parameter][,[parameter]]...)]}

where procedure-name specifies the name of a procedure stored on the data source and 
parameter specifies a procedure parameter.

A procedure can have zero or more parameters and can return a value through the optional 
parameter marker ?= shown in the syntax above. For input and input/output parameters, 
parameter can be a literal or a parameter marker. Because some data sources do not accept 
literal parameter values, be sure that interoperable applications use parameter markers. For 
output parameters, parameter must be a parameter marker. If a procedure call includes 
2-10 SOLID Programmer Guide                              



Using ODBC Extensions to SQL
parameter markers (including the “?=” parameter marker for the return value), the applica-
tion must bind each marker by calling SQLBindParameter prior to calling the procedure.

Procedure calls do not require input and input/output parameters. Note the following rules:

■ A procedure called with parentheses but with parameters omitted, such as {call 
procedure_name()}, may cause the procedure to fail.

■ A procedure called without parentheses, such as {call procedure_name}, returns no 
parameter values.

■ When a parameter is omitted, the comma delimiting it from other parameters must be 
present.

■ Omitted input or input/output parameters cause the driver to instruct the data source to 
use the default value of the parameter. As an option, a parameters default value can be 
set using the value of the length/indicator buffer bound to the parameter to 
SQL_DEFAULT_PARAM.

■ Omitted input/output parameters or literal parameter values cause the driver to discard 
the output value.

■ Omitted parameter markers for a procedure’s return value cause the driver to discard the 
return value.

■ If an application specifies a return value parameter for a procedure that does not return a 
value, the driver sets the value of the length/indicator buffer bound to the parameter to 
SQL_NULL_DATA.

To determine if a data source supports procedures, an application calls SQLGetInfo with the 
SQL_PROCEDURES information type. For more information about procedures, read 
“Stored Procedures” on page 3-1.

Hints
Within a query, Optimizer directives or hints can be specified to determine the query execu-
tion plan that is used. Hints are detected through a pseudo comment syntax from SQL2. 
SOLID provides its own extensions to hints: 

--(* vendor (SOLID), product (Engine), option(hint)

--hint *)--

hint :=

[MERGE JOIN |

LOOP JOIN |

JOIN ORDER FIXED |
                                                                    Using SOLID ODBC API 2-11



Using ODBC Extensions to SQL
INTERNAL SORT |

EXTERNAL SORT |

INDEX [REVERSE] table_name.index_name |

PRIMARY KEY [REVERSE] table_name

FULL SCAN table_name |

[NO] SORT BEFORE GROUP BY]

The pseudo comment prefix is followed by identifying information. Vendor is specified as 
SOLID, product as Engine, and the option, which is the pseudo comment class name, as a 
valid hint.

Hints always follow the SELECT, UPDATE, or DELETE keyword that applies to it. 

NoteNote

Hints are not allowed after the INSERT keyword. 

Each subselect requires its own hint; for example, the following are valid uses of hints syn-
tax:

INSERT INTO ... SELECT hint FROM ...

UPDATE hint TABLE ... WHERE column = (SELECT hint ... FROM ...)

DELETE hint TABLE ... WHERE column = (SELECT hint ... FROM ...)

Example 1
SELECT

--(* vendor(SOLID), product(Engine), option(hint)

--MERGE JOIN

--JOIN ORDER FIXED *)--
*
FROM TAB1 A, TAB2 B;

WHERE A.INTF = B.INTF;

Example 2
SELECT

--(* vendor(SOLID), product(Engine), option(hint)

--INDEX TAB1.INDEX1 
2-12 SOLID Programmer Guide                              



Using ODBC Extensions to SQL
--INDEX TAB1.INDEX1 FULL SCAN TAB2 *)--

*

FROM TAB1, TAB2

WHERE TAB1.INTF = TAB2.INTF;

Hint is a specific semantic, corresponding to a specific behavior. Following is a list of 
SOLID-supported hints:

Hint Definition

MERGE JOIN Directs the Optimizer to choose the merge join access plan in a select 
query for all tables listed in the FROM clause. Use this hint when the 
data is sorted by a join key and the nested loop join performance is not 
adequate. The MERGE JOIN option selects the merge join only where 
there is an equal predicate between tables. Otherwise, the Optimizer 
selects LOOP JOIN even if the MERGE JOIN hint is specified.

Note that when data is not sorted before performing the merge opera-
tion, the SOLID query executor sorts the data.

When considering the usage of this hint, keep in mind that the merge 
join with a sort is more resource intensive than the merge join without 
the sort. 

LOOP JOIN Directs the Optimizer to pick the nested loop join in a select query for 
all tables listed in the FROM clause. By default, the Optimizer does not 
pick the nested loop join. Using the loop join when tables are small and 
fit in memory may offer greater efficiency than using other complex 
join algorithms.

JOIN ORDER FIXED Specifies that the Optimizer use tables in a join in the order listed in the 
FROM clause of the query. This means that the Optimizer does not 
attempt to rearrange any join order and does not try to find alternate 
access paths to complete the join. 

Before using this hint, be sure to run the EXPLAIN PLAN to view the 
associated plan. This gives you an idea on the access plan used for exe-
cuting the query with this join order. 

INTERNAL SORT Specifies that the query executor use the internal sort. Use this hint if 
the expected result set is small (100s of rows as opposed to 1000s of 
rows); for example, if you are performing some aggregates, ORDER 
BY with small result sets, or GROUP BY with small result sets, etc.

This hint avoids the use of the more expensive external sort. 
                                                                    Using SOLID ODBC API 2-13



Using ODBC Extensions to SQL
EXTERNAL SORT Specifies that the query executor use the external sort. Use this hint 
when the expected result set is large and does not fit in memory; for 
example, if the expected result set has 1000s of rows. 

In addition, specify the SORT working directory in the solid.ini 
before using the external sort hint. If a working directory is not speci-
fied, you will receive a run-time error.

INDEX [REVERSE] 
table_name.index_name

Forces a given index scan for a given table. In this case, the Optimizer 
does not proceed to evaluate if there are any other indexes that can be 
used to build the access plan or whether a table scan is better for the 
given query. 

Before using this hint, it is recommended that you run the EXPLAIN 
PLAN output to ensure that the plan generated is optimal for the given 
query.

The optional keyword REVERSE returns the rows in the reverse order. 
In this case, the query executor begins with the last page of the index 
and starts returning the rows in the descending (reverse) key order of 
the index.

Note that in tablename.indexname, the tablename is a fully qualified 
table name which includes the catalogname and schemaname.

PRIMARY KEY 
[REVERSE] tablename

Forces a primary key scan for a given table. 

The optional keyword REVERSE returns the rows in the reverse order.

If the primary KEY is not available for the given table, then you will 
receive a run-time error.

FULL SCAN table_name Forces a table scan for a given table. In this case, the optimizer does 
not proceed to evaluate if there are any other indexes that can be used 
to build the access plan or whether a table scan is better for the given 
query.

Before using this hint, it is recommended that you run the EXPLAIN 
PLAN output to ensure that the plan generated is optimal for the given 
query.

In this FULL SCAN, the query executor tries to use the PRIMARY 
KEY, if one is available. If not, then it uses the SYSTEM KEY.

Hint Definition
2-14 SOLID Programmer Guide                              



Using Cursors
For more examples on hints, refer to the "Performance Tuning" chapter in the SOLID 
Embedded Engine Administrator Guide or SOLID SynchroNet Guide

Additional Extension Functions
ODBC provides the following functions related to SQL statements. Refer to the Microsoft 
ODBC API Specification (Part II PDF file that is available on the SOLID Web site) for more 
information about these functions.

Using Cursors
The ODBC Driver uses a cursor concept to keep track of its position in the resultset, that is, 
in the data rows retrieved from the database. A cursor is used for tracking and indicating the 
current position, similarly as the cursor on a CRT screen indicates cursor position.

Each time an application calls SQLFetch, the driver moves the cursor to the next row and 
returns that row. The cursor supported by the core ODBC functions only scrolls forward, one 
row at a time. (To re-retrieve a row of data that it has already retrieved from the result set, 
the application must close the cursor by calling SQLFreeStmt with the SQL_CLOSE 
option, re-execute the SELECT statement, and fetch rows with SQLFetch until the target 
row is retrieved.)

[NO] SORT BEFORE 
GROUP BY

Indicates whether the SORT operation occurs before the result set is 
grouped by the GROUP BY columns.

If the grouped items are few (100s of rows) then use NO SORT 
BEFORE. On the other hand, if the grouped items are large (1000s of 
rows), then use SORT BEFORE.

Function Description

SQLDescribeParam Retrieves information about prepared parameters.

SQLNumParams Retrieves the number of parameters in a SQL statement.

SQLSetStmtAttr
SQLSetConnectAttr
SQLGetStmtAttr

These functions set or retrieve statement options, such as 
asynchronous processing, orientation for binding rowsets, 
maximum amount of variable length data to return, maxi-
mum number of result set rows to return, and query time-
out value. Note that SQLSetConnectAttr sets options for 
all statements in a connection.

Hint Definition
                                                                    Using SOLID ODBC API 2-15



Using Cursors
Assigning Storage for Rowsets (Binding)
In addition to binding individual rows of data, an application can call SQLBindCol to assign 
storage for a rowset (one or more rows of data). By default, rowsets are bound in column-
wise fashion. They can also be bound in row-wise fashion.

To specify how many rows of data are in a rowset, an application calls SQLSetStmtAttr 
with the SQL_ROWSET_SIZE option.

Column-Wise Binding
To assign storage for column-wise bound results, an application performs the following steps 
for each column to be bound:

1. Allocates an array of data storage buffers. The array has as many elements as there are 
rows in the rowset.

2. Allocates an array of storage buffers to hold the number of bytes available to return for 
each data value. The array has as many elements as there are rows in the rowset.

3. Calls SQLBindCol and specifies the address of the data array, the size of one element 
of the data array, the address of the number-of-bytes array, and the type to which the 
data will be converted. When data is retrieved, the driver will use the array element size 
to determine where to store successive rows of data in the array.

Row-Wise Binding
To assign storage for row-wise bound results, an application performs the following steps:

1. Declares a structure that can hold a single row of retrieved data and the associated data 
lengths. (For each column to be bound, the structure contains one field to contain data 
and one field to contain the number of bytes of data available to return.)

2. Allocates an array of these structures. This array has as many elements as there are rows 
in the rowset.

3. Calls SQLBindCol for each column to be bound. In each call, the application specifies 
the address of the column’s data field in the first array element, the size of the data field, 
the address of the column’s number-of-bytes field in the first array element, and the type 
to which the data will be converted.

4. Calls SQLSetStmtAttr with the SQL_BIND_TYPE option and specifies the size of the 
structure. When the data is retrieved, the driver will use the structure size to determine 
where to store successive rows of data in the array.
2-16 SOLID Programmer Guide                              



Using Cursors
Cursor Support
Applications require different means to sense changes in the tables underlying a result set. 
For example, when balancing financial data, an accountant needs data that appears static; it 
is impossible to balance books when the data is continually changing. When selling concert 
tickets, a clerk needs up-to-the minute, or dynamic, data on which tickets are still available. 
Various cursor models are designed to meet these needs, each of which requires different 
sensitivities to changes in the tables underlying the result set.

SOLID cursors which are set with SQLSetStmtAttr as "dynamic" closely resemble static 
cursors, with some dynamic behavior. SOLID dynamic cursor behavior is static in the sense 
that changes made to the resultset by other users are not visible to the user, as opposed to 
dynamic cursors in which changes are visible to the user. 

The exception in SOLID’s cursor behavior is that transactions are able to view their own 
data changes, but cannot view the changes made by other transactions. The conditions in 
SOLID, however, that cause a user’s own changes to be invisible to that user are:

■ In a SELECT statement when an ORDER BY clause or a GROUP BY clause is used, 
SOLID caches the result set, which causes the user’s own change to be invisible to the 
user.

■ In applications written using ADO or OLE DB, SOLID cursors are more like dynamic 
ODBC cursors to enable functions such as a row set update.

Specifying the Cursor Type
To specify the cursor type, an application calls SQLSetStmtAttr with the 
SQL_CURSOR_TYPE option. The application can specify a cursor that only scrolls for-
ward, a static cursor, or a dynamic cursor. 

Unless the cursor is a forward-only cursor, an application calls SQLExtendedFetch (ODBC 
2.x) or SQLFetchScroll (ODBC 3.x) to scroll the cursor backwards or forwards. 

Cursor Support
Three types of cursors are defined in ODBC 3.51:

■ Driver Manager supported cursors

■ Server supported cursors

■ Driver supported cursors

SOLID cursors are server supported cursors. 
                                                                    Using SOLID ODBC API 2-17



Using Bookmarks
Cursors and Autocommit
For SOLID-specific information on cursors and autocommit, read “Setting SOLID Parame-
ter Values” on page 2-8.

Specifying Cursor Concurrency
Concurrency is the ability of more than one user to use the same data at the same time. A 
transaction is serializable if it is performed in a manner in which it appears as if no other 
transactions operate on the same data at the same time. For example, assume one transaction 
doubles data values and another adds 1 to data values. If the transactions are serializable and 
both attempt to operate on the values 0 and 10 at the same time, the final values will be 1 
and 21 or 2 and 22, depending on which transaction is performed first. If the transactions are 
not serializable, the final values will be 1 and 21, 2 and 22, 1 and 22, or 2 and 21; the sets of 
values 1 and 22, and 2 and 21, are the result of the transactions acting on each value in a dif-
ferent order.

Serializability is considered necessary to maintain database integrity. For cursors, it is most 
easily implemented at the expense of concurrency by locking the result set. A compromise 
between serializability and concurrency is optimistic concurrency control. In a cursor using 
optimistic concurrency control, the driver does not lock rows when it retrieves them. When 
the application requests an update or delete operation, the driver or data source checks if the 
row has changed. If the row has not changed, the driver or data source prevents other trans-
actions from changing the row until the operation is complete. If the row has changed, the 
transaction containing the update or delete operation fails.

Using Bookmarks
A bookmark is a 32-bit value that an application uses to return to a row. SOLID provides no 
support for bookmarks.

Error Text Format
Error messages returned by SQLError come from two sources: data sources and compo-
nents in an ODBC connection. Typically, data sources do not directly support ODBC. Con-
sequently, if a component in an ODBC connection receives an error message from a data 
source, it must identify the data source as the source of the error. It must also identify itself 
as the component that received the error.

If the source of an error is the component itself, the error message must explain this. There-
fore, the error text returned by SQLError has two different formats: one for errors that 
occur in a data source and one for errors that occur in other components in an ODBC con-
nection.
2-18 SOLID Programmer Guide                              



Error Text Format
For errors that do not occur in a data source, the error text must use the format:

[vendor_identifier][ODBC_component_identifier]

component_supplied_text

For errors that occur in a data source, the error text must use the format:

[vendor_identifier][ODBC_component_identifier]

[data_source_identifier] data_source_supplied_text

The following table shows the meaning of each element.

NoteNote

The brackets ([ ]) are included in the error text; they do not indicate optional items.

Sample Error Messages
The following examples show how various components in an ODBC connection might gen-
erate the text of error messages and how SOLID returns them to the application with 
SQLError. 

Element Meaning

vendor_identifier Identifies the vendor of the component in 
which the error occurred or that received the 
error directly from the data source.

ODBC_component_identifier Identifies the component in which the error 
occurred or that received the error directly 
from the data source.

data_source_identifier Identifies the data source. For single-tier driv-
ers, this is typically a file format. For multiple-
tier drivers, this is the DBMS product.

component_supplied_text Generated by the ODBC component.

data_source_supplied_text Generated by the data source.

01000 General warning

01S00 Invalid connection string attribute
                                                                    Using SOLID ODBC API 2-19



Terminating Transactions and Connections
SQLSTATE values are strings that contain five characters; the first two are a string class 
value, followed by a three-character subclass value. For example 01000 has 01 as its class 
value and 000 as its subclass value. Note that a subclass value of 000 means there is no sub-
class for that SQLSTATE. Class and subclass values are defined in SQL-92.

Processing Error Messages
Applications provide users with all the error information available through SQLError: the 
ODBC SQLSTATE, the native error code, the error text, and the source of the error. The 
application may parse the error text to separate the text from the information identifying the 
source of the error. It is the application’s responsibility to take appropriate action based on 
the error or provide the user with a choice of actions.

The ODBC interface provides functions that terminate statements, transactions, and connec-
tions, and free statement, connection, and environment handles.

Terminating Transactions and Connections
The ODBC interface provides functions that terminate statements, transactions, and connec-
tions, and free statement (hstmt), connection (hdbc), and environment (henv) handles.

Terminating Statement Processing
To free resources associated with a statement handle, an application calls SQLFreeStmt 
with the following options: 

■ SQL_CLOSE  - Closes the cursor, if one exists, and discards pending results. The 
application can use the statement handle again later. In ODBC 3.5.x, SQLCloseCursor 
can also be used.

■ SQL_UNBIND - Frees all return buffers bound by SQLBindCol for the statement han-
dle.

08001 Client unable to establish connec-
tion

Class value Meaning

01 Indicates a warning and includes a return code of 
SQL_SUCCESS_WITH_INFO.

01, 07, 08, 21, 22, 25, 28, 34, 
3C, 3D, 3F, 40, 42, 44, HY 

Indicates an error that includes a return value of 
SQL_ERROR.

IM Indicates warning and errors that are derived from ODBC.
2-20 SOLID Programmer Guide                              



Constructing an Application
■ SQL_RESET_PARAMS - Frees all parameter buffers requested by SQLBindParame-
ter for the statement handle.

The SQLFreeHandle is used to close the cursor if one exists, discard pending results, and 
free all resources associated with the statement handle.

Terminating Transactions
An application calls SQLTransact to commit or roll back the current transaction. 

Terminating Connections
To terminate a connection to a driver and data source, an application performs the following 
steps:

1. Calls SQLDisconnect to close the connection. The application can then use the handle 
to reconnect to the same data source or to a different data source.

2. Calls SQLFreeHandle to free the connection or environment handle and free all 
resources associated with the handle.

Constructing an Application
This section provides two examples of C-language source code for applications. 

Sample Application Code
The following sections contain two examples that are written in the C programming lan-
guage:

■ An example that uses static SQL functions to create a table, add data to it, and select the 
inserted data.

■ An example of interactive, ad-hoc query processing.

This example can use either Microsoft ODBC header files for ASCII data or SOLID ODBC 
API header files for unicode data.

Static SQL Example
The following example constructs SQL statements within the application. 

#if (defined(SS_UNIX) || defined(SS_LINUX))

#include <sqlunix.h>

#else
                                                                    Using SOLID ODBC API 2-21



Constructing an Application
#include <windows.h>

#endif

#if SOLIDODBCAPI

#include <sqlucode.h>

#include <wchar.h>

#else

#include <sql.h>

#include <sqlext.h>

#endif

#include <stdio.h>

#include <assert.h>

#define MAX_NAME_LEN 50

#define MAX_STMT_LEN 100

/***********************************************************************

Function Name: PrintError

Purpose: To Display the error associted with the handle

***********************************************************************/

SQLINTEGER PrintError(SQLSMALLINT handleType,SQLHANDLE handle)

{

SQLRETURN rc = SQL_ERROR;

SQLWCHAR sqlState[6];

SQLWCHAR eMsg[SQL_MAX_MESSAGE_LENGTH];

SQLINTEGER nError;

rc = SQLGetDiagRecW(handleType,handle,1,(SQLWCHAR *)&sqlState,

(SQLINTEGER *)&nError,(SQLWCHAR*)&eMsg,255,NULL);

if (rc == SQL_SUCCESS || rc == SQL_SUCCESS_WITH_INFO)   {      

printf("\n\t Error:%ls\n",eMsg);
2-22 SOLID Programmer Guide                              



Constructing an Application
}

return(SQL_ERROR);

}

/***********************************************************************

Function Name: DrawLine

Purpose: To Draw a specified charcter(chr) for specified 

number of times(len)

***********************************************************************/

void DrawLine(SQLINTEGER len,SQLCHAR chr)

{

printf("\n");

while(len > 0){

printf("%c",chr);

len--;

}

printf("\n");

}

/***********************************************************************

Function Name: example1

Purpose: Connect to the specified data source and execute the

set of SQL Statements

***********************************************************************/

SQLINTEGER example1(SQLCHAR *server, SQLCHAR *uid, SQLCHAR *pwd)

{

SQLHENV henv;

SQLHDBC hdbc;

SQLHSTMT hstmt;

SQLRETURN rc;

SQLINTEGER id;

SQLWCHAR drop[MAX_STMT_LEN];

SQLCHAR name[MAX_NAME_LEN+1];
                                                                    Using SOLID ODBC API 2-23



Constructing an Application
SQLWCHAR create[MAX_STMT_LEN];

SQLWCHAR insert[MAX_STMT_LEN];

SQLWCHAR select[MAX_STMT_LEN];

SQLINTEGER namelen;

/* Allocate environment and connection handles. */

/* Connect to the data source. */

/* Allocate a statement handle. */

rc = SQLAllocHandle(SQL_HANDLE_ENV,SQL_NULL_HANDLE,&henv);

if (rc != SQL_SUCCESS && rc != SQL_SUCCESS_WITH_INFO)

return(PrintError(SQL_HANDLE_ENV,henv));

rc = 
SQLSetEnvAttr(henv,SQL_ATTR_ODBC_VERSION,(SQLPOINTER)SQL_OV_ODBC3,SQL_NT
S);

if (rc != SQL_SUCCESS && rc != SQL_SUCCESS_WITH_INFO)

return(PrintError(SQL_HANDLE_ENV,henv));

rc = SQLAllocHandle(SQL_HANDLE_DBC,henv,&hdbc);

if (rc != SQL_SUCCESS && rc != SQL_SUCCESS_WITH_INFO)

return(PrintError(SQL_HANDLE_ENV,henv));

rc = SQLConnect(hdbc, server, SQL_NTS, uid, SQL_NTS,pwd, 
SQL_NTS);

if (rc != SQL_SUCCESS && rc != SQL_SUCCESS_WITH_INFO)

return(PrintError(SQL_HANDLE_DBC,hdbc));

rc = SQLAllocHandle(SQL_HANDLE_STMT,hdbc,&hstmt);

if (rc != SQL_SUCCESS && rc != SQL_SUCCESS_WITH_INFO)

return(PrintError(SQL_HANDLE_DBC,hdbc));
2-24 SOLID Programmer Guide                              



Constructing an Application
/* drop table 'nameid' if exists, else continue*/

wcscpy(drop,L"DROP TABLE NAMEID");

printf("\n%ls",drop);

DrawLine(wcslen(drop),'-');

rc = SQLExecDirectW(hstmt,drop,SQL_NTS);

if (rc == SQL_ERROR)

PrintError(SQL_HANDLE_STMT,hstmt);

/* commit work*/

rc = SQLEndTran(SQL_HANDLE_DBC,hdbc,SQL_COMMIT);

if (rc != SQL_SUCCESS && rc != SQL_SUCCESS_WITH_INFO)

return(PrintError(SQL_HANDLE_DBC,hdbc));

/* create the table nameid(id integer,name varchar(50))*/

wcscpy(create,L"CREATE TABLE NAMEID(ID INT,NAME 
VARCHAR(50))");

printf("\n%ls",create);

DrawLine(wcslen(create),'-');

rc = SQLExecDirectW(hstmt,create,SQL_NTS);

if (rc == SQL_ERROR)

return(PrintError(SQL_HANDLE_STMT,hstmt));

/* commit work*/

rc = SQLEndTran(SQL_HANDLE_DBC,hdbc,SQL_COMMIT);

if (rc != SQL_SUCCESS && rc != SQL_SUCCESS_WITH_INFO)

return(PrintError(SQL_HANDLE_DBC,hdbc));

/* insert data through parameters*/

wcscpy(insert,L"INSERT INTO NAMEID VALUES(?,?)");

printf("\n%ls",insert);
                                                                    Using SOLID ODBC API 2-25



Constructing an Application
DrawLine(wcslen(insert),'-');

rc = SQLPrepareW(hstmt,insert,SQL_NTS);

if (rc == SQL_ERROR)

return(PrintError(SQL_HANDLE_STMT,hstmt));

/* integer(id) data binding*/

rc = 
SQLBindParameter(hstmt,1,SQL_PARAM_INPUT,SQL_C_LONG,SQL_INTEGER,

0,0,&id,0,NULL);

if (rc != SQL_SUCCESS && rc != SQL_SUCCESS_WITH_INFO)

return(PrintError(SQL_HANDLE_DBC,hdbc));

/* char(name) data binding*/

rc = 
SQLBindParameter(hstmt,2,SQL_PARAM_INPUT,SQL_C_CHAR,SQL_VARCHAR,

0,0,&name,sizeof(name),NULL);

if (rc != SQL_SUCCESS && rc != SQL_SUCCESS_WITH_INFO)

return(PrintError(SQL_HANDLE_DBC,hdbc));

id = 100;

strcpy(name,"SOLID");

rc = SQLExecute(hstmt);

if (rc != SQL_SUCCESS && rc != SQL_SUCCESS_WITH_INFO)

return(PrintError(SQL_HANDLE_DBC,hdbc));

/* commit work*/

rc = SQLEndTran(SQL_HANDLE_DBC,hdbc,SQL_COMMIT);

if (rc != SQL_SUCCESS && rc != SQL_SUCCESS_WITH_INFO)

return(PrintError(SQL_HANDLE_DBC,hdbc));
2-26 SOLID Programmer Guide                              



Constructing an Application
/* free the statement buffers*/

rc = SQLFreeStmt(hstmt,SQL_RESET_PARAMS);

if (rc != SQL_SUCCESS && rc != SQL_SUCCESS_WITH_INFO)

return(PrintError(SQL_HANDLE_STMT,hstmt));

rc = SQLFreeStmt(hstmt,SQL_CLOSE);

if (rc != SQL_SUCCESS && rc != SQL_SUCCESS_WITH_INFO)

return(PrintError(SQL_HANDLE_STMT,hstmt));

/* select data from the table nameid*/

wcscpy(select,L"SELECT * FROM NAMEID");

printf("\n%ls",select);

DrawLine(wcslen(select),'-');

rc = SQLExecDirectW(hstmt,select,SQL_NTS);

if (rc != SQL_SUCCESS && rc != SQL_SUCCESS_WITH_INFO)

return(PrintError(SQL_HANDLE_DBC,hdbc));

/* bind buffers for output data*/

id = 0;

strcpy(name,"");

rc = SQLBindCol(hstmt,1,SQL_C_LONG,&id,0,NULL);

if (rc != SQL_SUCCESS && rc != SQL_SUCCESS_WITH_INFO)

return(PrintError(SQL_HANDLE_DBC,hdbc));

rc = 
SQLBindCol(hstmt,2,SQL_C_CHAR,&name,sizeof(name),&namelen);

if (rc != SQL_SUCCESS && rc != SQL_SUCCESS_WITH_INFO)

return(PrintError(SQL_HANDLE_DBC,hdbc));

rc = SQLFetch(hstmt);
                                                                    Using SOLID ODBC API 2-27



Constructing an Application
if (rc != SQL_SUCCESS && rc != SQL_SUCCESS_WITH_INFO)

return(PrintError(SQL_HANDLE_DBC,hdbc));

printf("\n Data ID:%d",id);

printf("\n Data Name:%s(%d)\n",name,namelen);

rc = SQLFetch(hstmt);

assert(rc == SQL_NO_DATA);

/* free the statement buffers*/

rc = SQLFreeStmt(hstmt,SQL_UNBIND);

if (rc != SQL_SUCCESS && rc != SQL_SUCCESS_WITH_INFO)

return(PrintError(SQL_HANDLE_STMT,hstmt));

rc = SQLFreeStmt(hstmt,SQL_CLOSE);

if (rc != SQL_SUCCESS && rc != SQL_SUCCESS_WITH_INFO)

return(PrintError(SQL_HANDLE_STMT,hstmt));

/* Free the statement handle. */

rc = SQLFreeHandle(SQL_HANDLE_STMT,hstmt);

if (rc != SQL_SUCCESS && rc != SQL_SUCCESS_WITH_INFO)

return(PrintError(SQL_HANDLE_STMT,hstmt));

/* Disconnect from the data source. */

rc = SQLDisconnect(hdbc);

if (rc != SQL_SUCCESS && rc != SQL_SUCCESS_WITH_INFO)

return(PrintError(SQL_HANDLE_DBC,hdbc));

/* Free the connection handle. */

rc = SQLFreeHandle(SQL_HANDLE_DBC,hdbc);

if (rc != SQL_SUCCESS && rc != SQL_SUCCESS_WITH_INFO)

return(PrintError(SQL_HANDLE_DBC,hdbc));
2-28 SOLID Programmer Guide                              



Constructing an Application
/* Free the environment handle. */

rc = SQLFreeHandle(SQL_HANDLE_ENV,henv);

if (rc != SQL_SUCCESS && rc != SQL_SUCCESS_WITH_INFO)

return(PrintError(SQL_HANDLE_ENV,henv));

return(0);

}

Interactive Ad Hoc Query Example
The following example illustrates how an application can determine the nature of the result 
set prior to retrieving results.

#if (defined(SS_UNIX) || defined(SS_LINUX))

#include <sqlunix.h>

#else

#include <windows.h>

#endif

#if SOLIDODBCAPI

#include <sqlucode.h>

#include <wchar.h>

#else

#include <sql.h>

#include <sqlext.h>

#endif

#include <stdio.h>

#ifndef TRUE

#define TRUE 1

#endif
                                                                    Using SOLID ODBC API 2-29



Constructing an Application
#define MAXCOLS 100

#define MAX_DATA_LEN 255

SQLHENV henv;

SQLHDBC hdbc;

SQLHSTMT hstmt;

/***********************************************************************

Function Name : PrintError

Purpose : To Display the error associted with the handle

***********************************************************************/

SQLINTEGER PrintError(SQLSMALLINT handleType,SQLHANDLE handle)

{

SQLRETURN rc = SQL_ERROR;

SQLCHAR sqlState[6];

SQLCHAR eMsg[SQL_MAX_MESSAGE_LENGTH];

SQLINTEGER nError;

rc = SQLGetDiagRec(handleType,handle,1,(SQLCHAR *)&sqlState,

 (SQLINTEGER *)&nError,(SQLCHAR *)&eMsg,255,NULL);

if (rc == SQL_SUCCESS || rc == SQL_SUCCESS_WITH_INFO)   {   

   

printf("\n\t Error:%s\n",eMsg);

}

return(SQL_ERROR);

}

/***********************************************************************

Function Name : DrawLine

Purpose : To Draw a specified charcter(line) for
specified number of times(len)

***********************************************************************/

void DrawLine(SQLINTEGER len,SQLCHAR line)

{

2-30 SOLID Programmer Guide                              



Constructing an Application
printf("\n");

while(len > 0){

printf("%c",line);

len--;

}

printf("\n");

}

/***********************************************************************

Function Name : example2

Purpose : Connect to the specified data source and

execute the given SQL statement According to the statement judge the

result set

***********************************************************************/

SQLINTEGER example2(SQLCHAR *sqlstr)

{

SQLINTEGERi;

SQLCHAR colname[32];

SQLSMALLINT coltype;

SQLSMALLINT colnamelen;

SQLSMALLINT nullable;

SQLINTEGER collen[MAXCOLS];

SQLSMALLINT scale;

SQLINTEGER outlen[MAXCOLS];

SQLCHAR data[MAXCOLS][MAX_DATA_LEN];

SQLSMALLINT nresultcols;

SQLINTEGER rowcount,nRowCount=0,lineLength=0;

SQLRETURN rc;

printf("\n%s",sqlstr);

DrawLine(strlen(sqlstr),'=');
                                                                    Using SOLID ODBC API 2-31



Constructing an Application
/* Execute the SQL statement. */

rc = SQLExecDirect(hstmt, sqlstr, SQL_NTS);

if (rc != SQL_SUCCESS && rc != SQL_SUCCESS_WITH_INFO)

return(PrintError(SQL_HANDLE_STMT,hstmt));

/* See what kind of statement it was. If there are */

/* no result columns, the statement is not a SELECT */

/* statement. If the number of affected rows is */

/* greater than 0, the statement was probably an */

/* UPDATE, INSERT, or DELETE statement, so print */

/* the number of affected rows. If the number of */

/* affected rows is 0, the statement is probably a */

/* DDL statement, so print that the operation was */

/* successful and commit it. */

rc = SQLNumResultCols(hstmt, &nresultcols);

if (rc != SQL_SUCCESS && rc != SQL_SUCCESS_WITH_INFO)

return(PrintError(SQL_HANDLE_STMT,hstmt));

if (nresultcols == 0) {

rc = SQLRowCount(hstmt, &rowcount);

if (rc != SQL_SUCCESS && rc != SQL_SUCCESS_WITH_INFO)

return(PrintError(SQL_HANDLE_STMT,hstmt));

if (rowcount > 0 ) {

printf("%ld rows affected.\n", rowcount);

} 

else {

printf("Operation successful.\n");

}

2-32 SOLID Programmer Guide                              



Constructing an Application
rc = SQLEndTran(SQL_HANDLE_DBC,hdbc,SQL_COMMIT);

if (rc != SQL_SUCCESS && rc != SQL_SUCCESS_WITH_INFO)

return(PrintError(SQL_HANDLE_DBC,hdbc));

} 

/* Otherwise, display the column names of the result */

/* set and use the display_size() function to */

/* compute the length needed by each data type. */

/* Next, bind the columns and specify all data will */

/* be converted to char. Finally, fetch and print */

/* each row, printing truncation messages as */

/* necessary. */

else {

for (i = 0; i < nresultcols; i++) {

rc = SQLDescribeCol(hstmt, i + 1, 
colname,(SQLSMALLINT)sizeof(colname), &colnamelen,

&coltype, &collen[i], 
&scale,&nullable);

if (rc != SQL_SUCCESS && rc != 
SQL_SUCCESS_WITH_INFO)

return(PrintError(SQL_HANDLE_STMT,hstmt));

printf("%s\t",colname);/* print column names*/

rc = SQLBindCol(hstmt, i + 1, 
SQL_C_CHAR,data[i],sizeof(data[i]),&outlen[i]);

if (rc != SQL_SUCCESS && rc != 
SQL_SUCCESS_WITH_INFO)

return(PrintError(SQL_HANDLE_STMT,hstmt));

lineLength+=6+strlen(colname);

}

                                                                    Using SOLID ODBC API 2-33



Constructing an Application
DrawLine(lineLength-6,'-');

 while (TRUE){

                rc = SQLFetch(hstmt);

if (rc ==SQL_SUCCESS || rc == 
SQL_SUCCESS_WITH_INFO) {

nRowCount++;

 for (i = 0; i < nresultcols; i++) {

if (outlen[i] == SQL_NULL_DATA) {

strcpy((char *)data[i], 
"NULL");

         }

printf("%s\t",data[i]);

   }

printf("\n");

  }

else {

                    if (rc == SQL_ERROR)

                        PrintError(SQL_HANDLE_STMT,hstmt);

break;

 }

}

 printf("\n\tTotal Rows:%d\n",nRowCount);

}

SQLFreeStmt(hstmt,SQL_UNBIND);

SQLFreeStmt(hstmt,SQL_CLOSE);

return(0);

}

2-34 SOLID Programmer Guide                              



Installing and Configuring ODBC Software
Testing and Debugging an Application
The Microsoft ODBC SDK provides the following tools for application development:

■ ODBC Test, an interactive utility that enables you to perform ad hoc and automated test-
ing on drivers. A sample test DLL (the Quick Test) is included which covers basic areas 
of ODBC driver conformance.

■ ODBC Spy, a debugging tool with which you can capture data source information, emu-
late drivers, and emulate applications.

■ Sample applications, including source code and makefiles.

■ A #define, ODBCVER, to specify which version of ODBC you want to compile 
your application with. To use the ODBC 3.5 constants and prototypes, add the fol-
lowing line to your application code before providing the include files.

#define ODBCVER 0X0352

■ For ASCII data, use the following standard Microsoft include files:

SQL.H and SQLEXT.H

■ For Unicode data, use the following Microsoft include files:

SQLUCODE.H and WCHAR.H

For additional information about the ODBC SDK tools, see the Microsoft ODBC SDK 
Guide.

Installing and Configuring ODBC Software
Users install ODBC software with a driver-specific setup program (built with the Driver 
Setup Toolkit that is shipped with the ODBC SDK) or an application-specific setup pro-
gram. They configure the ODBC environment with the ODBC Administrator (also shipped 
with the ODBC SDK) or an application-specific administration program. Application devel-
opers must decide whether to redistribute these programs or write their own setup and 
administration programs. For more information about the Driver Setup Toolkit and the 
ODBC Administrator, see the Microsoft ODBC SDK Guide on the Microsoft Web site.

A setup program written by an application developer uses the installer DLL to retrieve infor-
mation from the ODBC.INF file, which is created by a driver developer and describes the 
disks on which the ODBC software is shipped. The setup program also uses the installer 
DLL to retrieve the target directories for the Driver Manager and the drivers, record informa-
tion about the installed drivers, and install ODBC software.
                                                                    Using SOLID ODBC API 2-35



Installing and Configuring ODBC Software
Administration programs written by application developers use the installer DLL to retrieve 
information about the available drivers, to specify default drivers, and to configure data 
sources.

Application developers who write their own setup and administration programs must ship 
the installer DLL and the ODBC.INF file.

With the current version of ODBC 3.5.x, the Installer for Windows does not contain the 
Microsoft Driver Manager. To maintain compatibility with ADO, OLE DB, and ODBC, 
Microsoft recommends obtaining the Driver Manager and installing it. To do this, users need 
to download the executable mdac_typ.exe from the Microsoft Web site and install it; this 
executable provides users with Driver Manager 3.5 or above. For the URL to the Microsoft 
Web site where this executable is found, refer to the SOLID Web site or the Release Notes.
2-36 SOLID Programmer Guide                              



3 

Stored Procedures, Events, Triggers, and 
Sequences

In SOLID, a number of features are available that make it possible to move parts of the 
application logic into the database. These features include:

■ stored procedures

■ event alerts

■ triggers

■ sequences

Stored Procedures
Stored procedures are simple programs, or procedures, that are executed in Solid databases. 
The user can create procedures that contain several SQL statements or whole transactions, 
and execute them with single call statement. In addition to SQL statements, 3GL type con-
trol structures can be used enabling procedural control. In this way complex, data-bound 
transactions may be run on the server itself, thus reducing network traffic.

Granting execute rights on a stored procedure automatically invokes the necessary access 
rights to all database objects used in the procedure. Therefore, administering database access 
rights may be greatly simplified by allowing access to critical data through procedures.

This section explains in detail how to use stored procedures. In the beginning of this section 
the general concepts of using the procedures are explained. Later sections go more in-depth 
and describe the actual syntax of different statements in the procedures. The end of this sec-
tion discusses transaction management, sequences and other advanced stored procedure fea-
tures.
                                                            Stored Procedures, Events, Triggers, and Sequences 3-1



Stored Procedures
Basic procedure structure
A stored procedure is a standard SOLID database object that can be manipulated using stan-
dard DDL statements CREATE and DROP.

In its simplest form a stored procedure definition looks like:

"CREATE PROCEDURE procedure_name
parameter_section
BEGIN
declare_section_local_variables
procedure_body
END";

NoteNote

Because SOLID DBConsole is not able to parse these statements, the whole statement must 
be enclosed in double quotes.

The following example creates a procedure called TEST:

"CREATE PROCEDURE test
BEGIN
END";

Procedures can be run by issuing a CALL statement followed by the name of the procedure 
to be invoked:

CALL test;

Naming Procedures
Procedure names have to be unique within a database schema.

All the standard naming restrictions considering database objects, like using reserved words, 
identifier lengths etc., apply to stored procedure names. For an overview and complete list of 
reserved keywords, see the appendix, "Reserved Words" in the SOLID Embedded Engine 
Administrator Guide or SOLID SynchroNet Guide.

Parameter Section
A stored procedure communicates with the calling program using parameters. Stored proce-
dures accept two types of parameters:
3-2 SOLID Programmer Guide                              



Stored Procedures
■ Input parameters; given as an input to the procedure can be used inside the procedure.

■ Output parameters; returned values from the procedure. Stored procedures may return a 
result set of several rows with output parameters as the columns.

The types of parameters must be declared. For supported data types, see the appendix, "Data 
Types" in the SOLID Embedded Engine Administrator Guide or SOLID SynchroNet 
Guide. 

The syntax used in parameter declaration is: 

parameter_name parameter_datatype

Input parameters are declared between parentheses directly after the procedure name, output 
parameters are declared in a special RETURNS section of the procedure definition:

"CREATE PROCEDURE procedure_name

[ (input_param1 datatype, 

input_param2 datatype, … >) ]

[ RETURNS 

(output_param1 datatype, 

 output_param2 datatype, … >) ]

BEGIN

END";

There can be any number of input and output parameters. Input parameters have to be sup-
plied in the same order as they are defined when the procedure is called.

Declaring input parameters in the procedure heading make their values accessible inside the 
procedure by referring to the parameter name.

The output parameters will appear in the returned result set. The parameters will appear as 
columns in the result set in the same order as they are defined. A procedure may return one 
or more rows. Thus, also select statements can be wrapped into database procedures.

The following statement creates a procedure that has two input parameters and two output 
parameters:

"CREATE PROCEDURE PHONEBOOK_SEARCH

(FIRST_NAME VARCHAR, LAST_NAME VARCHAR)

RETURNS (PHONE_NR NUMERIC, CITY VARCHAR)

BEGIN
                                                                    Stored Procedures, Events, Triggers, and Sequences 3-3



Stored Procedures
-- procedure_body 

END";

This procedure should be called using two input parameter of data type VARCHAR. The 
procedure returns an output table consisting of 2 columns named phone_nr of type 
NUMERIC and CITY of type VARCHAR. 

For example:

call phonebook_search ( 'JOHN','DOE');

Result looks like the following (when the procedure body has been 
programmed)

PHONE_NR CITY

34335556 NEW YORK

23452266 LOS ANGELES

Declare Section
Local variables that are used inside the procedure for temporary storage of column and con-
trol values are defined in a separate section of the stored procedure directly following the 
BEGIN keyword.

The syntax of declaring a variable is:

DECLARE variable_name datatype;

Note that every declare statement should be ended with a semicolon (;).

The variable name is an alphanumeric string that identifies the variable. The data type of the 
variable can be any valid SQL data type supported. For supported data types, see the appen-
dix, "Data Types" in the SOLID Embedded Engine Administrator Guide or SOLID Syn-
chroNet Guide. 

For example:

"CREATE PROCEDURE PHONEBOOK_SEARCH

(FIRST_NAME VARCHAR, LAST_NAME VARCHAR)

RETURNS (PHONE_NR NUMERIC, CITY VARCHAR)

BEGIN

DECLARE i INTEGER;

DECLARE dat DATE;
3-4 SOLID Programmer Guide                              



Stored Procedures
END";

Note that input and output parameters are treated like local variables within a procedure with 
the exception that input parameters have a preset value and output parameter values are 
returned or can be appended to the returned result set. 

Procedure Body
The procedure body contains the actual stored procedure program based on assignments, 
expressions, SQL statements and the likes.

Any type of expression including scalar functions can be used in a procedure body. See the 
appendix "SOLID SQL Syntax" in the SOLID Embedded Engine Administrator Guide or 
SOLID SynchroNet Guide for valid expressions.

Assignments
To assign values to variables either of the following syntax is used:

SET variable_name = expression ;

or

variable_name := expression ;

Example:

SET i = i+ 20 ;

i := 100;

Variables and constants are initialized every time a procedure is executed. By default, vari-
ables are initialized to NULL. Unless a variable has been explicitly initialized, its value is 
NULL, as the following example shows:

BEGIN

DECLARE   total   INTEGER;

...

total := total + 1;  -- assigns a null to total

...

Therefore, a variable should never be referenced before it has been assigned a value. 
                                                                    Stored Procedures, Events, Triggers, and Sequences 3-5



Stored Procedures
The expression following the assignment operator can be arbitrarily complex, but it must 
yield a data type that is the same as or convertible to the data type of the variable. 

When possible, SOLID procedure language can provide conversion of data types implicitly. 
This makes it possible to use literals, variables and parameters of one type where another 
type is expected.

Implicit conversion is not possible if:

■ information would be lost in the conversion.

■ a string to be converted to an integer contains non-numeric data

Examples:

DECLARE integer_var INTEGER;

integer_var := 'NR:123';

returns an error.

DECLARE string_var CHAR(3);

string_var := 123.45;

results in value ‘123’ in variable string_var.

DECLARE string_var VARCHAR(2);

string_var := 123.45;

returns an error.

Expressions

Comparison Operators
Comparison operators compare one expression to another. The result is always TRUE, 
FALSE, or NULL. Typically, comparisons are used in conditional control statements and 
allow comparisons of arbitrarily complex expressions. The following table gives the mean-
ing of each operator:

Operator Meaning

    = is equal to 

    <> is not equal to 

    < is less than 

    > is greater than 
3-6 SOLID Programmer Guide                              



Stored Procedures
Note that the != notation cannot be used inside a stored procedure, use the ANSI-SQL com-
pliant <> instead.

Logical Operators
The logical operators can be used to build more complex queries. The logical operators 
AND, OR, and NOT operate according to the tri-state logic illustrated by the truth tables 
shown below. AND and OR are binary operators; NOT is a unary operator. 

As the truth tables show, AND returns the value TRUE only if both its operands are true. On 
the other hand, OR returns the value TRUE if either of its operands is true. NOT returns the 
opposite value (logical negation) of its operand. For example, NOT TRUE returns FALSE. 

NOT NULL returns NULL because nulls are indeterminate. 

    <= is less than or equal to 

    >= is greater than or equal to 

    NOT    true false null

           false true null

    AND    true false null

    true   true false null

    false  false false false

    null   null false null

OR     true false null

true   true true true

false  true false null

null   true null null
                                                                    Stored Procedures, Events, Triggers, and Sequences 3-7



Stored Procedures
When not using parentheses to specify the order of evaluation, operator precedence deter-
mines the order.

Note that ‘true’ and ‘false’ are not literals accepted by SQL parser but values. Logical 
expression value can be interpreted as a numeric variable:

false = 0 or NULL
true = 1 or any other numeric value

Example:

IF expression = TRUE THEN

can be simply written

IF expression THEN

IS NULL Operator
The IS NULL operator returns the Boolean value TRUE if its operand is null, or FALSE if it 
is not null. Comparisons involving nulls always yield NULL. To test whether a value is 
NULL, do not use the expression,

    IF variable = NULL THEN... 

because it never evaluates to TRUE.

Instead, use the following statement: 

    IF variable IS NULL THEN... 

Note that when using multiple logical operators in SOLID stored procedures the individual 
logical expressions should be enclosed in parentheses like:

((A >= B) AND (C= 2)) OR (A= 3)

Control Structures

IF Statement
Often, it is necessary to take alternative actions depending on circumstances. The IF state-
ment executes a sequence of statements conditionally. There are three forms of IF state-
ments: IF-THEN, IF-THEN-ELSE, and IF-THEN-ELSEIF. 

IF-THEN
The simplest form of IF statement associates a condition with a statement list enclosed by 
the keywords THEN and END IF (not ENDIF), as follows: 
3-8 SOLID Programmer Guide                              



Stored Procedures
    IF condition THEN

statement_list;

END IF

The sequence of statements is executed only if the condition evaluates to TRUE. If the con-
dition evaluates to FALSE or NULL, the IF statement does nothing. In either case, control 
passes to the next statement. An example follows: 

    IF sales > quota THEN 

        SET pay = pay + bonus; 

    END IF

IF-THEN-ELSE
The second form of IF statement adds the keyword ELSE followed by an alternative state-
ment list, as follows: 

IF condition THEN 

statement_list1; 

ELSE 

statement_list2; 

END IF

The statement list in the ELSE clause is executed only if the condition evaluates to FALSE 
or NULL. Thus, the ELSE clause ensures that a statement list is executed. In the following 
example, the first or second assignment statement is executed when the condition is true or 
false, respectively:

    IF trans_type = 'CR' THEN 

        SET balance = balance + credit;

    ELSE 

        SET balance = balance - debit;

    END IF

THEN and ELSE clauses can include IF statements. That is, IF statements can be nested, as 
the following example shows: 

    IF trans_type = 'CR' THEN 

        SET balance = balance + credit ;

    ELSE 

        IF new_balance >= minimum_balance THEN 
                                                                    Stored Procedures, Events, Triggers, and Sequences 3-9



Stored Procedures
            SET balance = balance - debit ;

        ELSE 

            SET balance = minimum_balance; 

        END IF

    END IF

IF-THEN-ELSEIF
Occasionally it is necessary to select an action from several mutually exclusive alternatives. 
The third form of IF statement uses the keyword ELSEIF to introduce additional conditions, 
as follows:

    IF condition1 THEN 

statement_list1; 

    ELSEIF condition2 THEN 

statement_list2; 

    ELSE 

statement_list3; 

END IF

If the first condition evaluates to FALSE or NULL, the ELSEIF clause tests another condi-
tion. An IF statement can have any number of ELSEIF clauses; the final ELSE clause is 
optional. Conditions are evaluated one by one from top to bottom. If any condition evaluates 
to TRUE, its associated statement list is executed and the rest of the statements (inside the 
IF-THEN-ELSEIF) are skipped. If all conditions evaluate to FALSE or NULL, the sequence 
in the ELSE clause is executed. Consider the following example: 

    IF sales > 50000 THEN 

        bonus := 1500; 

    ELSEIF sales > 35000 THEN 

        bonus := 500; 

    ELSE 

        bonus := 100; 

    END IF

If the value of "sales" is more than 50000, the first and second conditions are true. Neverthe-
less, "bonus" is assigned the proper value of 1500 since the second condition is never tested. 
When the first condition evaluates to TRUE, its associated statement is executed and control 
passes to the next statement following the IF-THEN-ELSEIF. 
3-10 SOLID Programmer Guide                              



Stored Procedures
When possible, use the ELSEIF clause instead of nested IF statements. That way, the code 
will be easier to read and understand. Compare the following IF statements: 

These statements are logically equivalent, but the first statement obscures the flow of logic, 
whereas the second statement reveals it. 

WHILE-LOOP
The WHILE-LOOP statement associates a condition with a sequence of statements enclosed 
by the keywords LOOP and END LOOP, as follows: 

WHILE condition LOOP 

statement_list; 

END LOOP

Before each iteration of the loop, the condition is evaluated. If the condition evaluates to 
TRUE, the statement list is executed, then control resumes at the top of the loop. If the con-
dition evaluates to FALSE or NULL, the loop is bypassed and control passes to the next 
statement. An example follows:

    WHILE total <= 25000 LOOP 

        ... 

        total := total + salary; 

    END LOOP

IF condition1 THEN IF condition1 THEN 

 statement_list1;  statement_list1; 

ELSE ELSEIF condition2 THEN 

  IF condition2 THEN  statement_list2; 

 statement_list2; ELSEIF condition3 THEN 

  ELSE  statement_list3; 

    IF condition3 THEN END IF

 statement_list3;

    END IF

  END IF

END IF
                                                                    Stored Procedures, Events, Triggers, and Sequences 3-11



Stored Procedures
The number of iterations depends on the condition and is unknown until the loop completes. 
Since the condition is tested at the top of the loop, the sequence might execute zero times. In 
the latter example, if the initial value of "total" is greater than 25000, the condition evalu-
ates to FALSE and the loop is bypassed, altogether

Loops can be nested. When an inner loop is finished control is returned to the next loop. The 
procedure continues from the next statement after end loop.

Leaving Loops
It may be necessary to force the procedure to leave a loop prematurely. This can be imple-
mented using the LEAVE keyword:

WHILE total < 25000 LOOP

statement_list

total := total + salary;

IF exit_condition THEN

       LEAVE;

END IF

END LOOP

statement_list2

Upon successful evaluation of the exit_condition the loop is left, and the procedure contin-
ues at the statement list 2.

NoteNote

Although Solid databases support the ANSI-SQL CASE syntax, the CASE construct cannot 
be used inside a stored procedure as a control structure.

Handling Nulls
Nulls can cause confusing behavior. To avoid some common errors, observe the following 
rules: 

■ comparisons involving nulls always yield NULL 

■ applying the logical operator NOT to a null yields NULL 

■ in conditional control statements, if the condition evaluates to NULL, its associated 
sequence of statements is not executed
3-12 SOLID Programmer Guide                              



Stored Procedures
In the example below, you might expect the statement list to execute because "x" and "y" 
seem unequal. Remember though that nulls are indeterminate. Whether "x" is equal to "y" or 
not is unknown. Therefore, the IF condition evaluates to NULL and the statement list is 
bypassed. 

    x := 5; 

    y := NULL; 

    ... 

    IF x <> y THEN  -- evaluates to NULL, not TRUE 

statement_list;  -- not executed 

    END IF

In the next example, one might expect the statement list to execute because "a" and "b" seem 
equal. But, again, this is unknown, so the IF condition evaluates to NULL and the statement 
list is bypassed. 

    a := NULL; 

    b := NULL; 

    ... 

    IF a = b THEN  -- evaluates to NULL, not TRUE 

statement_list;  -- not executed 

    END IF

NOT Operator
Applying the logical operator NOT to a null yields NULL. Thus, the following two state-
ments are not always equivalent: 

The sequence of statements in the ELSE clause is executed when the IF condition evaluates 
to FALSE or NULL. If either or both "x" and "y" are NULL, the first IF statement assigns 
the value of "y" to "high", but the second IF statement assigns the value of "x" to "high". If 
neither "x" nor y" is NULL, both IF statements assign the corresponding value to "high".

 IF  x > y THEN            IF NOT x > y THEN 

     high := x;               high := y; 

   ELSE                     ELSE 

     high := y;               high := x; 

   END IF                 END IF
                                                                    Stored Procedures, Events, Triggers, and Sequences 3-13



Stored Procedures
Zero-Length Strings
Zero length strings are treated by a Solid server like they are a string of zero length, instead 
of a null. NULL values should be specifically assigned as in the following:

SET a = NULL;

This also means that checking for NULL values will return FALSE when applied to a zero-
length string.

Example
Following is an example of a simple procedure that determines whether a person is an adult 
on the basis of a birthday as input parameter.

Note the usage of {} on scalar functions, and semicolons to end assignments and IF/END IF 
structures.

"CREATE PROCEDURE grown_up

(  birth_date DATE)

RETURNS ( description VARCHAR)

BEGIN

DECLARE temp INTEGER;

-- determine the number of years since the day of birth

temp := {fn TIMESTAMPDIFF(SQL_TSI_YEAR,birth_date,now())};

IF temp >= 18  THEN

--over 18 it’s an adult

     description := 'ADULT';

ELSE

-- still a minor

     description := 'MINOR';

END IF

END";

Exiting a Procedure
A procedure may be exited prematurely by issuing the keyword

RETURN;
3-14 SOLID Programmer Guide                              



Using SQL in a Stored Procedure
at any location. After this keyword, control is directly handed to the program calling the pro-
cedure returning the values bound to the output parameters as indicated in the returns-sec-
tion of the procedure definition.

Returning Data
By default a stored procedure returns one row of data. The row is returned when the com-
plete procedure has been run or has been forced to exit. This row conforms to the declared 
output parameters in the parameter section of the procedure. 

It is also possible to return result sets from a procedure using the following syntax:

return row;

Every RETURN ROW call adds a new row into the returned result set.

Using SQL in a Stored Procedure
Using SQL statements inside a stored procedure is somewhat different from issuing SQL 
directly from tools like SOLID DBConsole. 

Any SQL statement will have to be executed through an explicit cursor definition. A cursor 
is a specific allocated part of the server process memory that keeps track of the statement 
being processed. Memory space is allocated for holding one row of the underlying state-
ment, together with some status information on the current row (in SELECTS) or the num-
ber of rows affected by the statement (in UPDATES, INSERTS and DELETES).

In this way query results are processed one row at a time. The stored procedure logic should 
take care of the actual handling of the rows, and the positioning of the cursor on the required 
row(s).

There are five basic steps in handling a cursor:

1. Preparing the cursor - the definition

2. Executing the cursor - executing the statement

3. Fetching on the cursor (for select procedure calls) - getting the results row by row

4. Closing the cursor after use - still enabling it to re-execute

5. Dropping the cursor from memory - definitely removing it

1. Preparing the Cursor
A cursor is defined (prepared) using the following syntax:

EXEC SQL PREPARE cursor_name SQL_statement;
                                                                    Stored Procedures, Events, Triggers, and Sequences 3-15



Using SQL in a Stored Procedure
By preparing a cursor, memory space is allocated to accommodate one row of the result set 
of the statement, the statement is parsed and optimized.

A cursor name given for the statement has to be unique within the connection. When a cur-
sor is prepared a Solid server checks that no other cursor of this name is currently open. If 
there is one, error number 14504 is returned.

Note that statement cursors can be opened also using the ODBC API. Also these cursor 
names need to be different from the cursors opened from procedures.

Example:

EXEC SQL PREPARE sel_tables 

SELECT table_name 

FROM sys_tables

WHERE table_name like ‘SYS%’;

This statement will prepare the cursor named sel_tables, but will not execute the statement 
that it contains.

2. Executing the Cursor

After a procedure has been successfully prepared it can be executed. An execute binds possi-
ble input and output variables to it and runs the actual statement.

Syntax of the execute statement is:

EXEC SQL EXECUTE cursor_name 

     [ INTO  ( var1, var2, … ) ];

The optional section INTO binds result data of the statement to variables.

Variables listed in parenthesis after the INTO keyword are used when running a SELECT or 
CALL statement. The resulting columns of the SELECT or CALL statement are bound to 
these variables when the statement is executed. The variables are bound starting from the 
left-most column listed in the statement. Binding of variables continues to the following col-
umn until all variables in the list of variables have been bound. For example to extend the 
sequence for the cursor sel_tables that was prepared earlier we need to run the following 
statements:

EXEC SQL PREPARE sel_tables

SELECT table_name

FROM sys_tables

WHERE table_name like ‘SYS%’
3-16 SOLID Programmer Guide                              



Using SQL in a Stored Procedure
EXEC SQL EXECUTE sel_tables INTO (tab);

The statement is now executed and the resulting table names will be returned into variable 
tab in the subsequent Fetch statements.

3. Fetching on the Cursor
When a SELECT or CALL statement has been prepared and executed it is ready for fetch-
ing data from it. Other statements (UPDATE,INSERT,DELETE, DDL) do not require fetch-
ing as there will be no result set. Fetching results is done using the fetch syntax:

EXEC SQL FETCH cursor_name;

This command fetches a single row from the cursor to the variables that were bound with 
INTO keyword when the statement was executed. 

To complete the previous example to actually get result rows back, the statements will look 
like:

EXEC SQL PREPARE sel_tables

SELECT table_name

FROM sys_tables

WHERE table_name like ‘SYS%’

EXEC SQL EXECUTE sel_tables INTO (tab);

EXEC SQL FETCH sel_tables;

After this the variable tab will contain the table name of the first table found conforming to 
the WHERE-clause.

Subsequent calls to fetch on the cursor sel_tables will get the next row(s) if the select found 
more than one.

To fetch all table names a loop construct may be used:

WHILE expression LOOP
EXEC SQL FETCH sel_tables;
END LOOP

Note that after the completion of the loop the variable tab will contain the last fetched table 
name. 

4. Closing the Cursor
Cursors may be closed by issuing the statement 
                                                                    Stored Procedures, Events, Triggers, and Sequences 3-17



Using SQL in a Stored Procedure
EXEC SQL CLOSE cursor_name;

This will not remove the actual cursor definition from memory, it may be re-executed when 
the need arises.

5. Dropping the Cursor
Cursors may be dropped from memory, releasing all resources by the statement:

EXEC SQL DROP cursor_name;

Error Handling

SQLSUCCESS
The return value of the latest EXEC SQL statement executed inside a procedure body is 
stored into variable SQLSUCCESS. This variable is automatically generated for every pro-
cedure. If the previous SQL statement was successful, the value 1 is stored into SQLSUC-
CESS. After a failed SQL statement, a value 0 is stored into SQLSUCCESS.

The value of SQLSUCCESS may be used, for instance, to determine when the cursor has 
reached the end of the result set as in the following example: 

EXEC SQL FETCH sel_tab;

-- loop as long as last statement in loop is successful 

WHILE SQLSUCCESS LOOP

     -- do something with the results like return the row

EXEC SQL FETCH sel_tab;

END LOOP

SQLERRNUM
This variable contains the error code of the latest SQL statement executed. It is automati-
cally generated for every procedure. After successful execution, SQLERRNUM contains 
zero (0). 

SQLERRSTR
This variable contains the error string from the last failed SQL statement. 
3-18 SOLID Programmer Guide                              



Using SQL in a Stored Procedure
SQLROWCOUNT
After the execution of UPDATE, INSERT and DELETE statements an additional variable is 
available to check the result of the statement. Variable SQLROWCOUNT contains the num-
ber of rows affected by the last statement.

SQLERROR
To generate user errors from procedures, the SQLERROR variable may be used to return an 
actual error string that caused the statement to fail to the calling application. The syntax is:

RETURN SQLERROR 'error string'

RETURN SQLERROR char_variable

The error is returned in the following format:

User error: error_string

SQLERROR OF cursorname
For error checking of EXEC SQL statements the SQLSUCCESS variable may be used as 
described under SQLSUCCESS in the beginning of this section. To return the actual error 
that caused the statement to fail to the calling application, the following syntax may be used:

EXEC SQL PREPARE cursornname sql_statement

EXEC SQL EXECUTE cursorname

IF NOT SQLSUCCESS THEN

RETURN SQLERROR OF cursorname;

END IF

Processing will stop immediately when this statement is executed and the procedure return 
code is SQLERROR. The actual database error can be returned using the SQLError func-
tion:

Solid Database error 10033: Primary key unique constraint violation

The generic error handling method for a procedure can be declared with:

EXEC SQL WHENEVER SQLERROR [ROLLBACK [WORK],] ABORT;

When this statement is included in a stored procedure all return values of executed SQL 
statements are checked for errors. If a statement execution returns an error, the procedure is 
automatically aborted and SQLERROR of the last cursor is returned. Optionally the transac-
tion can be rolled back.
                                                                    Stored Procedures, Events, Triggers, and Sequences 3-19



Using SQL in a Stored Procedure
The statement should be included before any EXEC SQL statements directly following the 
DECLARE section of variables.

Below is an example of a complete procedure returning all table names from SYS_TABLES 
that start with ‘SYS’:

"CREATE PROCEDURE  sys_tabs

RETURNS ( tab VARCHAR)

BEGIN

-- abort on errors

EXEC SQL WHENEVER SQLERROR ROLLBACK, ABORT;

-- prepare the cursor

EXEC SQL PREPARE sel_tables

SELECT table_name

FROM sys_tables

WHERE table_name like 'SYS%';

-- execute the cursor

EXEC SQL EXECUTE sel_tables INTO (tab);

-- loop through rows

EXEC SQL FETCH sel_tables;

WHILE sqlsuccess LOOP

      RETURN ROW;

      EXEC SQL FETCH sel_tables;

END LOOP

-- close and drop the used cursors

EXEC SQL CLOSE sel_tables;

EXEC SQL DROP sel_tables;         

END";

Parameter Markers in Cursors
In order to make a cursor more dynamic, a SQL statement can contain parameter markers 
that indicate values that are bound to the actual parameter values at execute time. The '?' 
symbol is used as a parameter marker.

Syntax example:

EXEC SQL PREPARE sel_tabs
3-20 SOLID Programmer Guide                              



Using SQL in a Stored Procedure
SELECT table_name

FROM sys_tables

WHERE table_name LIKE ?

AND table_schema LIKE ?;

The execution statement is adapted by including a USING keyword to accommodate the 
binding of a variable to the parameter marker.

EXEC SQL EXECUTE sel_tabs USING ( var1, var2 ) INTO ( tabs);

In this way a single cursor can be used multiple times without having to re-prepare the cur-
sor. As preparing a cursor involves also the parsing and optimizing of the statement, signifi-
cant performance gains can be achieved by using re-usable cursors.

Note that the USING list only accepts variables, data can not be directly passed in this way. 
So if for example an insert into a table should be made, one column value of which should 
always be the same ( status = ‘NEW’) then the following syntax would be wrong:

EXEC SQL EXECUTE ins_tab  USING (nr, desc, dat, 'NEW');

The correct way would be to define the constant value in the prepare section:

EXEC SQL PREPARE ins_tab 

INSERT INTO my_tab ( id,  descript, in_date, status)

VALUES ( ?,?,?,'NEW');

EXEC SQL EXECUTE ins_tab USING ( nr, desc, dat);

Note that variables can be used multiple times in the using list.

The parameters in a SQL statement have no intrinsic data type or explicit declaration. There-
fore, parameter markers can be included in a SQL statement only if their data types can be 
inferred from another operand in the statement. 

For example, in an arithmetic expression such as ? + COLUMN1, the data type of the 
parameter can be inferred from the data type of the named column represented by 
COLUMN1. A procedure cannot use a parameter marker if the data type cannot be deter-
mined.

The following table describes how a data type is determined for several types of parameters.

Location of Parameter Assumed Data Type

One operand of a binary arithmetic or comparison 
operator

Same as the other operand

The first operand in a BETWEEN clause Same as the other operand
                                                                    Stored Procedures, Events, Triggers, and Sequences 3-21



Using SQL in a Stored Procedure
An application cannot place parameter markers in the following locations:

■ As a SQL identifier (name of a table, name of a column etc.)

■ In a SELECT list.

■ As both expressions in a comparison-predicate.

■ As both operands of a binary operator.

■ As both the first and second operands of a BETWEEN operation.

■ As both the first and third operands of a BETWEEN operation.

■ As both the expression and the first value of an IN operation.

■ As the operand of a unary + or - operation.

■ As the argument of a set-function-reference.

For more information, see the ANSI SQL-92 specification.

In the following example, a stored procedure will read rows from one table and insert parts 
of them in another, using multiple cursors:

"CREATE PROCEDURE  tabs_in_schema (schema_nm VARCHAR)

RETURNS ( nr_of_rows INTEGER)

BEGIN

DECLARE tab_nm VARCHAR;

EXEC SQL PREPARE sel_tab

SELECT table_name 

FROM sys_tables

WHERE table_schema = ?;

EXEC SQL PREPARE ins_tab

INSERT INTO my_table (table_name,schema) VALUES ( ?,?);

The second or third operand in a BETWEEN 
clause

Same as the first operand

An expression used with IN Same as the first value or the result column of 
the subquery

A value used with IN Same as the expression

A pattern value used with LIKE VARCHAR

An update value used with UPDATE Same as the update column
3-22 SOLID Programmer Guide                              



Calling other Procedures
nr_of_rows := 0;

EXEC SQL EXECUTE sel_tab USING ( schema_nm) INTO (tab_nm);

EXEC SQL FETCH sel_tab;

WHILE SQLSUCCESS LOOP

nr_of_rows := nr_of_rows + 1;

EXEC SQL EXECUTE ins_tab USING(tab_nm, schema_nm);

IF SQLROWCOUNT <> 1 THEN

RETURN SQLERROR OF ins_tab;

END IF

EXEC SQL FETCH sel_tab;

END LOOP

END";

Calling other Procedures
As calling a procedure forms a part of the supported SQL syntax, a stored procedure may be 
called from within another stored procedure. The default limit for levels of nested proce-
dures is 16. When the maximum is exceeded, the transaction fails. The current nesting level 
is set in the MaxNestedProcedures parameter in the solid.ini configuration file. 
For details, see appendix, "Configuration Parameters" of the SOLID Embedded Engine 
Administrator Guide or SOLID SynchroNet Guide.

Like all SQL statements a cursor should be prepared and executed like:

EXEC SQL PREPARE cp call myproc( ?,?);

EXEC SQL EXECUTE cp USING ( var1, var2);

If procedure myproc returns one or more values, then subsequently a fetch should be done on 
the cursor cp to retrieve those values:

EXEC SQL PREPARE cp call myproc(?,?);

EXEC SQL EXECUTE cp USING (var1, var2) INTO (ret_var1, 
ret_var2);

EXEC SQL FETCH cp;

Note that if the called procedure uses a return row statement, the calling procedure should 
utilize a WHILE LOOP construct to fetch all results.
                                                                    Stored Procedures, Events, Triggers, and Sequences 3-23



Calling other Procedures
Recursive calls are possible, but discouraged because cursor names are unique at connection 
level and infinite recursion may crash the server process.

Positioned Updates and Deletes
In SOLID procedures it is possible to use positioned updates and deletes. This means that an 
update or delete will be done to a row where a given cursor is currently positioned. The posi-
tioned updates and deletes can also be used within stored procedures using the cursor names 
used within the procedure.

The following syntax is used for positioned updates:

UPDATE table_name

SET column = value

WHERE CURRENT OF cursor_name

and for deletes

DELETE FROM table_name 

WHERE CURRENT OF cursor_name

In both cases the cursor_name refers to a statement doing a SELECT on the table that is to 
be updated/deleted from.

Positioned cursor update is a semantically suspicious concept in SQL standard that may 
cause peculiarities also with a Solid server. Please note the following restriction when using 
positioned updates.

Below is an example written with pseudo code that will cause an endless loop with a Solid 
server (error handling, binding variables and other important tasks omitted for brevity and 
clarity):

"CREATE PROCEDURE ENDLESS_LOOP

BEGIN

EXEC SQL PREPARE MYCURSOR SELECT * FROM TABLE1;

EXEC SQL PREPARE MYCURSOR_UPDATE UPDATE TABLE1 

SET COLUMN2 = 'new data';

EXEC SQL EXECUTE MYCURSOR;

EXEC SQL FETCH MYCURSOR;

WHILE SQLSUCCESS LOOP

EXEC SQL EXECUTE MYCURSOR_UPDATE;

EXEC SQL COMMIT WORK;
3-24 SOLID Programmer Guide                              



Calling other Procedures
EXEC SQL FETCH MYCURSOR;

END LOOP

END";

The endless loop is caused by the fact that when the update is committed, a new version of 
the row becomes visible in the cursor and it is accessed in the next FETCH statement. This 
happens because the incremented row version number is included in the key value and the 
cursor finds the changed row as the next greater key value after the current position. The row 
gets updated again, the key value is changed and again it will be the next row found.

In the above example, the updated column2 is not assumed to be part of the primary key for 
the table, and the row version number was the only index entry changed. However, if such a 
column value is changed that is part of the index through which the cursor has searched the 
data, the changed row may jump further forward or backward in the search set.

For these reasons, using positioned update is not recommended in general and searched 
update should be used instead whenever possible. However, sometimes the update logic may 
be too complex to be expressed in SQL WHERE clause and in such cases positioned update 
can be used as follows:

Positioned cursor update works deterministically in SOLID, when the where clause is such 
that the updated row does not match the criteria and therefore does not reappear in the fetch 
loop. Constructing such a search criteria may require using additional column only for this 
purpose. 

Note that other users' changes do not become visible in the open cursor, only those commit-
ted within the same database session.

Transactions
Stored procedures use transactions like any other interface to the database. A transaction 
may be committed or rolled back either inside the procedure or outside the procedure. Inside 
the procedure a commit or roll back is done using the following syntax:

EXEC SQL COMMIT WORK;

EXEC SQL ROLLBACK WORK;

These statements end the previous transaction and start a new one. 

If a transaction is not committed inside the procedure, it may be ended externally using:

■ A SOLID API 

■ Another stored procedure 

■ By autocommit, if the connection has AUTOCOMMIT switch set to ON
                                                                    Stored Procedures, Events, Triggers, and Sequences 3-25



Calling other Procedures
Note that when a connection has autocommit activated it does not force autocommit inside a 
procedure. The commit is done when the procedure exits.

Default Cursor Management
By default, when a procedure exits, all cursors opened in a procedure are closed. Closing 
cursors means that cursors are left in a prepared state and can be re-executed.

After exiting, the procedure is put in the procedure cache. When the procedure is dropped 
from the cache, all cursors are finally dropped.

The number of procedures kept in cache is determined by the solid.ini file setting:

[SQL]

ProcedureCache = nbr_of_procedures

This means that, as long as the procedure is in the procedure cache, all cursors can be re-
used as long as they are not dropped. A Solid server itself manages the procedure cache by 
keeping track of the cursors declared, and notices if the statement a cursor contains has been 
prepared.

As cursor management, especially in a heavy multi-user environment, can use a consider-
able amount of server resources it is good practice to always close cursors immediately and 
preferably also drop all cursors that are not used anymore. Only the most frequently used 
procedures may be left non-dropped to reduce the cursor preparation effort.

Note that transactions are not related to procedures or other statements. Commit or rollback 
does therefore NOT release any resources in a procedure.

Notes on SQL
■ There is no restriction on the SQL statements used. Any valid SQL statement can be 

used inside a stored procedure, including DDL and DML statements 

■ Cursors may be declared anywhere in a stored procedure. Cursors that are certainly 
going to be used are best prepared directly following the declare section.

■ Cursors that are used inside control structures, and are therefore not always necessary, 
are best declared at the point where they are activated, to limit the amount of open cur-
sors and hence the memory usage.

■ The cursor name is an undeclared identifier, not a variable; it is used only to reference 
the query. You cannot assign values to a cursor name or use it in an expression. 

■ Cursors may be re-executed repeatedly without having to re-prepare them. Note that this 
can have a serious influence on performance; repetitively preparing cursors on similar 
3-26 SOLID Programmer Guide                              



Procedure privileges
statements may decrease the performance by around 40% in comparison to re-execut-
ing already prepared cursors!

■ Any SQL statement will have to be preceded by the keywords EXEC SQL.

Functions for Procedure Stack Viewing
The following function may be included in stored procedures to analyze the current contents 
of the procedure stack:

■ PROC_COUNT ( )

This function returns the number of procedures in the procedure stack, including the 
current procedure.

■ PROC_NAME (N)

This function returns the Nth procedure name in the stack. The first procedure is in posi-
tion zero.

■ PROC_SCHEMA (N)

This function returns the schema name of the Nth procedure in the procedure stack.

These functions allow for stored procedures that behave differently depending on whether 
they are called from an application or from a procedure.

Procedure privileges
Stored procedures are owned by the creator, and are part of the creator’s schema. Users 
needing to run stored procedures in other schema’s need to be granted EXECUTE privilege 
on the procedure:

GRANT EXECUTE ON Proc_name TO USER[,ROLE];

All database objects accessed within the granted procedure, even subsequently called proce-
dures, are accessed according to the rights of the owner of the procedure. No special grants 
are necessary.
                                                                    Stored Procedures, Events, Triggers, and Sequences 3-27



Using Triggers
Using Triggers
A trigger activates a stored procedure code, which a Solid server automatically executes 
when a user attempts to change the data in a table. You may create one or more triggers on a 
table, with each trigger defined to activate on a specific INSERT, UPDATE, or DELETE 
command. When a user modifies data within the table, the trigger that corresponds to the 
command is activated. 

Triggers enable you to:

■ Implement referential integrity constraints, such as ensuring that a foreign key value 
matches an existing primary key value.

■ Prevent users from making incorrect or inconsistent data changes by ensuring that 
intended modifications do not compromise a database's integrity.

■ Take action based on the value of a row before or after modification.

■ Transfer much of the logic processing to the backend, reducing the amount of work that 
your application needs to do as well as reducing network traffic.

How Triggers Work
The order in which a data manipulation statement is executed when triggers are enabled is 
the key to understanding how triggers work in the SOLID database.

In SOLID’s DML Execution Model, a Solid server performs a number of validation checks 
before executing data manipulation statements (INSERT, UPDATE, or DELETE). Follow-
ing is the execution order for data validation, trigger execution, and integrity constraint 
checking for a single DML statement.

1. Validate values if they are part of the statement (that is, not bound). This includes null 
value checking, data type checking (such as numeric), etc.

2. Perform table level security checks.

3. Loop for each row affected by the SQL statement. For each row perform these actions in 
this order:

a. Perform column level security checks.

b. Fire BEFORE row trigger.

a. Validate values if they are bound in. This includes null value checks, data type 
checking, and size checking (for example, checking if the character string is too 
long).

Note that size checking is performed even for values that are not bound.
3-28 SOLID Programmer Guide                              



Using Triggers
b. Execute INSERT/UPDATE/DELETE

c. Fire AFTER ROW trigger

4. Commit statement

■ Perform concurrency conflict checks.

■ Perform checks for duplicate values.

■ Perform referential integrity checks on invoking DML.

NoteNote

A trigger itself can cause the DML to be executed, which applies to the steps shown in the 
above model.

Creating Triggers
Use the CREATE TRIGGER (described below) to create a trigger. You can disable an exist-
ing trigger or all triggers defined on a table by using the ALTER TRIGGER commands. For 
details, read “Altering Trigger Attributes” on page 3-53. The ALTER TRIGGER command 
causes a Solid server to ignore the trigger when an activating DML statement is issued. With 
this command, you can also enable a trigger that is currently inactive.

To drop a trigger from the system catalog, use DROP TRIGGER. For details, read “Drop-
ping Triggers” on page 3-52.

CREATE TRIGGER command
The CREATE TRIGGER command creates a trigger. To create a trigger you must be a DBA 
or owner of the table on which the trigger is being defined. To create a trigger provide the 
catalog, schema/owner and name of the table on which a trigger is being defined. For an 
example of the CREATE TRIGGER command, see “Trigger Example” on page 3-43.

The syntax of the CREATE TRIGGER command is:

create_trigger ::=

CREATE TRIGGER trigger_name ON table_name time_of_operation 

triggering_event [REFERENCING column_reference] trigger_body

where:

trigger_name := literal 
                                                                    Stored Procedures, Events, Triggers, and Sequences 3-29



Using Triggers
time_of_operation ::= BEFORE | AFTER

triggering_event :: = INSERT | UPDATE | DELETE

column_reference ::= OLD old_column_name [AS] old_col_identifier 

[, REFERENCING column_reference |

NEW new_column_name [AS] new_col_identifier

   [, REFERENCING column_reference]

trigger_body  ::= trigger_body:= [declare_statement] <trigger_statement>

      {, <trigger_statement>]}

old_column_name := literal

new_column_name := literal

old_col_identifier := literal

new_col_identifier := literal

Keywords and Clauses
Following is a summary keywords and clauses.

Trigger_name
The trigger_name can contain up to 254 characters.

BEFORE | AFTER clause
The BEFORE | AFTER clause specifies whether to execute the trigger before or after the 
invoking DML statement, which modifies data. In some circumstances, the BEFORE and 
AFTER clauses are interchangeable. However, there are some situations where one clause is 
preferred over the other.

■ It is more efficient to use the BEFORE clause when performing data validation, such as 
domain constraint and referential integrity checking.

■ When you use the AFTER clause, table rows which become available due to the invok-
ing DML statement are processed. Conversely, the AFTER clause also confirms data 
deletion after the invoking DELETE statement.
3-30 SOLID Programmer Guide                              



Using Triggers
You can define up to six triggers for each combination of table, event (INSERT, UPDATE, 
DELETE), and time (BEFORE and AFTER). For example, you can define one trigger for 
each BEFORE and AFTER clause, providing 2 triggers per operation. In addition, if you 
provide INSERT, UPDATE, and DELETE triggers to these combinations, you have a total 
maximum of six triggers.

The following example shows trigger trig01 defined BEFORE INSERT ON table t1.

"CREATE TRIGGER TRIG01 ON T1 

BEFORE INSERT

REFERENCING NEW COL1 AS NEW_COL1

BEGIN

EXEC SQL PREPARE CUR1

INSERT INTO T2 VALUES (?);

EXEC SQL EXECUTE CUR1 USING (NEW_COL1);
END"

Following are examples (including implications and advantages) of using the BEFORE and 
AFTER clause of the CREATE TRIGGER command for each DML operation: 

■ UPDATE operation

The BEFORE clause can verify that modified data follows integrity constraint rules 
before processing the UPDATE. If the REFERENCING NEW AS 
new_column_identifier clause is used with the BEFORE UPDATE clause, then the 
updated values are available to the triggered SQL statements. In the trigger, you can set 
the default column values or derived column values before performing an UPDATE.

The AFTER clause can perform operations on newly modified data. For example, after 
a branch address update, the sales for the branch can be computed.

If the REFERENCING OLD AS old_column_identifier clause is used with the AFTER 
UPDATE clause, then the values that existed prior to the invoking update is accessible 
to the triggered SQL statements.

■ INSERT Operation

The BEFORE clause can verify that modified data follows integrity constraint rules 
before performing an INSERT. Column values passed as parameters are visible to the 
triggered SQL statements but the inserted rows are not. In the trigger, you can set 
default column values or derived column values before performing an INSERT.

The AFTER clause can perform operations on newly inserted data. For example, after 
insertion of a sales order, the total order can be computed to see if a customer is eligible 
for a discount.
                                                                    Stored Procedures, Events, Triggers, and Sequences 3-31



Using Triggers
Column values are passed as parameters and inserted rows are visible to the triggered 
SQL statements.

■ DELETE Operation

The BEFORE clause can perform operations on data about to be deleted. Column val-
ues passed as parameters and inserted rows are visible to the triggered SQL statements.

The AFTER clause can be used to confirm the deletion of data. Column values passed 
as parameters are visible to the triggered SQL statements. Please note that the deleted 
rows are visible to the triggering SQL statement.

INSERT | UPDATE | DELETE Clause
The INSERT | UPDATE | DELETE clause indicates the trigger action when a user action 
(INSERT, UPDATE, DELETE) is attempted. 

Statements related to processing a trigger occur first before commits and autocommits from 
the invoking DML (INSERT, UPDATE, DELETE) statements on tables. If a trigger body or 
a procedure called within the trigger body attempts to execute a COMMIT or ROLLBACK, 
than a Solid server returns an appropriate run-time error.

INSERT specifies that the trigger is activated by an INSERT on the table. Loading n rows of 
data is considered as n inserts.

NoteNote

There may be some performance impact if you try to load the data with triggers enabled. 
Depending on your business need, you may want to disable the triggers before loading and 
enable them after loading. For details, see the section “Altering Trigger Attributes” on page 
3-53.

DELETE specifies that the trigger is activated by a DELETE on the table.

UPDATE specifies that the trigger is activated by an UPDATE on the table. Note the follow-
ing rules for using the UPDATE clause:

■ The same column cannot be referenced by more than one UPDATE trigger.

■ A Solid server allows for recursive update to the same table and does not prohibit recur-
sive updates to the same row.

A Solid server does not detect situations where the actions of different triggers cause the 
same data to be updated. For example, assume there are two update triggers on different col-
umns, Col1 and Col2, of table Tbl1. When an update is attempted on all the columns of 
3-32 SOLID Programmer Guide                              



Using Triggers
Tbl1, the two triggers are activated. Both triggers call stored procedures which update the 
same column, Col3, of a second table, Tbl2. The first trigger updates Tbl2.Col3 to 10 and 
the second trigger updates Tbl2.Col3 to 20.

Likewise, a Solid server does not detect situations where the result of an UPDATE which 
activates a trigger conflicts with the actions of the trigger itself. For example, consider the 
following SQL statement:

UPDATE t1 SET c1 = 20 WHERE c3 = 10;

If the trigger activated by this UPDATE then calls a procedure that contains the following 
SQL statement, the procedure overwrites the result of the UPDATE that activated the trigger:

UPDATE t1 SET c1 = 17 WHERE c1 = 20;

NoteNote

The above example can lead to recursive trigger execution, which you should try to avoid.

Table_name
The table_name is the name of the table on which the trigger is created. Solid server allows 
you to drop a table that has dependent triggers defined on it. When you drop a table all 
dependent objects including triggers are dropped. Be aware that you may still get run-time 
errors. For example, assume you create two tables A and B. If a procedure SP-B inserts data 
into table A and the table is then dropped, a user will receive a run-time error if table B has a 
trigger which invokes SP-B.

Trigger_body
The trigger_body contains the statement(s) to be executed when a trigger fires. The 
trigger_body definition is identical to the stored procedure definition. Please“Stored Proce-
dures” on page 3-1 for details on creating a trigger body.

A trigger body may also invoke any procedure registered with a Solid server. SOLID proce-
dure invocation rules follow standard procedure invocation practices.

You must explicitly check for business logic errors and raise an error.

REFERENCING Clause
This clause is optional when creating a trigger on an INSERT/UPDATE/DELETE opera-
tion. It provides a way to reference the current column identifiers in the case of INSERT and 
                                                                    Stored Procedures, Events, Triggers, and Sequences 3-33



Using Triggers
DELETE operations, and both the old column identifier and the new updated column identi-
fier by aliasing the table on which an UPDATE operation occurs.

You must specify the old_column_identifier or the new_col_identifier to access them. A 
Solid server does not provide access to them unless you define them using the REFERENC-
ING subclause.

OLD old_column_name AS old_col_identifier or 
NEW new_column_name AS new_col_identifier
This subclause of the REFERENCING clause allow you to reference the values of columns 
both before and after an UPDATE operation. It produces a set of old and new column values 
which can be passed to an inline or stored procedure; once passed, the procedure contains 
logic (for example, domain constraint checking) used to evaluate these parameter values.

Use the OLD AS clause to alias the table's old identifier as it exists before the UPDATE. Use 
the NEW AS clause to alias the table's new identifier as it exists after the UPDATE.

You cannot use the same name for the old_column_name and the new_column_name, or for 
the old_column_identifier and the new_column_identifier. 

Each column that is referenced as NEW or OLD should have a separate REFERENCING 
subclause.

The statement atomicity in a trigger is such that operations made in a trigger are visible to 
the next SQL statements inside the trigger. For example, if you execute an INSERT state-
ment in a trigger and then also perform a select in the same trigger, then the inserted row is 
visible.

In the case of AFTER trigger, an inserted row or an updated row is visible in the after insert 
trigger, but a deleted row cannot be seen for a select performed within the trigger. In the case 
of a BEFORE trigger, an inserted or updated row is invisible within the trigger and a deleted 
row is visible.

The table below summarizes the statement atomicity in a trigger, indicating whether the row 
is visible to the SELECT statement in the trigger body.

Operation BEFORE TRIGGER AFTER TRIGGER

INSERT row is invisible row is visible

UPDATE previous value is invisible new value is visible

DELETE row is visible row is invisible
3-34 SOLID Programmer Guide                              



Using Triggers
Triggers Comments and Restrictions
■ To use the stored procedure that a trigger calls, provide the catalog, schema/owner and 

name of the table on which the trigger is defined and specify whether to enable or dis-
able the triggers in the table. For more details on stored procedures, read “Triggers and 
Procedures” on page 3-36.

■ To create a trigger on a table, you must have DBA authority or be the owner of the table 
on which the trigger is being defined.

■ You can define, by default, up to one trigger for each combination of table, event 
(INSERT, UPDATE, DELETE) and time (BEFORE and AFTER). This means there can 
be a maximum of 6 triggers per table.

NoteNote

The triggers are applied to each row. This means that if there are 10 inserts, a trigger is exe-
cuted 10 times.

■ You cannot define triggers on a view (even if the view is based on a single table). 

■ You cannot alter a table that has a trigger defined on it when the dependent columns are 
affected.

■ You cannot create a trigger on a system table.

■ You cannot execute triggers that reference dropped or altered objects. To prevent this 
error:

■ Recreate any referenced object that you drop.

■ Restore any referenced object you changed back to its original state (known by the 
trigger).

■ You can use reserved words in trigger statements if they are enclosed in double quotes. 
For example, the following CREATE TRIGGER statement references a column named 
"data" which is a reserved word.

"CREATE TRIGGER TRIG1 ON TMPT BEFORE INSERT

REFERENCING NEW "DATA" AS NEW_DATA

BEGIN

END"
                                                                    Stored Procedures, Events, Triggers, and Sequences 3-35



Triggers and Procedures
Triggers and Procedures
Triggers can call stored procedures and cause a Solid server to execute other triggers. You 
can invoke procedures within a trigger body. In fact, you can define a trigger body, which 
contains procedure calls only. A procedure invoked from a trigger body can invoke other 
triggers.

When using stored procedures within the trigger body, you must first store the procedure 
with the CREATE PROCEDURE command.

In a procedure definition, you can use COMMIT and ROLLBACK statements. But in a trig-
ger body, you cannot use COMMIT (including AUTOCOMMIT and COMMIT WORK) and 
ROLLBACK statements. You can use only the WHENEVER SQLERROR ABORT state-
ment.

You can nest triggers up to 16 levels deep (can be changed using a configuration parameter). 
If a trigger gets into an infinite loop, a Solid server detects this recursive action when the 16-
level nesting (or system parameter) maximum is reached and returns an error by attempting 
to insert an error to the user. For example, you could activate a trigger by attempting to insert 
into the table T1 and the trigger could call a stored procedure which also attempts to insert 
into T1, recursively activating the trigger.

If a set of nested triggers fails at any time, a Solid server rolls back the command which 
originally activated the triggers. 

Setting Default or Derived Columns
You can create triggers to set up default or derived column values in INSERT and UPDATE 
operations. When you create the trigger for this purpose using the CREATE TRIGGER com-
mand, the trigger must follow these rules:

■ The trigger must be executed BEFORE the INSERT or UPDATE operation. Column 
values are modified with only a BEFORE trigger. Because the column value must be set 
before the INSERT or UPDATE operation, using the AFTER trigger to set column val-
ues is meaningless. Note also that the DELETE operation does not apply to modifying 
column values.

■ For an INSERT and UPDATE operation, the REFERENCING clause must contain a 
NEW column value for modification. Note that modifying the OLD column value is 
meaningless. 

■ New column values can be set by simply changing the variables defined in the referenc-
ing section.
3-36 SOLID Programmer Guide                              



Triggers and Procedures
Using Parameters and Variables
By using the REFERENCING clause in a trigger, old and new identifiers are captured. Vari-
ables can be passed to parameter markers used in the calling procedures or SQL statements 
invoked from the trigger body.

All the types of the parameters/values must be compatible with the variable types. 

Triggers and Transactions
Triggers require no commit from the invoking transaction in order to fire; DML statements 
alone cause triggers to fire. COMMIT WORK is also disallowed in a trigger body.

In a procedure definition, you can use COMMIT and ROLLBACK statements. But in a trig-
ger body, you cannot use COMMIT (including AUTOCOMMIT and COMMIT WORK) and 
ROLLBACK statements. You can use only the WHENEVER SQLERROR ABORT state-
ment.

Recursion and Concurrency Conflict Errors
If a DML statement updates/deletes a row that causes a trigger to be fired, you cannot 
update/delete the same row again within that trigger. In such cases an AFTER trigger event 
can cause a recursion error and a BEFORE trigger event can cause a concurrency conflict 
error. For details, refer to “Insert/Update/Delete Operations for BEFORE/AFTER Triggers” 
on page 3-39.

Flawed trigger logic occurs in the following example in which the same row is deleted in a 
BEFORE UPDATE trigger; this causes SOLID to generate a concurrency conflict error.

DROP EMP;

COMMIT WORK;

CREATE TABLE EMP(C1 INTEGER);

INSERT INTO EMP VALUES (1);

COMMIT WORK;

"CREATE TRIGGER TRIG1 ON EMP

BEFORE UPDATE

REFERENCING OLD C1 AS OLD_C1

BEGIN

EXEC SQL WHENEVER SQLERROR ABORT;

EXEC SQL CUR1 DELETE FROM EMP WHERE C1 = ?;
                                                                    Stored Procedures, Events, Triggers, and Sequences 3-37



Triggers and Procedures
EXEC SQL EXECUTE CUR1 USING (OLD_C1);

END";

UPDATE EMP SET C1=200 WHERE C1 = 1;

SELECT * FROM EMP;

ROLLBACK WORK;

NoteNote

If the row that is updated/deleted were based on a unique key, instead of an ordinary column 
(as in the example above), SOLID generates the following error message: 1001: key value 
not found.

To avoid recursion and concurrency conflict errors, be sure to check the application logic 
and take precautions to insure the application does not cause two transactions to update or 
delete the same row. 

In the following table, trigger actions for insert/update/delete operations for BEFORE and 
AFTER triggers are detailed below. The table shows the expected results of the trigger action 
for the lock type used. 
3-38 SOLID Programmer Guide                              



Triggers and Procedures
Insert/Update/Delete Operations for BEFORE/AFTER Triggers

Trigger Operation Trigger Action
Lock 
Type Result

AFTER INSERT UPDATE the same row 
by adding a number to 
the value

Optimistic Record is updated.

AFTER INSERT UPDATE the same row 
by adding a number to 
the value

Pessimistic Record is updated.

BEFORE INSERT UPDATE the same row 
by adding a number to 
the value

Optimistic Record is not updated since the WHERE condition of the 
UPDATE within the trigger body returns a NULL result-
set (as the desired row is not yet inserted in the table).

BEFORE INSERT UPDATE the same row 
by adding a number to 
the value

Pessimistic Record is not updated since the WHERE condition of the 
UPDATE within the trigger body returns a NULL result-
set (as the desired row is not yet inserted in the table).

AFTER INSERT DELETE the same row 
that is being inserted

Optimistic Record is deleted.

AFTER INSERT DELETE the same row 
that is being inserted

Pessimistic Record is deleted.

BEFORE INSERT DELETE the same row 
that is being inserted

Optimistic Record is not deleted since the WHERE condition of the 
DELETE within the trigger body returns a NULL result-
set (as the desired row is not yet inserted in the table).

BEFORE INSERT DELETE the same row 
that is being inserted

Pessimistic Record is not updated since the WHERE condition of the 
UPDATE within the trigger body returns a NULL result-
set (as the desired row is not yet inserted in the table).

AFTER UPDATE UPDATE the same row 
by adding a number to 
the value

Optimistic Generates SOLID Table Error: Too many nested triggers.

AFTER UPDATE UPDATE the same row 
by adding a number to 
the value

Pessimistic Generates SOLID Table Error: Too many nested triggers.

BEFORE UPDATE UPDATE the same row 
by adding a number to 
the value

Optimistic Record is updated, but does not get into a nested loop 
because the WHERE condition in the trigger body returns 
a NULL resultset and no rows are updated to fire the trig-
ger recursively.
                                                                    Stored Procedures, Events, Triggers, and Sequences 3-39



Triggers and Procedures
BEFORE UPDATE UPDATE the same row 
by adding a number to 
the value.

Pessimistic Record is updated, but does not get into a nested loop 
because the WHERE condition in the trigger body returns 
a NULL resultset and no rows are updated to fire the trig-
ger recursively.

AFTER UPDATE DELETE the same row 
that is being inserted

Optimistic Record is deleted.

AFTER UPDATE DELETE the same row 
that is being inserted

Pessimistic Record is deleted.

BEFORE UPDATE DELETE the same row 
that is being inserted.

Optimistic Record is updated.

BEFORE UPDATE DELETE the same row 
that is being inserted.

Pessimistic Record is updated.

AFTER DELETE INSERT a row with 
the same value.

Optimistic Same record is inserted after deleting.

AFTER DELETE INSERT a row with 
the same value.

Pessimistic Hangs at the time of firing the trigger.

BEFORE DELETE INSERT a row with 
the same value.

Optimistic Same record is inserted after deleting

BEFORE DELETE INSERT a row with 
the same value.

Pessimistic Hangs at the time of firing the trigger.

AFTER DELETE INSERT a row with 
the same value.

Optimistic Record is deleted.

AFTER DELETE UPDATE the same row 
by adding a number to 
the value.

Pessimistic Record is deleted.

BEFORE DELETE UPDATE the same row 
by adding a number to 
the value.

Optimistic Record is deleted.

BEFORE DELETE UPDATE the same row 
by adding a number to 
the value

Pessimistic Record is deleted.

Trigger Operation Trigger Action
Lock 
Type Result
3-40 SOLID Programmer Guide                              



Triggers and Procedures
Error Handling
If a procedure returns an error to a trigger, the trigger causes its invoking DML command to 
fail with an error. To automatically return errors during the execution of a DML statement, 
you must use WHENEVER SQLERROR ABORT statement in the trigger body. Otherwise, 
errors must be checked explicitly within the trigger body after each procedure call or SQL 
statement.

For any errors in the user written business logic as part of the trigger body, users must use 
the RETURN SQLERROR statement. For details, see “Trigger Execution Errors” on page 
3-43.

If RETURN SQLERROR is not specified, then the system returns a default error message 
when the SQL statement execution fails. Any changes to the database due to the current 
DML statement are undone and the transaction is still active. In effect, transactions are not 
rolled back if a trigger execution fails, but the current executing statement is rolled back.

NoteNote

Triggered SQL statements are a part of the invoking transaction. If the invoking DML state-
ment fails due to either the trigger or another error that is generated outside the trigger, all 
SQL statements within the trigger are rolled back along with the failed invoking DML com-
mand.

It is the responsibility of the invoking transaction to commit or rollback any DML state-
ments executed within the trigger's procedure. However, this rule does not apply if the DML 
command invoking the trigger fails as a result of the associated trigger. In this case, any 
DML statements executed within that trigger's procedure are automatically rolled back.

The COMMIT and ROLLBACK statements must be executed outside the trigger body and 
cannot be executed within the trigger body. If one executes COMMIT or ROLLBACK 
within the trigger body or within a procedure called from the trigger body or another trigger, 
the user will get a run-time error.
                                                                    Stored Procedures, Events, Triggers, and Sequences 3-41



Triggers and Procedures
Nested and Recursive Triggers
If a trigger gets into an infinite loop, a Solid server detects this recursive action when the 16-
level nesting (or MaxNestedTriggers system parameter maximum is reached). For 
example, an insert attempt on table T1 activates a trigger and the trigger could call a stored 
procedure which also attempts to insert into Table T1, recursively activating the trigger. A 
Solid server returns an error on a user’s insert attempt.

If a set of nested triggers fails at any time, a Solid server rolls back the command which 
originally activated the triggers.

Triggers and Referential Integrity
A Solid server supports referential integrity constraints. However, triggers are useful for 
implementing referential integrity constraints that are not supported by standard declarative 
referential integrity provided by a Solid server. For example, you can use triggers to imple-
ment an UPDATE CASCADE or UPDATE SET NULL constraint.

You may also use triggers to implement DELETE constraints. A Solid server does not sup-
port DELETE constraints. For example, you can specify trigger logic for each parent/depen-
dent relationship. When a row is deleted from a parent table, you can delete all dependent 
child records using the associated trigger body.

Note that when using triggers to enforce referential integrity rules (instead of Solid server's 
declarative referential integrity) no cycle or conflict checks are performed. 

Referential integrity checks on the invoking DML statement are always made after a 
BEFORE trigger is fired but before an AFTER trigger is fired.

Trigger Privileges and Security
Because triggers can be activated by a user's attempt to INSERT, UPDATE, or DELETE 
data, no privileges are required to execute them. 

When a user invokes a trigger, the user assumes the privileges of the owner of the table on 
which the trigger is defined. The action statements are executed on behalf of the table owner, 
not the user who activates the trigger. However, to create a trigger which uses a stored proce-
dure requires that the creator of the trigger meet one of the following conditions:

■ You have DBA privileges.

■ You are the owner of the table on which the trigger is being defined.

■ You were granted all privileges on the table.
3-42 SOLID Programmer Guide                              



Triggers and Procedures
If the creator has DBA authority and creates a table for another user, a Solid server assumes 
that unqualified names specified in the TRIGGER command belong to the user. For exam-
ple, the following command is executed under DBA authority:

CREATE TRIGGER A.TRIG ON EMP BEFORE UPDATE

Since the EMP table is unqualified, the Solid server assumes that the qualified table name is 
A.EMP, not DBA.EMP. 

Trigger Execution Errors
At times, it is possible to receive an error in executing a trigger. The error may be due to exe-
cution of SQL statements or business logic.

Users can receive any errors in a procedure variable using the SQL statement:

RETURN SQLERROR error_string

        or

RETURN SQLERROR char_variable

The error is returned in the following format:

User error: error_string

If a user does not specify the RETURN SQLERROR statement in the trigger body, then all 
trapped SQL errors are raised with a default error_string determined by the system. For 
details, see the appendix, "Error Codes" in the SOLID Embedded Engine Administrator 
Guide or SOLID SynchroNet Guide.

Trigger Example
DROP TABLE TRIGGER_TEST;

DROP TABLE TRIGGER_ERR_TEST;

DROP TABLE TRIGGER_ERR_B_TEST;

DROP TABLE TRIGGER_ERR_A_TEST;

DROP TABLE TRIGGER_OUTPUT;

COMMIT WORK;

CREATE TABLE TRIGGER_TEST(

        XX VARCHAR, 

        BI VARCHAR, 

        AI VARCHAR, 
                                                                    Stored Procedures, Events, Triggers, and Sequences 3-43



Triggers and Procedures
        BU VARCHAR, 

        AU VARCHAR, 

        BD VARCHAR, 

        AD VARCHAR 

);

COMMIT WORK;

-- Table for 'before' trigger errors

CREATE TABLE TRIGGER_ERR_B_TEST(

        XX VARCHAR, 

        BI VARCHAR, 

        AI VARCHAR, 

        BU VARCHAR, 

        AU VARCHAR, 

        BD VARCHAR, 

        AD VARCHAR 

);

INSERT INTO TRIGGER_ERR_B_TEST VALUES('x','x','x','x','x',

 'x','x');

COMMIT WORK;

-- Table for 'after X' trigger errors

CREATE TABLE TRIGGER_ERR_A_TEST(

        XX VARCHAR, 

        BI VARCHAR, 

        AI VARCHAR, 

        BU VARCHAR, 

        AU VARCHAR, 

        BD VARCHAR, 

        AD VARCHAR 

);

INSERT INTO TRIGGER_ERR_A_TEST VALUES('x','x','x','x','x',

  'x','x');
3-44 SOLID Programmer Guide                              



Triggers and Procedures
COMMIT WORK;

 CREATE TABLE TRIGGER_OUTPUT(

        TEXT VARCHAR,

        NAME VARCHAR,

        SCHEMA VARCHAR

);

COMMIT WORK;

 -----------------------------------------------------------------

 Success triggers

-----------------------------------------------------------------

 "CREATE TRIGGER TRIGGER_BI ON TRIGGER_TEST

        BEFORE INSERT

        REFERENCING NEW BI AS NEW_BI

BEGIN

        EXEC SQL PREPARE BI INSERT INTO TRIGGER_OUTPUT VALUES(

'BI', TRIG_NAME(0), TRIG_SCHEMA(0));

        EXEC SQL EXECUTE BI;

        SET NEW_BI = 'TRIGGER_BI';

END";

COMMIT WORK;

 "CREATE TRIGGER TRIGGER_AI ON TRIGGER_TEST

        AFTER INSERT

        REFERENCING NEW AI AS NEW_AI

BEGIN

        EXEC SQL PREPARE AI INSERT INTO TRIGGER_OUTPUT VALUES(

'AI', TRIG_NAME(0), TRIG_SCHEMA(0));

        EXEC SQL EXECUTE AI;

        SET NEW_AI = 'TRIGGER_AI';

END";

COMMIT WORK;

 "CREATE TRIGGER TRIGGER_BU ON TRIGGER_TEST

        BEFORE UPDATE

        REFERENCING NEW BU AS NEW_BU
                                                                    Stored Procedures, Events, Triggers, and Sequences 3-45



Triggers and Procedures
BEGIN

        EXEC SQL PREPARE BU INSERT INTO TRIGGER_OUTPUT VALUES(

'BU', TRIG_NAME(0), TRIG_SCHEMA(0));

        EXEC SQL EXECUTE BU;

        SET NEW_BU = 'TRIGGER_BU';

END";

COMMIT WORK;

 "CREATE TRIGGER TRIGGER_AU ON TRIGGER_TEST

        AFTER UPDATE

        REFERENCING NEW AU AS NEW_AU

BEGIN

        EXEC SQL PREPARE AU INSERT INTO TRIGGER_OUTPUT VALUES(

'AU', TRIG_NAME(0), TRIG_SCHEMA(0));

        EXEC SQL EXECUTE AU;

        SET NEW_AU = 'TRIGGER_AU';

END";

COMMIT WORK;

 "CREATE TRIGGER TRIGGER_BD ON TRIGGER_TEST

        BEFORE DELETE

        REFERENCING OLD BD AS OLD_BD

BEGIN

        EXEC SQL PREPARE BD INSERT INTO TRIGGER_OUTPUT VALUES(

'BD', TRIG_NAME(0), TRIG_SCHEMA(0));

        EXEC SQL EXECUTE BD;

        SET OLD_BD = 'TRIGGER_BD';

END";

COMMIT WORK;

"CREATE TRIGGER TRIGGER_AD ON TRIGGER_TEST

        AFTER DELETE

        REFERENCING OLD AD AS OLD_AD

BEGIN

        EXEC SQL PREPARE AD INSERT INTO TRIGGER_OUTPUT VALUES(
3-46 SOLID Programmer Guide                              



Triggers and Procedures
'AD', TRIG_NAME(0), TRIG_SCHEMA(0));

        EXEC SQL EXECUTE AD;

        SET OLD_AD = 'TRIGGER_AD';

END";

COMMIT WORK;

-----------------------------------------------------------------

Error in trigger create, wrong error variable type.

-----------------------------------------------------------------

"CREATE TRIGGER TRIGGER_ERR_AU ON TRIGGER_ERR_A_TEST

        AFTER UPDATE

        REFERENCING NEW AU AS NEW_AU

BEGIN

        DECLARE ERRSTR INTEGER;

        EXEC SQL PREPARE AU INSERT INTO TRIGGER_OUTPUT VALUES(

'AU', TRIG_NAME(0), TRIG_SCHEMA(0));

        EXEC SQL EXECUTE AU;

        SET NEW_AU = 'TRIGGER_AU';

        RETURN SQLERROR ERRSTR;

END";

COMMIT WORK;

-----------------------------------------------------------------

Error triggers

-----------------------------------------------------------------

"CREATE TRIGGER TRIGGER_ERR_BI ON TRIGGER_ERR_B_TEST

        BEFORE INSERT

        REFERENCING NEW BI AS NEW_BI

BEGIN

        EXEC SQL PREPARE BI INSERT INTO TRIGGER_OUTPUT VALUES(

'BI', TRIG_NAME(0), TRIG_SCHEMA(0));

        EXEC SQL EXECUTE BI;

        SET NEW_BI = 'TRIGGER_BI';
                                                                    Stored Procedures, Events, Triggers, and Sequences 3-47



Triggers and Procedures
        RETURN SQLERROR 'Error in TRIGGER_ERR_BI';

END";

COMMIT WORK;

"CREATE TRIGGER TRIGGER_ERR_AI ON TRIGGER_ERR_A_TEST

        AFTER INSERT

        REFERENCING NEW AI AS NEW_AI

BEGIN

        EXEC SQL PREPARE AI INSERT INTO TRIGGER_OUTPUT VALUES(

'AI', TRIG_NAME(0), TRIG_SCHEMA(0));

        EXEC SQL EXECUTE AI;

        SET NEW_AI = 'TRIGGER_AI';

        RETURN SQLERROR 'Error in TRIGGER_ERR_AI';

END";

COMMIT WORK;

"CREATE TRIGGER TRIGGER_ERR_BU ON TRIGGER_ERR_B_TEST

        BEFORE UPDATE

        REFERENCING NEW BU AS NEW_BU

BEGIN

        EXEC SQL PREPARE BU INSERT INTO TRIGGER_OUTPUT VALUES(

'BU', TRIG_NAME(0), TRIG_SCHEMA(0));

        EXEC SQL EXECUTE BU;

        SET NEW_BU = 'TRIGGER_BU';

        RETURN SQLERROR 'Error in TRIGGER_ERR_BU';

END";

COMMIT WORK;

"CREATE TRIGGER TRIGGER_ERR_AU ON TRIGGER_ERR_A_TEST

        AFTER UPDATE

        REFERENCING NEW AU AS NEW_AU

BEGIN

        DECLARE ERRSTR VARCHAR;

        EXEC SQL PREPARE AU INSERT INTO TRIGGER_OUTPUT VALUES(
3-48 SOLID Programmer Guide                              



Triggers and Procedures
'AU', TRIG_NAME(0), TRIG_SCHEMA(0));

        EXEC SQL EXECUTE AU;

        SET NEW_AU = 'TRIGGER_AU';

        SET ERRSTR = 'Error in TRIGGER_ERR_AU';

        RETURN SQLERROR ERRSTR;

END";

COMMIT WORK;

"CREATE TRIGGER TRIGGER_ERR_BD ON TRIGGER_ERR_B_TEST

        BEFORE DELETE

        REFERENCING OLD BD AS OLD_BD

BEGIN

        EXEC SQL PREPARE BD INSERT INTO TRIGGER_OUTPUT VALUES(

'BD', TRIG_NAME(0), TRIG_SCHEMA(0));

        EXEC SQL EXECUTE BD;

        SET OLD_BD = 'TRIGGER_BD';

RETURN SQLERROR 'Error in TRIGGER_ERR_BD';

END";

COMMIT WORK;

"CREATE TRIGGER TRIGGER_ERR_AD ON TRIGGER_ERR_A_TEST

        AFTER DELETE

        REFERENCING OLD AD AS OLD_AD

BEGIN

        EXEC SQL PREPARE AD INSERT INTO TRIGGER_OUTPUT VALUES(

'AD', TRIG_NAME(0), TRIG_SCHEMA(0));

        EXEC SQL EXECUTE AD;

        SET OLD_AD = 'TRIGGER_AD';

RETURN SQLERROR 'Error in TRIGGER_ERR_AD';

END";

COMMIT WORK;

-----------------------------------------------------------------
                                                                    Stored Procedures, Events, Triggers, and Sequences 3-49



Triggers and Procedures
Success trigger tests

-----------------------------------------------------------------

INSERT INTO TRIGGER_TEST(XX) VALUES ('XX');

COMMIT WORK;

SELECT * FROM TRIGGER_TEST;

COMMIT WORK;

UPDATE TRIGGER_TEST SET XX = 'XX updated';

COMMIT WORK;

SELECT * FROM TRIGGER_TEST;

COMMIT WORK;

DELETE FROM TRIGGER_TEST;

COMMIT WORK;

SELECT * FROM TRIGGER_TEST;

SELECT * FROM TRIGGER_OUTPUT;

COMMIT WORK;

-----------------------------------------------------------------

Error trigger tests

-----------------------------------------------------------------

INSERT INTO TRIGGER_ERR_B_TEST(XX) VALUES ('XX');

COMMIT WORK;

SELECT * FROM TRIGGER_ERR_B_TEST;

COMMIT WORK;

UPDATE TRIGGER_ERR_B_TEST SET XX = 'XX updated';
3-50 SOLID Programmer Guide                              



Triggers and Procedures
COMMIT WORK;

SELECT * FROM TRIGGER_ERR_B_TEST;

COMMIT WORK;

DELETE FROM TRIGGER_ERR_B_TEST;

COMMIT WORK;

SELECT * FROM TRIGGER_ERR_B_TEST;

SELECT * FROM TRIGGER_OUTPUT;

COMMIT WORK;

INSERT INTO TRIGGER_ERR_A_TEST(XX) VALUES ('XX');

COMMIT WORK;

SELECT * FROM TRIGGER_ERR_A_TEST;

COMMIT WORK;

UPDATE TRIGGER_ERR_A_TEST SET XX = 'XX updated';

COMMIT WORK;

SELECT * FROM TRIGGER_ERR_A_TEST;

COMMIT WORK;

DELETE FROM TRIGGER_ERR_A_TEST;

COMMIT WORK;

SELECT * FROM TRIGGER_ERR_A_TEST;

SELECT * FROM TRIGGER_OUTPUT;

COMMIT WORK;
                                                                    Stored Procedures, Events, Triggers, and Sequences 3-51



Triggers and Procedures
Dropping Triggers
To drop a trigger defined on a table, use the DROP TRIGGER command. This command 
drops the trigger from the system catalog.

You must be the owner of a table, or a user with DBA authority to drop a trigger from the 
table.

The syntax is:

DROP TRIGGER [catalog_name[schema_name]]trigger_name

DROP TRIGGER trigger_name
DROP TRIGGER schema_name.trigger_name
DROP TRIGGER catalog_name.schema_name.trigger_name

The trigger_name is name of the trigger on which the table is defined.

If the trigger is part of a schema, indicate the schema name as in:

schema_name.trigger_name

If the trigger is part of a catalog, indicate the catalog name as in:

catalog_name.schema_name.trigger_name

Example of Dropping and Recreating a Trigger
DROP TRIGGER TRIGGER_BI;

COMMIT WORK;

"CREATE TRIGGER TRIGGER_BI ON TRIGGER_TEST

        BEFORE INSERT

        REFERENCING NEW BI AS NEW_BI

BEGIN

        EXEC SQL PREPARE BI INSERT INTO TRIGGER_OUTPUT VALUES(

'BI_NEW', TRIG_NAME(0), TRIG_SCHEMA(0));

        EXEC SQL EXECUTE BI;

        SET NEW_BI = 'TRIGGER_BI_NEW';

END";

COMMIT WORK;

INSERT INTO TRIGGER_TEST(XX) VALUES ('XX');
3-52 SOLID Programmer Guide                              



Triggers and Procedures
COMMIT WORK;

SELECT * FROM TRIGGER_TEST;

SELECT * FROM TRIGGER_OUTPUT;

COMMIT WORK;

Altering Trigger Attributes
You can alter trigger attributes using the ALTER TRIGGER command. The valid attributes 
are ENABLED and DISABLED trigger.

The ALTER TRIGGER command causes a Solid server to ignore the trigger when an acti-
vating DML statement is issued. With this command, you can also enable a trigger that is 
currently inactive or disable a trigger that is currently defined on a table.

You must be the owner of a table, or a user with DBA authority to alter a trigger from the 
table.

alter_trigger :=

ALTER TRIGGER trigger_name_att SET ENABLED | DISABLED

trigger_name_attr := [catalog_name.[schema_name]]trigger_name 

Example
ALTER TRIGGER SET ENABLED trig_on_employee;

Obtaining Trigger Information
You obtain trigger information by using trigger functions that return specific information and 
performing a query on the trigger system table. Each of these sources is described in this 
section.

Trigger Functions
The following system supported triggers stack functions are useful for analyzing and debug-
ging purposes. 

NoteNote

The trigger stack refer to those triggers that are cached, regardless of whether they are exe-
cuted or detected for execution. Trigger stack functions can be used in the application pro-
                                                                    Stored Procedures, Events, Triggers, and Sequences 3-53



Triggers and Procedures
gram like any other function. 

The functions are:

■ TRIG_COUNT ()

This function returns the number of triggers in the trigger stack, including the current 
trigger. The return value is an integer.

■ TRIG_NAME (n)

This function returns the nth trigger name in the trigger stack. The first trigger position 
or offset is zero. 

■ TRIG_SCHEMA (n)

This function returns the nth trigger schema name in the trigger stack. The first trigger 
position or offset is zero. The return value is a string.

Trigger System Table
Triggers are stored in a system table called SYS_TRIGGERS. The following is the meta 
data for the SYS_TRIGGERS system table:

Column name Data type Description

ID INTEGER unique table identifier

TRIGGER_NAME WVARCHAR trigger name

TRIGGER_TEXT LONG WVARCHAR trigger body

TRIGGER_BIN LONG VARBINARY compiled form of the trigger

TRIGGER_SCHEMA WVARCHAR the owner

CREATIME TIMESTAMP the creation time of the trigger

TYPE INTEGER reserved for future use

REL_ID INTEGER the relation id

PRIMARY KEY (ID)
UNIQUE (TRIGGER_NAME, 
TRIGGER_SCHEMA)

UNIQUE (REL_ID, TYPE)
3-54 SOLID Programmer Guide                              



Using Sequences
Trigger Parameter Settings

Setting Nested Trigger Maximum
Triggers can invoke other triggers or a trigger can invoke itself (or recursive triggers). The 
maximum number of nested or recursive triggers can be configured by the MaxNest-
edTriggers system parameter in the SQL section of SOLID.INI.

[SQL] MaxNestedTriggers = n;

where n is the maximum number of nested triggers.

The default number for nested triggers is 16. 

Setting the Trigger Cache
In a Solid server, triggers are cached in a separate cache. Each user has a separate cache for 
triggers. As the triggers are executed, the trigger procedure logic is cached in the trigger 
cache and is reused when the trigger is executed again.

You can set the size of the trigger cache using the TriggerCache system parameter in the 
SQL section of SOLID.INI.

[SQL] TriggerCache = n; 

where n is the number of triggers being reserved for the cache.

Using Sequences
A sequence object is used to get sequence numbers. The syntax is:

CREATE [DENSE] SEQUENCE sequence_name

Depending on how the sequence is created, there may or may not be holes in the sequence 
(the sequence can be sparse or dense). Dense sequences guarantee that there are no holes in 
the sequence numbers. The sequence number allocation is bound to the current transaction. 
If the transaction rolls back, also the sequence number allocations are rolled back. The draw-
back of dense sequences is that the sequence is locked out from other transactions until the 
current transaction ends.

If there is no need for dense sequences, a sparse sequence can be used. A sparse sequence 
guarantees uniqueness of the returned values, but it is not bound to the current transaction. If 
a transaction allocates a sparse sequence number and later rolls back, the sequence number 
is simply lost.

A sequence object can be used, for example, to generate primary key numbers. The advan-
tage of using a sequence object instead of a separate table is that the sequence object is spe-
                                                                    Stored Procedures, Events, Triggers, and Sequences 3-55



Using Events
cifically fine-tuned for fast execution and requires less overhead than normal update 
statements.

Both dense and sparse sequence numbers start from 1.

After creating the sequence with the CREATE SEQUENCE statement, you can access the 
Sequence object values by using the following constructs in SQL statements:

■ sequencename.CURRVAL which returns the current value of the sequence

■ sequencename.NEXTVAL which increments the sequence by one and returns the next 
value.

An example of creating unique identifiers automatically for a table is given below:

INSERT INTO ORDERS (id, ...)

VALUES (order_seq.NEXTVAL, ...);

Sequences can also be used inside stored procedures. The current sequence value can be 
retrieved using the following statement:

EXEC SEQUENCE sequence_name.CURRENT INTO variable;

New sequence values can be retrieved using the following syntax:

EXEC SEQUENCE sequence_name.NEXT INTO variable;

It is also possible to set the current value of a sequence to a predefined value by using the 
following syntax:

EXEC SEQUENCE sequence_name SET VALUE USING variable;

An example of using a stored procedure to retrieve a new sequence number is given below:

"CREATE PROCEDURE get_my_seq

RETURNS (val INTEGER)

BEGIN

EXEC SEQUENCE my_sequence.NEXT INTO (val);

END";

Using Events
Event alerts are special objects in a SOLID database. They are used for sending events from 
one application to another. The use of event alerts removes resource consuming database 
polling from applications.
3-56 SOLID Programmer Guide                              



Using Events
The system does not automatically generate events, they must be triggered by stored proce-
dures. Similarly the events can only be received in stored procedures. When an application 
calls a stored procedure that waits for a specific event to happen, the application is blocked 
until the event is triggered and received. In multithreaded environments separate threads and 
connections can be used to access the database during the event standstill.

An event has a name that identifies it and a set of parameters. The name can be any user-
specified alphanumeric string. An event object is created with the SQL statement:

CREATE EVENT event_name

   [(parameter_name datatype

      [parameter_name datatype...])]

The parameter list specifies parameter names and parameter types. The parameter types are 
normal SQL types. Events are dropped with the SQL statement:

DROP EVENT event_name

Events are triggered and received inside stored procedures. Special stored procedure state-
ments are used to trigger and receive events.

The event is triggered with the stored procedure statement 

POST EVENT event_name (parameters)

Event parameters must be local variables or parameters in the stored procedure where the 
event is triggered. All clients that are waiting for the posted event will receive the event.

To make a procedure wait for an event to happen, the WAIT EVENT construct is used in the 
stored procedure:

wait_event_statement::=

WAIT EVENT

[event_specification...]

END WAIT

event_specification::=

WHEN event_name (parameters) BEGIN

 statements

END EVENT
                                                                    Stored Procedures, Events, Triggers, and Sequences 3-57



Using Events
Event Example
Example of a procedure that waits for an event:

"create procedure event_wait(i1 integer)

returns (result varchar)

begin

declare i integer;

declare c char(4);

i := 0;

wait event 

   when test1 begin

      result := 'event1';

      return;

   end event

   when test2(i) begin

   end event

   when test3(i, c) begin

  end event

end wait

if i <> 0 then

   result := 'if';

   post event test1;

else

   result := 'else';
3-58 SOLID Programmer Guide                              



Using Events
   post event test2(i);

   post event test3(i, c);

end if

end";
                                                                    Stored Procedures, Events, Triggers, and Sequences 3-59



Using Events
3-60 SOLID Programmer Guide                              



4 

Using UNICODE

This chapter describes how to implement the UNICODE standard, providing the capability 
to encode characters used in the major languages of the world. Topics in this chapter 
include:

■ What is UNICODE?

■ UNICODE and SOLID databases

■ Setting up a SOLID database for UNICODE data

■ Using UNICODE with SOLID ODBC Driver

■ Using UNICODE with the SOLID JDBC Driver

What is Unicode?
The Unicode Standard is the universal character encoding standard used for representation 
of text for computer processing. Unicode provides a consistent way of encoding multilin-
gual plain text making it easier to exchange text files internationally. 

The version 2.0 Unicode Standard is fully compatible with the International Standard ISO/
IEC 10646-1; 1993, and contains all the same characters and encoding points as ISO/IEC 
10646. This code-for-code identity is true for all encoded characters in the two standards, 
including the East Asian (Han) ideographic characters. The Unicode Standard also provides 
additional information about the characters and their use. Any implementation that con-
forms to Unicode also conforms to ISO/IEC 10646. 

Unicode uses a 16-bit encoding that provides code points for more than 65,000 characters. 
To keep character coding simple and efficient, the Unicode Standard assigns each character a 
unique 16-bit value, and does not use complex modes or escape codes.

While 65,000 characters are sufficient for encoding most of the many thousands of charac-
ters used in major languages of the world, the Unicode standard and ISO 10646 provide an 
                                                            Using UNICODE 4-1



What is Unicode?
extension mechanism called UTF-16 that allows for encoding as many as a million more 
characters, without use of escape codes. This is sufficient for all known character encoding 
requirements, including full coverage of all historic scripts of the world.

What Characters Does the Unicode Standard Include?
The Unicode Standard defines codes for characters used in the major languages written 
today. This includes punctuation marks, diacritics, mathematical symbols, technical sym-
bols, arrows, dingbats, etc. In all, the Unicode Standard provides codes for nearly 39,000 
characters from the world's alphabets, ideograph sets, and symbol collections.

There are about 18,000 unused code values for future expansion in the basic 16-bit encod-
ing, plus provision for another 917,504 code values through the UTF-16 extension mecha-
nism. The Unicode Standard also reserves 6,400 code values for private use, which software 
and hardware developers can assign internally for their own characters and symbols. UTF-16 
makes another 131,072 private use code values available, should 6,400 be insufficient for 
particular applications.

Encoding Forms
Character encoding standards define not only the identity of each character and its numeric 
value, or code position, but also how this value is represented in bits. The Unicode Standard 
endorses two forms that correspond to ISO 10646 transformation formats, UTF-8 and UTF-
16. 

The ISO/IEC 10646 transformation formats UTF-8 and UTF-16 are essentially ways of turn-
ing the encoding into the actual bits that are used in implementation. The first is known as 
UTF-16. It assumes 16-bit characters and allows for a certain range of characters to be used 
as an extension mechanism in order to access an additional million characters using 16-bit 
character pairs. The Unicode Standard, Version 2.0, has adopted this transformation format 
as defined in ISO/IEC 10646.

The other transformation format is known as UTF-8. This is a way of transforming all Uni-
code characters into a variable length encoding of bytes. It has the advantages that the Uni-
code characters corresponding to the familiar ASCII set end up having the same byte values 
as ASCII, and that Unicode characters transformed into UTF-8 can be used with much exist-
ing software without extensive software rewrites. The Unicode Consortium also endorses the 
use of UTF-8 as a way of implementing the Unicode Standard. Any Unicode character 
expressed in the 16-bit UTF-16 form can be converted to the UTF-8 form and back without 
loss of information.

The international standard ISO/IEC 10646 allows for two forms of use, a two-octet (=byte) 
form known as UCS-2 and a four-octet form known as UCS-4. The Unicode Standard, as a 
profile of ISO/IEC 10646, chooses the two-octet form, which is equivalent character repre-
4-2 SOLID Programmer Guide                              



Implementing Unicode
sentationin 16-bits per character. When extended characters are used, Unicode is equivalent 
to UTF-16.

Implementing Unicode
This section contains pertinent information required to implement the Unicode standard in 
SOLID Embedded Engine 3.5 and SOLID SynchroNet 2.0. Please note the following imple-
mentation guidelines:

■ Unicode data types

SQL data types WCHAR, WVARCHAR and LONG WVARCHAR are used to store 
Unicode data in a Solid database. The “Wide-character” implementation conforms to 
ODBC 3.5 specification. The Unicode data types are interoperable with corresponding 
character data types (CHAR, VARCHAR and LONG VARCHAR), but conversions 
from Unicode data types to character data types fail, if the characters are beyond ISO 
Latin 1. All string operations are possible between Unicode and character data types 
with implicit type conversions.

■ Internal storage format

The storage format (in SOLID Embedded Engine 3.5 and SOLID SynchroNet 2.0) for 
Unicode column data is UCS-2. All character information in the data dictionary are 
stored as Unicode. To support Unicode you must convert all databases created prior to 
the release of SOLID Embedded Engine version 3.x and SOLID SynchroNet 1.1 to sup-
port Unicode. For details, please refer to the latest release notes.

The wide character types require more storage space than normal character types. 
Therefore, use wide characters only where necessary.

■ Ordering data columns

Unicode data columns are ordered based on the binary values of the UCS-2 format. If 
the binary order is different than what natural language users expect, developers need to 
provide a separate column to store the correct ordering information.

■ Unicode File Names

A Solid server does not support using Unicode strings in any file names.
                                                                    Using UNICODE 4-3



Setting Up Unicode Data
Setting Up Unicode Data

Creating Columns for Storing Unicode Data
In order to start storing Unicode data in a SOLID database, tables with Unicode data col-
umns need to be created first as follows:

CREATE TABLE customer (c_id INTEGER, c_name WVARCHAR,…)

Loading Unicode Data
You can use the data import tool Speedloader from SOLID version 3.5 to import data to 
Unicode columns. The import files should contain Unicode data in UTF-8 format.

Using Unicode in Database Entity Names
It is possible to name tables, columns, procedures, etc. with Unicode strings, simply by 
enclosing the Unicode names with double quotes in all the SQL statements.

The SOLID tools, like DBConsole, will handle Unicode strings in UTF-8 format. In order to 
enter native Unicode strings, third-party database administration applications need to be 
used, or a special application using SOLID JDBC Driver 2.0 should be written for this pur-
pose.

Unicode User Names and Passwords
User names and passwords can also be Unicode strings. However, to avoid access problems 
from different tools, the original database administrator account information must be given 
as pure ASCII strings. 

SOLID Data Dictionary, SOLID Export, and SOLID Speedloader
The SOLID Tools use UTF-8 as the external representation format of Unicode strings. 

SOLID Speedloader (solload) accepts Unicode data in control and input files in UTF-8 
format.

SOLID Export (solexp) extracts Unicode data from database to output files in UTF-8 for-
mat.

SOLID Data Dictionary (soldd) prints table, column, etc. names containing Unicode 
strings in UTF-8 format into the SQL DDL file.
4-4 SOLID Programmer Guide                              



Setting Up Unicode Data
Note that the teletype SOLID SQL Editor (solsql) can use the SQL files output by soldd 
to create the tables, indices, etc. for a new database, as well as data definition entries if Uni-
code strings are available for them.

SOLID Data Dictionary and SOLID Export accept option -8 to allow exporting data dictio-
nary information in 8-bit format for use with SOLID Embedded Engine (formerly SOLID 
Server) 2.x tools. The option -8 is needed if there are scandinavian or other national non-
ascii characters in the data dictionary names. 

SOLID DBConsole and teletype tools
SOLID DBConsole, which requires Java 2.0, JDK 1.2, and the JDBC 2.0 driver, supports 
Unicode data. The teletype versions of SOLID SQL Editor and Remote Control, solsql 
and solcon, will function correctly in Unicode client environments.

UNICODE and SOLID ODBC Driver
The SOLID ODBC Driver 3.5 is Unicode compliant. 

Old Client Versions
Old clients can connect to SOLID Embedded Engine version 3.5. All Unicode data is con-
verted to ISO Latin 1 whenever possible. Thus, provided only ISO-Latin 1 data is used in the 
database, old clients can access the database engine.

NoteNote

To avoid problems in the future, it is recommended that you upgrade your client applica-
tions to use version 3.5 client libraries.

Unicode Variables and Binding
Using string columns containing Unicode data work just like normal character columns. 
Note that the length of string buffers is given as the number of bytes required to store the 
value.

String Functions
String functions work as expected, also between ISO Latin 1 and Unicode strings. Conver-
sions are provided implicitly, when necessary. The result is always of Unicode type, if either 
of the operands is Unicode.
                                                                    Using UNICODE 4-5



SOLID Light Client
The functions UPPER() and LOWER() work on Unicode strings when the contained charac-
ters can be mapped to ISO Latin 1 code page.

Translations
The character translations defined in client side solid.ini do not affect the data stored in 
Unicode columns. Translations remain in effect for character columns.

SOLID Light Client
SOLID Light Client does not work with Unicode since it does not support any ODBC 3.5 
API functionality.

Unicode and SOLID JDBC Driver
Unicode is supported in the SOLID JDBC Driver 2.0, which is compatible with SOLID 
Embedded Engine 3.0 and 3.5 and SOLID SynchroNet 1.1 and 2.0.

As Java uses natively Unicode strings, supporting Unicode means primarily that when 
accessing Unicode columns in SOLID, no data type conversions are necessary. Addition-
ally, JDBC ResultSet Class methods getUnicodeStream and setUnicodeStream are sup-
ported now for handling large Unicode texts stored in the database engine.

To convert Java applications to support Unicode, the string columns in the database engine 
need to be redefined with Unicode data types. 
4-6 SOLID Programmer Guide                              



5 

Using SOLID Light Client

This chapter describes how to use SOLID Light Client, a very small footprint database cli-
ent library and a subset of ODBC API, especially designed for implementing embedded 
solutions with limited memory resources. With SOLID Light Client, lightweight client appli-
cations can use the full power of SOLID databases.

The topics included in this chapter are:

■ What is SOLID Light Client?

■ Getting started with SOLID Light Client

■ Running SQL statements on SOLID Light Client

■ SOLID Light Client functions

■ Sample code

What is SOLID Light Client?
The SOLID Light Client library is a 20-function subset of the ODBC API (ODBC 1.0 Core), 
providing full SQL capabilities for application developers accessing SOLID databases. It 
provides functions for controlling database connections, executing SQL statements, retriev-
ing result sets, committing transactions, and other SOLID functionality. SOLID Light Client 
is suited for target environments with a small amount of memory. 
                                                            Using SOLID Light Client 5-1



Getting started with SOLID Light Client
Getting started with SOLID Light Client
To get started with SOLID Light Client, be sure you have set up the TCP/IP infrastructure as 
instructed in the installation procedures and your platform specific documentation.

Setting up the Development Environment and Building a Sample 
Program

Building a program using SOLID Light Client library is identical to building any normal C/
C++ program:

■ Insert the library file to your project.

■ Include header file.

■ Compile the source code.

■ Link the program.

The first two issues are described in more detail in the following sections.

Insert the library file into your project
Check your development environment’s documentation on how to link a library to a pro-
gram. Link the correct Light Client library to your program. The libraries are:

Platform Link the library....

DOS slcdos35.lib

NT slcw3235.lib

Solaris slcssx35.a

VxWorks slcvxw35.a (ix86)
slcvpx35.a (PowerPC)

ChorusOS slccrx35.z (ix86)
slccpx35.a (PowerPC)
5-2 SOLID Programmer Guide                              



Getting started with SOLID Light Client
Include header files
The following line needs to be included in a Light Client program:

#include "cli0lcli.h"

Insert the directory containing all the other necessary Light Client headers into your develop-
ment environment’s include directories setting.

Verifying the Development Environment Setup
The easiest way to verify the development setup is to build a Light Client sample program. 
This enables you to verify your development environment without writing any code. Please 
note the following that applies to your development environment:

■ In the NT environment, the TCP/IP services are provided by standard DLL wsock32.dll. 
To link these services into your project, add wsock32.lib into linker’s lib file list.

■ In the NT environment, some development tools link odbc32.lib providing the standard 
ODBC service as a default library to any project. Because the functions in ODBC have 
similar names and interfaces as the SOLID Light Client, the program may be linked to 
use ODBC instead of Light Client. Remove odbc32.lib from the linker’s file list.

■ On ChorusOS and VxWorks target machines, you should run a kernal that has a work-
ing TCP/IP stack running. Usually you can verify this by checking that the target 
machine responds to ping requests. For example, if you have configured your target 
machine to have an IP address 192.168.1.111, you would run “ping 192.168.1.111” 
from another workstation in your LAN for a response that proves the target is alive:

C:\>ping 192.168.1.111

Pinging 192.168.1.111 with 32 bytes of data:

Reply from 192.168.1.111: bytes=32 time=260ms TTL=62

After verification, your Light Client application should work on that target machine.

Connecting to a Database using the Sample Application
Establishing a connection to a database using SOLID Light Client library is similar to estab-
lishing connections using ODBC. An application needs to obtain an environment handle, 
allocate space for a connection and establish a connection. Run the sample program to check 
whether it can obtain a connection to a SOLID database in your environment. 

The following code establishes a connection to a SOLID database running in a machine 
192.168.1.111 and listening to tcp/ip at port 1313. User account DBA with password DBA 
has been defined in the database. 

HENV henv; /* pointer to environment object */
                                                                    Using SOLID Light Client 5-3



Getting started with SOLID Light Client
HDBC hdbc; /* pointer to database connection object */ 

RETCODE rc; /* variable for return code */ 

rc = SQLAllocEnv(henv); 

if (SQL_SUCCESS != rc) 

{ 

printf("SQLAllocEnv fails.\n"); 

return; 

} 

rc = SQLAllocConnect(henv,&hdbc); 

if (SQL_SUCCESS != rc) 

{ 

printf("SQLAllocConnect fails.\n"); 

return; 

} 

rc = SQLConnect(hdbc,(UCHAR*)192.168.1.111 1313,SQL_NTS,
(UCHAR*)DBA,SQL_NTS,(UCHAR*)"DBA", SQL_NTS); 

if (SQL_SUCCESS != rc) 

{ 

printf("SQLConnect fails.\n"); 

return; 

} 

The connection established above can be cleared using the code below. To make it easier to 
read no return code checking is included.

SQLDisconnect(hdbc); 

SQLFreeConnect(hdbc); 

SQLFreeEnv(henv);
5-4 SOLID Programmer Guide                              



Running SQL Statements on SOLID Light Client
Running SQL Statements on SOLID Light Client
This section describes briefly how to do basic database operations with SQL. The following 
operations are presented here:

■ Executing statements through SOLID Light Client

■ Reading result sets

■ Transactions and autocommit mode

■ Handling database errors

Executing Statements with SOLID Light Client
The code below executes a simple SQL statement INSERT INTO TESTTABLE (I,C) 
VALUES (100,'HUNDRED'). The code expects a valid HENV henv and a valid HDBC 
hdbc to exist and variable rc of type RETCODE to be defined. The code also expects a table 
TESTTABLE with columns I and C to exist in the database. 

rc = SQLAllocStmt(hdbc, &hstmt); 

         

if (SQL_SUCCESS != rc) 

{ 

printf("SQLAllocStmt failed \n"); 

} 

rc = SQLExecDirect(hstmt,(UCHAR*)INSERT INTO TESTTABLE (I,C) VALUES 
(100,'HUNDRED'),"SQL_NTS); 

if (SQL_SUCCESS != rc) 

{ 

printf("SQLExecDirect failed \n"); 

} 

rc = SQLTransact(SQL_NULL_HENV,hdbc,SQL_COMMIT); 

if ((SQL_SUCCESS != rc)) 

{ 

printf("SQLTransact failed \n"); 

} 

         

rc = SQLFreeStmt(hstmt,SQL_DROP); 
                                                                    Using SOLID Light Client 5-5



Running SQL Statements on SOLID Light Client
if ((SQL_SUCCESS != rc)) 

{ 

printf("SQLFreeStmt failed \n"); 

} 

Statement with parameters 
The code example below prepares a simple statement INSERT INTO TESTTABLE (I,C) 
VALUES (?,?) to be executed several times with different parameter values. Note, that the 
Light Client does not provide ODBC-like parameter binding. Instead, the values for parame-
ters need to be assigned using the SQLSetParamValue function. The following variable 
definitions are expected: 

char buf[255]; 

SDWORD dwPar; 

As above, the code also expects a valid HENV henv and a valid HDBC hdbc to exist and 
variable rc of type RETCODE to be defined and a table TESTTABLE with columns I and C 
to exist in the database. 

rc = SQLAllocStmt(hdbc, &hstmt); 

         

if (SQL_SUCCESS != rc) { 

printf("Alloc statement failed. \n"); 

} 

         

rc = SQLPrepare(hstmt,(UCHAR*)"INSERT INTO TESTTABLE(I,C)

VALUES (?,?)",SQL_NTS); 

         

if (SQL_SUCCESS != rc) { 

         printf("Prepare failed. \n"); 

} 

for (i=1;i<100;i++) 

{ 

         dwPar = i; 

         sprintf(buf,"line%i",i);

        
5-6 SOLID Programmer Guide                              



Running SQL Statements on SOLID Light Client
         

rc = m_lc->LC_SQLSetParamValue(

hstmt,1,SQL_C_LONG,SQL_INTEGER,0,0,&dwPar,NULL );

if (SQL_SUCCESS != rc) { 

printf("(SetParamValue 1 failed) \n"); 

return 0; 

} 

rc = m_lc->LC_SQLSetParamValue(

hstmt,2,SQL_C_CHAR,SQL_CHAR,0,0,buf,NULL ); 

if (SQL_SUCCESS != rc) { 

printf("(SetParamValue 1 failed) \n"); 

return 0; 

} 

rc = m_lc->LC_SQLExecute(hstmt); 

if (SQL_SUCCESS != rc) { 

printf("SQLExecute failed \n"); 

} 

} 

rc = SQLFreeStmt(hstmt,SQL_DROP); 

if ((SQL_SUCCESS != rc)) { 

printf("SQLFreeStmt failed. \n"); 

} 

         

Reading Result Sets
The following code excerpt prepares the SQL Statement SELECT I,C FROM TESTTA-
BLE, executes it and fetches all the rows the database returns. The example code below 
expects valid definitions for rc, hdbc, hstmt, henv. 

rc = SQLAllocStmt(hdbc, &hstmt); 

if (SQL_SUCCESS != rc) { 
                                                                    Using SOLID Light Client 5-7



Running SQL Statements on SOLID Light Client
         printf("SQLAllocStmt failed. \n"); 

         } 

         

rc = SQLPrepare(hstmt,(UCHAR*)"SELECT I,C

FROM TESTTABLE",SQL_NTS); 

         

if (SQL_SUCCESS != rc) { 

         printf("SQLPrepare failed. \n"); 

} 

rc = SQLExecute(hstmt); 

         

if (SQL_SUCCESS != rc) { 

         printf("SQLExecute failed. \n"); 

} 

         

rc = SQLFetch(hstmt); 

         

if ((SQL_SUCCESS != rc) && (SQL_NO_DATA_FOUND != rc)) { 

printf("SQLFetch returned an unexpected error code . \n"); 

} 

         

while (SQL_NO_DATA_FOUND != rc) 

{ 

rc = SQLGetCol(hstmt,1,SQL_C_LONG,&lbuf,sizeof(lbuf),NULL);

if (SQL_SUCCESS == rc) 

{ 

printf("LC_SQLGetCol(1) returns %d \n",lbuf);

} 

else printf("Error in SQLGetCol(1) \n"); 

         rc = SQLGetCol(hstmt,2,SQL_C_CHAR,buf,sizeof(buf),NULL); 

if (SQL_SUCCESS == rc) 

{ 
5-8 SOLID Programmer Guide                              



Running SQL Statements on SOLID Light Client
printf("SQLGetCol(2) returns %s \n",buf); 

         } 

         else printf("Error in SQL_GetCol(2) \n"); 

         

         rc = SQLFetch(hstmt); 

} 

         

rc = m_lc->LC_SQLFreeStmt(hstmt,SQL_DROP);

if ((SQL_SUCCESS != rc)) 

{ 

         printf("SQLFreeStmt failed. "); 

} 

Also the following Light Client API functions may be useful when processing result sets: 

■ SQLDescribeCol

■ SQLGetCursorName

■ SQLNumResultCols

■ SQLSetCursorName

Transactions and Autocommit Mode
All SOLID Light Client connections have the autocommit option set off. There is no method 
in Light Client to set the option on. Every transaction has to be committed explicitly.

To commit the transaction, call the SQLTransact function as follows:

rc = SQLTransact(SQL_NULL_HENV,hdbc,SQL_COMMIT); 

To roll the transaction back, call the SQLTransact as follows. 

rc = SQLTransact(SQL_NULL_HENV,hdbc,SQL_ROLLBACK); 

Handling Database Errors 
When a Light Client API function returns SQL_ERROR or SQL_SUCCESS_WITH_INFO 
more information about the error or warning can be obtained by calling the SQLError func-
tion. If the following code is run against a database where no table TESTTABLE is defined, 
it will produce the appropriate error information. 
                                                                    Using SOLID Light Client 5-9



Running SQL Statements on SOLID Light Client
As usual, the code expects a valid HENV henv and a valid HDBC hdbc to exist and vari-
able rc of type RETCODE to be defined . 

rc = SQLPrepare(hstmt,(UCHAR*)"SELECT I,C FROM

TESTTABLE",SQL_NTS); 

         

if (SQL_SUCCESS != rc) 

{ 

char buf[255]; 

RETCODE rc; 

char szSQLState[255]; 

char szErrorMsg[255]; 

SDWORD nativeerror = 0; 

SWORD maxerrmsg = 0; 

         

memset(szSQLState,0,sizeof(szSQLState)); 

memset(szErrorMsg,0,sizeof(szErrorMsg)); 

         

rc = SQLError(

SQL_NULL_HENV,hdbc,hstmt,(UCHAR*)szSQLState,&nativeerror,

        

(UCHAR*)szErrorMsg,sizeof(szErrorMsg),&maxerrmsg);

        

if (SQL_ERROR == rc) 

{ 

printf("SQLError failed \n."); 

} 

else 

{ 

         printf("Error information dump begins:-------------\n"); 

         printf("SQLState '%s' \n",szSQLState); 

printf("nativeerror %i \n",nativeerror); 

        printf("Errormsg '%s' \n", szErrorMsg); 
5-10 SOLID Programmer Guide                              



SOLID Light Client Function Summary
         printf("maxerrmsg %i \n",maxerrmsg); 

         printf("Error information dump ends:---------------\n"); 

         } 

} 

Special Notes about using SOLID Light Client

Network Traffic in Fetching Data
SOLID Light Client communication does not support SOLID’s RowsPerMessage setting. 
Every Light Client call to SQLFetch causes a network message to be sent between client and 
server. This affects performance when fetching large amounts of data. 

Unicode and ODBC Support
SOLID Light Client does not work with Unicode and any ODBC 3.5 API functionality. Only 
ODBC API versions prior to 3.5 are supported.

Notes for Programmers Familiar with ODBC

Migrating ODBC Applications to Light Client API
If you are using ODBC functions not provided by the Light Client API, migrating to SOLID 
Light Client from the standard ODBC database interface requires some programming. 
Roughly, the migration steps are:

1. Rewiew how your application uses ODBC and estimate whether Light Client API func-
tionality is sufficient for you. Some minor changes in your own code are to be expected, 
basically:

■ Calls to ODBC Extension Level 1 functions should be converted to ODBC Core 
level functions

■ Rewriting the application without SQLBindParameter and SQLBindCol

2. Verify your environment using SOLID Light Client samples.

3. Modify the ODBC calls in your own code, rebuild and test your program.

SOLID Light Client Function Summary
This section lists the functions in SOLID Light Client API, which is a subset of the ODBC 
API. For actual function descriptions, refer to the reference section at the end of this chapter.
                                                                    Using SOLID Light Client 5-11



SOLID Light Client Function Summary
NoteNote

SOLID Light Client does not provide any ODBC Extension Level functionality for setting 
parameter values (for example, SQLBindParameter) or data binding (for example, SQL-
BindCol). Instead SOLID Light Client provides SAG CLI compliant functions SQLSet-
ParamValue, for setting parameter values, and SQLGetCol, for reading data from result 
sets. Read the section, “Non-ODBC SOLID Light Client Functions” for descriptions of these 
functions.

Summary of Functions
For a complete example program on how to use SOLID Light Client API, see “SOLID Light 
Client Samples” at the end of this section. 

Task Function

Connecting to a data 
source

“SQLAllocEnv (ODBC 1.0, Core)” on page 5-22

“SQLAllocConnect (ODBC 1.0, Core)” on page 5-21

“SQLConnect (ODBC 1.0, Core)” on page 5-23

Preparing SQL statements “SQLAllocStmt (ODBC 1.0, Core)” on page 5-22

“SQLPrepare (ODBC 1.0, Core)” on page 5-35

“SQLSetParamValue” on page 5-38

Note this function is unique to SOLID Client Light. For details 
on this function, see the section which follows this table.

“SQLSetCursorName (ODBC 1.0, Core)” on page 5-37

“SQLGetCursorName (ODBC 1.0, Core)” on page 5-32

Submitting Requests “SQLExecute (ODBC 1.0, Core)” on page 5-29

“SQLExecDirect (ODBC 1.0, Core)” on page 5-28
5-12 SOLID Programmer Guide                              



SOLID Light Client Function Summary
Retrieving Results and 
Information about Results

“SQLRowCount (ODBC 1.0, Core)” on page 5-36

“SQLNumResultCols (ODBC 1.0, Core)” on page 5-35

“SQLDescribeCol (ODBC 1.0, Core)” on page 5-24

“SQLGetCol” on page 5-38

Note that this function is identical to the ODBC compliant func-
tion SQLGetData. 

“SQLFetch (ODBC 1.0, Core)” on page 5-29

“SQLGetData (ODBC 1.0, Level 1)” on page 5-32

Note that this function is identical to its SAG CLI counterpart 
SQLGetCol.

“SQLError (ODBC 1.0, Core)” on page 5-27

Terminating a Statement “SQLFreeStmt (ODBC 1.0, Core)” on page 5-31

“SQLTransact (ODBC 1.0, Core)” on page 5-37

Terminating a Connection “SQLDisconnect (ODBC 1.0, Core)” on page 5-26

“SQLFreeConnect (ODBC 1.0, Core)” on page 5-30

“SQLFreeEnv (ODBC 1.0, Core)” on page 5-30

Task Function
                                                                    Using SOLID Light Client 5-13



SOLID Light Client Samples
SOLID Light Client Samples

Sample 1:
#include "sample1.h"

/
************************************************************************

*

 * File:           SAMPLE1.C

 *

 * Description:    Sample program for SOLID Light Client API

 *

 * Author:         SOLID 

 *

 * 

 * SOLID Light Client sample program does the following. 

 *

 * 1. Checks that there are enough input parameters to contain

sufficient 

 *    connect information

 * 2. Prepares to connect SOLID through Light Client by
* allocating memory for HENV and HDBC objects 

 * 3. Connects to SOLID using Light Client Library 

 * 4. Creates a statement for one query, 

 *    'SELECT TABLE_SCHEMA,TABLE_NAME,TABLE_TYPE FROM TABLES' for 
reading data from one of SOLID system tables. 

 * 5. Executes the query 

 * 6. Fetches and outputs all the rows of a result set. 

 * 7. Closes the connection gracefully.

 *  

 * 
**********************************************************************/

void __cdecl main(int argc, char *argv[])

{

5-14 SOLID Programmer Guide                              



SOLID Light Client Samples
  HENV henv;      /* pointer to environment object            */ 

  HDBC hdbc;      /* pointer to database connection object    */ 

  RETCODE rc;     /* variable for return code                 */ 

  HSTMT hstmt;    /* pointer to database statement object     */ 

  char buf[255];  /* buffer for data to be obtained from db   */

  char buf2[255]; /* buffer for a printable row to be created */

  int iCount = 0; /* counter for rows to be fetched.          */

  /* 1. Checks that there are enough input parameters to contain 
/* sufficient connect information */

  if (argc != 4)

  {

    printf("Proper usage \"connect string\" uid pwd \n");

    printf("argc %i \n",argc);

    return;

  }

  printf("Will connect SOLID at %s with uid %s and pwd
%s.\n",argv[1],argv[2],argv[3]);

  

  /* 2. Prepares to connect SOLID through Light Client /* by 
allocating memory for HENV and HDBC objects */

  rc = SQLAllocEnv(&henv); 

  if (SQL_SUCCESS != rc) 

  { 

    printf("SQLAllocEnv fails.\n"); 

    return; 

  } 

  

  rc = SQLAllocConnect(henv,&hdbc); 

  if (SQL_SUCCESS != rc) 

  { 
                                                                    Using SOLID Light Client 5-15



SOLID Light Client Samples
    printf("SQLAllocConnect fails.\n"); 

    return; 

  } 

  /* 3. Connects to SOLID using Light Client Library */

  rc = SQLConnect(hdbc,(UCHAR*)argv[1],SQL_NTS, (UCHAR*)argv[2],SQL_NTS,
(UCHAR*)argv[3], SQL_NTS); 

  if (SQL_SUCCESS != rc) 

  { 

    printf("SQLConnect fails.\n"); 

    return;   

  } 

  else printf("Connect ok.\n");

  /* 4. Creates a statement for one query, 

/*    data from one of SOLID system tables. */

  rc = SQLAllocStmt(hdbc, &hstmt); 

  if (SQL_SUCCESS != rc) { 

    printf("SQLAllocStmt failed. \n"); 

   } 

  

  rc = SQLPrepare(hstmt,(UCHAR*)"SELECT 
TABLE_SCHEMA,TABLE_NAME,TABLE_TYPE FROM TABLES",SQL_NTS); 

  

  if (SQL_SUCCESS != rc) { 

    printf("SQLPrepare failed. \n"); 

  } 

  else printf("SQLPrepare succeeded. \n");

  /* 5. Executes the query */
5-16 SOLID Programmer Guide                              



SOLID Light Client Samples
  rc = SQLExecute(hstmt); 

  if (SQL_SUCCESS != rc) { 

    printf("SQLExecute failed. \n"); 

  } 

  else printf("SQLExecute succeeded. \n");

  

  /* 6. Fetches and outputs all the rows of a result set. */

  rc = SQLFetch(hstmt); 

  if ((SQL_SUCCESS != rc) && (SQL_NO_DATA_FOUND != rc)) { 

    printf("SQLFetch returned an unexpected error code . \n"); 

  } 

  else printf("Starting to fetch data.\n");

  

  while (SQL_NO_DATA_FOUND != rc) 

  { 

    iCount++;

    sprintf(buf2,"Row %i :",iCount);

    

    rc = SQLGetCol(hstmt,1,SQL_C_CHAR,buf,sizeof(buf),NULL); 

    if (SQL_SUCCESS == rc) 

    { 

      strcat(buf2,buf);

      strcat(buf2,",");

    } 

    else printf("Error in SQL_GetCol(1) \n"); 

    rc = SQLGetCol(hstmt,2,SQL_C_CHAR,buf,sizeof(buf),NULL); 

    if (SQL_SUCCESS == rc) 

    { 

      strcat(buf2,buf);

      strcat(buf2,",");

    } 
                                                                    Using SOLID Light Client 5-17



SOLID Light Client Samples
    else printf("Error in SQL_GetCol(2) \n"); 

    rc = SQLGetCol(hstmt,3,SQL_C_CHAR,buf,sizeof(buf),NULL); 

    if (SQL_SUCCESS == rc) 

    { 

      strcat(buf2,buf);

    } 

    else printf("Error in SQL_GetCol(3) \n"); 

    printf("%s \n",buf2);

  

    rc = SQLFetch(hstmt); 

  } 

  

  rc = SQLFreeStmt(hstmt,SQL_DROP); 

  if ((SQL_SUCCESS != rc)) 

  { 

    printf("SQLFreeStmt failed. "); 

  } 

  /* 7. Closes the connection gracefully.                          */

  SQLDisconnect(hdbc); 

  SQLFreeConnect(hdbc); 

  SQLFreeEnv(henv);

  printf("Sample program ends successfully.\n");

}

Sample 2
#ifndef SAMPLE1_H
5-18 SOLID Programmer Guide                              



SOLID Light Client Samples
#define SAMPLE1_H

/**********************************************************************

*

 * File:           SAMPLE1.H

 *

 * Description:    Sample program for SOLID Light Client API, header 
file

 *

 * Author:         SOLID 

*

 * 
**********************************************************************
/

#include <stdio.h>

#include <string.h>

#include "cli0lcli.h"

#endif

Sample 3
C:\solid\lcli\samples>sample1 "fb1 1313" DBA DBA

Will connect SOLID at fb1 1313 with uid DBA and pwd DBA.

Connect ok.

SQLPrepare succeeded.

SQLExecute succeeded.

Starting to fetch data.

Row 1 :_SYSTEM,SYS_TABLES,BASE TABLE

Row 2 :_SYSTEM,SYS_COLUMNS,BASE TABLE

Row 3 :_SYSTEM,SYS_USERS,BASE TABLE
                                                                    Using SOLID Light Client 5-19



SOLID Light Client Samples
Row 4 :_SYSTEM,SYS_UROLE,BASE TABLE

Row 5 :_SYSTEM,SYS_RELAUTH,BASE TABLE

Row 6 :_SYSTEM,SYS_ATTAUTH,BASE TABLE

Row 7 :_SYSTEM,SYS_VIEWS,BASE TABLE

Row 8 :_SYSTEM,SYS_KEYPARTS,BASE TABLE

Row 9 :_SYSTEM,SYS_KEYS,BASE TABLE

Row 10 :_SYSTEM,SYS_CARDINAL,BASE TABLE

Row 11 :_SYSTEM,SYS_INFO,BASE TABLE

Row 12 :_SYSTEM,SYS_SYNONYM,BASE TABLE

Row 13 :_SYSTEM,TABLES,VIEW

Row 14 :_SYSTEM,COLUMNS,VIEW

Row 15 :_SYSTEM,SQL_LANGUAGES,BASE TABLE

Row 16 :_SYSTEM,SERVER_INFO,VIEW

Row 17 :_SYSTEM,SYS_TYPES,BASE TABLE

Row 18 :_SYSTEM,SYS_FORKEYS,BASE TABLE

Row 19 :_SYSTEM,SYS_FORKEYPARTS,BASE TABLE

Row 20 :_SYSTEM,SYS_PROCEDURES,BASE TABLE

Row 21 :_SYSTEM,SYS_TABLEMODES,BASE TABLE

Row 22 :_SYSTEM,SYS_EVENTS,BASE TABLE

Row 23 :_SYSTEM,SYS_SEQUENCES,BASE TABLE

Row 24 :_SYSTEM,SYS_TMP_HOTSTANDBY,BASE TABLE

Sample program ends successfully.
5-20 SOLID Programmer Guide                              



SQLAllocConnect (ODBC 1.0, Core)
SOLID Light Client Function Reference
The following pages describe each ODBC function supported by SOLID Light Client in 
alphabetic order. Each function is defined as a C programming language function. 

Important

This function reference is specific to ODBC which is a superset of SOLID Light Client. 
Therefore, a function description in this reference may refer to other ODBC functions that 
do not apply to SOLID Light Client. Only the functions listed in the“SOLID Light Client 
Function Summary” on page 5-11 apply to SOLID Light Client. In the following descrip-
tions, please disregard any references to non-supported functions.

__________________________________________________________________________

SQLAllocConnect (ODBC 1.0, Core)
SQLAllocConnect allocates memory for a connection handle within the environment identi-
fied by henv.

Syntax
RETCODE SQLAllocConnect(henv, phdbc)

The SQLAllocConnect function accepts the following arguments.

Returns
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_ERROR, or 
SQL_INVALID_HANDLE.

If SQLAllocConnect returns SQL_ERROR, it will set the hdbc referenced by phdbc to 
SQL_NULL_HDBC. To obtain additional information, the application can call SQLError 
with the specified henv and with hdbc and hstmt set to SQL_NULL_HDBC and 
SQL_NULL_HSTMT, respectively.

Type Argument Use Description

HENV henv Input Environment handle.

HDBC FAR * phdbc Output Pointer to storage for the con-
nection handle.
                                                                    Using SOLID Light Client 5-21



SQLAllocEnv (ODBC 1.0, Core)
SQLAllocEnv (ODBC 1.0, Core)
SQLAllocEnv allocates memory for an environment handle and initializes the ODBC call 
level interface for use by an application. An application must call SQLAllocEnv prior to 
calling any other ODBC function.

Syntax
RETCODE SQLAllocEnv(phenv)

The SQLAllocEnv function accepts the following argument.

Returns
SQL_SUCCESS or SQL_ERROR. 

If SQLAllocEnv returns SQL_ERROR, it will set the henv referenced by phenv to 
SQL_NULL_HENV. In this case, the application can assume that the error was a memory 
allocation error.

SQLAllocStmt (ODBC 1.0, Core)
SQLAllocStmt allocates memory for a statement handle and associates the statement han-
dle with the connection specified by hdbc. An application must call SQLAllocStmt prior to 
submitting SQL statements.

Syntax
RETCODE SQLAllocStmt(hdbc, phstmt)

The SQLAllocStmt function accepts the following arguments.

Type Argument Use Description

HENV FAR * phenv Output Pointer to storage for the envi-
ronment handle.

Type Argument Use Description

HDBC hdbc Input Connection handle.

HSTMT FAR * phstmt Output Pointer to storage for the statement 
handle.
5-22 SOLID Programmer Guide                              



SQLConnect (ODBC 1.0, Core)
Returns
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_INVALID_HANDLE, or 
SQL_ERROR.

If SQLAllocStmt returns SQL_ERROR, it will set the hstmt referenced by phstmt to 
SQL_NULL_HSTMT. The application can then obtain additional information by calling 
SQLError with the hdbc and SQL_NULL_HSTMT.

SQLConnect (ODBC 1.0, Core)
SQLConnect loads a driver and establishes a connection to a data source. The connection 
handle references storage of all information about the connection, including status, transac-
tion state, and error information.

Syntax
RETCODE SQLConnect(hdbc, szDSN, cbDSN, szUID, cbUID, szAuthStr, cbAuthStr)

The SQLConnect function accepts the following arguments.

Returns
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_ERROR, or 
SQL_INVALID_HANDLE.

Type Argument Use Description

HDBC hdbc Input Connection handle.

UCHAR FAR * szDSN Input Data source name.

SWORD cbDSN Input Length of szDSN.

UCHAR FAR * szUID Input User identifier.

SWORD cbUID Input Length of szUID.

UCHAR FAR * szAuthStr Input Authentication string (typically the pass-
word).

SWORD cbAuthStr Input Length of szAuthStr.
                                                                    Using SOLID Light Client 5-23



SQLDescribeCol (ODBC 1.0, Core)
SQLDescribeCol (ODBC 1.0, Core)
SQLDescribeCol returns the result descriptor — column name, type, precision, scale, and 
nullability — for one column in the result set; it cannot be used to return information about 
the bookmark column (column 0).

Syntax
RETCODE SQLDescribeCol(hstmt, icol, szColName, cbColNameMax, pcbColName, 
pfSqlType, pcbColDef, pibScale, pfNullable)

The SQLDescribeCol function accepts the following arguments.

Type Argument Use Description

HSTMT hstmt Input Statement handle.

UWORD icol Input Column number of result data, 
ordered sequentially left to right, 
starting at 1.

UCHAR FAR * szColName Output Pointer to storage for the column 
name. If the column is unnamed or 
the column name cannot be deter-
mined, the driver returns an empty 
string.

SWORD cbColNameMax Input Maximum length of the szColName 
buffer.

SWORD FAR * pcbColName Output Total number of bytes (excluding 
the null termination byte) available 
to return in szColName. If the num-
ber of bytes available to return is 
greater than or equal to cbColName-
Max, the column name in szCol-
Name is truncated to 
cbColNameMax – 1 bytes.
5-24 SOLID Programmer Guide                              



SQLDescribeCol (ODBC 1.0, Core)
SWORD FAR * pfSqlType Output The SQL data type of the column. 
This must be one of the following 
values:

SQL_BIGINT

SQL_BINARY

SQL_BIT

SQL_CHAR

SQL_DATE

SQL_DECIMAL

SQL_DOUBLE

SQL_FLOAT

SQL_INTEGER

SQL_LONGVARBINARY

SQL_LONGVARCHAR

SQL_NUMERIC

SQL_REAL

SQL_SMALLINT

SQL_TIME

SQL_TIMESTAMP

SQL_TINYINT

SQL_VARBINARY

SQL_VARCHAR

or a driver-specific SQL data type. 
If the data type cannot be deter-
mined, the driver returns 0.

For more information, see “SQL 
Data Types” on page D-3. For 
information about driver-specific 
SQL data types, see the driver’s 
documentation.

UDWORD FAR * pcbColDef Output The precision of the column on the 
data source. If the precision cannot 
be determined, the driver returns 0. 
                                                                    Using SOLID Light Client 5-25



SQLDisconnect (ODBC 1.0, Core)
Returns
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_STILL_EXECUTING, 
SQL_ERROR, or SQL_INVALID_HANDLE.

SQLDisconnect (ODBC 1.0, Core)
SQLDisconnect closes the connection associated with a specific connection handle.

Syntax
RETCODE SQLDisconnect(hdbc)

The SQLDisconnect function accepts the following argument.

Returns
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_ERROR, or 
SQL_INVALID_HANDLE.

SWORD FAR * pibScale Output The scale of the column on the data 
source. If the scale cannot be deter-
mined or is not applicable, the driver 
returns 0. 

SWORD FAR * pfNullable Output Indicates whether the column allows 
NULL values. One of the following 
values:
SQL_NO_NULLS: The column 
does not allow NULL values.

SQL_NULLABLE: The column 
allows NULL values.

SQL_NULLABLE_UNKNOWN: 
The driver cannot determine if the 
column allows NULL values.

Type Argument Use Description

HDBC hdbc Input Connection handle.
5-26 SOLID Programmer Guide                              



SQLError (ODBC 1.0, Core)
SQLError (ODBC 1.0, Core)
SQLError returns error or status information.

Syntax
RETCODE SQLError(henv, hdbc, hstmt, szSqlState, pfNativeError, szErrorMsg, cbEr-
rorMsgMax, pcbErrorMsg)

The SQLError function accepts the following arguments.

Type Argument Use Description

HENV henv Input Environment handle or 
SQL_NULL_HENV.

HDBC hdbc Input Connection handle or 
SQL_NULL_HDBC.

HSTMT hstmt Input Statement handle or 
SQL_NULL_HSTMT.

UCHAR FAR * szSqlState Output SQLSTATE as null-terminated 
string. For a list of SQLSTATEs, see 
Appendix A, “ODBC Error Codes.”

SDWORD FAR * pfNativeError Output Native error code (specific to the 
data source).

UCHAR FAR * szErrorMsg Output Pointer to storage for the error mes-
sage text.

SWORD cbErrorMsgMax Input Maximum length of the szErrorMsg 
buffer. This must be less than or 
equal to SQL_MAX_MESSAGE_

LENGTH – 1.
                                                                    Using SOLID Light Client 5-27



SQLExecDirect (ODBC 1.0, Core)
Returns
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_NO_DATA_FOUND, 
SQL_ERROR, or SQL_INVALID_HANDLE.

SQLExecDirect (ODBC 1.0, Core)
SQLExecDirect executes a preparable statement, using the current values of the parameter 
marker variables if any parameters exist in the statement. SQLExecDirect is the fastest way 
to submit a SQL statement for one-time execution.

Syntax
RETCODE SQLExecDirect(hstmt, szSqlStr, cbSqlStr)

The SQLExecDirect function uses the following arguments.

Returns
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_NEED_DATA, 
SQL_STILL_EXECUTING, SQL_ERROR, or SQL_INVALID_HANDLE.

SWORD FAR * pcbErrorMsg Output Pointer to the total number of bytes 
(excluding the null termination byte) 
available to return in szErrorMsg. If 
the number of bytes available to 
return is greater than or equal to 
cbErrorMsgMax, the error message 
text in szErrorMsg is truncated to 
cbErrorMsgMax 

– 1 bytes.

Type Argument Use Description

HSTMT hstmt Input Statement handle.

UCHAR FAR * szSqlStr Input SQL statement to be executed.

SDWORD cbSqlStr Input Length of szSqlStr.
5-28 SOLID Programmer Guide                              



SQLFetch (ODBC 1.0, Core)
SQLExecute (ODBC 1.0, Core)
SQLExecute executes a prepared statement, using the current values of the parameter 
marker variables if any parameter markers exist in the statement.

Syntax
RETCODE SQLExecute(hstmt)

The SQLExecute statement accepts the following argument.

Returns
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_NEED_DATA, 
SQL_STILL_EXECUTING, SQL_ERROR, or SQL_INVALID_HANDLE.

SQLFetch (ODBC 1.0, Core)
SQLFetch fetches a row of data from a result set. The driver returns data for all columns 
that were bound to storage locations with SQLBindCol.

Syntax

RETCODE SQLFetch(hstmt)

The SQLFetch function accepts the following argument.

Returns
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_NO_DATA_FOUND, 
SQL_STILL_EXECUTING, SQL_ERROR, or SQL_INVALID_HANDLE.

Type Argument Use Description

HSTMT hstmt Input Statement handle.

Type Argument Use Description

HSTMT hstmt Input Statement handle.
                                                                    Using SOLID Light Client 5-29



SQLFreeConnect (ODBC 1.0, Core)
SQLFreeConnect (ODBC 1.0, Core)
SQLFreeConnect releases a connection handle and frees all memory associated with the 
handle.

Syntax

RETCODE SQLFreeConnect(hdbc)

The SQLFreeConnect function accepts the following argument.

Returns
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_ERROR, or 
SQL_INVALID_HANDLE.

SQLFreeEnv (ODBC 1.0, Core)
SQLFreeEnv frees the environment handle and releases all memory associated with the 
environment handle.

Syntax

RETCODE SQLFreeEnv(henv)

The SQLFreeEnv function accepts the following argument.

Returns
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_ERROR, or 
SQL_INVALID_HANDLE.

Type Argument Use Description

HDBC hdbc Input Connection handle.

Type Argument Use Description

HENV henv Input Environment handle.
5-30 SOLID Programmer Guide                              



SQLFreeStmt (ODBC 1.0, Core)
SQLFreeStmt (ODBC 1.0, Core)
SQLFreeStmt stops processing associated with a specific hstmt, closes any open cursors 
associated with the hstmt, discards pending results, and, optionally, frees all resources asso-
ciated with the statement handle.

Syntax

RETCODE SQLFreeStmt(hstmt, fOption)

The SQLFreeStmt function accepts the following arguments.

Returns
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_ERROR, or 
SQL_INVALID_HANDLE.

Type Argument Use Description

HSTMT hstmt Input Statement handle

UWORD fOption Input One of the following options:

SQL_ CLOSE: Close the cursor associated 
with hstmt (if one was defined) and discard 
all pending results. The application can 
reopen this cursor later by executing a 
SELECT statement again with the same or 
different parameter values. If no cursor is 
open, this option has no effect for the appli-
cation.

SQL_DROP: Release the hstmt, free all 
resources associated with it, close the cursor 
(if one is open), and discard all pending rows. 
This option terminates all access to the hstmt. 
The hstmt must be reallocated to be reused.

SQL_UNBIND: Release all column buffers 
bound by SQLBindCol for the given hstmt.

SQL_RESET_PARAMS: Release all param-
eter buffers set by SQLBindParameter for 
the given hstmt.
                                                                    Using SOLID Light Client 5-31



SQLGetCursorName (ODBC 1.0, Core)
SQLGetCursorName (ODBC 1.0, Core)
SQLGetCursorName returns the cursor name associated with a specified hstmt.

Syntax

RETCODE SQLGetCursorName(hstmt, szCursor, cbCursorMax, pcbCursor)

The SQLGetCursorName function accepts the following arguments.

Returns
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_ERROR, or 
SQL_INVALID_HANDLE.

SQLGetData (ODBC 1.0, Level 1)
SQLGetData returns result data for a single unbound column in the current row. The appli-
cation must call SQLFetch, or SQLExtendedFetch and (optionally) SQLSetPos to posi-
tion the cursor on a row of data before it calls SQLGetData. It is possible to use 
SQLBindCol for some columns and use SQLGetData for others within the same row. This 
function can be used to retrieve character or binary data values in parts from a column with a 
character, binary, or data source–specific data type (for example, data from 
SQL_LONGVARBINARY or SQL_LONGVARCHAR columns).

Syntax

RETCODE SQLGetData(hstmt, icol, fCType, rgbValue, cbValueMax, pcbValue)

Type Argument Use Description

HSTMT hstmt Input Statement handle.

UCHAR FAR * szCursor Output Pointer to storage for the cursor name.

SWORD cbCursorMax Input Length of szCursor.

SWORD FAR * pcbCursor Output Total number of bytes (excluding the 
null termination byte) available to 
return in szCursor. If the number of 
bytes available to return is greater than 
or equal to cbCursorMax, the cursor 
name in szCursor is truncated to 
cbCursorMax – 1 bytes.
5-32 SOLID Programmer Guide                              



SQLGetData (ODBC 1.0, Level 1)
The SQLGetData function accepts the following arguments:

Type Argument Use Description

HSTMT hstmt Input Statement handle. 

UWORD icol Input Column number of result data, ordered sequen-
tially left to right, starting at 1. A column num-
ber of 0 is used to retrieve a bookmark for the 
row; bookmarks are not supported by ODBC 
1.0 drivers or SQLFetch.

SWORD fCType Input The C data type of the result data. This must be 
one of the following values:

SQL_C_BINARY
SQL_C_BIT
SQL_C_BOOKMARK
SQL_C_CHAR
SQL_C_DATE
SQL_C_DEFAULT
SQL_C_DOUBLE
SQL_C_FLOAT
SQL_C_SLONG
SQL_C_SSHORT
SQL_C_STINYINT
SQL_C_TIME
SQL_C_TIMESTAMP
SQL_C_ULONG
SQL_C_USHORT
SQL_C_UTINYINT
SQL_C_DEFAULT specifies that data be con-
verted to its default C data type.

Note   Drivers must also support the following 
values of fCType from ODBC 1.0. Applications 
must use these values, rather than the ODBC 
2.0 values, when calling an ODBC 1.0 driver:

SQL_C_LONG
SQL_C_SHORT
SQL_C_TINYINT
For information about how data is converted, 
see “Converting Data from SQL to C Data 
Types” on page D-21.

PTR rgbValue Output Pointer to storage for the data.
                                                                    Using SOLID Light Client 5-33



SQLGetData (ODBC 1.0, Level 1)
Returns
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_NO_DATA_FOUND, 
SQL_STILL_EXECUTING, SQL_ERROR, or SQL_INVALID_HANDLE.

SDWORD cbValueMax Input Maximum length of the rgbValue buffer. For 
character data, rgbValue must also include 
space for the null-termination byte.

For character and binary C data, cbValueMax 
determines the amount of data that can be 
received in a single call to SQLGetData. For 
all other types of C data, cbValueMax is 
ignored; the driver assumes that the size of rgb-
Value is the size of the C data type specified 
with fCType and returns the entire data value. 

SDWORD 
FAR *

pcbValue Output SQL_NULL_DATA, the total number of bytes 
(excluding the null termination byte for charac-
ter data) available to return in rgbValue prior to 
the current call to SQLGetData, or 
SQL_NO_TOTAL if the number of available 
bytes cannot be determined.

For character data, if pcbValue is 
SQL_NO_TOTAL or is greater than or equal to 
cbValueMax, the data in rgbValue is truncated to 
cbValueMax – 1 bytes and is null-terminated by 
the driver.

For binary data, if pcbValue is 
SQL_NO_TOTAL or is greater than cbValue-
Max, the data in rgbValue is truncated to cbVal-
ueMax bytes.

For all other data types, the value of cbValue-
Max is ignored and the driver assumes the size 
of rgbValue is the size of the C data type speci-
fied with fCType.
5-34 SOLID Programmer Guide                              



SQLPrepare (ODBC 1.0, Core)
SQLNumResultCols (ODBC 1.0, Core)
SQLNumResultCols returns the number of columns in a result set.

Syntax

RETCODE SQLNumResultCols(hstmt, pccol)

The SQLNumResultCols function accepts the following arguments.

Returns
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_STILL_EXECUTING, 
SQL_ERROR, or SQL_INVALID_HANDLE.

SQLPrepare (ODBC 1.0, Core)
SQLPrepare prepares a SQL string for execution.

Syntax

RETCODE SQLPrepare(hstmt, szSqlStr, cbSqlStr)

The SQLPrepare function accepts the following arguments.

Returns
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_STILL_EXECUTING, 
SQL_ERROR, or SQL_INVALID_HANDLE.

Type Argument Use Description

HSTMT hstmt Input Statement handle.

SWORD FAR * pccol Output Number of columns in the result set.

Type Argument Use Description

HSTMT hstmt Input Statement handle.

UCHAR FAR * szSqlStr Input SQL text string.

SDWORD cbSqlStr Input Length of szSqlStr.
                                                                    Using SOLID Light Client 5-35



SQLRowCount (ODBC 1.0, Core)
SQLRowCount (ODBC 1.0, Core)
SQLRowCount returns the number of rows affected by an UPDATE, INSERT, or 
DELETE statement or by a SQL_UPDATE, SQL_ADD, or SQL_DELETE operation in 
SQLSetPos.

Syntax

RETCODE SQLRowCount(hstmt, pcrow)

The SQLRowCount function accepts the following arguments.

Returns
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_ERROR, or 
SQL_INVALID_HANDLE.

Type Argument Use Description

HSTMT hstmt Input Statement handle.

SDWORD 
FAR *

pcrow Output For UPDATE, INSERT, and DELETE 
statements and for the SQL_UPDATE, 
SQL_ADD, and SQL_DELETE opera-
tions in SQLSetPos, pcrow is the num-
ber of rows affected by the request or 
–1 if the number of affected rows is not 
available.

For other statements and functions, the 
driver may define the value of pcrow. 
For example, some data sources may be 
able to return the number of rows 
returned by a SELECT statement or a 
catalog function before fetching the 
rows.

Note: Many data sources cannot return 
the number of rows in a result set 
before fetching them; for maximum 
interoperability, applications should not 
rely on this behavior.
5-36 SOLID Programmer Guide                              



SQLTransact (ODBC 1.0, Core)
SQLSetCursorName (ODBC 1.0, Core)
SQLSetCursorName associates a cursor name with an active hstmt. If an application does 
not call SQLSetCursorName, the driver generates cursor names as needed for SQL state-
ment processing.

Syntax

RETCODE SQLSetCursorName(hstmt, szCursor, cbCursor)

The SQLSetCursorName function accepts the following arguments.

Returns
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_ERROR, or 
SQL_INVALID_HANDLE.

SQLTransact (ODBC 1.0, Core)
SQLTransact requests a commit or rollback operation for all active operations on all hstmts 
associated with a connection. SQLTransact can also request that a commit or rollback oper-
ation be performed for all connections associated with the henv.

Syntax

RETCODE SQLTransact(henv, hdbc, fType)

The SQLTransact function accepts the following arguments.

Type Argument Use Description

HSTMT hstmt Input Statement handle.

UCHAR FAR * szCursor Input Cursor name.

SWORD cbCursor Input Length of szCursor.

Type Argument Use Description

HENV henv Input Environment handle.

HDBC hdbc Input Connection handle.
                                                                    Using SOLID Light Client 5-37



Non-ODBC SOLID Light Client Functions
Returns
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_ERROR, or 
SQL_INVALID_HANDLE.

Non-ODBC SOLID Light Client Functions
This sections describes the two non-ODBC functions supported in SOLID Light Client:

■ SQLGetCol

■ SQLSetParamValue

SQLGetCol
SQLGetCol gets result data for a single column in the current row. This function allows the 
application to retrieve the data one column at a time. It may also be used to retrieve large 
data values in easily manageable blocks.

SQLGetCol functionality is identical to its ODBC API counterpart SQLGetData. For 
details, read “SQLGetData (ODBC 1.0, Level 1)” on page 5-32.

SQLSetParamValue
Sets the value of a parameter marker in the SQL statement specified in SQLPrepare. 
Parameter markers are numbered sequentially from left-to-right, starting with one, and may 
be set in any order. The value of argument rgbValue will be used for the parameter marker 
when SQLExecute is called.

Syntax
RETCODE SQLSetParamValue(hstmt, ipar, fCType, fSqlType, cbColDef, ibScale, rgb-
Value, pcbValue)

The SQLSetParamValue function accepts the following arguments:

UWORD fType Input One of the following two values:

SQL_COMMIT

SQL_ROLLBACK

Type Argument Use Description

HSTMT hstmt Input Statement handle. 
5-38 SOLID Programmer Guide                              



Non-ODBC SOLID Light Client Functions
UWORD ipar Input Parameter number, ordered squentially left to 
right, starting at 1.

SWORD fCType Input The C data type of the result data. Check the 
allowed data type conversions at the end of this 
chapter.

This must be one of the following values:

SQL_C_BINARY
SQL_C_CHAR
SQL_C_DOUBLE
SQL_C_FLOAT
SQL_C_LONG
SQL_C_SHORT

SDWORD fSqlType Input The SQL data type of the parameter. Check the 
allowed data type conversions following this 
table.

This must be one of the following values:

SQL_C_BINARY
SQL_C_CHAR
SQL_DATE
SQL_DECIMAL
SQL_C_DOUBLE
SQL_C_FLOAT
SQL_INTEGER
SQL_LONGVARBINARY
SQL_LONGVARCHAR
SQL_NUMERIC
SQL_REAL
SQL_SMALLINT
SQL_TIME
SQL_TIMESTAMP
SQL_TINYINT
SQL_VARBINARY
SQL_VARCHAR

UDWORD cbColDef Input The precision of the column or expression of 
the corresponding parameter marker.

SWORD ibScale Input The scale of the column or expression of the 
corresponding parameter marker.

PTR rgbValue Input Output data.

SDWORD * pcbValue Input Length of data in rgbValue
                                                                    Using SOLID Light Client 5-39



Non-ODBC SOLID Light Client Functions
fCType describes the contents of rgbValue. fCType must either be SQL_C_CHAR ot the C 
equivalent of argument fSqlType. If fCType is SQL_C_CHAR and fSqlType is a numeric 
type, rgbValue will be converted from a character string to the type specified by fSqlType. 

fSqlType is the data type of the column or expression referenced by the parameter marker. 
At execute time, the value in rgbValue will be read and converted from fCType to fSqlType, 
and then sent to the SOLID database. Note that the value of rgbValue remains unchanged.

cbColDef is the length or precision of the column definition for the column or expression 
referenced. cbColDef differs depending on the class of data as follows:

ibScale is the total number of digits to the right of the decimal point for the column refer-
enced. ibScale is defined only for the SQL_DECIMAL and SQL_NUMERIC data types. 
rgbValue is a character string that must contain the actual data for the parameter marker. The 
data must be of the form specified by the fCType argument. 

pcbValue is an integer that is the length of the parameter marker value in rgbValue. It is only 
used when fCType is SQL_C_CHAR or when specifying a null database value. The vari-
able must be set to SQL_NULL_DATA if a null value is to be specified for the parameter 
marker. If the variable is set to SQL_NTS then rgbValue will be treated as a null terminated 
string. 

Returns
SQL_SUCCESS, SQL_ERROR, or SQL_INVALID_HANDLE.

Diagnostics
■ If the data identified by the fcType argument cannot be converted to the data value iden-

tified by the fSqlType argument, SQL_ERROR is returned ('07006' -- Restricted data 
type attribute violation)

■ If the fcType argument is not valid, SQL_ERROR is returned ('S1003' -- Program type 
out of range).

■ If the fSqlType argument is not valid, SQL_ERROR is returned ('S1004' -- SQL data 
type out of range). 

Type Description

SQL_CHAR
SQL_VARCHAR

maximum length of the column

SQL_DECIMAL
SQL_NUMERIC

maximum decimal precision (that is, total number of digits possi-
ble)
5-40 SOLID Programmer Guide                              



Non-ODBC SOLID Light Client Functions
■ If the ipar argument is less than 1, SQL_ERROR is returned ('S1009' -- Invalid argu-
ment value). 

Comments
All parameters set by this function remain in effect until either SQLFreeStmt is called with 
the SQL_UNBIND_PARAMS or SQL_DROP option or SQLSetParamValue is called 
again for the same parameter number. When a SQL statement containing parameters is exe-
cuted, the set values of the parameters are sent to to the SOLID database.

Note that the number of parameters must match exactly the number of parameter markers 
present in the statement that was prepared. If less parameter values are set than there were 
parameter markers in the SQL statement, NULL values will be used instead.

Code Example
The code example below prepares a simple statement INSERT INTO TESTTABLE (I,C) 
VALUES (?,?) to be executed several times with different parameter values. 

...

char buf[255];

SDWORD dwPar;

...

rc = SQLPrepare(hstmt,(UCHAR*)"INSERT INTO TESTTABLE(I,C)

VALUES (?,?)",SQL_NTS);

if (SQL_SUCCESS != rc) {

         printf("Prepare failed. \n");

} 

for (i=1;i<100;i++)

{

         dwPar = i;

         sprintf(buf,"line%i",i);

rc = m_lc->LC_SQLSetParamValue(

hstmt,1,SQL_C_LONG,SQL_INTEGER,0,0,&dwPar,NULL );

if (SQL_SUCCESS != rc) {

printf("(SetParamValue 1 failed) \n");

         return 0;
                                                                    Using SOLID Light Client 5-41



Non-ODBC SOLID Light Client Functions
         } 

rc =

        m_lc->LC_SQLSetParamValue(

hstmt,2,SQL_C_CHAR,SQL_CHAR,0,0,buf,NULL );

if (SQL_SUCCESS != rc) {

printf("(SetParamValue 1 failed) \n");

         return 0;> >

         } 

Related Functions

For information about See

Preparing a statement for execution SQLPrepare

Executing a prepared SQL statement SQLExecute

Executing a SQL statement SQLExecDirect
5-42 SOLID Programmer Guide                              



Non-ODBC SOLID Light Client Functions
SOLID Light Client Type Conversion Matrix
The table below describes the type conversions provided by the SOLID Light Client func-
tions SQLGetCol and SQLSetParamValue.

Abbreviations used in the tables for the C variable data types are as follows:

(*) Note that when variables of these data types are used as parameters in Light Client func-
tions calls, actually the pointer to the variable must be passed instead.

Refer to Appendix D, “Data Types” for a description of SQL data types.

Functions SQLGetCol and SQLGetData perform the following data type conversions 
between database column types and C variable data types:

Abbreviation API parameter definition C variable data types

Bin SQL_C_BINARY voidd*

Char SQL_C_CHAR char[], char*

Long SQL_C_LONG long int (*), 32 bits

Short SQL_C_SHORT short int (*), 16 bits

Float SQL_C_FLOAT float (*)

Double SQL_C_DOUBLE double (*)

SQL data type \ C variable data 
type Bin Char Long Short Float Double

TINYINT * * * * * *

LONG VARBINARY * *

VARBINARY * *

BINARY * *

LONG VARCHAR * *

CHAR * *

NUMERIC * * * * *

DECIMAL * * * * *

INTEGER * * * * * *
                                                                    Using SOLID Light Client 5-43



Non-ODBC SOLID Light Client Functions
Function SQLSetParamValue provides the following type conversions between C data 
types and the database column types.

SMALLINT * * * * * *

FLOAT * * * * * *

REAL * * * * * *

DOUBLE * * * * * *

DATE *

TIME *

TIMESTAMP *

VARCHAR * *

SQL data type \ C variable data 
type Bin Char Long Short Float Double

TINYINT * * *

LONG VARBINARY *

VARBINARY *

BINARY *

LONG VARCHAR *

CHAR *

NUMERIC * * * * *

DECIMAL * * * * *

INTEGER * * *

SMALLINT * * *

FLOAT * * * * *

REAL * * * * *

DOUBLE * * * * *

DATE *

SQL data type \ C variable data 
type Bin Char Long Short Float Double
5-44 SOLID Programmer Guide                              



Non-ODBC SOLID Light Client Functions
TIME *

TIMESTAMP *

VARCHAR *

SQL data type \ C variable data 
type Bin Char Long Short Float Double
                                                                    Using SOLID Light Client 5-45



Non-ODBC SOLID Light Client Functions
5-46 SOLID Programmer Guide                              



6 

Using the SOLID JDBC Driver

This chapter describes how to use the SOLID JDBC Driver, a 100% Pure JavaTM implemen-
tation of the Java Database Connectivity (JDBCTM) standard. The chapter covers the follow-
ing information:

■ What is SOLID JDBC Driver?

■ Getting started with SOLID JDBC Driver

■ Running SQL statement with SOLID JDBC Driver

■ Connecting a Solid server through JDBC

■ SOLID JDBC Driver interfaces and methods

■ Sample code

What is SOLID JDBC Driver?
The JDBC API, Java API’s core API for JDK 1.2, defines Java classes to represent database 
connections, SQL statements, result sets, database metadata, etc. It allows a Java program-
mer to issue SQL statements and process the results. JDBC is the primary API for database 
access in Java.

JDBC drivers can either be entirely written in Java so that they can be downloaded as part of 
an applet, or they can be implemented using native methods to bridge to existing database 
access libraries. SOLID JDBC Driver provides Java developers with native database access 
to Solid servers. SOLID JDBC Driver is written entirely in Java and communicates to a 
SOLID database server through SOLID’s native network protocol.

SOLID JDBC Driver 2.0 can be downloaded quickly (with a compact bytecode of 49 KB), 
enabling efficient SOLID database use in thin-client Java applications. It offers JDBC stan-
dard compliance and is 100% pure Java certified. It is usable in all Java environments sup-
                                                            Using the SOLID JDBC Driver 6-1



Getting started with SOLID JDBC Driver
porting JDK 1.2. The SOLID JDBC Driver 2.0 is compatible with SOLID Embedded Engine 
3.0 and 3.5 and SOLID SynchroNet 1.1 and 2.0.

Getting started with SOLID JDBC Driver
To get started with SOLID JDBC Driver, be sure you have:

1. Installed the JDBC Driver and verified the installation. For details, follow the instruc-
tions on the SOLID JDBC Driver Web site.

2. Set up the development environment so that it support JDBC properly. SOLID JDBC 
Driver expects support for JDBC version 2.0x. The JDBC interface is included in the 
java.sql package. To import this package, be sure to include the following line in 
the application program:

import java.sql.*;

Registering SOLID JDBC Driver
The JDBC driver manager, which is written entirely in Java, handles loading and unloading 
drivers and interfacing connection requests with the appropriate driver. It was Java API's 
intention to make the use of a specific JDBC driver as transparent as possible to the pro-
grammer and user. The driver can be registered with the three alternative ways, which are 
shown below. The parameter required byClass.forName and Properties.put functions is the 
name of the driver, which is solid.jdbc.SolidDriver. 

// registration using Class.forName service 

Driver)Class.forName("solid.jdbc.SolidDriver")

// a workaround to a bug in some JDK1.1

implementations

Driver d =

(Driver)Class.forName("solid.jdbc.SolidDriver").newInstance();

           

// Registration using system properties

variable also

Properties p = System.getProperties();

p.put("jdbc.drivers","solid.jdbc.SolidDriver");

System.setProperties(p);

See the source code for the Sample 1 application in “Code Examples” on page 6-27.
6-2 SOLID Programmer Guide                              



Getting started with SOLID JDBC Driver
Connecting to the Database
Once the driver is successfully registered with the driver manager a connection is estab-
lished by creating a Java Connection object with the following code. The parameter required 
by the DriverManager.getConnection function is the JDBC connection string.

Connection conn = null;

try {

conn =  DriverManager.getConnection(sCon);

}

catch (Exception e) {

System.out.println("Connect failed : " +

e.getMessage());

throw new Exception("Halted.");

}

The connect string structure is jdbc:solid://machine name:port/user name/password. The 
string "jdbc:solid://fb9:1314/dba/dba" attempts to connect a Solid server in machine fb9 lis-
tening tcp/ip protocol at port 1314. 

The application can establish several Connection objects to database. Connections can be 
closed be the following code. 

            conn.close(); 

See the source code for the Sample 1 application in “Code Examples” on page 6-27.

Running SQL Statements with JDBC
This section describes briefly how to do basic database operations with SQL. The following 
operations are presented here:

■ Executing statements through JDBC

■ Reading result sets

■ Transactions and autocommit mode

■ Handling database errors

■ Using DatabaseMetadata

For more detailed description on these subjects, refer also to JDBC documentation. 
                                                                    Using the SOLID JDBC Driver 6-3



Getting started with SOLID JDBC Driver
Executing a Simple Statement 
The following code expects that a Connection object conn is established before calling the 
code. 

stmt= conn.createStatement(); 

stmt.execute("INSERT INTO JDB_TEST (I1,I2)

VALUES (2,3)");

NoteNote

The insert is not committed by the code unless the database is in autocommit mode. 

See the source code for the Sample 1 application in “Code Examples” on page 6-27.

Statement with Parameters
The code below creates a PreparedStatement object for a query, assigns values for its 
parameters and executes the query. Check the available methods for setting values to differ-
ent column types from the “SOLID JDBC Driver Type Conversion Matrix” on page 6-50. 
The code expects a Connection object conn to be established. 

PreparedStatement pstmt; 

int count, cnt; 

int i; 

sQuery = "INSERT INTO ALLTYPES

(TI,SI,II,RR,FF,DP,DE,NU,CH,VC,DT,TM,TS) VALUES";

sQuery = sQuery + "(?,?,?,?,?,?,?,?,?,?,?,?,?)"; 

pstmt= conn.prepareStatement(sQuery); 

pstmt.setInt(1,101); 

pstmt.setInt(2,102); 

pstmt.setInt(3,103); 

pstmt.setDouble(4,2104.56); 

pstmt.setDouble(5,104.56); 

pstmt.setDouble(6,3104.56); 
6-4 SOLID Programmer Guide                              



Getting started with SOLID JDBC Driver
pstmt.setDouble(7,204.56); 

pstmt.setDouble(8,304.56); 

pstmt.setString(9,"cccc"); 

pstmt.setString(10,"longer string");

java.sql.Time pTime = new

java.sql.Time(11,11,11); 

java.sql.Date pDate = new java.sql.Date(96,1,2);

java.sql.Timestamp pTimestamp = new

java.sql.Timestamp(96,1,2,11,11,11,0); 

pstmt.setDate(11,pDate); 

pstmt.setTime(12,pTime); 

pstmt.setTimestamp(13,pTimestamp); 

pstmt.executeUpdate();

See the source code for the Sample 3 application in “Code Examples” on page 6-27.

NoteNote

The insert is not committed by the code unless the database is in autocommit mode.

Reading result sets
The code below obtains a result set for the SQL and prints out column name and type infor-
mation for each column in the result set using the ResultSetMetaData object.

SELECT TABLE_CATALOG,TABLE_SCHEMA,TABLE_NAME,TABLE_TYPE FROM

SYS_TABLES WHERE ID < 10000 

The code then loops through the result set and prints the data in each column in each row by 
using getString method. Check the available methods for accessing data of different col-
umn types from the “SOLID JDBC Driver Type Conversion Matrix” on page 6-50. The code 
expects a Connection object conn to be established. 

String sQuery; 
                                                                    Using the SOLID JDBC Driver 6-5



Getting started with SOLID JDBC Driver
ResultSetMetaData meta; 

Statement stmt; 

ResultSet result; 

int count, cnt; 

int i; 

// the query to be executed 

sQuery = "SELECT

TABLE_CATALOG,TABLE_SCHEMA,TABLE_NAME," ; 

sQuery = sQuery + "TABLE_TYPE FROM

SYS_TABLES WHERE ID < 10000"; 

// we create statement for the query 

stmt= conn.createStatement(); 

// execute it and obtain a result set 

result = stmt.executeQuery(sQuery); 

// to see what we got we obtain a

ResultSetMetaData object meta = result.getMetaData(); 

// check the number of columns 

count = meta.getColumnCount(); 

// print some information about the columns

for (i=1; i &lt;= count; i++) 

{ 

String sName = meta.getColumnName(i); 

int iType = meta.getColumnType(i);

String sTypeName = meta.getColumnTypeName(i); 

System.out.println("Col:"+i+" "+sName+ "," + iType + "," +

sTypeName); 

} 
6-6 SOLID Programmer Guide                              



Getting started with SOLID JDBC Driver
// and finally, loop through the ResultSet and

print the data out 

int cnt = 1; 

while(result.next()) 

{ 

for (i=1; i &lt;= count; i++) 

{ 

System.out.println("Row:"+cnt+ " column:" +i+"

: "+result.getString(i)); 

} 

cnt++; 

} 

NoteNote

It is possible to improve the performance of reading large result sets by instructing a Solid 
server to return several rows of the result set in one network message. This functionality is 
activated by editing configuration RowsPerMessage in section [Srv] in a Solid server 
configuration file solid.ini. The default value is 10. This is new functionality in JDBC Driver 
2.3. In prior versions, the rows of the result set were always returned one by one.

See the source code for the Sample 1 application in “Code Examples” on page 6-27.

Transactions and Autocommit Mode
A SOLID database can be in either autocommit or non-autocommit mode. When not in auto-
commit mode each transaction needs to be explicitly committed before the modifications it 
made can be seen to other database connections. The autocommit state can be monitored by 
Connection.getAutoCommit() function. The state can be set by Connec-
tion.setAutoCommit(). A Solid server’s default setting for autocommit state is 
true. If autocommit mode is off the transactions can be committed in two ways. 

■ using Connection.commit() function or

■ executing a statement for SQL 'COMMIT WORK'
                                                                    Using the SOLID JDBC Driver 6-7



Using DatabaseMetadata
Handling Database Errors 
In some cases it is necessary for the application to recover from a database error. For exam-
ple, a unique key constraint violation can be recovered by assigning the row a different key. 
The code below expects a Statement object stmt to exist and String sQuery to con-
tain SQL that may cause an error. A database native error code will be assigned to variable 
ec. For native error codes, see the appendix, "Error Codes, in the SOLID Embedded 
Engine Administrator Guide or SOLID SynchroNet Guide. 

try { 

result = stmt.executeQuery(sQuery);

} 

catch (SQLException e) { 

int ec = e.getErrorCode(); 

String ss = e.getSQLState(); 

String s2 = e.toString(); 

System.out.println("Native error code:" + ec); 

}

Using DatabaseMetadata
Interface DatabaseMetaData contains information about the database behind the con-
nection. Usually this information is necessary for application development tools not actual 
applications. If you are developing an application on JDBC interface for one kind of data-
base engine this is seldom if ever necessary. If you are developing an application to run on 
several database engines the application can obtain necessary information about the data-
base through DatabaseMetaData. 

A DatabaseMetaData object can be obtained from the Connection object by the 
code below. The code also extracts database product name to string sName and all the views 
in the database to ResultSet rTables. As usual, the code expects that a Connec-
tion object conn is established before calling it. 

DatabaseMetaData meta;

String sName; 

ResultSet rTables; 

String types[] = new String[1]; 
6-8 SOLID Programmer Guide                              



Special Notes About SOLID and JDBC
types[0] = "VIEW"; 

meta = conn.getMetaData(); 

sName = meta.getDatabaseProductName(); 

rTables =

meta.getTables(null,"","",types);

Special Notes About SOLID and JDBC 
JDBC does not really specify what SQL you can use; it simply passes the SQL on to the 
driver and lets the driver either pass it on directly to the database, or parse the SQL itself. 
Because of this, the SOLID JDBC Driver behavior is particular to the SOLID database. In 
some functions the JDBC specification leaves some details open. Check “JDBC Driver 
Interfaces and Methods” on page 6-10 for the details particular to SOLID’s implementation 
of the methods. 

Executing stored procedures
In a SOLID database, stored procedures can be called by executing statements 'CALL 
proc_name [parameter ...] ' as in any other SQL. Procedures are thus used in JDBC in the 
same way as any statement. 

NoteNote

SOLID stored procedures can return result sets. Calling procedures through JDBC Call-
ableStatement interface is not necessary. For an example of calling SOLID procedures using 
JDBC, see the source code for the Sample 3 application in “Code Examples” on page 6-27.

Interface CallableStatement 
A JDBC CallableStatement interface is intended to support calling database stored 
procedures. The interface is not necessary when writing applications on a Solid server. Port-
ability reasons, for instance, can make using CallableStatement a good decision. The 
example below illustrates running simple SQL statements using this interface. 

CallableStatement csta; 

int i1,i2; 

String s1; 
                                                                    Using the SOLID JDBC Driver 6-9



JDBC Driver Interfaces and Methods
ResultSet res; 

// creating a CallableStatement object 

csta = conn.prepareCall("select * from

keytest where i1 = ?"); 

// assigning a value for parameter 

csta.setInt(1,1); 

// obtaining a result set 

res = csta.executeQuery(); 

while (res.next()) 

{ 

i1 = csta.getInt(1); 

i2 = csta.getInt(2); 

s1 = csta.getString(3); 

System.out.println("Row contains " + i1 + "," + i2 +

"," + s1); 

}

JDBC Driver Interfaces and Methods
This section lists the Java interfaces contained by the SOLID JDBC Driver and their meth-
ods. JDBC is a standard application interface for databases. Sun provides the official docu-
mentation of JDBC interface classes and methods at the following Web site:

http://java.sun.com/products/jdk/1.2/docs/index.html

SOLID JDBC Driver conforms to the JDBC standard and thus SOLID will neither repeat 
nor maintain the JDBC interface documentation. Instead, this section lists all behavior spe-
cific to SOLID JDBC Driver and a Solid server.

For a description of how different data types are supported by SOLID JDBC Driver, see the 
JDBC Driver Type Conversion Matrix at the end of this chapter.
6-10 SOLID Programmer Guide                              



JDBC Driver Interfaces and Methods
Array
The java.sql.Array interface is not supported. This interface is used to map SQL type Array 
in the Java programming language. It reflects a SQL3 standard that is currently unavailable 
in the SOLID database.

Blob
The java.sql.Blob interface is not supported. This interface is used to map SQL type Blob in 
the Java programming language. It reflects a SQL3 standard that is currently unavailable in 
the SOLID database.

CallableStatement
A java.sql.CallableStatement interface is intended to support calling database stored 
procedures. Thus, SOLID stored procedures are used in JDBC in the same way as any state-
ment; the use of class CallableStatement is not necessary when you are writing appli-
cations on a Solid server only. However, for portability reasons, using 
CallableStatement is a wise choice. 

Methods

Method name Notes

getArray(int i) Supports a SQL3 standard that is currently 
unavailable in the Solid database.

getBigDecimal(int parameterIndex) Works as specified in Java API.

getBigDecimal (int parameterIndex, int scale) Deprecated.

getBlob(int i) Works as specified in Java API.

getBoolean(int parameterIndex) Works as specified in Java API. 

getByte(int parameterIndex) Works as specified in Java API.

getBytes(int parameterIndex) Works as specified in Java API.

getClob(int i) Works as specified in Java API.

getDate(int parameterIndex) Works as specified in Java API.

getDate(int parameterIndex, calendar cal) Works as specified in Java API.

getDouble(int parameterIndex) Works as specified in Java API.

getFloat(int parameterIndex) Works as specified in Java API.
                                                                    Using the SOLID JDBC Driver 6-11



JDBC Driver Interfaces and Methods
Clob
The java.sql.Clob interface is not supported. This interface is used to map SQL type Clob in 
the Java programming language. It reflects a SQL3 standard that is currently unavailable in 
the SOLID database.

getInt(int parameterIndex) Works as specified in Java API.

getLong(int parameterIndex) Works as specified in Java API.

getObject(int parameterIndex) Works as specified in Java API.

getObject (int i, Map map) Not supported by SOLID. This method 
throws an exception with the following 
message: "This method is not supported"

getRef(int i) Supports a SQL3 standard that is currently 
unsupported in the SOLID database.

getShort(int parameterIndex) Works as specified in Java API.

getString(int parameterIndex) Works as specified in Java API.

getTime(int parameterIndex) Works as specified in Java API.

getTimestamp(int parameterIndex, Calendar 
cal)

Works as specified in Java API.

registerOutParameter(int, parameterIndex, int 
sqlType)

Not supported by SOLID. This method 
throws an exception with the following 
message: "This method is not supported"

registerOutParameter(int parameterIndex, int 
sqlType, int scale)

Not supported by SOLID. Not supported 
by SOLID. This method throws an excep-
tion with the following message: "This 
method is not supported"

registerOutParameter(int parameterIndex, int 
sqlType, String typeName)

Not supported by SOLID. Not supported 
by SOLID. This method throws an excep-
tion with the following message: "This 
method is not supported"

wasNull() Not supported by SOLID. Not supported 
by SOLID. This method throws an excep-
tion with the following message: "This 
method is not supported"
6-12 SOLID Programmer Guide                              



JDBC Driver Interfaces and Methods
Connection
The java.sql.Connection interface is a public interface. It is used to establish a connection 
(session) with a specified database. SQL statements are executed and results are returned 
within the context of a connection.

Method name Notes

clearWarnings() Works as specified in Java API.

close() Works as specified in Java API. Note that 
connections should be explicitly closed 
when not used anymore.

commit() Works as specified in Java API.

CreateStatement() Works as specified in Java API.

CreateStatement(int resultSetType, int resultSet-
Concurency)

The argument resultsetConcurrency is 
ignored; this is not supported by the 
SOLID database.

getAutoCommit() Works as specified in Java API.

getCatalog() Not supported by SOLID.

getMetaData() Works as specified in Java API.

getTransactionIsolation() Works as specified in Java API.

getTypeMap() Supports a SQL3 standard that is currently 
unavailable in the SOLID database.

getWarnings() Works as specified in Java API.

isClosed() Works as specified in Java API.

isReadOnly() SOLID only supports read-only database 
and read-only transactions if the database 
is declared as read-only. This method 
always returns false.

nativeSQL(String sql) Works as specified in Java API. SOLID 
JDBC Driver does not change the SQL 
passed to the Solid server. The SQL query 
the user passes is returned.

prepareCall(String sql) Works as specified in Java API. Note that 
the escape call syntax is not supported. 
                                                                    Using the SOLID JDBC Driver 6-13



JDBC Driver Interfaces and Methods
DatabaseMetaData
The java.sql.DatabaseMetaData interface is a public abstract database. It provides general, 
comprehensive information about the database. 

All method for this interface are supported by SOLID, except:

■ getColumnPrivileges(String catalog, String schema, String table, string columnName-
Pattern)

■ getUDTs(String catalog, String schemaPattern, String typeNamePattern, int [] types)

Note that the following SQL datatypes are not supported: ARRAY, BLOB, CLOB, DIS-
TINCT, JAVA_OBJECT, OTHER, REF, and STRUCT.

Driver
The java.sql.Driver interface is a public abstract interface. Every driver class implements this 
interface. 

prepareCall(String sql, int resultSetType, int 
resultSetConcurrency)

The argument resultsetConcurrency is 
ignored;this is not supported by the SOLID 
database.

prepareStatement(String sql) Works as specified in Java API.

prepareStatement(String sql, int resultSetype, 
int resultSetConcurrency)

The argument resultsetConcurrency is 
ignored;this is not supported by the SOLID 
database.

rollback() Works as specified in Java API.

setAutoCommit(boolean autoCommit) Works as specified in Java API.

setCatalog(String catalog) Works as specifed by Java API.

setReadOnly(boolean readOnly) Solid only supports read-only database and 
read-only transactions if the database is 
declared as read-only.This method exists 
but does not affect the connection behav-
ior.

setTransactionIsolation(int level) Works as specified in Java API.

setTypeMap(Map map) Supports a SQL3 standard that is currently 
unavailable in the SOLID database.
6-14 SOLID Programmer Guide                              



JDBC Driver Interfaces and Methods
PreparedStatement
The java.sql.PreparedStatement interface is a public abstract interface. It extends the State-
ment interface. It provides an object that represents a precompiled SQL statement. 

Subinterfaces:
CallableStatement

Methods

Method name Notes

acceptsURL(String url) Works as specified in Java API.

connect(String url, Properties info) Works as specified in Java API.

getMajorVersion() Works as specified in Java API.

getMinorVersion() Works as specified in Java API.

getPropertyInfo(String url, Properties info) Works as specified in Java API. 

jdbcCompliant() Works as specified in Java API. Returns 
’Yes’ as boolean.

Method name Notes

addBatch Not supported by SOLID. This method 
throws an exception with the following 
message: "This method is not supported"

clearParameters() Works as specified in Java API.

execute() Works as specified in Java API.

executeQuery() Works as specified in Java API.

executeUpdate() Works as specified in Java API.

getMetaData() Works as specified in Java API.

setArray(int i, Array x) Not supported by SOLID. Not supported 
by SOLID. This method throws an excep-
tion with the following message: "This 
method is not supported"
                                                                    Using the SOLID JDBC Driver 6-15



JDBC Driver Interfaces and Methods
setAsciiStream(int parameterIndex, Input-
Stream s, int length)

Works as specified in Java API.

setBigDecimal(int parameterIndex, BigDeci-
mal x)

Works as specified in Java API.

setBinaryStream(int parameterIndex, Input-
Stream x, int length)

Works as specified in Java API.

setBlob(int I, Blob x) Works as specified in Java API.

setBoolean(int parameterIndex, boolean x) Works as specified in Java API.

setByte(int parameterIndex, byte x) Works as specified in Java API.

setBytes(int parameterIndex, byte[] x) Works as specified in Java API.

setCharacterStream(int parameterIndex, Reader 
reader, int length

Works as specified in Java API.

setClob(int I, Clob x) Works as specified in Java API.

setDate(int parameterIndex, Date x) Works as specified in Java API.

setDate(int parameterIndex, Date x, Calendar 
cal)

Works as specified in Java API.

setDouble(int parameterIndex, double x) Works as specified in Java API.

setFloat(int parameterIndex, float x) Works as specified in Java API.

setInt(int parameterIndex, int x) Works as specified in Java API.

setLong(int parameterIndex, long x) Works as specified in Java API.

setNull(int parameterIndex, int sqlType) Works as specified in Java API.

setNull(int paramIndex, int sqlType, String 
typeName)

Supports a SQL3 standard that is currently 
unavailable in the Solid database.

setObject(int parameterIndex, Object x) Works as specified in Java API.

setObject(int parameterIndex, Object x, int tar-
getSqlType))

Works as specified in Java API. Not sup-
ported by SOLID. This method throws an 
exception with the following message: 
"This method is not supported"

setObject(int parameterIndex, Object x, int tar-
getSQLType, int scale)

Works as specified in Java API. Not sup-
ported by SOLID. This method throws an 
exception with the following message: 
"This method is not supported"
6-16 SOLID Programmer Guide                              



JDBC Driver Interfaces and Methods
Ref
The java.sql.Ref interface is a public abstract interface.

This interface is a reference to a SQL structured type value in the database. A Ref can be 
saved to persistent storage. A Ref is de-referenced by passing it as a parameter to a SQL 
statement and executing the statement. 

NoteNote

This interface supports SQL3. SQL3 data types such as binary large objects, and structured 
types, are part of JDBC 2.0 API. This API incorporates a model of the new SQL3 types that 
includes only those properties that are essential to exchanging data between Java applica-
tions and databases. The new SQL3 types are not supported by SOLID.

ResultSet
The java.sql.ResultSet interface is a public abstract interface. It is a table of data that repre-
sents a database result set from a query statement. This object includes a cusor that points to 
its current row of data. The cursor’s initial position is before the first row. It is moved to the 
next row by the next method. When there are no more rows left in the result set, the object 
returns false; this allows the use of a WHILE loop to iterate through the result set.

setRef(int I, Ref x) Supports a SQL3 standard that is currently 
unavailable in the Solid database.

setShort(int parameterIndex, short x, short) Works as specified in Java API.

setString(int parameterIndex, String x) Works as specified in Java API.

setTime(int parameterIndex, Time x) Works as specified in Java API.

setTime(int parameterIndex, Time x Calendar 
cal)

Works as specified in Java API. 

setTimestamp(int parameterIndex, Timestamp 
x)

Works as specified in Java API.

setTimestamp(int parameterIndex, Time x, Cal-
endar cal)

Works as specified in Java API.

setUnicodeStream(int parameterIndex, Input-
Stream x, int) length

Deprecated.
                                                                    Using the SOLID JDBC Driver 6-17



JDBC Driver Interfaces and Methods
A default resultset object is not updatable and its cursor moves forward only. In JDBC 2.0 
API, you can produce result sets that are updatable. For methods, see “ResultSet (updat-
able)” on page 6-25.

Methods

Method name Notes

absolute(int row) Works as specified in Java API.

afterLast() Works as specified in Java API.

beforeFirst Works as specified in Java API.

CancelRowUpdates() Not supported by SOLID.

clearWarnings() Works as specified in Java API. 

close() Works as specified in Java API.

deleteRow() Works as specified in Java API.

findColumn(String columnName) Works as specified in Java API.

first() Works as specified in Java API.

getArray(int i) Supports a SQL3 standard that is currently 
unavailable in the SOLID database.

getArray(String ColName) Supports a SQL3 standard that is currently 
unavailable in the SOLID database.

getAsciiStream(int columnIndex) Works as specified in Java API.

setAsciiStream(String columnName) Works as specified in Java API.

getBigDecimal(int columnIndex) Works as specified in Java API.

getBigDecimal(int columnIndex, int scale) Deprecated.

getBigDecimal(String columnName) Works as specified in Java API.

getBigDecimal(String columnName, int scale) Deprecated.

getBinaryStream(int columnIndex) Works as specified in Java API.

getBinaryStream(String columnName) Works as specified in Java API.

getBlob(int I) Works as specified in Java API.

getBlob(String colName) Works as specified in Java API.

getBoolean(string columnName) Works as specified in Java API.
6-18 SOLID Programmer Guide                              



JDBC Driver Interfaces and Methods
getByte(int columnIndex) Works as specified in Java API.

getByte(String columnName) Works as specified in Java API.

getByte(int columnIndex)) Works as specified in Java API.

getBytes(String columnName) Works as specified in Java API.

getCharacterStream(int columnIndex) Works as specified in Java API.

getCharacterStream(String columnName) Works as specified in Java API.

getClob(int I) Supports a SQL3 standard that is currently 
unavailable in the SOLID database.

getClob(String colName) Supports a SQL3 standard that is currently 
unavailable in the SOLID database.

getConcurrency () Not supported by SOLID.

getCursorName() Works as specified in Java API.

getDate(int columnIndex) Works as specified in Java API.

getDate(int columnIndex, Calendar cal) Works as specified in Java API. 

getDate(String columnName) Works as specified in Java API.

getDate(String columnName, Calendar cal) Works as specified in Java API.

getDouble(int columnIndex) Works as specified in Java API.

getDouble(String columnName) Works as specified in Java API.

getFetchDirection() Works as specified in Java API.

getFetchSize() No operation in SOLID. The set value a 
user sets with this method (which is 
ignored) is returned.

getFloat(int columnIndex) Works as specified in Java API.

getFloat(String columnName) Works as specified in Java API.

getInt(int columnIndex) Works as specified in Java API.

getInt(String columnName) Works as specified in Java API.

getLong(String columnName) Works as specified in Java API.

getMetaData() Works as specified in Java API.

getObject(int columnIndex) Works as specified in Java API.
                                                                    Using the SOLID JDBC Driver 6-19



JDBC Driver Interfaces and Methods
getObject(int i, Map map) Not supported by SOLID. This method 
throws an exception with the following 
message: "This method is not supported"

getObject(String columnName) Works as specified in Java API.

getObject(String colName, Map map) Not supported by SOLID.This method 
throws an exception with the following 
message: "This method is not supported"

getRef(int i) Supports a SQL3 standard that is currently 
unavailable in the SOLID database.

getRef(String colName) Supports a SQL3 standard that is currently 
unavailable in the SOLID database.

getRow() Works as specified in Java API.

getShort(int columnIndex) Works as specified in Java API.

getShort(String columnName) Works as specified in Java API.

getStatement() Works as specified in Java API.

getString(int columnIndex) Works as specified in Java API.

getString(String columnName) Works as specified in Java API.

getTime(int columnIndex) Works as specified in Java API.

getTime(int columnIndex, Calendar cal) Works as specified in Java API. 

getTimestamp(String columnName) Works as specified in Java API. 

getTimestamp(String columnName, Calendar 
cal)

Works as specified in Java API.

getType() Works as specified in Java API.

getUnicodeStream(int columnIndex) Deprecated.

getUnicodeStream(String columnName) Deprecated

getWarnings() Works as specified in Java API. 

insertRow() Works as specified in Java API.

isAfterLast() Works as specified in Java API.

isBeforeFirst() Works as specified in Java API.

isFirst() Works as specified in Java API.

isLast() Works as specified in Java API.
6-20 SOLID Programmer Guide                              



JDBC Driver Interfaces and Methods
last() Works as specified in Java API.

moveToCurrentRow() Works as specified in Java API.

moveToInsertRow() Works as specified in Java API. 

next() Works as specified in Java API.

previous() Works as specified in Java API.

refreshRow() Not supported by SOLID.

relative(int rows) Works as specified in Java API.

rowDeleted() Works as specified in Java API.

rowInserted() Works as specified in Java API.

rowUpdated() Works as specified in Java API.

setFetchDirection(int direction) Works as specified in Java API.

setFetchSize(int rows) No operation in SOLID. Sets the value for 
the number of rows to be fetched from the 
database each time. The value a user sets 
with this method is ignored.

updateAsciiStream(int columnIndex, Input-
Stream x, int length)

Works as specified in Java API.

updateAsciiStream(String columnName, Input-
Stream x, int length)

Works as specified in Java API.

updateBigDecimal(int columnIndex, BigDeci-
mal x)

Works as specified in Java API.

updateBigDecimal(String columnName, Big-
Decimal x)

Works as specified in Java API.

updateBinaryStream(int columnIndex, Input-
Stream x, int length)

Works as specified in Java API.

updateBinaryStream(String columnName, 
InputStream x, int length)

Works as specified in Java API.

updateBoolean(int columnIndex, boolean x) Works as specified in Java API.

updateBoolean(String columnName, boolean x) Works as specified in Java API.

updateByte(int columnIndex, byte x) Works as specified in Java API.

updateByte(String columnName, byte x) Works as specified in Java API.

updateBytes(int columnIndex, byte[] x) Works as specified in Java API.
                                                                    Using the SOLID JDBC Driver 6-21



JDBC Driver Interfaces and Methods
updateBytes(String columnName, byte[] x) Works as specified in Java API.

updateCharacterStream(int columnIndex, 
Reader x, int length)

Works as specified in Java API.

updateCharacterStream(String columnName, 
Reader reader, int length)

Works as specified in Java API.

updateDate(int columnIndex, Date x) Works as specified in Java API.

updateDate(String columnName, Date x) Works as specified in Java API.

updateDouble(int columnIndex, double x) Works as specified in Java API.

updateDouble(String columnName, double x) Works as specified in Java API.

updateFloat(int columnIndex, float x) Works as specified in Java API.

updateFloat(String columnName, float x) Works as specified in Java API.

updateInt(int columnIndex, int x) Works as specified in Java API.

updateInt(String columnName, int x) Works as specified in Java API.

updateLong(int columnIndex, long x) Works as specified in Java API.

updateLong(String columnName, long x) Works as specified in Java API.

updateNull(int columnIndex) Works as specified in Java API.

updateNull(String columnName) Works as specified in Java API.

updateObject(int columnIndex, Object x) Works as specified in Java API.

updateObject(int columnIndex, Object x, int 
scale)

Works as specified in Java API.

update Object(String columnName, Object x) Works as specified in Java API.

updateObject(String columnName, Object x, int 
scale)

Works as specified in Java API.

updateRow() Works as specified in Java API.

updateShort(int columnIndex, short x) Works as specified in Java API.

updateShort(String columnName, short x) Works as specified in Java API.

updateString(int columnIndex, String x) Works as specified in Java API.

updateString(String columnName, String x) Works as specified in Java API.

updateTime(int columnIndex, Time x) Works as specified in Java API.

updateTime(String columnName, Time x) Works as specified in Java API.
6-22 SOLID Programmer Guide                              



JDBC Driver Interfaces and Methods
ResultSetMetaData
The java.sql.ResultSetMetaData interface is a public abstract interface. This interface is used 
to find out about the types and properties of the columns in a ResultSet. 

SQLData
The java.sql.SQLData interface is not supported. This interface is used to custom map SQL 
user-defined types. It reflects a SQL3 standard that is currently unavailable in the Solid data-
base.

SQLInput
The java.sql.SQLInput interface is not supported. This interface is an input stream that repre-
sents an instance of a SQL structured or distinct type. It reflects a SQL3 standard that is cur-
rently unavailable in the SOLID database.

SQLOutput
The java.sql.SQLOutput interface is not supported. This interface is an output stream used to 
write the attributes of a user-defined type back to the database. It reflects a SQL3 standard 
that is currently unavailable in the SOLID database.

Statement
The java.sql.Statement interface is a public abstract interface. It is the object used to execute 
a static SQL statement and obtain the results of the execution.

Subinterfaces:
CallableStatement, PreparedStatement

Methods
Note that SOLID does not support the batch update feature, which allows an application to 
submit multiple update statements (insert/update/delete) in a single request to the database.

updateTimestamp(int columnIndex, Timestamp 
x)

Works as specified in Java API.

updateTimestamp(String columnName, Times-
tamp x)

Works as specified in Java API.

wasNull() Works as specified in Java API.
                                                                    Using the SOLID JDBC Driver 6-23



JDBC Driver Interfaces and Methods
Method name Notes

addBatch(String sql) Not supported by SOLID.

cancel() Works as specified in Java API.

clearBatch() Not supported by SOLID.

clearWarnings() Works as specified in Java API. 

close() Works as specified in Java API.

execute(String sql) Works as specified in Java API.

executeBatch () Not supported by SOLID.

executeQuery(String sql) Works as supported by Java API.

executeUpdate(String sql) Works as specified in Java API.

getConnection() Works as specified in Java API.

getFetchDirection() Works as specified in Java API.

getFetchSize() No operation in SOLID. The set value a 
user sets with this method (which is 
ignored) is returned.

getMaxFieldSize() Maxfield size does not affect the Solid 
server’s behavior.

getMaxRows() Works as specified in Java API.

getMoreResults() Solid does not support multiple resultsets.

getQueryTimeout() Works as specified in Java API.

getResultSet() Works as specified in Java API.

getResultSetConcurrency() Not supported by SOLID.

getResultSetType() Not supported by SOLID.

getUpdateCount() Works as specified in Java API.

getWarnings() Works as specified in Java API.

setCursorName(String name) Works as specified in Java API.

setEscapeProcessing(boolean enable) Works as specified in Java API.

setFetchDirection(int direction) Works as specified in Java API.
6-24 SOLID Programmer Guide                              



JDBC Driver Interfaces and Methods
Struct
The java.sql.Struct interface is not supported. This interface represents the standard map-
ping in the Java programming language for a SQL structured type. It reflects a SQL3 stan-
dard that is currently unavailable in the SOLID database.

ResultSet (updatable)
The java.sql.Resultset interface contains methods for producing ResultSet objects that 
are updatable. A result set is updatable if its concurrency type is CONCUR_UPDATABLE. 
Rows in an updatable result set may be updated, inserted, and deleted.

Methods

setFetchSize(int rows) No operation in SOLID. Sets the value for 
the number of rows to be fetched from the 
database each time. The value a user sets 
with this method is ignored.

setMaxFieldSize(int max) Maxfield size does not affect the Solid 
server’s behavior.

setMaxRows(int) Works as specified in Java API.

setQueryTimeout(int) Works as specified in Java API. 

Method name Notes

updateAsciiStream(int columnIndex, Input-
Stream x, int length)

Works as specified in Java API.

updateAsciiStream(String columnIndex, Input-
Stream x, int length)

Works as specified in Java API.

updateBigDecimal(int columnIndex, BigDeci-
mal x)

Works as specified in Java API.

updateBigDecimal(String columnName, Big-
Decimal x)

Works as specified in Java API.

updateBinaryStream(int columnIndex, Input-
Stream x, int length)

Works as specified in Java API.

updateBinaryStream(String columnName, 
InputStream x, int length)

Works as specified in Java API.

updateBoolean(int columnIndex, boolean x) Works as specified in Java API.
                                                                    Using the SOLID JDBC Driver 6-25



JDBC Driver Interfaces and Methods
updateBoolean(String columnName, boolean x) Works as specified in Java API.

updateByte(int columnIndex, byte x) Works as specified in Java API.

updateByte(String columnName, byte x) Works as specified in Java API.

updateBytes(int columnIndex, byte[] x) Works as specified in Java API.

updateBytes(String columnName, byte[] x) Works as specified in Java API.

updateCharacterStream(int columnIndex, 
Reader x, int length)

Works as specified in Java API.

updateCharacterStream(String columnName, 
Reader reader, int length)

Works as specified in Java API.

updateDate(int columnIndex, Date x) Works as specified in Java API.

updateDate(String columnName, Date x) Works as specified in Java API.

updateDouble(int columnIndex, double x) Works as specified in Java API.

updateDouble(String columnName, double x) Works as specified in Java API.

updateFloat(int columnIndex, float x) Works as specified in Java API.

updateFloat(String columnName, float x) Works as specified in Java API.

updateInt(int columnIndex, int x) Works as specified in Java API.

updateInt(String columnName, int x) Works as specified in Java API.

updateLong(int columnIndex, long x) Works as specified in Java API.

updateLong(String columnName, long x) Works as specified in Java API.

updateNull(int columnIndex) Works as specified in Java API.

updateNull(String columnName) Works as specified in Java API.

updateObject(int columnIndex, Object x) Works as specified in Java API.

updateObject(int columnIndex, Object x, int 
scale)

Works as specified in Java API.

updateObject(String columnName, Object x) Works as specified in Java API.

updateObject(String columnName, Object x. int 
scale)

Works as specified in Java API.

updateRow() Works as specified in Java API.

updateShort(int columnIndex, short x) Works as specified in Java API.

updateShort(String columnName, short x) Works as specified in Java API.
6-26 SOLID Programmer Guide                              



Code Examples
Code Examples

Sample 1:
/**

 *      sample1 JDBC sample application

 *

*

 *      This simple JDBC application does the following using

 *      SOLID native JDBC driver. 

 *  

 *  1. Registers the driver using JDBC driver manager services

 *  2. Prompts the user for a valid JDBC connect string

 *  3. Connects to SOLID using the driver

 *  4. Creates a statement for one query, 

 *     'SELECT TABLE_SCHEMA,TABLE_NAME,TABLE_TYPE FROM TABLES'

 *     for reading data from one of SOLID system

tables.

 *  5. Executes the query

 *  6. Fetches and dumps all the rows of a result set. 

 *  7. Closes connection

 *

 *  To build and run the application 

 *

 *  1. Make sure you have a working Java Development environment

updateString(int columnIndex, String x) Works as specified in Java API.

updateString(String columnName, String x) Works as specified in Java API.

updateTime(int columnIndex, Time x) Works as specified in Java API.

updateTime(String columnName, Time x) Works as specified in Java API.

updateTimestamp(int columnIndex, Timestamp 
x)

Works as specified in Java API.

updateTimestamp(String columnName, Times-
tamp x)

Works as specified in Java API.
                                                                    Using the SOLID JDBC Driver 6-27



Code Examples
 *  2. Install and start SOLID to connect. Ensure that the 

 *     server is up and running.

 *  3. Append SolidDriver.zip into the CLASSPATH definition used 

 *     by your development/running environment. 

 *  4. Create a java project based on the file sample1.java. 

 *  5. Build and run the application.

 * 

 *  For more information read the readme.htm file contained by

 *  SOLID JDBC Driver package.

 *

 */

import java.io.*;

public class sample1 {

    public static void main (String args[]) throws Exception

    {

        java.sql.Connection conn;

        java.sql.ResultSetMetaData meta;

        java.sql.Statement stmt;

        java.sql.ResultSet result;

        int i;

            

        System.out.println("JDBC sample application starts...");

        System.out.println("Application tries to register the driver.");

        // this is the recommended way for registering Drivers

        java.sql.Driver d = 
(java.sql.Driver)Class.forName("solid.jdbc.SolidDriver").newInstance();

        System.out.println("Driver succesfully registered.");
6-28 SOLID Programmer Guide                              



Code Examples
        // the user is asked for a connect string 

        System.out.println("Now sample application needs a connectstring 
in format:\n");

        System.out.println("jdbc:solid://<host>:<port>/<user name>/
<password>\n");

        System.out.print("\nPlease enter the connect string >");

        BufferedReader reader = new BufferedReader(new 
InputStreamReader(System.in));

        String sCon = reader.readLine();

        // next, the connection is attempted

        System.out.println("Attempting to connect :" + sCon);

        conn = java.sql.DriverManager.getConnection(sCon);

        System.out.println("SolidDriver succesfully connected.");

        String sQuery = "SELECT TABLE_SCHEMA,TABLE_NAME,TABLE_TYPE FROM 
TABLES";

        stmt= conn.createStatement();

        

        result = stmt.executeQuery(sQuery);

        System.out.println("Query executed and result set obtained.");

        // we get a metadataobject containing information about the

        // obtained result set

        System.out.println("Obtaining metadata information.");

        meta = result.getMetaData();

        int cols = meta.getColumnCount();

        System.out.println("Metadata information for columns is as 
follows:");

        // we dump the column information about the result set

        for (i=1; i <= cols; i++)
                                                                    Using the SOLID JDBC Driver 6-29



Code Examples
        {

            System.out.println("Column i:"+i+"  "+meta.getColumnName(i)+ 
"," + meta.getColumnType(i) + "," + meta.getColumnTypeName(i));

        }

        // and finally, we dump the result set

        System.out.println("Starting to dump resultset.");

        int cnt = 1;

        while(result.next())

        {

            System.out.print("\nRow "+cnt+" : ");

            for (i=1; i <= cols; i++) {

                System.out.print(result.getString(i)+"\t");

            }

            cnt++;

        }

        

        stmt.close();

        conn.close();

        // and not it is all over

        System.out.println("\nResult set dumped. Sample application 
finishes.");

    }

}

Sample 1 output
K:\projects\jdbc\prod10\samples>java sample1

JDBC sample application starts...

Application tries to register the driver.

Driver succesfully registered.

Now sample application needs a connectstring in format:

jdbc:solid://<host>:<port>/<user name>/<password>
6-30 SOLID Programmer Guide                              



Code Examples
Please enter the connect string >jdbc:solid://localhost:1313/dba/dba

Attempting to connect :jdbc:solid://localhost:1313/dba/dba

SolidDriver succesfully connected.

Query executed and result set obtained.

Obtaining metadata information.

Metadata information for columns is as follows:

Column i:1  TABLE_SCHEMA,12,VARCHAR

Column i:2  TABLE_NAME,12,VARCHAR

Column i:3  TABLE_TYPE,12,VARCHAR

Starting to dump resultset.

Row 1 : _SYSTEM SYS_TABLES      BASE TABLE

Row 2 : _SYSTEM SYS_COLUMNS     BASE TABLE

Row 3 : _SYSTEM SYS_USERS       BASE TABLE

Row 4 : _SYSTEM SYS_UROLE       BASE TABLE

Row 5 : _SYSTEM SYS_RELAUTH     BASE TABLE

Row 6 : _SYSTEM SYS_ATTAUTH     BASE TABLE

Row 7 : _SYSTEM SYS_VIEWS       BASE TABLE

Row 8 : _SYSTEM SYS_KEYPARTS    BASE TABLE

Row 9 : _SYSTEM SYS_KEYS        BASE TABLE

Row 10 : _SYSTEM        SYS_CARDINAL    BASE TABLE

Row 11 : _SYSTEM        SYS_INFO        BASE TABLE

Row 12 : _SYSTEM        SYS_SYNONYM     BASE TABLE

Row 13 : _SYSTEM        TABLES  VIEW

Row 14 : _SYSTEM        COLUMNS VIEW

Row 15 : _SYSTEM        SQL_LANGUAGES   BASE TABLE

Row 16 : _SYSTEM        SERVER_INFO     VIEW

Row 17 : _SYSTEM        SYS_TYPES       BASE TABLE

Row 18 : _SYSTEM        SYS_FORKEYS     BASE TABLE

Row 19 : _SYSTEM        SYS_FORKEYPARTS BASE TABLE

Row 20 : _SYSTEM        SYS_PROCEDURES  BASE TABLE

Row 21 : _SYSTEM        SYS_TABLEMODES  BASE TABLE
                                                                    Using the SOLID JDBC Driver 6-31



Code Examples
Row 22 : _SYSTEM        SYS_EVENTS      BASE TABLE

Row 23 : _SYSTEM        SYS_SEQUENCES   BASE TABLE

Row 24 : _SYSTEM        SYS_TMP_HOTSTANDBY      BASE TABLE

Result set dumped. Sample application finishes.

Sample 2
/**

 *      sample2 JDBC sample applet

 *

*

 *      This simple JDBC applet does the following using

 *      Solid native JDBC driver. 

 *  

 *  1. Registers the driver using JDBC driver manager services

 *  2. Connects to SOLID using the driver.

 *     Used url is read from sample2.html

 *  3. Executes given SQL statements

 *

 *  To build and run the application 

 *

 *  1. Make sure you have a working Java Development environment

 *  2. Install and start SOLID to connect. Ensure that

* the server is up and running.

 *  3. Append SolidDriver.zip into the CLASSPATH definition used 

 *     by your development/running environment. 

 *  4. Create a java project based on the file sample2.java. 

 *  5. Build and run the application. Check that sample2.html

 *     defines valid url to your environment.

 * 

 *  For more information read the readme.htm file contained by

 *  SOLID JDBC Driver package.

 *

 */
6-32 SOLID Programmer Guide                              



Code Examples
import java.util.*;

import java.awt.*;

import java.applet.Applet;

import java.net.URL;

import java.sql.*;

public class sample2 extends Applet {

    TextField textField;

    static TextArea textArea;

    String url = null;

    Connection con = null;

    public void init() {

        // a valid value for url could be

        // url = "jdbc:solid://localhost:1313/dba/dba";

        url = getParameter("url");

        textField = new TextField(40);

        textArea = new TextArea(10, 40);

        textArea.setEditable(false);

        Font font = textArea.getFont();

        Font newfont = new Font("Monospaced", font.PLAIN, 12);

        textArea.setFont(newfont);

        // Add Components to the Applet. 

        GridBagLayout gridBag = new GridBagLayout();

        setLayout(gridBag);

        GridBagConstraints c = new GridBagConstraints();

        c.gridwidth = GridBagConstraints.REMAINDER;
                                                                    Using the SOLID JDBC Driver 6-33



Code Examples
        c.fill = GridBagConstraints.HORIZONTAL;

        gridBag.setConstraints(textField, c);

        add(textField);

        c.fill = GridBagConstraints.BOTH;

        c.weightx = 1.0;

        c.weighty = 1.0;

        gridBag.setConstraints(textArea, c);

        add(textArea);

        validate();

        try {

            // Load the SOLID JDBC Driver

            Driver d = (Driver)Class.forName 
("solid.jdbc.SolidDriver").newInstance();

            // Attempt to connect to a driver.

            con = DriverManager.getConnection (url);

            // If we were unable to connect, an exception

            // would have been thrown.  So, if we get here,

            // we are successfully connected to the url

            // Check for, and display and warnings generated

            // by the connect.

            checkForWarning (con.getWarnings ());

            // Get the DatabaseMetaData object and display

            // some information about the connection

            DatabaseMetaData dma = con.getMetaData ();
6-34 SOLID Programmer Guide                              



Code Examples
            textArea.appendText("Connected to " + dma.getURL() + "\n");

            textArea.appendText("Driver       " + dma.getDriverName() + 
"\n");

            textArea.appendText("Version      " + dma.getDriverVersion() 
+ "\n");

        }

        catch (SQLException ex) {

            printSQLException(ex);

        }

        catch (Exception e) {

            textArea.appendText("Exception:  " + e + "\n");

        }

    }

    public void destroy() {

        if (con != null) {

            try {

                con.close();

            }

            catch (SQLException ex) {

                printSQLException(ex);

            }

            catch (Exception e) {

                textArea.appendText("Exception:  " + e + "\n");

            }

        }

    }

    public boolean action(Event evt, Object arg) {

        if (con != null) {

            String sqlstmt = textField.getText();

            textArea.setText("");

            try {
                                                                    Using the SOLID JDBC Driver 6-35



Code Examples
                // Create a Statement object so we can submit

                // SQL statements to the driver

                Statement stmt = con.createStatement ();

                // set row limit

                stmt.setMaxRows(50);

                // Submit a query, creating a ResultSet object

                ResultSet rs = stmt.executeQuery (sqlstmt);

                // Display all columns and rows from the result set

                textArea.setVisible(false);

                dispResultSet (stmt,rs);

                textArea.setVisible(true);

                // Close the result set

                rs.close();

                // Close the statement

                stmt.close();

            }

            catch (SQLException ex) {

                printSQLException(ex);

            }

            catch (Exception e) {

                textArea.appendText("Exception:  " + e + "\n");

            }

            textField.selectAll();

        }

        return true;

    }

    //------------------------------------------------------------------

    // checkForWarning

    // Checks for and displays warnings.  Returns true if a warning
6-36 SOLID Programmer Guide                              



Code Examples
    // existed

    //------------------------------------------------------------------

    private static boolean checkForWarning (SQLWarning warn)

            throws SQLException

    {

        boolean rc = false;

        // If a SQLWarning object was given, display the

        // warning messages.  Note that there could be

        // multiple warnings chained together

        if (warn != null) {

            textArea.appendText("\n*** Warning ***\n");

            rc = true;

            while (warn != null) {

                textArea.appendText("SQLState: " +

                    warn.getSQLState () + "\n");

                textArea.appendText("Message:  " +

                    warn.getMessage () + "\n");

                textArea.appendText("Vendor:   " +

                    warn.getErrorCode () + "\n");

                textArea.appendText("\n");

                warn = warn.getNextWarning ();

            }

        }

        return rc;

    }

    //------------------------------------------------------------------

    // dispResultSet

    // Displays all columns and rows in the given result set

    //------------------------------------------------------------------
                                                                    Using the SOLID JDBC Driver 6-37



Code Examples
    private static void dispResultSet (Statement sta, ResultSet rs)

        throws SQLException

    {

        int i;

        // Get the ResultSetMetaData.  This will be used for

        // the column headings

        ResultSetMetaData rsmd = rs.getMetaData ();

        // Get the number of columns in the result set

        int numCols = rsmd.getColumnCount ();

        if (numCols == 0) {

            textArea.appendText("Updatecount is "+sta.getUpdateCount());

            return;

        }

        // Display column headings

        for (i=1; i<=numCols; i++) {

            if (i > 1) {

                textArea.appendText("\t");

            }

            try {

                textArea.appendText(rsmd.getColumnLabel(i));

            }

            catch(NullPointerException ex) {

                textArea.appendText("null");

            }

        }

        textArea.appendText("\n");

        

        // Display data, fetching until end of the result set

        boolean more = rs.next ();
6-38 SOLID Programmer Guide                              



Code Examples
        while (more) {

            // Loop through each column, get the 

            // column datza and display it

            for (i=1; i<=numCols; i++) {

                if (i > 1) {

                    textArea.appendText("\t");

                }

                try {

                    textArea.appendText(rs.getString(i));

                }

                catch(NullPointerException ex) {

                    textArea.appendText("null");

                }

            }

            textArea.appendText("\n");

            // Fetch the next result set row

            more = rs.next ();

        }

    }

    private static void printSQLException(SQLException ex)

    {

            // A SQLException was generated.  Catch it and

            // display the error information.  Note that there

            // could be multiple error objects chained

            // together

            textArea.appendText("\n*** SQLException caught ***\n");

            while (ex != null) {

                textArea.appendText("SQLState: " +
                                                                    Using the SOLID JDBC Driver 6-39



Code Examples
                    ex.getSQLState () + "\n");

                textArea.appendText("Message:  " +

                    ex.getMessage () + "\n");

                textArea.appendText("Vendor:   " +

                    ex.getErrorCode () + "\n");

                textArea.appendText("\n");

                ex = ex.getNextException ();

            }

    }

}

Sample 3
/**

 *      sample3 JDBC sample application

 *

*

 *      This simple JDBC application does the following using

 *      SOLID native JDBC driver. 

 *  

 *  1. Registers the driver using JDBC driver manager services

 *  2. Prompts the user for a valid JDBC connect string

 *  3. Connects to SOLID using the driver

 *  4. Drops and creates a procedure sample3. If the procedure

 *     does not exist dumps the related exception.

 *  5. Calls that procedure using java.sql.Statement

 *  6. Fetches and dumps all the rows of a result set. 

 *  7. Closes connection

 *

 *  To build and run the application 

 *

 *  1. Make sure you have a working Java Development environment

 *  2. Install and start SOLID to connect. Ensure that the 
*     server is up and running.
6-40 SOLID Programmer Guide                              



Code Examples
 *  3. Append SolidDriver.zip into the CLASSPATH definition used 

 *     by your development/running environment. 

 *  4. Create a java project based on the file sample3.java. 

 *  5. Build and run the application.

 * 

 *  For more information read the readme.htm file contained by

 *  SOLID JDBC Driver package.

 *

 */

import java.io.*;

import java.sql.*;

public class sample3 {

    static Connection conn;

    public static void main (String args[]) throws Exception

    {

        System.out.println("JDBC sample application starts...");

        System.out.println("Application tries to register the driver.");

        // this is the recommended way for registering Drivers

        Driver d = 
(Driver)Class.forName("solid.jdbc.SolidDriver").newInstance();

        System.out.println("Driver succesfully registered.");

        // the user is asked for a connect string 

        System.out.println("Now sample application needs a connectstring 
in format:\n");

        System.out.println("jdbc:solid://<host>:<port>/<user name>/
<password>\n");

        System.out.print("\nPlease enter the connect string >");

        BufferedReader reader = new BufferedReader(new 
                                                                    Using the SOLID JDBC Driver 6-41



Code Examples
InputStreamReader(System.in));

        String sCon = reader.readLine();

        // next, the connection is attempted

        System.out.println("Attempting to connect :" + sCon);

        conn = DriverManager.getConnection(sCon);

        System.out.println("SolidDriver succesfully connected.");

        DoIt();

        conn.close();

        // and now it is all over

        System.out.println("\nResult set dumped. Sample application 
finishes.");

    }

    static void DoIt() {

        try {

            createprocs();

            PreparedStatement pstmt = conn.prepareStatement("call 
sample3(?)");

            // set parameter value

            pstmt.setInt(1,10); 

            ResultSet rs = pstmt.executeQuery();

            if (rs != null) {

                ResultSetMetaData md = rs.getMetaData();

                int cols = md.getColumnCount();

                int row = 0;

                while (rs.next()) {

                    row++;
6-42 SOLID Programmer Guide                              



Code Examples
                    String ret = "row "+row+": ";

                    for (int i=1;i<=cols;i++) {

                        ret = ret + rs.getString(i) + " ";

                    }

                    System.out.println(ret);

                }

            }

            conn.commit();

        }

        catch (SQLException ex) {

            printexp(ex);

        }

        catch (java.lang.Exception ex) {

            ex.printStackTrace ();

        }

    }

    static void createprocs() {

        Statement stmt = null;

        String proc = "create procedure sample3 (limit integer)" +

                      "returns (c1 integer, c2 integer) " +

                      "begin " +

                      "  c1 := 0;" +

                      "  while c1 < limit loop " +

                      "    c2 := 5 * c1;" +

                      "    return row;" +

                      "    c1 := c1 + 1;" +

                      "  end loop;" +

                      "end";

        try {

            stmt = conn.createStatement();
                                                                    Using the SOLID JDBC Driver 6-43



Code Examples
            stmt.execute("drop procedure sample3");

        } catch (SQLException ex) {

            printexp(ex);

        }

        try {

            stmt.execute(proc);

        } catch (SQLException ex) {

            printexp(ex);

            System.exit(-1);

        }

    }

    public static void printexp(SQLException ex) {

        System.out.println("\n*** SQLException caught ***");

        while (ex != null) {

            System.out.println("SQLState: " + ex.getSQLState());

            System.out.println("Message:  " + ex.getMessage());

            System.out.println("Vendor:   " + ex.getErrorCode());

            ex = ex.getNextException ();

        }

    }

}

Sample 4
/**

 *      sample4 JDBC sample application

 *

*

 *      This simple JDBC application does the following using

 *      SOLID native JDBC driver. 

 *  
6-44 SOLID Programmer Guide                              



Code Examples
 *  1. Registers the driver using JDBC driver manager services

 *  2. Prompts the user for a valid JDBC connect string

 *  3. Connects to SOLID using the driver

 *  4. Drops and creates a table sample4. If the table

 *     does not exist dumps the related exception.

 *  5. Inserts file given as an argument to database (method Store)

 *  6. Reads this 'blob' back to file out.tmp (method Restore)

 *  7. Closes connection

 *

 *  To build and run the application 

 *

 *  1. Make sure you have a working Java Development environment

 *  2. Install and start SOLID to connect. Ensure that

* the server is up and running.

 *  3. Append SolidDriver.zip into the CLASSPATH definition used 

 *     by your development/running environment. 

 *  4. Create a java project based on the file sample4.java. 

 *  5. Build and run the application.

 * 

 *  For more information read the readme.htm file contained by 

 *  SOLID JDBC Driver package.

 *

 */

import java.io.*;

import java.sql.*;

public class sample4 {

    static Connection conn;

    public static void main (String args[]) throws Exception

    {

        String filename = null;
                                                                    Using the SOLID JDBC Driver 6-45



Code Examples
        String tmpfilename = null;

        if (args.length < 1) {

            System.out.println("usage: java sample4 <infile>");

            System.exit(0);

        }

        filename = args[0];

        tmpfilename = "out.tmp";

        System.out.println("JDBC sample application starts...");

        System.out.println("Application tries to register the driver.");

        // this is the recommended way for registering Drivers

        Driver d = 
(Driver)Class.forName("solid.jdbc.SolidDriver").newInstance();

        System.out.println("Driver succesfully registered.");

        // the user is asked for a connect string 

        System.out.println("Now sample application needs a connectstring 
in format:\n");

        System.out.println("jdbc:solid://<host>:<port>/<user name>/
<password>\n");

        System.out.print("\nPlease enter the connect string >");

        BufferedReader reader = new BufferedReader(new 
InputStreamReader(System.in));

        String sCon = reader.readLine();

        // next, the connection is attempted

        System.out.println("Attempting to connect :" + sCon);

        conn = DriverManager.getConnection(sCon);

        System.out.println("SolidDriver succesfully connected.");

        // drop and create table sample4
6-46 SOLID Programmer Guide                              



Code Examples
        createsample4();

        // insert data into it

        Store(filename);

        // and restore it

        Restore(tmpfilename);

        conn.close();

        // and it is all over

        System.out.println("\nSample application finishes.");

    }

    static void Store(String filename) {

        String sql = "insert into sample4 values(?,?)";

        FileInputStream inFileStream ; 

        try {

            File f1 = new File(filename);

            int blobsize = (int)f1.length();

            System.out.println("Inputfile size is "+blobsize);

            inFileStream = new FileInputStream(f1);

        

            PreparedStatement stmt = conn.prepareStatement(sql);

            stmt.setLong(1, System.currentTimeMillis());

            stmt.setBinaryStream(2, inFileStream, blobsize);

            int rows = stmt.executeUpdate();

            stmt.close();

            System.out.println(""+rows+" inserted.");

            conn.commit();

        }

        catch (SQLException ex) {

            printexp(ex);

        }

        catch (java.lang.Exception ex) {
                                                                    Using the SOLID JDBC Driver 6-47



Code Examples
            ex.printStackTrace ();

        }

    }

    static void Restore(String filename) {

        String sql = "select id,blob from sample4";

        FileOutputStream outFileStream ; 

        try {

            File f1 = new File(filename);

            outFileStream = new FileOutputStream(f1);

        

            PreparedStatement stmt = conn.prepareStatement(sql);

            ResultSet rs = stmt.executeQuery();

            int readsize = 0;

            while (rs.next()) {

                InputStream in = rs.getBinaryStream(2);

                byte bytes[] = new byte[8*1024];

                int nRead = in.read(bytes);

                while (nRead != -1) {

                    readsize = readsize + nRead;

                    outFileStream.write(bytes,0,nRead);

                    nRead = in.read(bytes);

                }

            }

            stmt.close();

            System.out.println("Read "+readsize+" bytes from database");

        }

        catch (SQLException ex) {

            printexp(ex);

        }

        catch (java.lang.Exception ex) {
6-48 SOLID Programmer Guide                              



Code Examples
            ex.printStackTrace ();

        }

    }

    static void createsample4() {

        Statement stmt = null;

        String proc = "create table sample4 (" +

                      "id numeric not null primary key,"+

                      "blob long varbinary)";

        try {

            stmt = conn.createStatement();

            stmt.execute("drop table sample4");

        } catch (SQLException ex) {

            printexp(ex);

        }

        try {

            stmt.execute(proc);

        } catch (SQLException ex) {

            printexp(ex);

            System.exit(-1);

        }

    }

    static void printexp(SQLException ex) {

        System.out.println("\n*** SQLException caught ***");

        while (ex != null) {

            System.out.println("SQLState: " + ex.getSQLState());

            System.out.println("Message:  " + ex.getMessage());

            System.out.println("Vendor:   " + ex.getErrorCode());
                                                                    Using the SOLID JDBC Driver 6-49



SOLID JDBC Driver Type Conversion Matrix
            ex = ex.getNextException ();

        }

    }

}

SOLID JDBC Driver Type Conversion Matrix
The following conversion matrix shows how the java data type to SQL data type conversion 
is supported by SOLID JDBC Driver. Note that this matrix applies to both Result-
Set.getXXX and ResultSet.setXXX methods for getting and setting data. An X indicates that 
the method is supported by SOLID JDBC Driver.
6-50 SOLID Programmer Guide                              



SOLID JDBC Driver Type Conversion Matrix
 SQL Data Type

Java Data Type
(applies to get-
ting and setting 
data)

  T
  I
  N
  Y
  I
  N
  T

 
  S
  M
  A
  L
  L
  I
  N
  T

  I
  N
  T
  E
  G
  E
  R
  

  R
  E
  A
  L

  F
  L
  O
  A
  T

  D
  O
  U
  B
  L
  E

  D
  E
  C
  I
  M
  A
  L

  N
  U
  M
  E
  R
  I
  C

  C
  H
  A
  R

  V
  A
  R
  C
  H
  A
  R

  L
  O
  N
  G
  V
  A
  R
  C
  H 
  A 
  R

  W
  C
  H
  A
  R

  W
  V
  A
  R
  C
  H
  A
  R

  L
  O
  N
  G
  W
  V
  A
  R
  C
  H
  A
  R

  B
  I
  N
  A
  R
  Y

  V
  A
  R
  B
  I
  N
  A
  R
  Y

  R

  L
  O
  N
  G
  V
  A
  R
  B
  I
  N
  A
  R
  Y

*
  D
  A
  T
  E

*
  T
  I
  M
  E

*
  T
  I
  M
  E
  S
  T
  A
  M
  P

getArray/setArray

getBlob/setBlob

getByte/setByte  X   X   X  X   X   X  X   X  X  X  X  X  X  X   
getCharacter-
Stream/
setCharacterStream

 X   X   X  X   X   X  X   X  X  X   X   X

getClob/setClob

getShort/setShort  X   X   X  X   X   X  X   X  X  X  X
getInt/setInt  X   X   X  X   X   X  X   X  X  X  X
getlong/setLong  X   X   X  X   X   X  X   X  X  X  X
getfloat/setfloat  X   X   X  X   X   X  X   X  X  X  X
getDouble/setDou-
ble

 X   X   X  X   X   X  X   X  X  X  X

getBigDecimal/set-
BigDecimal

 X   X   X  X   X   X  X   X  X  X  X

getRef/setRef

getBoolean/set-
Boolean

 X   X   X  X   X   X  X   X  X  X  X

getString/setString  X   X   X  X   X   X  X   X  X  X  X  X   X   X  X   X   X  X   X  X
getBytes/setBytes  X   X   X  X   X   X  X   X  X
getDate/setDate  X   X   X  X   X   X  X    X
getTime/setTime  X   X   X  X   X   X   X   X
getTimestamp/set-
Timestamp

 X   X   X  X   X   X  X    X

getAsciiStream/
setAsciiStream

 X   X   X  X   X   X  X   X  X    

getUnicodeStream/
setUnicodeStream

 X   X   X  X   X   X  X   X  X   

getBinaryStream/
setBinaryStream

 X   X   X  X   X   X  X   X  X

getObject/setObject  X   X   X  X   X   X  X   X  X  X   X   X  X   X   X  X   X  X  X   X
                                                                    Using the SOLID JDBC Driver 6-51



SOLID JDBC Driver Type Conversion Matrix
6-52 SOLID Programmer Guide                              



A 

SOLID Supported ODBC Functions

Function Names/Ver-
sion Introduced* Purpose

Availability when using 
ODBC 

Conform-
ance**

Connecting to a Data Source

SQLAllocEnv (1.0) N/A Deprecated (replaced by
SQLAllocHandle)

N/A

SQLAllocConnect (1.0) N/A Deprecated (replaced by
SQLAllocHandle)

N/A

SQLAllocHandle (3.0) Returns the list of supported data source 
attributes.

Returns the list of installed drivers and their 
attributes.

Supported

Supported

ISO 92

ODBC

SQLConnect (1.0) Establishes connections to a driver and a data 
source. The connection handle references stor-
age of all information about the connection to 
the data source, including status, transaction 
state, and error information.

Supported ISO 92

SQLDriverConnect (1.0) This function applies only to Windows envi-
ronments and is an alternative to
SQLConnect. It supports data sources that 
require more connection information than the 
three arguments in SQLConnect, including 
dialog boxes to prompt the user for all con-
nection information, and data sources that are 
not defined in the system information.

Supported ODBC

* Version introduced is the version when the function was initially added to the ODBC API. 
** Conformance level can be ISO 92 (also appears in X/Open version 1 because X/Open is a pure superset of ISO 92), 

X/Open (also appears in ODBC 3.x because ODBC 3.x is a pure superset of X/Open version 1), ODBC (appears in
neither ISO 92 or X/Open) or N/A (Deprecated in ODBC 3.x).
                                                            SOLID Supported ODBC Functions A-1



SQLBrowseConnect 
(1.0)

Returns successive levels of attributes and 
attribute values. When all levels have been 
enumerated, a connection to the data source is 
completed and a complete connection string is 
returned. A return of 
SQL_SUCCESS_WITH_INFO indicates that 
all connection information has been specified 
and the application is now connected to the 
data source.

Supported ISO 92

SQLGetInfo (1.0) Returns general information about the driver 
and data source associated with a connection.

Supported ISO 92

SQLGetFunctions (1.0) Returns information about whether a driver 
supports a specific ODBC function. 

Supported; this function is 
implemented in the ODBC 
Driver Manager. It can also be 
implemented in drivers. If a 
driver implements
SQLGetFunctions, the Driver 
manager calls the function in 
the driver. Otherwise, it exe-
cutes the function itself. In 
Solid’s case, the function is 
implemented in the driver so 
that the application linked to 
the driver can also call this 
function from the application.

ISO 92

SQLGetTypeInfo (1.0) Returns information about data types sup-
ported by the data source. The driver returns 
the information in the form of a SQL result 
set. The data types are intended for use in 
Data Definition Language (DDL) statements.

Supported ISO 92

Obtaining Information about a Driver and Data Source

SQLDataSources (1.0) Returns information about a data source. Supported; this function is 
implemented in the ODBC 
Driver Manager.

For non-Microsoft Windows 
platforms which do not have 
the Microsoft ODBC Driver 
manager, this function is not 
supported.

ISO 92

Function Names/Ver-
sion Introduced* Purpose

Availability when using 
ODBC 

Conform-
ance**
A-2 SOLID Programmer Guide                              



SQLDrivers (2.0) Lists driver descriptions and driver attribute 
keywords. 

Supported; this function is 
implemented in the ODBC 
Driver Manager. 

For non-Microsoft Windows 
platforms which do not have 
the Microsoft ODBC Driver 
manager, this function is not 
supported.

ODBC

SQLGetConnectAttr 
(3.0)

SQLSetConnectAttr 
(3.0)

Returns the value of a connection attribute.

Sets a connection attribute.

Supported

Supported

ISO 92

ISO 92

SQLGetEnvAttr (3.0)

SQLSetEnvAttr (3.0)

Returns the value of an environment attribute.

Sets an environment attribute.

Supported

Supported

ISO 92

ISO 92

SQLGetStmtAttr (3.0)

SQLSetStmtAttr (3.0)

Returns the value of a statement
attribute.

Sets a statement attribute.

Supported (replaced by 
SQLGetStmtAttr)

Supported

ISO 92

ISO 92

SQLSetConnectOption 
(1.0)

SQLGetConnectOption
(1.0)

N/A Deprecated (replaced by 
SQLSetConnectAttr)

Deprecated (replaced by 
SQLGetConnectAttr)

N/A

N/A

SQLGetStmtOption 
(1.0)

SQLSetStmtOption
(1.0)

N/A

N/A

Deprecated (replaced by 
SQLGetStmtAttr)

Deprecated (replaced by 
SQLSetStmtAttr)

N/A

N/A

Setting and Retrieving Descriptor Fields

SQLGetDescField (3.0)

SQLSetDescField (3.0)

Returns the current setting or value of a sin-
gle descriptor field.

Sets the value of a single field of a descriptor 
record.

Supported

Supported

ISO 92

ISO 92

Function Names/Ver-
sion Introduced* Purpose

Availability when using 
ODBC 

Conform-
ance**
                                                                    SOLID Supported ODBC Functions A-3



SQLGetDescRec (3.0)

SQLSetDescRec (3.0)

Returns the current settings or values of multi-
ple fields of a descriptor record. The fields 
returned describe the name, data type, and 
storage column or parameter data.

Sets multiple descriptor fields that affect the 
data type and buffer bound to a column or 
parameter data.

Supported

Supported

ISO 92

ISO 92

SQLCopyDesc (3.0) Copies descriptor information from one 
descriptor handle to another.

Supported ISO 92

Preparing SQL Requests

SQLAllocStmt (1.0) N/A Deprecated (replaced by
SQLAllocHandle)

N/A

SQLPrepare (1.0) Prepares a SQL statement for later execution. Supported ISO 92

SQLBindParameter 
(2.0)

Assigns storage for a parameter in a SQL 
statement.

Supported

Note: This function replaces 
SQLBindParam which did 
not exist in ODBC 2.x, 
although it is in the X/Open 
and ISO standards.

ODBC

SQLGetCursorName 
(1.0)

SQLSetCursorName 
(1.0)

Returns the cursor name associated with a 
statement handle.

Specifies a cursor name with an active state-
ment. If an application does not call SQLSet-
CursorName, the driver generates cursor 
names as needed for SQL statement process-
ing.

Supported

Supported

ISO 92

ISO 92

SQLParamOptions (1.0) N/A Deprecated (replaced by 
SQLSetStmtAttr)

N/A

SQLSetParam (1.0) N/A Deprecated (replaced by
SQLBindParameter)

N/A

SQLSetScrollOptions 
(1.0)

Sets options that control cursor behavior. Deprecated (replaced by 
SQLGetInfo and
SQLSetStmtAttr)

ODBC 

Function Names/Ver-
sion Introduced* Purpose

Availability when using 
ODBC 

Conform-
ance**
A-4 SOLID Programmer Guide                              



Submitting Requests

SQLExecute (1.0) Executes a prepared statement using the cur-
rent values of the parameter marker variables 
if any parameter markers exist in the state-
ment.

Supported ISO 92

SQLExecDirect (1.0) Executes a preparable statement using the cur-
rent values of the parameter marker variables 
if any parameters exist in the statement. 
SQLExecDirect is the fastest way to submit a 
SQL statement for one-time execution.

Supported ISO 92

SQLNativeSQL (1.0) Returns the SQL string as modified by the 
driver. SQLNativeSQL does not execute the 
SQL statement.

Not implemented; Solid does 
not support this functionality.

N/A

SQLDescribeParam 
(1.0)

Returns the text of a SQL statement as trans-
lated by the driver. This information is also 
available in the fields of the IPD.

Supported ODBC

SQLNumParams (1.0) Returns the number of parameters in a SQL 
statement.

Supported ISO 92

SQLParamData (1.0) Used in conjunction with SQLPutData to 
supply parameter data at execution time. (Use-
ful for long data values.)

Supported ISO 92

SQLPutData (1.0) Allows an application to send data for a 
parameter or column to the driver at state-
ment execution time. This function can be 
used to send character or binary data values in 
parts to a column with a character, binary, or 
data source-specific data type (for example, 
parameters of the SQL_LONGVARBINARY 
or SQL_LONGVARCHAR types).

Supported ISO 92

Retrieving Results and Information about Results

SQLRowCount (1.0) Returns the number of rows affected by an 
UPDATE, INSERT, or DELETE statement.

Supported ISO 92

SQLNumResultCols 
(1.0)

Returns the number of columns in a result set. Supported ISO 92

Function Names/Ver-
sion Introduced* Purpose

Availability when using 
ODBC 

Conform-
ance**
                                                                    SOLID Supported ODBC Functions A-5



SQLDescribeCol (1.0) Returns the result descriptor (column name, 
type, column size, decimal digits, and nul-
lability) for one column in the result set. This 
information is also available in the fields of 
the IRD.

Supported ISO 92

SQLColAttributes (1.0) N/A Deprecated (replaced by
SQLColAttribute)

N/A

SQLColAttribute (3.0) Describes attributes of a column in the result 
set.

Supported ISO 92

SQLBindCol (1.0) Assigns storage for a result column and speci-
fies the data type.

Supported ISO 92

SQLFetch (1.0) Returns multiple result rows, fetching the next 
rowset of data from the result set and return-
ing data for all bound columns.

Supported ISO 92

SQLExtendedFetch (1.0) N/A Deprecated (replaced by 
SQLFetchScroll)

N/A

SQLFetchScroll (3.0) Returns scrollable result rows, fetching the 
specified rowset of data from the result set and 
returning data for all bound columns.

When working with an ODBC 2.x driver, the 
Driver Manager maps this function to 
SQLExtendedFetch.

Supported

Note: Block cursors are not 
supported. For scrollable cur-
sors, previous and next are sup-
ported; however, absolute and 
relative fetches are not sup-
ported.

ISO 92

SQLGetData (1.0) Returns part or all of one column of one row 
of a result set. It can be called multiple times 
to retrieve variable length data in parts, mak-
ing it useful for long data values.

Supported ISO 92

SQLSetPos (1.0) Positions a cursor within a fetched block of 
data and allows an application to refresh data 
in the rowset or to update or delete data in the 
result set.

Not supported ODBC

SQLBulkOperations 
(3.0)

Performs bulk insertions and bulk bookmark 
operations, including update, delete, and fetch 
by bookmark.

Not supported ODBC

Function Names/Ver-
sion Introduced* Purpose

Availability when using 
ODBC 

Conform-
ance**
A-6 SOLID Programmer Guide                              



SQLMoreResults (1.0) Determines whether there are more results 
available on a statement containing SELECT, 
UPDATE, INSERT, or DELETE statement 
and, if so, initializes processing for those 
results.

Not implemented; 

SOLID Embedded Engine does 
not support multiple results.

ODBC

SQLGetDiagField (3.0) Returns additional diagnostic information (a 
single field of the diagnostic data structure 
associated with a specified handle). This 
information includes error, warning, and sta-
tus information.

Supported ISO 92

SQLGetDiagRec (3.0) Returns additional diagnostic information 
(multiple fields of the diagnostic data struc-
ture). Unlike SQLGetDiagField, which 
returns one diagnostic field per call, SQLGet-
DiagRec returns several commonly used 
fields of a diagnostic record, including the 
SQLSTATE, the native error code, and the 
diagnostic message text.

Supported ISO 92

SQLError (1.0) N/A Deprecated (replaced by 
SQLGetDiagRec)

N/A

Obtaining Information about the Data Source’s System Tables

SQLColumnPrivileges 
(1.0)

Returns a list of columns and associated privi-
leges for the specified table. The driver returns 
the information as a result set on the specified
StatementHandle. This function is supported 
via an appropriate SQL execution.

Supported ODBC

SQLColumns (1.0) Returns a list of columns and associated privi-
leges for the specified table. The driver returns 
the information as a result set on the specified
StatementHandle. This function is supported 
via an appropriate SQL execution.

Supported X/Open

Function Names/Ver-
sion Introduced* Purpose

Availability when using 
ODBC 

Conform-
ance**
                                                                    SOLID Supported ODBC Functions A-7



SQLForeignKeys (1.0) Returns two type of lists:

■ Foreign keys in the specified table (col-
umns in the specified table that refer to 
primary keys in other tables). 

■ Foreign keys in other tables that refer to 
the primary key in the specified table. 

The driver returns each list as a result set on 
the specified statement.

Supported ODBC

SQLPrimaryKeys (1.0) Returns the list of column names that make up 
the primary key for a table. The driver returns 
the information as a result set. This function 
does not support returning primary keys from 
multiple tables in a single call.

Supported ODBC

SQLProcedureColumns 
(1.0)

Returns the list of input and output parame-
ters, as well as the columns that make up the 
result set for the specified procedures. The 
driver returns the information as a result set on 
the specified statement.

Supported. ODBC

SQLProcedures (1.0) Returns the list of procedure names stored in a 
specific data source. Procedure is a generic 
term used to describe an executable object, or 
a named entity that can be invoked using input 
and output parameters.

Supported ODBC

SQLSpecialColumns 
(1.0)

Returns the following information about col-
umns within a specified table:

■ The optimal set of columns that uniquely 
identifies a row in the table.

■ Columns that are automatically updated 
when any value in the row is updated by 
a transaction.

Supported X/Open

SQLStatistics (1.0) Returns statistics about a single table and the 
list of indexes associated with the table. The 
driver returns the information as a result set.

Supported ISO 92

SQLTablePrivileges (1.0) Returns a list of tables and the privileges asso-
ciated with each table. The driver returns the 
information as a result set on the specified 
statement.

Supported ODBC

Function Names/Ver-
sion Introduced* Purpose

Availability when using 
ODBC 

Conform-
ance**
A-8 SOLID Programmer Guide                              



SQLTables (1.0) Returns the list of table, catalog, or schema 
names, and table types, stored in a specific 
data source.

Supported X/Open

Terminating a statement

SQLFreeStmt (1.0) Ends statement processing, discards pending 
results, and optionally, frees all resources 
associated with the statement handle.

Supported

Note: The SQLFreeStmt with 
an option of SQL_DROP is 
replaced by SQLFreeHandle.

ISO 92

SQLCloseCursor (3.0) Closes a cursor that has been opened on a 
statement, and discards pending results.

Supported ISO 92

SQLCancel (1.0) Cancels the processing on a SQL statement. Supported ISO 92

SQLEndTran (3.0) Requests a transaction commit or rollback on 
all statements associated with a connection. 
SQLEndTran can also request that a commit 
or rollback operation be performed for all con-
nections associated with an environment.

Supported ISO 92

SQLTransact (1.0) N/A Deprecated (replaced by 
SQLEndTran)

N/A

Terminating a Connection

SQLDisconnect (1.0) Closes the connection associated with a spe-
cific connection handle.

Supported ISO 92

SQLFreeConnect (1.0) N/A Deprecated (replaced by
SQLFreeHandle)

N/A

SQLFreeEnv (1.0) N/A Deprecated (replaced by
SQLFreeHandle)

N/A

SQLFreeHandle (3.0) Frees resources associated with a specific 
environment, environment, connection, state-
ment, or descriptor handle

Supported ISO 92

Function Names/Ver-
sion Introduced* Purpose

Availability when using 
ODBC 

Conform-
ance**
                                                                    SOLID Supported ODBC Functions A-9



A-10 SOLID Programmer Guide                              



B 

Error Codes

This appendix contains an Error Codes Table that provides possible SQLSTATE values that a 
driver returns for the SQLGetDiagRec function. Note that SQLGetDiagRec and SQLGet-
DiagField return SQLSTATE values that conform to the X/Open Data Management: Struc-
tured Query Language (SQL), Version 2 (3/95).

Error Codes Table Convention
SQLSTATE values are strings that contain five characters; the first two is a string class 
value, followed by a three-character subclass value. For example 01000 has 01 as its class 
value and 000 as its subclass value. Note that a subclass value of 000 means there is no sub-
class for that SQLSTATE. Class and subclass values are defined in SQL-92.

NoteNote

Typically, when a function successfully executes, it returns a value of SQL_SUCCESS; in 
some cases, however, the function may also return the SQLSTATE 00000, which also indi-
cates successful execution.

Class value Meaning

01 Indicates a warning and includes a return code of 
SQL_SUCCESS_WITH_INFO.

01, 07, 08, 21, 22, 25, 28, 34, 
3C, 3D, 3F, 40, 42, 44, HY 

Indicates an error that includes a return value of 
SQL_ERROR.

IM Indicates warning and errors that are derived from ODBC.
                                                            Error Codes B-1



.

SQLSTATE Error Can be returned from

01000 General warning All ODBC functions except:

SQLGetDiagField
SQLGetDiagRec

01001 Cursor operation conflict SQLExecDirect
SQLExecute
SQLParamData

01002 Disconnect error SQLDisconnect

01003 NULL value eliminated in set 
function

SQLExecDirect
SQLExecute
SQLParamData

01004 String data, right truncated SQLBrowseConnect
SQLColAttribute
SQLDataSources
SQLDescribeCol
SQLDriverConnect
SQLDrivers
SQLExecDirect
SQLExecute
SQLExtendedFetch
SQLFetch
SQLFetchScroll
SQLGetConnectAttr
SQLGetCursorName
SQLGetData
SQLGetDescField
SQLGetDescRec
SQLGetEnvAttr
SQLGetInfo
SQLGetStmtAttr
SQLParamData
SQLPutData
SQLSetCursorName

01006 Privilege not revoked SQLExecDirect
SQLExecute
SQLParamData

01007 Privilege not granted SQLExecDirect
SQLExecute
SQLParamData
B-2 SOLID Programmer Guide                              



01S00 Invalid connection string attribute SQLBrowseConnect
SQLDriverConnect

01S01 Error in row SQLExtendedFetch

01S02 Option value changed SQLBrowseConnect
SQLConnect
SQLDriverConnect
SQLExecDirect
SQLExecute
SQLParamData
SQLPrepare
SQLSetConnectAttr
SQLSetDescField
SQLSetEnvAttr
SQLSetStmtAttr

01S06 Attempt to fetch before the result 
set returned the first rowset

SQLExtendedFetch
SQLFetchScroll

01S07 Fractional truncation SQLExecDirect
SQLExecute
SQLExtendedFetch
SQLFetch
SQLFetchScroll
SQLGetData
SQLParamData

01S08 Error saving File DSN SQCriverConnect

01S09 Invalid keyword SQLDriverConnect

07001 Wrong number of parameters SQLExecDirect
SQLExecute

07002 COUNT field incorrect SQLExecDirect
SQLExecute
SQLParamData

07005 Prepared statement not a 
cursor_specification

SQLColAttribute
SQLDescribeCol

SQLSTATE Error Can be returned from
                                                                    Error Codes B-3



07006 Restricted data type attribute vio-
lation

SQLBindCol
SQLBindParameter
SQLExecDirect
SQLExecute
SQLExtendedFetch
SQLFetch
SQLFetchScroll
SQLGetData
SQLParamData
SQLPutData

07009 Invalid descriptor index SQLBindCol
SQLBindParameter
SQLColAttribute
SQLDescribeCol
SQLDesribeParam
SQLFetch
SQLFetchScroll
SQLGetData
SQLGetDescField
SQLParamData
SQLSetDescField
SQLSetDescRec
SetSetPos

07S01 Invalid use of default parameter SQLExecDirect
SQLExecute
SQLParamData
SQLPutData

08001 Client unable to establish connec-
tion

SQLBrowseConnect
SQLConnect
SQLDriverConnect

08002 Connection name in use SQLBrowseConnect
SQLConnect
SQLDriverConnect
SQLSetConnectAttr

08003 Connection does not exist SQLAllocHandle
SQLDisconnect
SQLEndTran
SQLGetConnectAttr
SQLGetInfo
SQLSetConnectAttr

SQLSTATE Error Can be returned from
B-4 SOLID Programmer Guide                              



08004 Server rejected the connection SQLBrowseConnect
SQLConnect
SQLDriverConnect

08007 Connection failure during transac-
tion

SQLEndTran

08S01 Communication link failure SQLBrowseConnect
SQLColumnPrivileges
SQLColumns
SQLConnect
SQLCopyDesc
SQLDescribeCol
SQLDescribeParam
SQLDriverConnect
SQLExecDirect
SQLExecute
SQLExtendedFetch
SQLFetch
SQLFetchScroll
SQLForeignKeys
SQLGetConnectAttr
SQLGetData
SQLGetDescField
SQLGetDescRec
SQLGetFunctions
SQLGetInfo
SQLGetTypeInfo
SQLMoreResults
SQLNumParams
SQLNumResultCols
SQLParamData
SQLPrepare
SQLPrimaryKeys
SQLProcedureColumns
SQLProcedures
SQLPutData
SQLSetConnectAttr
SQLSetDescField
SQLSetDescRec

SQLSTATE Error Can be returned from
                                                                    Error Codes B-5



08S01 (continued) Communication link failure SQLSetEnvAttr
SQLSetStmtAttr
SQLSpecialColumns
SQLStatistics
SQLTablePrivileges
SQLTables

21S01 Insert value list does not match 
column list

SQLExecDirect
SQLPrepare

21S02 Degree of derived table does not 
match column list

SQLExecDirect
SQLExecute
SQLParamData
SQLPrepare

22001 String data, right truncated SQLExecDirect
SQLExecute
SQLFetch
SQLFetchScroll
SQLParamData
SQLPutData
SQLSetDescField

22002 Indicator variable required but not 
supplied

SQLExecDirect
SQLExecute
SQLExtendedFetch
SQLFetch
SQLFetchScroll
SQLGetData
SQLParamData

22003 Numeric value out of range SQLExecDirect
SQLExecute
SQLExtendedFetch
SQLFetch
SQLFetchScroll
SQLGetData
SQLGetInfo
SQLParamData
SQLPutData

SQLSTATE Error Can be returned from
B-6 SOLID Programmer Guide                              



22007 Invalid datetime format SQLExecDirect
SQLExecute
SQLExtendedFetch
SQLFetch
SQLFetchScroll
SQLGetData
SQLParamData
SQLPutData

22008 Datetime field overflow SQLExecDirect
SQLExecute
SQLParamData
SQLPutData

22012 Division by zero SQLExecDirect
SQLExecute
SQLExtendedFetch
SQLFetch
SQLFetchScroll
SQLGetData
SQLParamData
SQLPutData

22015 Interval field overflow SQLExecDirect
SQLExecute
SQLExtendedFetch
SQLFetch
SQLFetchScroll
SQLGetData
SQLParamData
SQLPutData

22018 Invalid character value for cast 
specification

SQLExecDirect
SQLExecute
SQLExtendedFetch
SQLFetch
SQLFetchScroll
SQLGetData
SQLParamData
SQLPutData

22019 Invalid escape character SQLExecDirect
SQLExecute
SQLPrepare

SQLSTATE Error Can be returned from
                                                                    Error Codes B-7



22025 Invalid escape sequence SQLExecDirect
SQLExecute
SQLPrepare

22026 String data, length mismatch SQLParamData

23000 Integrity constraint violation SQLExecDirect
SQLExecute
SQLParamData

24000 Invalid cursor state SQLCloseCursor
SQLColumnPrivileges
SQLColumns
SQLExecDirect
SQLExecute
SQLExtendedFetch
SQLFetch
SQLFetchScroll
SQLForeignKeys
SQLGetData
SQLGetStmtAttr
SQLGetTypeInfo
SQLPrepare
SQLPrimaryKeys
SQLProcedureColumns
SQLProcedures 
SQLConnectAttr
SQLSetCursorName
SQLSetStmtAttr
SQLSpecialColumns
SQLStatistics
SQLTablePrivileges
SQLTables

25000 Invalid transaction state SQLDisconnect

25S01 Transaction state SQLEndTran

25S02 Transaction is still active SQLEndTran

25S03 Transaction is rolled back SQLEndTran

28000 Invalid authorization specification SQLBrowseConnect
SQLConnect
SQLDriverConnect

SQLSTATE Error Can be returned from
B-8 SOLID Programmer Guide                              



34000 Invalid cursor name SQLExecDirect
SQLPrepare
SQLSetCursorName

3C000 Duplicate cursor name SQLSetCursorName

3D000 Invalid catalog name SQLExecDirect

3F000 Invalid schema name SQLExecDirect
SQLPrepare

40001 Serialization failure SQLColumnPrivileges
SQLColumns
SQLEndTran
SQLExecDirect
SQLExecute
SQLFetch
SQLFetchScroll
SQLForeignKeys
SQLGetTypeInfo
SQLMoreResults
SQLParamData
SQLPrimaryKeys
SQLProcedureColumns
SQLProcedures
SQLSpecialColumns
SQLStatistics
SQLTablePrivileges
SQLTables

40002 Integrity constraint violation SQLEndTran

SQLSTATE Error Can be returned from
                                                                    Error Codes B-9



40003 Statement completion unknown SQLColumnPrivileges
SQLColumns
SQLExecDirect
SQLExecute
SQLFetch
SQLFetchScroll
SQLForeignKeys
SQLGetTypeInfo
SQLMoreResults
SQLPrimaryKeys
SQLProcedureColumns
SQLProcedures
SQLParamData
SQLSpecialColumns
SQLStatistics
SQLTablePrivileges
SQLTables

42000 Syntax error or access violation SQLExecDirect
SQLExecute
SQLParamData
SQLPrepare

42S01 Base table or view already exists SQLExecDirect
SQLPrepare

42S02 Base table or view not found SQLExecDirect
SQLPrepare

42S11 Index already exists SQLExecDirect
SQLPrepare

42S12 Index not found SQLExecDirect
SQLPrepare

42S21 Column already exists SQLExecDirect
SQLPrepare

42S22 Column not found SQLExecDirect
SQLPrepare

44000 WITH CHECK OPTION violation SQLExecDirect
SQLExecute
SQLParamData

SQLSTATE Error Can be returned from
B-10 SOLID Programmer Guide                              



HY000 General Error All ODBC functions except:

SQLGetDiagField
SQLGetDiagRec

HY001 Memory allocation error All ODBC function except:

SQLGetDiagField
SQLGetDiagRec

HY003 Invalid application buffer type SQLBindCol
SQLBindParameter
SQLGetData

HY004 Invalid SQL data type SQLBindParameter
SQLGetTypeInfo

HY007 Associated statement is not pre-
pared

SQLCopyDesc
SQLGetDescField
SQLGetDescRec

HY008 Operation canceled All ODBC functions that can be 
processed asynchronously:

SQLColAttribute
SQLColumnPrivileges
SQLColumns
SQLDescribeCol
SQLDescribeParam
SQLExecDirect
SQLExecute
SQLExtendedFetch
SQLFetch
SQLFetchScroll
SQLForeignKeys
SQLGetData
SQLGetTypeInfo
SQLMoreResults
SQLNumParams
SQLNumResultCols

SQLSTATE Error Can be returned from
                                                                    Error Codes B-11



HY008 (continued) Operation canceled SQLParamData
SQLPrepare
SQLPrimaryKeys
SQLProcedureColumns
SQLProcedures
SQLPutData
SQLSpecialColumns
SQLStatistics
SQLTablePrivileges
SQLTables

HY009 Invalid use of null pointer SQLAllocHandle
SQLBindParameter
SQLColumnPrivileges
SQLColumns
SQLExecDirect
SQLForeignKeys
SQLGetCursorName
SQLGetData
SQLGetFunctions
SQLPrepare
SQLPrimaryKeys
SQLProcedureColumns
SQLProcedures
SQLPutData
SQLSetConnectAttr
SQLSetCursorName
SQLSetEnvAttr
SQLSetStmtAttr
SQLSpecialColumns
SQLStatistics
SQLTablePrivileges
SQLTables

SQLSTATE Error Can be returned from
B-12 SOLID Programmer Guide                              



HY010 Function sequence error SQLAllocHandle
SQLBindCol
SQLBindParameter
SQLCloseCursor
SQLColAttribute
SQLColumnPrivileges
SQLColumns
SQLCopyDesc
SQLDescribeCol
SQLDescribeParam
SQLDisconnect
SQLEndTran
SQLExecDirect
SQLExecute
SQLExtendedFetch
SQLFetch
SQLFetchScroll

HY010 Function sequence error SQLForeignKeys
SQLFreeHandle
SQLFreeStmt
SQLGetConnectAttr
SQLGetCursorName
SQLGetData
SQLGetDescField
SQLGetDescRec
SQLGetFunctions
SQLGetStmtAttr
SQLGetTypeInfo
SQLMoreResults
SQLNumParams
SQLNumResultCols
SQLParamData
SQLPrepare
SQLPrimaryKeys
SQLProcedureColumns
SQLProcedures
SQLPutData
SQLRowCount
SQLSetConnectAttr
SQLSetCursorName
SQLSetDescField

SQLSTATE Error Can be returned from
                                                                    Error Codes B-13



HY010 (continued) Function sequence error SQLSetEnvAttr
SQLSetDescRec
SQLSetStmtAttr
SQLSpecialColumns
SQLStatistics
SQLTablePrivileges
SQLTables

HY011 Attribute cannot be set now SQLParamData
SQLSetConnectAttr
SQLSetStmtAttr

HY012 Invalid transaction operation code SQLEndTran

HY013 Memory Management err All ODBC functions except:

SQLGetDiagField
SQLGetDiagRec

HY014 Limit on the number of handles 
exceeded

SQLAllocHandle

HY015 No cursor name available SQLGetCursorName

HY016 Cannot modify an implementation 
row descriptor

SQLCopyDesc
SQLSetDescField
SQLSetDescRec

HY017 Invalid use of an automatically 
allocated descriptor handle

SQLFreeHandle
SQLSetStmtAttr

HY018 Server declined cancel request SQLCancel

HY019 Non-character and non-binary data 
sent in pieces

SQLPutData

HY020 Attempt to concatenate a null 
value

SQLPutData

HY021 Inconsistent descriptor informa-
tion

SQLBindParameter
SQLCopyDesc
SQLGetDescField
SQLSetDescField
SQLSetDescRec

HY024 Invalid attribute value SQLSetConnectAttr
SQLSetEnvAttr
SQLSetStmtAttr

SQLSTATE Error Can be returned from
B-14 SOLID Programmer Guide                              



HY090 Invalid string or buffer length SQLBindCol
SQLBindParameter
SQLBrowseConnect
SQLColAttribute
SQLColumnPrivileges
SQLColumns
SQLConnect
SQLDataSources
SQLDescribeCol
SQLDriverConnect
SQLDrivers
SQLExecDirect
SQLExecute
SQLFetch
SQLFetchScroll

IM001 Driver does not support this func-
tion

SQLForeignKeys
SQLGetConnectAttr
SQLGetCursorName
SQLGetData
SQLGetDescField
SQLGetInfo
SQLGetStmtAttr
SQLParamData
SQLPrepare
SQLPrimaryKeys
SQLProcedureColumns
SQLProcedures
SQLPutData
SQLSetConnectAttr
SQLSetCursorName
SQLSetDescField
SQLSetDescRec
SQLSetEnvAttr
SQLSetStmtAttr
SQLSpecialColumns
SQLStatistics
SQLTablePrivileges
SQLTables

HY091 Invalid descriptor field identifier SQLColAttribute
SQLGetDescField
SQLSetDescField

SQLSTATE Error Can be returned from
                                                                    Error Codes B-15



HY092 Invalid attribute/option identifier SQLAllocHandle
SQLCopyDesc
SQLDriverConnect
SQLEndTran
SQLFreeStmt
SQLGetConnectAttr
SQLGetEnvAttr
SQLGetStmtAttr
SQLParamData
SQLSetConnectAttr
SQLSetDescField
SQLSetEnvAttr
SQLSetStmtAttr

HY095 Function type out of range SQLGetFunctions

HY096 Invalid information type SQLGetInfo

HY097 Column type out of range SQLSpecial Columns

HY098 Scope type out of range SQLSpecial Columns

HY099 Nullable type out of range SQLSpecial Columns

HY100 Uniqueness option type out of 
range

SQLStatistics

HY101 Accuracy option type out of range SQLStatistics

HY103 Invalid retrieval code SQLDataSources
SQLDrivers

HY104 Invalid precision or scale value SQLBindParameter

HY105 Invalid parameter type SQLBindParameter
SQLExecDirect
SQLExecute
SQLParamData
SQLSetDescField

HY106 Fetch type out of range SQLExtendedFetch
SQLFetchScroll

HY107 Row value out of range SQLExtendedFetch
SQLFetch
SQLFetchScroll

SQLSTATE Error Can be returned from
B-16 SOLID Programmer Guide                              



HY109 Invalid cursor position SQLExecDirect
SQLExecute
SQLGetData
SQLGetStmtAttr
SQLParamData

HY110 Invalid driver completion SQLDriverConnect

HY111 Invalid bookmark value SQLExtendedFetch
SQLFetchScroll

HYC00 Optional feature not implemented SQLBindCol
SQLBindParameter
SQLColAttribute
SQLColumnPrivileges
SQLColumns
SQLDriverConnect
SQLEndTran
SQLConnect
SQLExecDirect
SQLExecute
SQLExtendedFetch
SQLFetch
SQLFetchScroll
SQLForeignKeys
SQLGetConnectAttr
SQLGetData
SQLGetEnvAttr
SQLGetInfo
SQLGetStmtAttr
SQLGetTypeInfo
SQLParamData
SQLPrepare
SQLPrimaryKeys
SQLProcedureColumns
SQLProcedures
SQLSetConnectAttr
SQLSetEnvAttr
SQLSetStmtAttr
SQLSpecialColumns
SQLStatistics
SQLTablePrivileges
SQLTables

SQLSTATE Error Can be returned from
                                                                    Error Codes B-17



HYT00 Timeout expired SQLBrowseConnect
SQLColumnPrivileges
SQLColumns
SQLConnect
SQLDriverConnect
SQLExecDirect
SQLExecute
SQLExtendedFetch
SQLForeignKeys
SQLGetTypeInfo
SQLParamData
SQLPrepare
SQLPrimaryKeys
SQLProcedureColumns
SQLProcedures
SQLSpecialColumns
SQLStatistics
SQLTablePrivileges
SQLTables

HYT01 Connection timeout expired All ODBC functions except:

SQLDrivers
SQLDataSources
SQLGetEnvAttr
SQLSetEnvAttr

IM001 Connection timeout expired All ODBC functions except:

SQLDrivers
SQLDataSources
SQLGetEnvAttr
SQLSetEnvAttr

S0002 Base table not found SQLExecDirect
SQLPrepare

S0011 Index already exists SQLExecDirect
SQLPrepare

S0012 Index not found SQLExecDirect
SQLPrepare

S0021 Column already exists SQLExecDirect
SQLPrepare

SQLSTATE Error Can be returned from
B-18 SOLID Programmer Guide                              



S0022 Column not found SQLExecDirect
SQLPrepare

S1000 General error All ODBC functions except:

SQLAllocEnv

S1001 Memory allocation failure All ODBC functions except:

SQLAllocEnv
SQLFreeConnect
SQLFreeEnv

S1002 Invalid column number SQLBindCol
SQLColAttributes
SQLDescribeCol
SQLExtendedFetch
SQLFetch
SQLGetData

S1003 Program type out of range SQLBindCol
SQLBindParameter
SQLGetData

S1004 SQL data type out of range SQLBindParameter
SQLGetTypeInfo

S1008 Operation canceled All ODBC functions that can be 
processed asynchronously:

SQLColAttributes
SQLColumnPrivileges
SQLColumns
SQLDescribeCol
SQLDescribeParam
SQLExecDirect
SQLExecute
SQLExtendedFetch
SQLFetch
SQLForeignKeys
SQLGetData
SQLGetTypeInfo
SQLMoreResults
SQLNumParams
SQLNumResultCols
SQLParamData

SQLSTATE Error Can be returned from
                                                                    Error Codes B-19



S1008 (continued) Operation canceled SQLPrepare
SQLPrimaryKeys
SQLProcedureColumns
SQLProcedures
SQLPutData
SQLSpecialColumns
SQLStatistics
SQLTablePrivileges
SQLTables

S1009 Invalid argument value SQLAllocConnect
SQLAllocStmt
SQLBindCol
SQLBindParameter
SQLExecDirect
SQLForeignKeys
SQLGetData
SQLGetInfo
SQLPrepare
SQLPutData
SQLSetConnectOption
SQLSetCursorName
SQLSetStmtOption

S1010 Function sequence error SQLBindCol
SQLBindParameter
SQLColAttributes
SQLColumnPrivileges
SQLColumns
SQLDescribeCol
SQLDescribeParam
SQLDisconnect
SQLExecDirect
SQLExecute
SQLExtendedFetch
SQLFetch
SQLForeignKeys
SQLFreeConnect
SQLFreeEnv
SQLFreeStmt
SQLGetConnectOption
SQLGetCursorName
SQLGetData

SQLSTATE Error Can be returned from
B-20 SOLID Programmer Guide                              



S1010 (continued) Function sequence error SQLGetFunctions
SQLGetStmtOption
SQLGetTypeInfo
SQLMoreResults
SQLNumParams
SQLNumResultCols
SQLParamData
SQLParamOptions
SQLPrepare
SQLPrimaryKeys
SQLProcedureColumns
SQLProcedures
SQLPutData
SQLRowCount
SQLSetConnectOption
SQLSetCursorName
SQLSetScrollOptions
SQLSetStmtOption
SQLSpecialColumns
SQLStatistics
SQLTablePrivileges
SQLTables
SQLTransact

S1011 Operation invalid at this time SQLGetStmtOption
SQLSetConnectOption
SQLSetStmtOption

S1012 Invalid transaction operation code 
specified

SQLTransact

S1015 No cursor name available SQLGetCursorName

SQLSTATE Error Can be returned from
                                                                    Error Codes B-21



S1090 Invalid string or buffer length SQLBindCol
SQLBindParameter
SQLBrowseConnect
SQLColAttributes
SQLColumnPrivileges
SQLColumns
SQLConnect
SQLDataSources
SQLDescribeCol
SQLDriverConnect
SQLDrivers
SQLExecDirect
SQLExecute
SQLForeignKeys
SQLGetCursorName
SQLGetData
SQLGetInfo
SQLPrepare
SQLPrimaryKeys
SQLProcedureColumns
SQLProcedures
SQLPutData
SQLSetCursorName
SQLSpecialColumns
SQLStatistics
SQLTablePrivileges
SQLTables

S1091 Descriptor type out of range SQLColAttributes

S1092 Option type out of range SQLFreeStmt
SQLGetConnectOption
SQLGetStmtOption
SQLSetConnectOption
SQLSetStmtOption

S1093 Invalid parameter number SQLBindParameter
SQLDescribeParam

S1094 Invalid scale value SQLBindParameter

S1095 Function type out of range SQLGetFunctions

S1096 Information type out of range SQLGetInfo

S1097 Column type out of range SQLSpecialColumns

SQLSTATE Error Can be returned from
B-22 SOLID Programmer Guide                              



S1098 Scope type out of range SQLSpecialColumns

SQLSTATE Error Can be returned from
                                                                    Error Codes B-23



B-24 SOLID Programmer Guide                              



C 

SQL Minimum Grammar

An ODBC driver must support a subset of SQL-92 Entry level syntax. This appendix 
describes this SQL minimum syntax that an ODBC driver must support. An application that 
uses this syntax will be supported by any ODBC-compliant driver.

Applications can call SQLGetInfo with the SQL_SQL_CONFORMANCE to determine if 
additional features of SQL-92, not covered in this appendix, are supported.

NoteNote

If the driver supports only read-only data sources, the SQL syntax that applies to changing 
data may not apply to the driver. Applications need to call SQLGetInfo with the 
SQL_DATA_SOURCE_READ_ONLY information type to determine if a data source is 
read-only.

SQL Statements
create-table-statement ::=

CREATE TABLE base_table_name
(column_identifier data_type [, column_identifier data_type]...)

Important

As the data_type in a create_table_statement, applications require a data type from the 
TYPE_NAME column of the result set returned by SQLGetTypeInfo.

delete_statement_searched ::=
                                                            SQL Minimum Grammar C-1



SQL Statement Elements
DELETE FROM table_name [WHERE search_condition]

drop_table_statement ::=
DROP TABLE base_table_name

select_statement ::=
SELECT [ALL | DISTINCT] select_list
FROM table_reference_list
[WHERE search_condition]
[order_by_clause]

statement ::= create_table_statement |
   delete_statement_searched |
   drop_table_statement | 

insert_stetement |
   select_statement |
   update_statement_searched

Update_statement_searched ::=
   UPDATE table_name 
   SET column_identifier = {expression |
         NULL} 
   [, column_identifier = {expression |
         NULL}]...
   [WHERE search_condition]

SQL Statement Elements
base_table_identifier ::= user_defined_name

base_table_name ::= base_table_identifier

boolean_factor ::= [NOT] boolean_primary

boolean_primary ::= predicate | ( search_condition )

boolean_term ::= boolean_factor [AND boolean_term]

character_string_literal :: = "{character}...'’

(character is any character in the character set of the driver/data source. To include a single 
literal quote character (') in a character_string_literal, use two literal quote characters [""].)

column_identifier ::= user_defined_name

column_name ::= [table_name.]column_identifier

comparison_operator ::= < | > | <= | >= | = | <>
C-2 SOLID Programmer Guide                              



SQL Statement Elements
comparison_predicate ::= expression comparison_operator expression

data_type ::= character_string_type

(character_string_type is any data type for which the ""DATA_TYPE"" column in the result 
set returned by SQLGetTypeInfo is either SQL_CHAR or SQLVARCHAR.)

digit ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

dynamic_parameter ::= ?

expression ::= term | expression {+|–} term

factor ::= [+|–]primary

insert_value ::= dynamic_parameter | literal | NULL | USER

letter ::= lower_case_letter | upper_case_letter

literal ::= character_string_literal

lower_case_letter ::= a | b | c | d | e | f | g | h | i | j | k | l | m | n | o | p | q | r | s |
   t | u | v | w | x | y | z

order_by_clause ::= ORDER BY sort_specification [, sort_specification]...

primary ::= column_name | dynamic_parameter | literal | ( expression )

search_condition ::= boolean_term [OR search_condition]

select_list ::= * | select_sublist [, select_sublist]...

(select_list cannot contain parameters.)

select_sublist ::= expression

sort_specification ::= {unsigned_integer | column_name } [ASC | DESC]

table_identifier ::= user_defined_name

table_name ::= table_identifier

table_reference ::= table_name

table_reference ::= table_name [,table_reference]...

term ::= factor | term {*|/} factor

unsigned_integer ::= {digit}

upper_case_letter ::=  A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P |
   Q | R | S | T | U | V | W | X | Y | Z

user_defined_name ::= letter[ digit | letter| _ ]...
                                                                    SQL Minimum Grammar C-3



Data Type Support
Data Type Support
At minimum, ODBC drivers must support either SQL_CHAR or SQL_VARCHAR. Other 
data types support is determined by the driver’s or data source’s SQL-92 conformance level. 
To determine the SQL-92 conformance level for a driver or data source, applications need to 
call SQLGetTypeInfo.

Parameter Data Types
Even though each parameter specified with SQLBindParameter is defined using a SQL 
data type, the parameters in a SQL statement have no intrinsic data type. Therefore, parame-
ter markers can be included in a SQL statement only if their data types can be inferred from 
another operand in the statement. For example, in an arithmetic expression such as ? + 
COLUMN1, the data type of the parameter can be inferred from the data type of the named 
column represented by COLUMN1. An application cannot use a parameter marker if the 
data type cannot be determined.

The following table describes how a data type is determined for several types of parameters 
according to SQL-92 standards. For comprehensive information on inferring the parameter 
type, see the SQL-92 specification.

Location of Parameter Assumed Data Type

One operand of a binary arithmetic or comparison 
operator

Same as the other operand

The first operand in a BETWEEN clause Same as the second operand

The second or third operand in a BETWEEN 
clause

Same as the first operand

An expression used with IN Same as the first value or the result col-
umn of the subquery

A value used with IN Same as the expression or the first value 
if there is a parameter marker in the 
expression

A pattern value used with LIKE VARCHAR

An update value used with UPDATE Same as the update column
C-4 SOLID Programmer Guide                              



Literals in ODBC
Parameter Markers
According to the SQL-92 specification, an application cannot place parameter markers in the 
following locations:

■ In a SELECT list.

■ As both expressions in a comparison-predicate.

■ As both operands of a binary operator.

■ As both the first and second operands of a BETWEEN operation.

■ As both the first and third operands of a BETWEEN operation.

■ As both the expression and the first value of an IN operation.

■ As the operand of a unary + or – operation.

■ As the argument of a set-function-reference.

For a comprehensive list and more details, see the SQL-92 specification.

Literals in ODBC
The ODBC literal syntax in this section is provided to aid driver writers who are converting 
a character string type to a numeric or interval type, or from a numeric or interval type to a 
character string type. 

Interval Literal Syntax
The following syntax is used for interval literals in ODBC.

interval_literal ::= INTERVAL [+|_] interval_string interval_qualifier

interval_string ::= quote { year_month_literal | day_time_literal } quote

year_month_literal ::= years_value | [years_value] months_value

day_time_literal ::= day_time_interval | time_interval

day_time_interval ::= days_value [hours_value [:minutes_value[:seconds_value]]]

time_interval ::= hours_value [:minutes_value [:seconds_value ] ] 

     | minutes_value [:seconds_value ] 

     | seconds_value

years_value ::= datetime_value
                                                                    SQL Minimum Grammar C-5



Literals in ODBC
months_value ::= datetime_value

days_value ::= datetime_value

hours_value ::= datetime_value

minutes_value ::= datetime_value

seconds_value ::= seconds_integer_value [.[seconds_fraction] ]

seconds_integer_value ::= unsigned_integer

seconds_fraction ::= unsigned_integer

datetime_value ::= unsigned_integer

interval_qualifier ::= start_field TO end_field | single_datetime_field

start_field ::= non_second_datetime_field [(interval_leading_field_precision )]

end_field ::= non_second_datetime_field 

     | SECOND[(interval_fractional_seconds_precision)]

single_datetime_field ::= non_second_datetime_field [(interval_leading_field_precision)] | 
SECOND[(interval_leading_field_precision [, (interval_fractional_seconds_precision)]

datetime_field ::= non_second_datetime_field | SECOND

non_second_datetime_field ::= YEAR | MONTH | DAY | HOUR | MINUTE

interval_fractional_seconds_precision ::= unsigned_integer

interval_leading_field_precision ::= unsigned_integer

quote ::= '

unsigned_integer ::= digit… 

Numeric Literal Syntax
The following syntax is used for numeric literals in ODBC:

numeric_literal ::= signed_numeric_literal | unsigned_numeric_literal 

signed_numeric_literal ::= [sign] unsigned_numeric_literal

unsigned_numeric_literal ::= exact_numeric_literal | approximate_numeric_literal

exact_numeric_literal ::= unsigned_integer [period[unsigned_integer]] |
period unsigned_integer

sign ::= plus_sign | minus_sign
C-6 SOLID Programmer Guide                              



List of Reserved Keywords
approximate_numeric_literal ::= mantissa E exponent

mantissa ::= exact_numeric_literal

exponent ::= signed_integer

signed_integer ::= [sign] unsigned_integer

unsigned_integer ::= digit...

plus_sign ::= +

minus_sign ::= _

digit ::= 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 0

period ::= .

List of Reserved Keywords
The following words are reserved for use in ODBC function calls. These words do not con-
strain the minimum SQL grammar; however, to ensure compatibility with drivers that sup-
port the core SQL grammar, applications should avoid using any of these keywords. The 
#define value SQL_ODBC_KEYWORDS contains a comma-separated list of these key-
words.

For a complete list of reserved keywords in several SQL standards and SOLID ODBC API, 
see the appendix on Reserved Words in the SOLID Embedded Engine Administrator 
Guide or SOLID SynchroNet Guide.

ABSOLUTE ACTION

ADA ADD

ALL ALLOCATE

ALTER AND

ANY ARE

AS ASC

ASSERTION AT

AUTHORIZATION AVG

BEGIN BETWEEN

BIT BIT_LENGTH
                                                                    SQL Minimum Grammar C-7



List of Reserved Keywords
BOTH BY

CASCADE CASCADED

CASE CAST

CATALOG CHAR

CHAR_LENGTH CHARACTER

CHARACTER_LENGTH CHECK

CLOSE COALESCE

COLLATE COLLATION

COLUMN COMMIT

CONNECT CONNECTION

CONSTRAINT CONSTRAINTS

CONTINUE CONVERT

CORRESPONDING COUNT

CREATE CROSS

CURRENT CURRENT_DATE 

CURRENT_TIME CURRENT_TIMESTAMP

CURRENT_USER CURSOR

DATE DAY

DEALLOCATE DEC

DECIMAL DECLARE

DEFAULT DEFERRABLE

DEFERRED DELETE

DESC DESCRIBE 

DESCRIPTOR DIAGNOSTICS 

DISCONNECT DISTINCT

DOMAIN DOUBLE 

DROP ELSE 

END END-EXEC 

ESCAPE EXCEPT
C-8 SOLID Programmer Guide                              



List of Reserved Keywords
EXCEPTION EXEC

EXECUTE EXISTS

EXTERNAL EXTRACT

FALSE FETCH

FIRST FLOAT

FOR FOREIGN

FORTRAN FOUND

FROM FULL

GET GLOBAL

GO GOTO

GRANT GROUP

HAVING HOUR

IDENTITY IMMEDIATE

IN INCLUDE

INDEX INDICATOR

INITIALLY INNER

INPUT INSENSITIVE

INSERT INT

INTEGER INTERSECT

INTERVAL INTO

IS ISOLATION

JOIN KEY

LANGUAGE LAST

LEADING LEFT

LEVEL LIKE

LOCAl LOWER

MATCH MAX

MIN MINUTE

MODULE MONTH
                                                                    SQL Minimum Grammar C-9



List of Reserved Keywords
NAMES NATIONAL

NATURAL NCHAR

NEXT NO

NONE NOT

NULL NULLIF

NUMERIC OCTET_LENGTH

OF ON

ONLY OPEN

OPTION OR

ORDER OUTER

OUTPUT OVERLAPS

PASCAL POSITION

PRECISION PREPARE

PRESERVE PRIMARY

PRIOR PRIVILEGES

PROCEDURE PUBLIC

READ REAL

REFERENCES RELATIVE

RESTRICT REVOKE

RIGHT ROLLBACK

ROWS SCHEMA

SCROLL SECOND

SECOND SECTION

SELECT SESSION

SESSION_USER SET

SIZE SMALLINT

SOME SPACE

SQL SQLCA

SQLCODE SQLERROR
C-10 SOLID Programmer Guide                              



List of Reserved Keywords
SQLSTATE SQLWARNING

SUBSTRING SUM

SYSTEM_USER TABLE

TEMPORARY THEN

TIME TIMESTAMP

TIMEZONE_HOUR TIMEZONE_MINUTE

TO TRAILING

TRANSACTION TRANSLATE

TRANSLATION TRIM

TRUE UNION

UNIQUE UNKNOWN

UPDATE UPPER

USAGE USER

USING VALUE

VALUES VARCHAR

VARYING VIEW

WHEN WHENEVER

WHERE WITH

WORK WRITE

YEAR ZONE
                                                                    SQL Minimum Grammar C-11



List of Reserved Keywords
C-12 SOLID Programmer Guide                              



D 

Data Types

ODBC defines the following sets of data types:

■ SQL data types, which indicate the data type of data stored at the data source.

■ C data types, which indicate the data type of data stored in application buffers.

Each SQL data type corresponds to an ODBC C data type. Before returning data from the 
data source, the driver converts it to the specified C data type. Before sending data to the 
data source, the driver converts it from the specified C data type.

This appendix contains the following topics:

■ ODBC SQL data types

■ ODBC C data types

■ Numeric literals

■ Data type identifiers including pseudo-type identifiers and Descriptors

■ Decimal digits and transfer octet length of SQL data types

■ Converting data from SQL to C data types

■ Converting data from C to SQL data types

For information about driver-specific SQL data types, see the driver’s documentation.

SQL Data Types
In accordance with the SQL-92 standard, each DBMS defines its own set of SQL data types. 
For each SQL data type in the SQL-92 standard, a #define value, known as a type identifier, 
is passed as an argument in ODBC functions or returned in the metadata of a result set. Driv-
ers map data source-specific SQL data types to ODBC SQL data type identifiers and driver-
specific SQL data type identifiers. The SQL_DESC_CONCISE_TYPE field of an imple-
mentation descriptor is where the SQL data type is stored.
                                                            Data Types D-1



ODBC does not support the following SQL_92 data types:

■ BIT (ODBC SQL_BIT type has different characteristics)

■ BIT_VARYING

■ TIME_WITH_TIMEZONE

■ TIMESTAMP_WITH_TIMEZONE

■ NATIONAL_CHARACTER

C Data Types
 ODBC defines the C data types and their corresponding ODBC type identifiers. Applica-
tions either call

■ SQLBindCol or SQLGetData to pass an applicable C type identifier in the TargetType 
argument. In this way, applications specify the C data type of the buffer that receives 
result set data. 

■ SQLBindParameter to pass the appropriate C type identifier in the ValueType argu-
ment. In this way, application specify the C data type of the buffer containing a state-
ment parameter.

The SQL_DESC_CONCISE_TYPE field of an application descriptor is where the C data 
type is stored.

NoteNote

Driver-specific C data types do not exist.

Data Type Identifiers
Data type identifiers are stored in the SQL_DESC_CONCISE_TYPE field of a descriptor. 
Data type identifiers in applications describe their buffers to the driver. They also retrieve 
metadata about the result set from the driver so applications know what type of C buffers to 
use for data storage. Applications use data type identifiers to perform these tasks by calling 
these functions:

■ To describe the C data type of application buffers, applications call SQLBindParame-
ter, SQLBindCol, and SQLGetData.

■ To describe the SQL data type of dynamic parameters, applications call SQLBindPar-
ameter.
D-2 SOLID Programmer Guide                              



SQL Data Types
■ To retrieve the SQL data types of result set columns, applications call SQLColAt-
tribute and SQLDescribeCol.

■ To retrieve the SQL data types of parameters, applications call SQLDescribeParame-
ter.

■ To retrieve the SQL data types of various schema information, applications call SQL-
Columns, SQLProcedureColumns, and SQLSpecialColumns.

■ To retrieve a list of supported data types, applications call SQLGetTypeInfo.

In addition, the SQLSetDescField and SQLSetDesRec descriptor functions are also used to 
perform the above tasks. For details, see the SQLSetDescField and SQLSetDesRec func-
tions.

SQL Data Types
A given driver and data source do not necessarily support all of the SQL data types defined 
in the ODBC grammar. Furthermore, they may support additional, driver-specific SQL data 
types. A driver’s support is determined by the level of SQL-92 conformance. To determine 
which data types a driver supports, an application calls SQLGetTypeInfo. See the 
“SQLGetTypeInfo Result Set Example” on page D-6. For information about driver-specific 
SQL data types, see the driver’s documentation.

A driver also returns the SQL data types when it describes the data types of columns and 
parameters using the following functions:

■ SQLColAttribute

■ SQLColumns

■ SQLDescribeCol

■ SQLDescribeParam

■ SQLProcedureColumns

■ SQLSpecialColumns

NoteNote

For details on fields that store SQL data type values and characteristics, see “Data Type 
Identifiers and Descriptors” on page D-16.
                                                                    Data Types D-3



SQL Data Types
The following table is not a comprehensive list of SQL data types, but offers commonly used 
names, ranges, and limits. A data source may only support some of the data types that are 
listed in the table and depending on your driver, the characteristics of the data types can dif-
fer form this table’s description. See your driver’s documentation for details. The table 
includes the description of the associated data type from SQL-92 (if applicable)

SQL type identifier [1]
Typical SQL Data 
Type [2] Typical Type Description

SQL_CHAR CHAR(n) Character string of fixed string 
length n.

SQL_VARCHAR VARCHAR(n) Variable-length character string 
with a maximum string length n. 

SQL_LONGVARCHAR LONG VARCHAR Variable length character data. 
Maximum length is data 
source–dependent. [3]

SQL_WCHAR WCHAR(n) Unicode character string of fixed 
string length n.

SQL_WVARCHAR VARWCHAR(n) Unicode variable-length character 
string with a maximum string 
length n.

SQL_WLONGVARCHAR LONGWVARCHAR Unicode variable-length character 
data. Maximum length is data 
source-dependent.

SQL_DECIMAL DECIMAL(p,s) Signed, exact, numeric value with a 
precision p and scale s. (The maxi-
mum precision is driver-defined.)

(1 <= p <= 15; s <= p). [4]

SQL_NUMERIC NUMERIC(p,s) Signed, exact, numeric value with a 
precision p and scale s.

(1 <= p <= 15; s <= p). [4]

SQL_SMALLINT SMALLINT Exact numeric value with precision 
5 and scale 0 (signed: –32,768 <=n 
<= 32,767, unsigned: 0 <= n <= 
65,535) [5]
D-4 SOLID Programmer Guide                              



SQL Data Types
SQL_INTEGER INTEGER Exact numeric value with precision 
10 and scale 0.
(signed:
-2[31] <= n <= 2[31] -1, unsigned:
0 <= n <= 2[32] -1) [5]

SQL_REAL REAL Signed, approximate, numeric 
value with a binary precision 24 
(zero or absolute value 10[–38 ] to 
10[38]).

SQL_FLOAT FLOAT(p) Signed, approximate, numeric 
value with a binary precision of at 
least p. (The maximum precision is 
driver defined.) [6]

SQL_DOUBLE DOUBLE
PRECISION

Signed, approximate, numeric 
value with a binary precision 53 
(zero or absolute value 10[–308 ] to 
10[308]).

SQL_BIT BIT Single bit binary data. [7]

SQL_TINYINT TINYINT Exact numeric value with precision 
3 and scale 0 
(signed:
–128 <= n <= 127 
(unsigned:
0 <= n <= 255) [5].

SQL_BIGINT BIGINT Exact numeric value with precision 
19 (if signed) or 20 (if unsigned) 
and scale 0 
(signed: –2[63 ] <= n <= 2[63] – 1, 
unsigned: 0 <= n <= 2[64] – 1) [3], 
[5].

SQL_BINARY BINARY(n) Binary data of fixed length n. [3]

SQL_VARBINARY VARBINARY(n) Variable length binary data of max-
imum length n. The maximum is 
set by the user. [3]

SQL_LONGVARBINARY LONG VARBINARY Variable length binary data. Maxi-
mum length is data source–depen-
dent. [3]
                                                                    Data Types D-5



SQL Data Types
Notes
[1]   This is the value returned in the DATA_TYPE column by a call to SQLGetTypeInfo.

[2]   This is the value returned in the NAME and CREATE PARAMS column by a call to SQLGet-
TypeInfo. The NAME column returns the designation-for example, CHAR-while the CREATE 
PARAMS column returns a comma-separated list of creation parameters such as precision, scale, and 
length.

[3]   This data type has no corresponding data type in SQL-92.

[4]   SQL_DECIMAL and SQL_NUMERIC data types differ only in their precision. The precision of a 
DECIMAL(p,s) is an implementation-defined decimal precision that is no less than p, while the preci-
sion of a NUMERIC(p,s) is exactly equal to p. 

[5]   An application uses SQLGetTypeInfo or SQLColAttribute to determine if a particular data type 
or a particular column in a result set is unsigned. 

[6]   Depending on the implementation, the precision of SQL_FLOAT can be either 24 or 53: if it is 24, 
the SQL_FLOAT data type is the same as SQL_REAL; if it is 53, the SQL_FLOAT data type is the 
same as SQL_DOUBLE. 

[7]   The SQL_BIT data type has different characteristics than the BIT type in SQL-92. 

[8]   This data type has no corresponding data type in SQL-92.

SQLGetTypeInfo Result Set Example
Applications call SQLGetTypeInfo result set for a list of supported data types and their 
characteristics for a given data source. The example below shows the data types that 

SQL_TYPE_DATE [8] DATE Year, month, and day fields, con-
forming to the rules of the Grego-
rian calendar. (See Constraints of 
the Gregorian Calendar, later in this 
appendix.

SQL_TYPE_TIME [8] TIME(p) Hour, minute, and second fields, 
with valid values for hours of 00 to 
23, valid values for minutes of 00 
to 59, and valid values for seconds 
of 00 to 61. Precision p indicates 
the seconds precision.

SQL_TYPE_TIMESTAMP 
[8]

TIMESTAMP(p) Year, month, day, hour, minute, and 
send fields, with valid values as 
defined for the DATE and Time 
data types.
D-6 SOLID Programmer Guide                              



SQL Data Types
SQLGetTypeInfo returns for a data source; all data types under "DATA_TYPE" are sup-
ported in this data source.

TYPE_NAME DATA_TYPE COLUMN_SIZE
LITERAL_
PREFIX

LITERAL_
SUFFIX

CREATE_
PARAMS NULLABLE

"char" SQL_CHAR 255 "" "" "length" SQL_TRUE

"text" SQL_LONG
VARCHAR

2147483647 "" "" Null SQL_TRUE

"decimal" SQL_
DECIMAL

28 <Null> <Null> "precision, 
scale"

SQL_TRUE

"real" SQL_REAL 7 <Null> <Null> <Null> SQL_TRUE

"datetime" SQL_TYPE_
TIMESTAMP

23 "" "" <Null> SQL_TRUE

CASE_SENSI
TIVE SEARCHABLE

UNSIGNED_
ATTRIBUTE

FIXED_
PREC_
SCALE

AUTO_
UNIQUE_
VALUE

LOCAL_
TYPE_
NAME

SQL_CHAR SQL_FALSE SQL_SEARCH-
ABLE

<Null> SQL_FALSE <Null> "char"

SQL_LONG
VARCHAR

SQL_FALSE SQL_PRED_CHAR <Null> SQL_FALSE <Null> "text"

SQL_
DECIMAL

SQL_FALSE SQL_PRED_BASIC SQL_FALSE SQL_FALSE SQL_FALSE "decimal"

SQL_REAL SQL_FALSE SQL_PRED_BASIC SQL_FALSE SQL_FALSE SQL_FALSE "real"

SQL_TYPE_
TIMESTAMP

SQL_FALSE SQL_SEARCH-
ABLE

<Null> SQL_FALSE <Null> "datetime"
                                                                    Data Types D-7



C Data Types
C Data Types
The ODBC Driver supports all C data types in keeping with the need for character SQL type 
conversion to and from all C types.

The C data type is specified in the following functions:

■ SQLBindCol and SQLGetData functions with the TargetType argument.

■ SQLBindParameter with the ValueType argument.

■ SQLSetDescField to set the SQL_DESC_CONCISE_TYPE field of an ARD or APD

■ SQLSetDescRec with the Type argument, SubType argument (if needed), and the 
DescriptorHandle argument set to the handle of an ARD or APD.

The table below contains C type identifiers for the C data types, as well as the ODBC C data 
type that is associated with each identifier and C type definition.

MINIMUM_
SCALE

MAXIMUM_
SCALE

SQL_DATA_
TYPE

SQL_DATE
TIME_SUB

NUM_
PREC_
RADIX

INTERVAL_
PRECISION

SQL_CHAR <Null> <Null> SQL_CHAR <Null> <Null> <Null>

SQL_LONG
VARCHAR

<Null> <Null> SQL_LONG
VARCHAR

<Null> <Null> <Null>

SQL_
DECIMAL

0 28 SQL_
DECIMAL

<Null> 10 <Null>

SQL_REAL <Null> <Null> SQL_REAL <Null> 10 <Null>

SQL_TYPE_
TIMESTAMP

3 3 SQL_DATETIM
E

SQL_CODE
_TIMESTA
MP

<Null> 12

C Type Identifier ODBC C Typedef C Type

SQL_C_CHAR SQLCHAR * unsigned char 

SQL_C_SSHORT [h] SQLSMALLINT short int

SQL_C_USHORT [h] SQLUSMALLINT unsigned short int

SQL_C_SLONG [h] SQLINTEGER long int

SQL_C_ULONG [h] SQLUINTEGER unsigned long int
D-8 SOLID Programmer Guide                              



C Data Types
SQL_C_FLOAT SQLREAL float

SQL_C_DOUBLE SQLDOUBLE
SQLFLOAT

double

SQL_C_STINYINT SCHAR signed char

SQL_C_UTINYINT UCHAR unsigned char

SQL_C_SBIGINT SQLBIGINT _int64 [g]

SQL_C_UBIGINT SQLUBIGINT unisigned _int64 [g]

SQL_C_BINARY SQLCHAR * unsigned char *

SQL_C_TYPE_DATE [c] SQL_DATE_STRUCT struct tagDATE_STRUCT{
     SQLSMALLINT year;

SQLSMALLING month; 
SQLUSMALLINT day; 

} DATE_STRUCT; [a]

SQL_C_TIME TIME_STRUCT struct tagTIME_STRUCT {
     SQLUSMALLINT hour;
     SQLUSMALLINT minute;[d]
     SQLUSMALLINT second;[e]
}

SQL_C_TIMESTAMP TIMESTAMP_STRUCT struct tagTIMESTAMP_STRUCT 
{
     SQLSMALLINT year; [a]
     SQLUSMALLINT month; [b]
     SQLUSMALLINT day; [c]
     SQLUSMALLINT hour; 
     SQLUSMALLINT minute; [d]
     SQLUSMALLINT second;[e]
     SQLUINTEGER fraction; [f]
}

SQL_C_STINYINT SCHAR signed char

SQL_C_UTINYINT UCHAR unsigned char

SQL_C_BINARY UCHAR FAR * unsigned char FAR *

SQL_C_DATE DATE_STRUCT struct tagDATE_STRUCT {
     SQLSMALLINT year; [a]
     SQLUSMALLINT month; [b]
     SQLUSMALLINT day; [c]
}

                                                                    Data Types D-9



C Data Types
Notes
[a]   The values of the year, month, day, hour, minute, and second fields in the datetime C 
data types must conform to the constraints of the Gregorian calendar. (See “Constraints of 
the Gregorian Calendar” on page D-21.)

[b]   The value of the fraction field is the number of billionths of a second and ranges from 0 
through 999,999,999 (1 less than 1 billion). For example, the value of the fraction field for a 
half-second is 500,000,000, for a thousandth of a second (one millisecond) is 1,000,000, for 
a millionth of a second (one microsecond) is 1,000, and for a billionth of a second (one 
nanosecond) is 1.

[c]   In ODBC 2.x, the C date, time, and timestamp data types are SQL_C_DATE, 
SQL_C_TIME, and SQL_C_TIMESTAMP.

[d]   A number is stored in the val field of the SQL_NUMERIC_STRUCT structure as a 
scaled integer, in little endian mode (the leftmost byte being the least-significant byte). For 
example, the number 10.001 base 10, with a scale of 4, is scaled to an integer of 100010. 
Because this is 186AA in hexadecimal format, the value in SQL_NUMERIC_STRUCT 
would be "AA 86 01 00 00 … 00", with the number of bytes defined by the 
SQL_MAX_NUMERIC_LEN #define.

[e]   The precision and scale fields of the SQL_C_NUMERIC data type are never used for 
input from an application, only for output from the driver to the application. When the driver 
writes a numeric value into the SQL_NUMERIC_STRUCT, it will use its own driver-spe-
cific default as the value for the precision field, and it will use the value in the 
SQL_DESC_SCALE field of the application descriptor (which defaults to 0) for the scale 
field. An application can provide its own values for precision and scale by setting the 
SQL_DESC_PRECISION and SQL_DESC_SCALE fields of the application descriptor.

[f]   The sign field is 1 if positive, 0 if negative.

[g]   _int64 might not be supplied by some compilers. 

[h]   _SQL_C_SHORT, SQL_C_LONG, and SQL_C_TINYINT have been replaced in 
ODBC by signed and unsigned types: SQL_C_SSHORT and SQL_C_USHORT, 
SQL_C_SLONG and SQL_C_ULONG, and SQL_C_STINYINT and SQL_C_UTINYINT. 
An ODBC 3.x driver that should work with ODBC 2.x applications should support 

SQL_C_TIME TIME_STRUCT struct tagTIME_STRUCT {
     SQLUSMALLINT hour; 
     SQLUSMALLINT minute; [d]
     SQLUSMALLINT second; [e]
}

D-10 SOLID Programmer Guide                              



C Data Types
SQL_C_SHORT, SQL_C_LONG, and SQL_C_TINYINT, because when they are called, the 
Driver Manager passes them through to the driver. 

64-Bit Integer Structures
The C data type identifiers SQL_C_SBIGINT and SQL_C_UBIGINT used on Microsoft C 
compilers is _int64. When a non-Microsoft C compiler is used, the C type may differ. If the 
compiler in use is supporting 64-bit integers natively, then define the driver or application 
ODBCINT64 as the native 64-bit integer type. If compiler in use does not support 64-bit 
integers natively, define the following structures to ensure access to these C types:

typedef struct{
SQLUINTEGER dwLowWord;
SQLUINTEGER dwHighWord;
} SQLUBIGINT

typedef struct {
SQLUINTEGER dwLowWord;
SQLINTEGER sdwHighWord;
} SQLBIGINT

Because a 64-bit integer is aligned to the 8-byte boundary, be sure to align these structures to 
an 8-byte boundary.

Default C Data Types
In applications that specify SQL_C_DEFAULT in SQLBindCol, SQLGetData, or SQL-
BindParameter, the driver assumes that the C data type of the output or input buffer corre-
sponds to the SQL data type of the column or parameter to which the buffer is bound. 

Important

If the application is interoperable, do not use the SQL_C_DEFAULT. Instead, specify the C 
type of the buffer in use. 

Drivers cannot always determine the correct default C type for these reasons:

■ The DBMS may have promoted a SQL data type of a column or a parameter; in this 
case, the driver is unable to determine the original SQL data type and consequently, can-
not determine the corresponding default C data type.
                                                                    Data Types D-11



Numeric Literals
■ The DBMS determined whether the data type of a column or parameter is signed or 
unsigned; in this case, the driver is unable to determine this for a particular SQL data 
type and consequently, cannot determine this for the corresponding default C data type.

See“Converting Data from SQL to C Data Types” on page D-21.

SQL_C_TCHAR
The SQL_C_TCHAR type identifier is used for unicode purposes. Use this identifier in 
applications that transfer character data and are compiled as both ANSI and Unicode. Note 
that the SQL_C_TCHAR is not a type identifier in the conventional sense; instead, it is a 
macro contained in the header file for Unicode conversion. SQL_C_CHAR or 
SQL_C_WCHAR replaces SQL_C_TCHAR depending on the setting of the UNICODE 
#define.

Numeric Literals
To store numeric data values in character strings, you use numeric literals. Numeric literal 
syntax specifies what is stored in the target during the following conversions:

■ SQL data to a SQL_C_CHAR string

■ C data to a SQL_CHAR or SQL_VARCHAR string

The syntax also validates what is stored in the source during the following conversions:

■ numeric stored as a SQL_C_CHAR string to numeric SQL data

■ numeric stored as a SQL_CHAR string to numeric C data

See the numeric literal syntax described in Appendix C, “SQL Minimum Grammar” for 
details.

Conversion Rules
The rules in this section apply to conversions involving numeric literals. Following are terms 
used in this section:

Term Meaning

Store assignment Refers to sending data into a table column in a database when 
calling SQLExecute and SQLExecDirect. During store 
assignment, "target" refers to a database column and "source" 
refers to data in application buffers.
D-12 SOLID Programmer Guide                              



Numeric Literals
Rules for Character Source to Numeric Target
Following are the rules for converting from a character source (CS) to a numeric target (NT): 

1. Replace CS with the value obtained by removing any leading or trailing spaces in CS. If 
CS is not a valid numeric-literal, SQLSTATE 22018 (Invalid character value for cast 
specification) is returned.

2. Replace CS with the value obtained by removing leading zeroes before the decimal 
point, trailing zeroes after the decimal point, or both.

3. Convert CS to NT. If the conversion results in a loss of significant digits, SQLSTATE 
22003 (Numeric value out of range) is returned. If the conversion results in the loss of 
nonsignificant digits, SQLSTATE 01S07 (Fractional truncation) is returned. 

Rules for Numeric Source to Character Target
Following are the rules for converting from a numeric source (NS) to a character target (CT): 

1. Let LT be the length in characters of CT. 

For retrieval assignment, LT is equal to the length of the buffer in characters minus the 
number of bytes in the null-termination character for this character set.

2. Take one the following actions depending on the type of NS.

Retrieval assignment Refers to retrieving data from the database into application 
buffers when calling SQLFetch, SQLGetData, and 
SQLFetchScroll. During retrieval assignment, "target" refers 
to the application buffers and "source" refers to the database 
column.

CS Value in the character source.

NT Value in the numeric target.

NS Value in the numeric source.

CT Value in the character target.

Precision of an exact numeric 
literal

Number of digits that the literal contains.

Scale of an exact numeric lit-
eral

Number of digits to the right of the expressed or implied period.

Precision of an approximate 
numeric literal

Precision of the literal’s mantissa.

Term Meaning
                                                                    Data Types D-13



Numeric Literals
■ If NS is an exact numeric type, then let YP equal the shortest character string that 
conforms to the definition of exact-numeric-literal such that the scale of YP is the 
same as the scale of NS, and the interpreted value of YP is the absolute value of 
NS.

■ If NS is an approximate numeric type, then let YP be a character string as follows: 

Case:

a. If NS is equal to 0, then YP is 0.

b. Let YSN be the shortest character string that conforms to the definition of exact-
numeric-literal and whose interpreted value is the absolute value of NS. If the 
length of YSN is less than the (precision + 1) of the data type of NS, then let YP 
equal YSN.

c. Otherwise, YP is the shortest character string that conforms to the definition of 
approximate-numeric-literal whose interpreted value is the absolute value of NS 
and whose mantissa consists of a single digit that is not '0', followed by a period 
and an unsigned-integer.

3. If NS is less than 0, then let Y be the result of: 

'-' || YP

where '||' is the string concatenation operator.

Otherwise, let Y equal YP.

4. Let LY be the length in characters of Y.

5. Take one of the following action depending on the value of LY.

■ If LY equals LT, then CT is set to Y.

■ If LY is less than LT, then CT is set to Y extended on the right by appropriate num-
ber of spaces. 

■ Otherwise (LY > LT), copy the first LT characters of Y into CT. 

Case:

■ If this is a store assignment, return the error SQLSTATE 22001 (String data, right-trun-
cated).

■ If this is retrieval assignment, return the warning SQLSTATE 01004 (String data, right-
truncated). When the copy results in the loss of fractional digits (other than trailing 
zeros), depending on the driver definition, one of the following actions occurs:
D-14 SOLID Programmer Guide                              



Overriding Default Precision and Scale for Numeric Data Types
a. The driver truncates the string in Y to an appropriate scale (which can be zero also) 
and writes the result into CT.

b.  The driver rounds the string in Y to an appropriate scale (which can be zero also) 
and writes the result into CT.

c. The driver neither truncates nor rounds, but just copies the first LT characters of Y 
into CT.

Overriding Default Precision and Scale for Numeric Data 
Types

The following table provides the override default precision and scale values for numeric data 
type.

Notes
[a] If the defaults are not acceptable for an application, the application can call the SQLSetDescField 
or SQLSetDescRec to set the SQL_DESC_SCALE or SQL_DESC_PRECISION field.

[b] If the defaults are not acceptable, the application must call SQLSetDescRec or SQLSetDescField 
to set the fields and then call SQLGetData with a TargetType of SQL_ARD_TYPE to use the values in 
the descriptor fields.

Function calls to  Setting Override

SQLBindCol or SQLSet-
DescField

SQL_DESC_TYPE field in 
an ARD is set to 
SQL_C_NUMERIC

SQL_DESC_SCALE field in the ARD 
is set to 0 and the 
SQL_DESC_PRECISION field is set to 
a driver-defined default precision.[a]

SQLBindParameter or 
SQLSetDescField

SQL_DESC_SCALE field in 
an APD is set to 
SQL_C_NUMERIC

SQL_DESC_SCALE field in the ARD 
is set to 0 and the 
SQL_DESC_PRECISION field is set to 
a driver-defined default precision. This 
is true for input, input/output, or output 
parameters.[a]

SQLGetData Data is returned into a 
SQL_C_NUMERIC structure

Default SQL_DESC_SCALE and 
SQL_DESC_PRECISION fields are 
used.[b]
                                                                    Data Types D-15



Data Type Identifiers and Descriptors
Data Type Identifiers and Descriptors
Unlike the "concise" SQL and C data types, where each identifier refers to a single data 
type, descriptors do not in all cases use a single value to identify data types. In some cases, 
descriptors use a verbose data type and a type subcode. For most data types, the verbose data 
type identifier matches the concise type identifier.

The exception, however, is the datetime and interval data types. For these data types:

■ SQL_DESC_TYPE contains the verbose type (SQL_DATETIME) 

■ SQL_DESC_CONCISE_TYPE contains a concise type

For details on setting fields and a settings affect on other fields, see the SQLSetDescField 
function description on the Microsoft ODBC Website.

When the SQL_DESC_TYPE or SQL_DESC_CONCISE_TYPE field is set for some data 
types, the following fields are set to default values appropriate for the data type:

■ SQL_DESC_DATETIME_INTERVAL_PRECISION

■ SQL_DESC_LENGTH

■ SQL_DESC_PRECISION

■ SQL_DESC_SCALE

For more information, see the SQL_DESC_TYPE field under SQLSetDescField function 
description on the Microsoft ODBC Website.

NoteNote

If the default values set are not appropriate, you can explicitly set the descriptor field in the 
application by calling SQLSetDescField.

The following table lists for each SQL and C type identifier, the concise type identifier, ver-
bose identifier, and type subcode for each datetime. 

For datetime data types, the SQL_DESC_TYPE have the same manifest constants for both 
SQL data types (in implementation descriptors) and for C data types (in application descrip-
tors):
D-16 SOLID Programmer Guide                              



Decimal Digits
Pseudo-Type Identifiers
ODBC defines a number of pseudo-type identifiers, which depending on the situation, 
resolve to existing data types. Note that these identifiers do not correspond to actual data 
types, but are provided for your application programming convenience.

Decimal Digits
Decimal digits apply to decimal and numeric data types. They refer to the maximum num-
ber of digits to the right of the decimal point, or the scale of the data. Because the number of 
digits to the right of decimal point is not fixed, the scale is undefined for approximate float-
ing-point number columns or parameters. When datetime data contains a seconds compo-
nent, the decimal digits are the number of digits to the right of the decimal point in the 
seconds component of the data. 

Typically, the maximum scale matches the maximum precision for SQL_DECIMAL and 
SQL_NUMERIC data types. Some data sources, however, have their own maximum scale 
limit. An application can call SQLGetTypeInfo to determine the minimum and maximum 
scales allowed for a data type.

The following ODBC functions return parameter decimal attributes in a SQL statement data 
type or decimal attributes on a data source:

Concise SQL Type Concise C Type Verbose Type
DATETIME_
INTERVAL_CODE

SQL_TYPE_
DATE

SQL_C_TYPE_
DATE

SQL_DATETIME SQL_CODE_DATE

SQL_TYPE_TIME SQL_C_TYPE_
TIME

SQL_DATETIME SQL_CODE_TIME

SQL_TYPE_
TIMESTAMP

SQL_C_TYPE_
TIMESTAMP

SQL_DATETIME SQL_CODE_TIME
STAMP

ODBC Function Returns...

SQLDescribeCol Decimal digits of the columns it describes.

SQLDescribeParam Decimal digits of the parameters it describes.

SQLProcedureColumns Decimal digits in a column of a procedure.
                                                                    Data Types D-17



Decimal Digits
Note that SQLBindParameter sets the decimal digits for a parameter in a SQL statement.

The values returned by ODBC functions for decimal digits correspond to "scale" as defined 
in ODBC 2.x. 

Descriptor fields describe the characteristics of a result set. They do not contain valid data 
values before statement execution. However, the decimal digits values returned by SQLCol-
umns, SQLProcedureColumns, and SQLGetTypeInfo, do represent the characteristics of 
database objects, such as table columns and data types form the data source’s catalog.   

Each concise SQL data type has the following decimal digits definition as noted in the table 
below.

SQLColumns Decimal digits in specified tables (such as the base table, view, or a 
system table).

SQLColAttribute Decimal digits of columns at the data source.

SQLGetTypeInfo Minimum and maximum decimal digits of a SQL data type on a data 
source.

SQL Type Identifier Decimal Digits

All character and binary 
types [a]

N/A

SQL_DECIMAL
SQL_NUMERIC

The defined number of digits to the right of the decimal point. For 
example, the scale of a column defined as NUMERIC(10,3) is 3. This 
can be a negative number to support storage of very large numbers 
without using exponential notation; for example, "12000" could be 
stored as "12" with a scale of -3.

All exact numeric types other
than SQL_DECIMAL and 
SQL_NUMERIC [a]

0

All approximate data types 
[a]

N/A

SQL_TYPE_DATE, and all 
interval types with no sec-
onds component  [a]

The number of digits to the right of the decimal point in the seconds 
part of the value (fractional seconds). This number cannot be nega-
tive.

ODBC Function Returns...
D-18 SOLID Programmer Guide                              



Transfer Octet Length
Notes
[a]   SQLBindParameter’s DecimalDigits argument is ignored for this data type.

For decimal digits, the values returned do not correspond to the values in any one descriptor 
field. The values returned (for example, in SQLColAttribute) for the decimal digits can 
come from either the SQL_DESC_SCALE or the SQL_DESC_PRECISION field, depend-
ing on the data type, as shown in the following table:

Transfer Octet Length
When data is transferred to its default C data type, an application receives a maximum num-
ber of bytes. This maximum is known as the transfer octet length of a column. For character 
data, space for the null-termination character is not included in the transfer octet length. 
Note that the transfer octet length in bytes can differ from the number of bytes needed to 
store the data on the data source. 

The following ODBC functions return parameter decimal attributes in a SQL statement data 
type or decimal attributes on a data source:

The values returned by ODBC functions for the transfer octet length may not correspond to 
the values returned in SQL_DESC_LENGTH. For all character and binary types, the values 
come from a descriptor field’s SQL_DESC_OCTET_LENGTH. For other data types, there 
is no descriptor field that stores this information. 

SQL Type Identifier Descriptor field corresponding to decimal digits

All character and binary 
types

N/A

All exact numeric types SCALE

All approximate numeric 
types

N/A

All datetime types PRECISION

ODBC Function Returns

SQLColumns Transfer octet length of a column in specified tables (such as the base 
table, view, or a system table).

SQLColAttribute Transfer octet length of columns at the data source.

SQLProcedureColumns Transfer octet length of a column in a procedure.
                                                                    Data Types D-19



Transfer Octet Length
Descriptor fields describe the characteristics of a result set. They do not contain valid data 
values before statement execution. In its result set, SQLColAttribute returns the transfer 
octet length of columns at the data source; these values may not match the values in the 
SQL_DESC_OCTET_LENGTH descriptor fields. For more information on descriptor fields, 
see SQLSetDescField function description on the Microsoft ODBC Website.

Each concise SQL data type has the following transfer octet length definition as noted in the 
table below.

SQL Type Identifier Transfer Octet Length

All character and binary 
types [a]

The defined or the maximum (for variable type) length of the column 
in bytes. This value matches the one in the 
SQL_DESC_OCTET_LENGTH descriptor field.

SQL_DECIMAL
SQL_NUMERIC

The number of bytes required to hold the character representation of 
this data if the character set is ANSI, and twice this number if the 
character set is UNICODE. The character representation is the maxi-
mum number of digits plus two; the data is returned as a character 
string, where the characters are needed for digits, a sign, and a deci-
mal point. For example, the transfer length of a column defined as 
NUMERIC(10,3) is 12.

SQL_TINYINT 1

SQL_SMALLINT 2

SQL_INTEGER 4

SQL_BIGINT The number of bytes required to hold the character representation of 
this data if the character set is ANSI, and twice this number if the 
character set is UNICODE. This data type is returned as a character 
string by default. The character representation consists of 20 charac-
ters for 19 digits and a sign (if signed), or 20 digits (if unsigned). and 
a decimal point. The length is 20.

SQL_REAL 4

SQL_FLOAT 8

SQL_DOUBLE 8

All binary types [a] The number of bytes required to store the defined (for fixed types) or 
maximum (for variable types) number of characters.

SQL_TYPE_DATE
SQL_TYPE_TIME

6 (size of the structures SQL_DATE_STRUCT or 
SQL_TIME_STRUCT).

SQL_TYPE_TIMESTAMP 16 (size of the structure SQL_TIMESTAMP_STRUCT).
D-20 SOLID Programmer Guide                              



Converting Data from SQL to C Data Types
Notes
[a]  SQL_NO_TOTAL is returned when the driver cannot determine the column or parame-
ter length for variable types.

Constraints of the Gregorian Calendar
The following table are the Gregorian calendar constraints for date and datetime data types. 

Converting Data from SQL to C Data Types
When an application calls SQLFetch, SQLFetchScroll, or SQLGetData, the driver 
retrieves the data from the data source. If necessary, it converts the data from the data type in 
which the driver retrieved it to the data type specified by the TargeType argument in SQL-
BindCol or SQLGetData. Finally, it stores the data in the location pointed to by the Tar-
getValuePtr argument in SQLBindCol or SQLGetData (and the SQL_DESC_DATA_PTR 
field of the ARD).

The following table shows the supported conversions from ODBC SQL data types to ODBC 
C data types. A solid circle indicates the default conversion for a SQL data type (the C data 
type to which the data will be converted when the value of TargetType is 
SQL_C_DEFAULT). A hollow circle indicates a supported conversion.

For an ODBC 3.x application working with an ODBC 2.x driver, conversion from driver-
specific data types might not be supported.

The format of the converted data is not affected by the Microsoft Windows country setting.

Value Requirement

month field Must be between 1 and 12, inclusive.

day field Range must be from 1 through the number of days in the month, 
which is determined from the values of the year and months fields 
and can be 28, 29, 30, or 31. A leap year can also affect the number 
of days in the month.

hour field Must be between 0 and 23, inclusive.

minute field Must be between 0 and 59, inclusive.

trailing seconds field Must be between 0 and 61.9(n), inclusive, where n specifies the num-
ber of "9" digits and the value of n is the fractional seconds preci-
sion. (The range of seconds permits a maximum of two leap seconds 
to maintain synchronization of sidereal time.)
                                                                    Data Types D-21



Converting Data from SQL to C Data Types
 C Data Type—SQL_C_datatype where datatype is:

• Default conversion    o Supported conversion    

* These datatypes have "TYPE" in the datatype name. For example, SQL_C_TYPE_DATE, SQL_C_TYPE_TIME, and SQL_C_TYPE_TIMESTAMP

SQL Data Type

 
 C
 H
 A
 R

  W
  C
  H
  A
  R

  N
  U
  M
  E
  R
  I
  C
  

  S
  T
  I
  N
  Y
  I
  N
  T

  U
  T
  I
  N
  Y
  I
  N
  T

  T
  I
  N
  Y
  I
  N
  T

  S
  B
  I
  G
  I
  N
  T

  U
  B
  I
  G
  I
  N
  T

  S
  S
  H
  O
  R
  T

  U
  S
  H
  O
  R
  T

  S
  H
  O
  R
  T

  S
  L
  O
  N
  G

  U
  L
  O
  N
  G

  L
  O
  N
  G

  F
  L
  O
  A
  T

  D
  O
  U
  B
  L
  E

  B
  I
  N
  A
  R
  Y

*
  D
  A
  T
  E

*
  T
  I
  M
  E

*
  T
  I
  M
  E
  S
  T
  A
  M
  P

SQL_CHAR   •   o   o   o   o   o   o   o  o  o  o  o  o  o  o  o  o  o  o  o
SQL_VARCHAR   •   o   o   o   o   o   o   o  o  o  o  o  o  o  o  o  o  o  o  o
SQL_LONGVAR
CHAR

  •   o   o   o   o   o   o   o  o  o  o  o  o  o  o  o o  o  o o

SQL_WCHAR   o   •   o   o   o   o   o   o  o  o  o  o  o  o  o  o  o  o  o  o
SQL_WVARCHAR   o   •   o   o   o   o   o   o  o  o  o  o  o  o  o  o  o  o  o  o
SQL_WLONG
VARCHAR

  o   •   o   o   o   o   o   o  o  o  o  o  o  o  o  o  o  o  o  o

SQL_DECIMAL   •   o   o   o   o   o   o   o  o  o  o  o  o  o  o  o   o      
SQL_NUMERIC   •   o   o   o   o   o   o   o  o  o  o  o o  o  o  o  o    
SQL_TINYINT (signed)   o   o   o   •   o   o   o   o  o  o  o  o  o  o  o  o   o     
SQL_TINYINT 

(unsigned)

  o   o   o   o   •   o   o   o  o  o  o  o  o  o  o  o   o      

SQL_SMALLINT

(signed)

  o   o   o   o   o   o   o   o  •  o  o  o  o  o  o  o   o     

SQL_SMALLINT

(unsigned)

  o   o   o   o   o   o   o   o  o   •  o  o  o  o o  o   o      

SQL_INTEGER(signed)   o   o   o   o   o   o   o   o  o  o  o  •   o  o  o  o   o      
SQL_INTEGER 

(unsigned)

  o   o   o   o   o   o   o   o  o  o  o  o  •  o  o  o   o      

SQL_BIGINT (signed)    o   o   o   o   o   o   •   o  o  o  o  o  o  o  o  o   o      
SQL_BIGINT (unsigned)   o   o   o   o   o   o   o   •  o  o  o  o  o  o  o  o   o       
SQL_REAL   o   o   o   o   o   o   o   o  o  o  o  o  o  o   •  o   o      
SQL_FLOAT   o   o   o   o   o   o   o   o  o  o  o  o  o  o  o   •   o    
SQL_DOUBLE  o   o   o   o   o   o   o   o  o  o  o  o  o  o  o   •   o      
SQL_BINARY  o   o   •
SQL_VARBINARY  o   o   •
SQL_LONG
VARBINARY

 o   o   •

SQL_TYPE_DATE  o   o   o   •   o
SQL_TYPE_TIME  o   o   o   •   o
SQL_TYPE_TIMEST
AMP

 o   o   o   o   o   •
D-22 SOLID Programmer Guide                              



Converting Data from SQL to C Data Types
Table Description—SQL to C
The tables in the following sections describe how the driver or data source converts data 
retrieved from the data source; drivers are required to support conversions to all ODBC C 
data types from the ODBC SQL data types that they support. For a given ODBC SQL data 
type, the first column of the table lists the legal input values of the TargetType argument in 
SQLBindCol and SQLGetData. The second column lists the outcomes of a test, often 
using the BufferLength argument specified in SQLBindCol or SQLGetData, which the 
driver performs to determine if it can convert the data. For each outcome, the third and 
fourth columns list the values placed in the buffers specified by the TargetValuePtr and 
StrLen_or_IndPtr arguments specified in SQLBindCol or SQLGetData after the driver has 
attempted to convert the data. (The StrLen_or_IndPtr argument corresponds to the 
SQL_DESC_OCTET_LENGTH_PTR field of the ARD.) The last column lists the SQL-
STATE returned for each outcome by SQFetch, SQLFetchScroll, or SQLGetData.

If the TargetType argument in SQLBindCol or SQLGetData contains a value for an ODBC 
C data type not shown in the table for a given ODBC SQL data type, SQLFetch, 
SQLFetchScroll, or SQLGetData returns SQLSTATE 07006 (Restricted data type attribute 
violation). If the TargetType argument contains a value that specifies a conversion from a 
driver-specific SQL data type to an ODBC C data type and this conversion is not supported 
by the driver, SQLFetch, SQLFetchScroll, or SQLGetData returns SQLSTATE HYC00 
(Optional feature not implemented).

Although it is not shown in the tables, the driver returns SQL_NULL_DATA in the buffer 
specified by the StrLen_or_IndPtr argument when the SQL data value is NULL. For an 
explanation of the use of StrLen_or_IndPtr does not include the null-termination byte. If 
TargetValuePtr is a null pointer, SQLGetData returns SQLSTATE HY009 (Invalid use of 
null pointer); in SQLBindCol, this unbinds the columns.

The following terms and conventions are used in the tables:

■ Byte length of data is the number of bytes of C data available to return in *TargetVal-
uePtr, whether or not the data will be truncated before it is returned to the application. 
For string data, this does not include the space for the null-termination character.

■ Character byte length is the total number of bytes needed to display the data in charac-
ter format.

■ Words in italics represent function arguments or elements of the SQL grammar. See 
Appendix C, “SQL Minimum Grammar” for the syntax of grammar elements,
                                                                    Data Types D-23



Converting Data from SQL to C Data Types
SQL to C: Character
The character ODBC SQL data types are:

SQL_CHAR
SQL_VARCHAR
SQL_LONGVARCHAR
SQL_WCHAR
SQL_WVARCHAR
SQL_WLONGVARCHAR

The following table shows the ODBC C data types to which character SQL data may be con-
verted. For an explanation of the columns and terms in the table, see the “Table Descrip-
tion—SQL to C” on page D-23.

C Type Identifier Test
*TargetVal-
uePtr

*StrLen_or
_IndPtr

SQL-
STATE

SQL_C_CHAR Byte length of data < Buff-
erLength

Byte length of data  >= 
BufferLength

Data

Truncated data

Length of data in 
bytes

Length of data in 
bytes

N/A

01004

SQL_C_WCHAR Character length of data  < 
BufferLength

(Character length of data)  
>= BufferLength

Data

Truncated data

Length of data in 
characters

Length of data in 
characters

N/A

01004

SQL_C_STINYINT
SQL_C_UTINYINT
SQL_C_TINYINT
SQL_C_SBIGINT
SQL_C_UBIGINT
SQL_C_SSHORT
SQL_C_USHORT
SQL_C_SHORT 
SQL_C_SLONG
SQL_C_ULONG
SQL_C_LONG 
SQL_C_NUMERIC

Data converted without 
truncation 
[b]

Data converted with trunca-
tion of fractional digits[a]

Conversion of data would 
result in loss of whole (as 
opposed to fractional)
digits [b]

Data is not a numeric-lit-
eral [b]

Data

Truncated data

Undefined

Undefined

Number of bytes of 
the C data type

Number of bytes of 
the C data type

Undefined

Undefined

N/A

01S07

22003

22018
D-24 SOLID Programmer Guide                              



Converting Data from SQL to C Data Types
SQL_C_FLOAT
SQL_C_DOUBLE

Data is within the range of 
the data type to which the 
number is being converted 
[a]

Data is outside the range of 
the data type to which the 
number is being converted 
[a]

Data is not a numeric-lit-
eral [b]

Data

Undefined

Undefined

Size of the C data 
type

Undefined

N/A

22003

22018

SQL_C_BINARY Byte length of data <= Buff-
erLength

Byte length of data  > Buff-
erLength

Data

Truncated data

Length of data

Length of data

N/A

01004

SQL_C_TYPE_DATE Data value is a valid date-
value [a]

Data value is a valid 
timestamp-value; time por-
tion is zero [a]

Data value is a valid
timestamp-value; time por-
tion is nonzero [a], [c],

Data value is not a valid 
date-value or  
timestamp_value [a]

Data

Data

Truncated data

Undefined

6 [b]

6 [b]

6 [b]

Undefined

N/A

N/A

01S07

22018
                                                                    Data Types D-25



Converting Data from SQL to C Data Types
Notes
[a] The value of BufferLength is ignored for this conversion. The driver assumes that the size 
of *TargetValuePtr is the size of the C data type.

SQL_C_TYPE_TIME Data value is a valid time-
value and the fractional 
seconds value is 0 [a]

Data value is a valid 
timestamp-value or a valid 
time_value; fractional sec-
onds portion is zero portion 
is zero[a], [d]

Data value is a valid
timestamp-value; fractional 
seconds portion is nonzero 
[a], [d], [e]

Data value is not a valid 
timestamp-value or 
time_value [a]

Data

Data

Truncated data

Undefined

6 [b]

6 [b]

6 [b]

Undefined

N/A

N/A

01S07

22018

SQL_C_TYPE
TIMESTAMP

Data value is a valid 
timestamp-value or a valid 
time_value; fractional sec-
onds portion not truncated 
[a], [d]

Data value is a valid 
timestamp-value or a valid 
time_value; fractional
 seconds portion truncated 
[a]

Data value is a valid
date-value[a]

Data value is a valid 
time_value [a]

Data value is not a valid 
date_value, time_value, or 
timestamp_value [a]

Data

Truncated data

Data [f]

Data [g]

Undefined

16 [b]

16 [b]

16 [b]

16 [b]

Undefined

N/A

01S07

N/A

N/A

22018
D-26 SOLID Programmer Guide                              



Converting Data from SQL to C Data Types
[b] This is the size of the corresponding C data type.

[c] The time portion of the timestamp-value is truncated.

[d] The date portion of the timestamp-value is ignored.

[e] The fractional seconds portion of the timestamp is truncated.

[f] The time fields of the timestamp structure are set to zero.

[g] The date fields of the timestamp structure are set to the current date.

When character SQL data is converted to numeric, date, time, or timestamp C data, leading 
and trailing spaces are ignored.
                                                                    Data Types D-27



Converting Data from SQL to C Data Types
SQL to C: Numeric
The numeric ODBC SQL data types are:

SQL_DECIMAL SQL_BIGINT
SQL_NUMERIC SQL_REAL
SQL_TINYINT SQL_FLOAT
SQL_SMALLINT SQL_DOUBLE
SQL_INTEGER

The following table shows the ODBC C data types to which numeric SQL data may be con-
verted. For an explanation of the columns and terms in the table, see page the “Table 
Description—SQL to C” on page D-23. 

C Type Identifier Test
*TargetVal-
uePtr

*StrLen_or_Ind
Prt

SQL-
STATE

SQL_C_CHAR Character byte length < 
BufferLength

Number of whole (as 
opposed to fractional) 
digits < BufferLength

Number of whole (as 
opposed to fractional) 
digits ≥ BufferLength

Data

Truncated 
data

Undefined

Length of data in 
bytes

Length of data in 
bytes

Undefined

N/A

01004

22003

SQL_C_WCHAR Character length < 
BufferLength

Number of whole (as 
opposed to fractional) 
digits < BufferLength

Number of whole (as 
opposed to fractional) 
digits ≥ BufferLength

Data

Truncated 
data

Undefined

Length of data in 
characters

Length of data in 
characters

Undefined

N/A

01004

22003
D-28 SOLID Programmer Guide                              



Converting Data from SQL to C Data Types
Notes
[a]The value of BufferLength is ignored for this conversion. The driver assumes that the size 
of *TargetValuePtr is the size of the C data type.

[b] This is the size of the corresponding C data type.

SQL_C_STINYINT
SQL_C_UTINYINT
SQL_C_TINYINT 
SQL_C_SBIGINT
SQL_C_UBIGINT
SQL_C_SSHORT
SQL_C_USHORT
SQL_C_SHORT a
SQL_C_SLONG
SQL_C_ULONG
SQL_C_LONG 
SQL_C_NUMERIC

Data converted with-
out truncation [a]

Data converted with 
truncation of frac-
tional digits  [a]

Conversion of data 
would result in loss of 
whole (as opposed to 
fractional) digits [a]

Data

Truncated 
data

Undefined

Size of the C data 
type

Size of the C data 
type

N/A

01S07

22003

SQL_C_FLOAT
SQL_C_DOUBLE

Data is within the 
range of the data type 
to which the number is 
being converted [a]

Data is outside the 
range of the data type 
to which the number is 
being converted [a]

Data

Undefined

Size of the C data 
type

Undefined

N/A

22003

SQL_C_BINARY Length of data ≤ Buff-
erLength

Length of data > Buff-
erLength

Data

Undefined

Length of data

Undefined

N/A
|
22003
                                                                    Data Types D-29



Converting Data from SQL to C Data Types
SQL to C: Binary
The binary ODBC SQL data types are:

SQL_BINARY
SQL_VARBINARY
SQL_LONGVARBINARY

The following table shows the ODBC C data types to which binary SQL data may be con-
verted. For an explanation of the columns and terms in the table, see the “Table Descrip-
tion—SQL to C” on page D-23.

When binary SQL data is converted to character C data, each byte (8 bits) of source data is 
represented as two ASCII characters. These characters are the ASCII character representa-
tion of the number in its hexadecimal form. For example, a binary 00000001 is converted to 
“01” and a binary 11111111 is converted to “FF”.

The driver always converts individual bytes to pairs of hexadecimal digits and terminates the 
character string with a null byte. Because of this, if BufferLength is even and is less than the 
length of the converted data, the last byte of the *TargetValuePtr buffer is not used. (The 
converted data requires an even number of bytes, the next-to-last byte is a null byte, and the 
last byte cannot be used.)

C Type Identifier Test
*TargetVal-
uePtr

*StrLen_or_Ind
Ptr

SQL-
STATE

SQL_C_CHAR (Byte length of data) * 
2 < BufferLength

(Byte length of data) * 
2 >= BufferLength

Data

Truncated data

Length of data in 
bytes

Length of data in 
bytes

N/A

01004

SQL_C_WCHAR (Character length of 
data) * 2 < Buffer-
Length

(Character length of 
data) * 2 >= Buffer-
Length

Data

Truncated data

Length of data in 
characters

Length of data in 
characters

N/A

01004

SQL_C_BINARY Byte length of data <= 
BufferLength

Byte Length of data > 
BufferLength

Data

Truncated data

Length of data in 
bytes

Length of data in 
bytes

N/A

01004
D-30 SOLID Programmer Guide                              



Converting Data from SQL to C Data Types
Application developers are discouraged from binding binary SQL data to a character C data 
type. This conversion is usually inefficient and slow.

SQL to C: Date
The date ODBC SQL data type is:

SQL_DATE

The following table shows the ODBC C data types to which date SQL data may be con-
verted. For an explanation of the columns and terms in the table, see the “Table Descrip-
tion—SQL to C” on page D-23.

C Type Identifier Test
*TargetVal-
uePtr

*StrLen_or_
IndPtr

SQL-
STATE

SQL_C_CHAR BufferLength >
Character byte
length

11<=
BufferLength 
<= Character
byte length

BufferLength <
11

Data

Truncated data

Undefined

10

Length of data 
in bytes

Undefined

N/A

01004

22003

SQL_C_WCHAR BufferLength >
Character
length

11<=
BufferLength 
<= Character
 length

BufferLength <
11

Data

Truncated data

Undefined

10

Length of data 
in bytes

Undefined

N/A

01004

22003
                                                                    Data Types D-31



Converting Data from SQL to C Data Types
Notes
[a] The value of BufferLength is ignored for this conversion. The driver assumes that the size of *Tar-
getValuePtr is the size of the C data type.

[b] The time fields of the timestamp structure are set to zero.

[c] This is the size of the corresponding C data type.

When date SQL data is converted to character C data, the resulting string is in the “yyyy-
mm-dd” format. This format is not affected by the MIcrosoft Windows country setting.

SQL_C_BINARY Byte length of
data <=
BufferLength >
Character byte
length

Byte length of
data <=
BufferLength 

Data

Undefined

Length of data 
in bytes

Undefined

N/A

22003

SQL_C_DATE None [a] Data 6 [c] N/A

SQL_C_TIMESTAMP None [ a] Data [b] 16 [c] N/A
D-32 SOLID Programmer Guide                              



Converting Data from SQL to C Data Types
SQL to C: Time
The time ODBC SQL data type is:

SQL_TIME

The following table shows the ODBC C data types to which time SQL data may be con-
verted. For an explanation of the columns and terms in the table, see the “Table Description—
SQL to C” on page D-23.

C Type Identifier Test
*TargetVal-
uePtr

*StrLen_or_
IndPtr

SQL-
STATE

SQL_C_CHAR BufferLength >
Character byte
length

9 <=
BufferLength 
<= Character
byte length

BufferLength <
9

Data

Truncated data
[a]

Undefined

Length of data
in bytes

Length of data 
in bytes

Undefined

N/A

01004

22003

SQL_C_WCHAR BufferLength >
Character byte
length

9 <=
BufferLength 
<= Character
byte length

BufferLength <
9

Data

Truncated data
[a]

Undefined

Length of data
in characters

Length of data 
in characters

Undefined

N/A

01004

22003

SQL_C_BINARY Byte length of
data <=
BufferLength >

Byte length of
data <=
BufferLength 

Data

Undefined

Length of data 
in bytes

Undefined

N/A

22003

SQL_C_DATE None [a] Data 6 [c] N/A

SQL_C_TIMESTAMP None [a] Data [b] 16 [c] N/A
                                                                    Data Types D-33



Converting Data from SQL to C Data Types
When time SQL data is converted to character C data, the resulting string is in the 
“hh:mm:ss” format.

SQL to C: Timestamp
The timestamp ODBC SQL data type is:

SQL_TIMESTAMP

The following table shows the ODBC C data types to which timestamp SQL data may be 
converted. For an explanation of the columns and terms in the table, see the “Table Descrip-
tion—SQL to C” on page D-23.

a The fractional seconds of the time are truncated.
b The value of BufferLength is ignored for this conversion. The driver assumes that the size of 
*TargetValuePtr is the size of the C data type.

c The date fields of the timestamp structure are set to the current date and the fractional sec-
onds field of the timestamp structure is set to zero.

d This is the size of the corresponding C data type.

C Type Identifier Test
*TargetVal-
uePtr

*StrLen_
or_IndPtr

SQL-
STATE

SQL_C_CHAR BufferLength > 
Character byte length

20 <= BufferLength
<= Character byte 
length

BufferLength < 20

Data

Truncated data 
[b]

Undefined

Length of data 
in bytes

Length of data
in bytes

Undefined

N/A

01004

22003

SQL_C_WCHAR BufferLength > 
Character byte length

20 <= BufferLength
<= Character byte 
length

BufferLength < 20

Data

Truncated data 
[b]

Undefined

Length of data 
in characters

Length of data
in characters

Undefined

N/A

01004

22003

SQL_C_BINARY Byte length of data 
<= BufferLength

Byte length of data > 
BufferLength

Data

Undefined

Length of data
in bytes

Undefined

N/A

22003
D-34 SOLID Programmer Guide                              



Converting Data from SQL to C Data Types
Notes
[a] The value of BufferLength is ignored for this conversion. The driver assumes that the size of 
*TargetValuePtr is the size of the C data type.

[b] The fractional seconds of the timestamp are truncated.

[c] The time portion of the timestamp is truncated.

[d] The date portion of the timestamp is ignored.

[e] The fractional seconds portion of the timestamp is truncated.

[f] This is the size of the corresponding C data type.

When timestamp SQL data is converted to character C data, the resulting string is in the “yyyy-
mm-dd hh:mm:ss[.f...]” format, where up to nine digits may be used for fractional seconds. The 
format is not affected by the Microsoft Windows country setting. (Except for the decimal point 
and fractional seconds, the entire format must be used, regardless of the precision of the times-
tamp SQL data type.)

SQL_C_TYPE_DATE Time portion of times-
tamp is zero [a]

Time portion of times-
tamp is non-zero [a]

Data

Truncated data 
[c]

6 [f]

6 [f]

N/A

01S07

SQL_C_TYPE_TIME Fractional seconds 
portion of timestamp is 
zero [a]

Fractional seconds 
portion of timestamp is 
non-zero [a]

Data [d]

Truncated data 
[d], [e]

6 [f]

6 [f]

N/A

01S07

SQL_C_TYPE_TIME
STAMP

Fractional seconds 
portion of timestamp is 
not truncated [a]

Fractional seconds 
portion of timestamp is 
truncated [a]

Data [e]

Truncated data 
[e]

16 [f]

16 [f]

N/A

01S07
                                                                    Data Types D-35



Converting Data from SQL to C Data Types
SQL to C Data Conversion Examples
The following examples illustrate how the driver converts SQL data to C data:

SQL Type Identi-
fier

SQL Data
Value

C Type Identi-
fier

Buffer 
Length

*TargetVal-
uePtr

SQL-
STATE

SQL_CHAR abcdef SQL_C_CHAR 7 abcdef\0 [a] N/A

SQL_CHAR abcdef SQL_C_CHAR 6 abcde\0 [a] 01004

SQL_
DECIMAL

1234.56 SQL_C_CHAR 8 1234.56\0 [a] N/A

SQL_
DECIMAL

1234.56 SQL_C_CHAR 5 1234\0 [a] 01004

SQL_
DECIMAL

1234.56 SQL_C_CHAR 4 ---- 22003

SQL_
DECIMAL

1234.56 SQL_C_
FLOAT

ignored 1234.56 N/A

SQL_
DECIMAL

1234.56 SQL_C_
SSHORT

ignored 1234 01S07

SQL_
DECIMAL

1234.56 SQL_C_
STINYINT

ignored ---- 22003

SQL_
DOUBLE

1.2345678 SQL_C_
DOUBLE

ignored 1.2345678 N/A

SQL_
DOUBLE

1.2345678 SQL_C_
FLOAT

ignored 1.234567 N/A

SQL_
DOUBLE

1.2345678 SQL_C_
STINYINT

ignored 1 N/A

SQL_TYPE_DATE 1992-12-31 SQL_C_CHAR 11 1992-12-31\0[a] N/A

SQL_TYPE_DATE 1992-12-31 SQL_C_CHAR 10 ----- 22003

SQL_TYPE_DATE 1992-12-31 SQL_C_
TIMESTAMP

ignored 1992,12,31,
0,0,0,0 [b]

N/A

SQL_TYPE_
TIMESTAMP

1992-12-31
23:45:55.12

SQL_C_CHAR 23 1992-12-31
23:45:55.12\0
[a]

N/A

SQL_TYPE_
TIMESTAMP

1992-12-31
23:45:55.12

SQL_C_CHAR 22 1992-12-31
23:45:55.1\0 [a]

01004

• 

   
D-36 SOLID Programmer Guide                              



Converting Data from C to SQL Data Types
[a] “\0” represents a null-termination byte. The driver always null-terminates SQL_C_CHAR 
data.

[b] The numbers in this list are the numbers stored in the fields of the 
TIMESTAMP_STRUCT structure.

Converting Data from C to SQL Data Types
When an application calls SQLExecute or SQLExecDirect, the driver retrieves the data for 
any parameters bound with SQLBindParameter from storage locations in the application. 
For data-at-execution parameters, the application sends the parameter data with SQLPut-
Data. If necessary, the driver converts the data from the data type specified by the Value-
Type argument in SQLBindParameter to the data type specified by the ParameterType 
argument in SQLBindParameter. Finally, the driver sends the data to the data source.

The following table shows the supported conversions from ODBC C data types to ODBC 
SQL data types. A solid circle indicates the default conversion for a SQL data type (the C 
data type from which the data will be converted when the value of ValueType or the 
SQL_DESC_CONCISE_TYPE descriptor field is SQL_C_DEFAULT). A hollow circle 
indicates a supported conversion.

The format of the converted data is not affected by the Microsoft Windows country setting.

SQL_TYPE_
TIMESTAMP

1992-12-31
23:45:55.12

SQL_C_CHAR 18 ---- 22003
                                                                    Data Types D-37



Converting Data from C to SQL Data Types
SQL Data Type —SQL_datatype where datatype is:

• Default conversion      o Supported conversion

Table Description—C to SQL
The tables in the following sections describe how the driver or data source converts data sent 
to the data source; drivers are required to support conversions from all ODBC C data types 

  

C Data Type

  
  C
  H
  A
  R

  V 
  A
  R
  C
  H
  A
  R

  
  L
  O
  N
  G
  V
  A
  R
  C
  H
  A
  R

  W 
  C
  H
  A
  R
  
  

  
 W
  V
  A
  R
  C
  H
  A
  R
  
 
  

  
 W
  L
  O
  N
  G
  V
  A
  R
  C
  H
  A
  R

  
  D
  E
  C
  I
  M 
  A
  L

  
  N
  U
  M
  E
  R
  I
  C

  T
  I
  N
  Y
  I  
  N
  T
 (sig 

ned)

  T
  I
  N
  Y
  I
  N
  T  
(un- 

signed)  

  S
  M
  A
  L
  L
  I
  N
  T
  (sign  

ed)

  S
  M
  A
  L
  L
  I
  N
  T
 (un- 

signed)

  I
  N
  T
  E
  G
  E
  R 
(signed)  

  I
  N
  T
  E
  G
  E
  R 
 (un-

  signed)

  B
  I
  G
  I
  N
  T   
 (signed)

  B
  I
  G
  I
  N
  T   
(unsig

ned)

 
  R
  E
  A
  L

  F
  L
  O
  A
  T

  D
  O
  U
  B
  L
  E

  B
  I
  N
  A
  R
  Y

  
  V
  A
  R
  B
  I
  N
  A
  R
  Y

  L
  O
  N
  G
  V
  A
  R
  B
  I
  N
  A
  R
  Y  

  D
  A
  T
  E

  T
  I
  M
  E

  T
  I
  M
  E
  S
  T
  A
  M
  P   

SQL_C_CHAR    •    •    •  o   o   o   •  •   o   o   o    o   o   o  o  o  o   o   o   o o  o  o  o  o
SQL_C_WCHAR   o   o   o   •   •   •   o  o  o  o  o   o   o   o  o  o  o   o   o   o  o  o  o  o  o
SQL_C_NUMERIC   o   o   o  o   o   o   o  o  o  o  o  o  o  o  o  o  o   o   o
SQL_C_STINY
INT

  o   o   o   o   o   o   o  o  •  o  o   o  o  o  o  o o   o   o

SQL_C_UTINY
INT

  o   o   o   o   o   o   o  o  o  •  o   o  o   o  o  o  o  o   o

SQL_C_TINYINT   o   o   o   o   o   o   o  o  o  o  o  o  o   o  o  o o  o   o
SQL_C_SBIGINT   o   o   o   o   o   o   o  o  o  o  o   o  o   o  •  •  o  o   o 
SQL_C_UBIGINT   o   o   o   o   o   o   o  o  o  o  o   o  o   o   o   •   o  o   o 
SQL_C_SSHORT   o   o   o   o   o   o   o  o  o  o   •   o  o   o  o  o  o  o   o
SQL_C_USHORT   o   o   o   o   o   o   o  o  o  o  o   •  o   o  o  o  o  o   o
SQL_C_SHORT   o   o   o   o   o   o   o  o  o  o  o   o  o   o  o  o  o  o   o
SQL_C_SLONG   o   o   o   o   o   o   o  o  o  o  o   o  •   o  o  o  o  o   o
SQL_C_ULONG   o   o   o   o   o   o   o  o  o  o  o   o  o  •  o  o  o  o   o
SQL_C_LONG   o   o   o   o   o   o   o  o  o  o o   o  o   o  o  o  o  o   o
SQL_C_FLOAT   o   o   o   o   o   o   o  o  o  o  o   o  o   o  o  o  •  o   o
SQL_C_DOUBLE   o   o   o   o   o   o   o  o  o  o  o   o   o   o  o  o  o   •   •
SQL_C_BINARY   o   o   o   o   o   o   o  o  o  o  o   o  o   o  o  o  o  o   o  •  •  •  o  o  o
SQL_C_DATE   o   o   o   o   o   o       •  o
SQL_C_TIME   o   o   o   o   o   o            •  o
SQL_C_
TIMESTAMP

  o   o   o   o   o   o   o o  •
D-38 SOLID Programmer Guide                              



Converting Data from C to SQL Data Types
to the ODBC SQL data types that they support. For a given ODBC C data type, the first col-
umn of the table lists the legal input values of the ParameterType argument in SQLBindPar-
ameter. The second column lists the outcomes of a test that the driver performs to determine 
if it can convert the data. The third column lists the SQLSTATE returned for each outcome 
by SQLExecDirect, SQLExecute, or SQLPutData. Data is sent to the data source only if 
SQL_SUCCESS is returned.

If the ParameterType argument in SQLBindParameter contains a value for an ODBC SQL 
data type that is not shown in the table for a given C data type, SQLBindParameter returns 
SQLSTATE 07006 (Restricted data type attribute violation). If the ParameterType argument 
contains a driver-specific value and the driver does not support the conversion from the spe-
cific ODBC C data type to that driver-specific SQL data type, SQLBindParameter returns 
SQLSTATE HYC00 (Optional feature not implemented).

If the ParameterValuePtr and StrLen_or_IndPtr arguments specified in SQLBindParame-
ter are both null pointers, that function returns SQLSTATE HY009 (Invalid use of null 
pointer). Although it is not shown in the tables, an application sets the value pointed to by 
the StrLen_or_indPtr argument of SQLBindParameter or the value of the 
StrLen_or_indPtr argument to SQL_NULL_DATA to specify a NULL SQL data value. (The 
StrLen_or_indPtr argument corresponds to the SQL_DESC_OCTET_LENGTH_PTR field 
of the APD.) The application sets these values to SQL_NTS to specify that the value in 
*ParameterValuePtr in SQLBindParameter or *DataPtr in SQLPutData (pointed to by 
the SQL_DESC_DATA_PTR field of the APD) is a null-terminated string.

The following terms are used in the tables:

■ Byte length of data is the number of bytes of SQL data available to send to the data 
source, regardless of whether the data will be truncated before it is sent to the data 
source. For string data, this does not include the null-termination character.

■ Column byte length is the number of bytes required to store the data at the data source. 

■ Character byte length is the maximum number of bytes needed to display data in char-
acter form. 

■ Number of digits is the number of characters used to represent a number, including the 
minus sign, decimal point, and exponent (if needed).

■ Words in italics represent elements of the ODBC SQL grammar. See Appendix C, “SQL 
Minimum Grammar” for the syntax of grammar elements.
                                                                    Data Types D-39



Converting Data from C to SQL Data Types
C to SQL: Character
The character ODBC C data type is:

SQL_C_CHAR
SQL_C_WCHAR

The following table shows the ODBC SQL data types to which C character data may be con-
verted. For an explanation of the columns and terms in the table, see “Table Description—C 
to SQL”  on page D-38. 

NoteNote

The length of the Unicode data type must be an even number when character C data is con-
verted to Unicode SQL data.

SQL Type Identifier Test
SQL-
STATE

SQL_CHAR
SQL_VARCHAR
SQL_LONGVARCHAR

Byte length of data <= Column length

Byte length of data > Column length

N/A

22001

SQL_WCHAR
SQL_WVARCHAR
SQL_WLONGVARCHAR

Character length of data <= Column length

Character length of data > Column length

N/A

22001

SQL_DECIMAL
SQL_NUMERIC
SQL_TINYINT
SQL_SMALLINT
SQL_INTEGER
SQL_BIGINT

Data converted without truncation

Data converted with truncation of fractional 
digits [e]

Conversion of data would result in loss of 
whole (as opposed to fractional) digits [e]

Data value is not a numeric-literal

N/A

22001

22001

22018

SQL_REAL
SQL_FLOAT
SQL_DOUBLE

Data is within the range of the data type to 
which the number is being converted

Data is outside the range of the data type to 
which the number is being converted

Data value is not a numeric-literal

N/A

22003

22005
D-40 SOLID Programmer Guide                              



Converting Data from C to SQL Data Types
SQL_BIT Data is 0 or 1

Data is greater than 0, less than 2, and not 
equal to 1

Data is less than 0 or greater than or equal to 2

Data is not a numeric-literal

N/A

22001

22003

22018

SQL_BINARY
SQL_VARBINARY
SQL_LONG-VARBINARY

(Byte length of data) / 2 <= Column byte 
length

(Byte length of data) / 2 > Column byte length

Data value is not a hexadecimal value

N/A

22001

22018

SQL_TYPE_DATE Data value is a valid ODBC_date_literal

Data value is a valid 
ODBC_timestamp_literal; time portion is zero

Data value is a valid 
ODBC_timestamp_literal; time portion is non-
zero [a]

Data value is not a valid ODBC_date_literal or 
ODBC_timestamp_literal

N/A

N/A

22008

22018

SQL_TYPE_TIME Data value is a valid ODBC_time_literal

Data value is a valid 
ODBC_timestamp_literal; fractional seconds 
portion is zero [b]

Data value is a valid 
ODBC_timestamp_literal; fractional seconds 
portion is non-zero [b]

Data value is not a valid ODBC_time_literal or 
ODBC_timestamp_literal

N/A

N/A

22008

22018
                                                                    Data Types D-41



Converting Data from C to SQL Data Types
Notes
[a] The time portion of the timestamp is truncated.

[b] The date portion of the timestamp is ignored.

[c] The time portion of the timestamp is set to zero.

[d] The date portion of the timestamp is set to the current date.

[e] The driver/data source effectively waits until the entire string has been received (even if the charac-
ter data is sent in pieces by calls to SQLPutData) before attempting to perform the conversion.

When character C data is converted to numeric, date, time, or timestamp SQL data, leading 
and trailing blanks are ignored.

When character C data is converted to binary SQL data, each two bytes of character data are 
converted to a single byte (8 bits) of binary data. Each two bytes of character data represent 
a number in hexadecimal form. For example, “01” is converted to a binary 00000001 and 
“FF” is converted to a binary 11111111.

The driver always converts pairs of hexadecimal digits to individual bytes and ignores the 
null termination byte. Because of this, if the length of the character string is odd, the last 
byte of the string (excluding the null termination byte, if any) is not converted.

NoteNote

Because binding character C data to a binary SQL data type is inefficient and slow, refrain 
from doing this.

SQL_TYPE_TIMESTAMP Data value is a valid 
ODBC_timestamp_literal; fractional seconds 
portion not truncated

Data value is a valid ODBC-timestamp-literal; 
fractional seconds portion truncated

Data value is a valid ODBC-date-literal [c]

Data value is a valid ODBC-time-literal [d]

Data value is not a valid ODBC-date-literal, 
ODBC-time-literal, or ODBC-timestamp-lit-
eral

N/A

22008

N/A

N/A

22018
D-42 SOLID Programmer Guide                              



Converting Data from C to SQL Data Types
C to SQL: Numeric
The numeric ODBC C data types are:

For more information about the SQL_C_TINYINT, SQL_C_SHORT, and SQL_C_LONG 
data types, see “ODBC 1.0 C Data Types,” earlier in this appendix. The following table 
shows the ODBC SQL data types to which numeric C data may be converted. For an expla-
nation of the columns and terms in the table, see“Table Description—C to SQL”  on 
page D-38. 

SQL_C_STINYINT SQL_C_SLONG

SQL_C_UTINYINT SQL_C_ULONG

SQL_C_TINYINT SQL_C_LONG

SQL_C_SSHORT SQL_C_FLOAT

SQL_C_USHORT SQL_C_DOUBLE

SQL_C_SHORT SQL_C_NUMERIC

SQL_C_SBIGINT SQL_C_UBIGINT

ParameterType Test
SQL-
STATE

SQL_CHAR
SQL_VARCHAR
SQL_LONGVARCHAR

Number of digits <= Column byte length

Number of digits > Column byte length

N/A

22001

SQL_WCHAR
SQL_WVARCHAR
SQL_WLONGVARCHAR

Number of characters <= Column character 
length

Number of characters > Column character 
length

N/A

22001

SQL_DECIMAL [a]
SQL_NUMERIC [a]
SQL_TINYINT [a]
SQL_SMALLINT [a]
SQL_INTEGER [a]
SQL_BIGINT [a]

Data converted without truncation or with trun-
cated of fractional digits

Data converted with truncation of whole digits

N/A

22003

SQL_REAL
SQL_FLOAT
SQL_DOUBLE

Data is within the range of the data type to 
which the number is being converted

Data is outside the range of the data type to 
which the number is being converted

N/A

22003
                                                                    Data Types D-43



Converting Data from C to SQL Data Types
Notes
[a] For the "n/a" case, a driver may optionally return SQL_SUCCESS_WITH_INFO and 01S07 when 
there is a fractional truncation.

The driver ignores the length/indicator value when converting data from the numeric C data types and 
assumes that the size of the data buffer is the size of the numeric C data type. The length/indicator 
value is passed in the StrLen_or_Ind argument in SQLPutData and in the buffer specified with the 
StrLen_or_IndPtr argument in SQLBindParameter. The data buffer is specified with the DataPtr 
argument in SQLPutData and the ParameterValuePtr argument in SQLBindParameter.

C to SQL: Bit
The bit ODBC C data type is:

SQL_C_BIT

The following table shows the ODBC SQL data types to which bit C data may be converted. 
For an explanation of the columns and terms in the table, see “Table Description—C to 
SQL”  on page D-38. 

The driver ignores the length/indicator value when converting data from the bit C data types and 
assumes that the size of the data buffer is the size of the bit C data type. The length/indicator value is 
passed in the StrLen_or_Ind argument in SQLPutData and in the buffer specified with the 
StrLen_or_IndPtr argument in SQLBindParameter. The data buffer is specified with the DataPtr 
argument in SQLPutData and the ParameterValuePtr argument in SQLBindParameter.

SQL Type Identifier Test SQLSTATE

SQL_CHAR
SQL_VARCHAR
SQL_LONGVARCHAR
SQL_WCHAR
SQL_WVARCHAR
SQL_WLONGVARCHAR

None N/A

SQL_DECIMAL
SQL_NUMERIC
SQL_TINYINT
SQL_SMALLINT
SQL_INTEGER
SQL_BIGINT
SQL_REAL
SQL_FLOAT
SQL_DOUBLE

None N/A
D-44 SOLID Programmer Guide                              



Converting Data from C to SQL Data Types
C to SQL: Binary
The binary ODBC C data type is:

SQL_C_BINARY

The following table shows the ODBC SQL data types to which binary C data may be con-
verted. For an explanation of the columns and terms in the table, see “Table Description—C 
to SQL”  on page D-38. 

SQL Type Identifier Test
SQL-
STATE

SQL_CHAR
SQL_VARCHAR
SQL_LONGVARCHAR

Byte length of data <= Column byte length

Byte length of data > Column length

N/A|

22001

SQL_WCHAR
SQL_WVARCHAR
SQL_WLONGVARCHAR

Character length of data <= Column charac-
ter length

Character length of data > Column character 
length

N/A

22001

SQL_DECIMAL
SQL_NUMERIC
SQL_TINYINT
SQL_SMALLINT
SQL_INTEGER
SQL_BIGINT
SQL_REAL
SQL_FLOAT
SQL_DOUBLE
SQL_TYPE_DATE
SQL_TYPE_TIME
SQL_TYPE_TIMESTAMP

Byte length of data = SQL data length 

Length of data <> SQL data length 

N/A

22003

SQL_BINARY
SQL_VARBINARY
SQL_LONGVARBINARY

Length of data <= Column length

Length of data > Column length

N/A

22001
                                                                    Data Types D-45



Converting Data from C to SQL Data Types
C to SQL: Date
The date ODBC C data type is:

SQL_C_DATE

The following table shows the ODBC SQL data types to which date C data may be con-
verted. For an explanation of the columns and terms in the table, see “Table Description—C 
to SQL”  on page D-38.

Notes
[a] The time portion of the timestamp is set to zero.

For information about what values are valid in a SQL_C_TYPE_DATE structure, see “C 
Data Types” earlier in this appendix.

When date C data is converted to character SQL data, the resulting character data is in the 
“yyyy-mm-dd” format.

The driver ignores the length/indicator value when converting data from the date C data types and 
assumes that the size of the data buffer is the size of the date C data type. The length/indicator value is 
passed in the StrLen_or_Ind argument in SQLPutData and in the buffer specified with the 
StrLen_or_IndPtr argument in SQLBindParameter. The data buffer is specified with the DataPtr 
argument in SQLPutData and the ParameterValuePtr argument in SQLBindParameter.

ParameterType Test SQLSTATE

SQL_CHAR
SQL_VARCHAR
SQL_LONGVARCHAR

Column byte length >= 10

Column byte length < 10

Data value is not a valid date

N/A

22001

22008

SQL_CHAR
SQL_VARCHAR
SQL_LONGVARCHAR

Column character length >= 10

Column character length < 10

Data value is not a valid date

N/A

22001

22008

SQL_TYPE_DATE Data value is a valid date

Data value is not a valid date

N/A

22007

SQL_TYPE_TIMESTAMP Data value is a valid date [a]

Data value is not a valid date

N/A

22007
D-46 SOLID Programmer Guide                              



Converting Data from C to SQL Data Types
C to SQL: Time
The time ODBC C data type is:

SQL_C_TIME

The following table shows the ODBC SQL data types to which time C data may be con-
verted. For an explanation of the columns and terms in the table, see “Table Description—C 
to SQL”  on page D-38.

Notes
[a] The date portion of the timestamp is set to the current date and the fractional seconds portion of the 
timestamp is set to zero.

For information about what values are valid in a SQL_C_TYPE_TIME structure, see “C 
Data Types” earlier in this appendix.

When time C data is converted to character SQL data, the resulting character data is in the 
“hh:mm:ss” format.

The driver ignores the length/indicator value when converting data from the time C data types and 
assumes that the size of the data buffer is the size of the time C data type. The length/indicator value is 
passed in the StrLen_or_Ind argument in SQLPutData and in the buffer specified with the 
StrLen_or_IndPtr argument in SQLBindParameter. The data buffer is specified with the DataPtr 
argument in SQLPutData and the ParameterValuePtr argument in SQLBindParameter.

ParameterType Test SQLSTATE

SQL_CHAR
SQL_VARCHAR
SQL_LONGVARCHAR

Column byte length >= 8

Column byte length < 8

Data value is not a valid time

N/A

22001

22008

SQL_WCHAR
SQL_WVARCHAR
SQL_WLONGVARCHAR

Column character length >= 8

Column character length < 8

Data value is not a valid time

N/A

22001

22008

SQL_TYPE_TIME Data value is a valid time

Data value is not a valid time

N/A

22007

SQL_TYPE_TIMESTAMP Data value is a valid time [a]

Data value is not a valid time

N/A

22007
                                                                    Data Types D-47



Converting Data from C to SQL Data Types
C to SQL: Timestamp
The timestamp ODBC C data type is:

SQL_C_TIMESTAMP

The following table shows the ODBC SQL data types to which timestamp C data may be 
converted. For an explanation of the columns and terms in the table, see  “Table Descrip-
tion—C to SQL”  on page D-38.

Notes
[a] The date fields of the timestamp structure are ignored.

SQL Type Identifier Test
SQL-
STATE

SQL_CHAR
SQL_VARCHAR
SQL_LONGVARCHAR

Column byte length >= Character byte length

19 <= Column byte length < Character byte 
length

Column byte length < 19

Data value is not a valid date

N/A

22001

22001

22008

SQL_WCHAR
SQL_WVARCHAR
SQL_WLONGVARCHAR

Column character length >= Character length of
data

19 <= Column character length < Character 
length of data

Column character length < 19

Data value is not a valid timestamp

N/A

22001

22001

22008

SQL_TYPE_DATE Time fields are zero

Time fields are non-zero

Data value does not contain a valid date

N/A

22008

22007

SQL_TYPE_TIME Fractional seconds fields are zero [a]

Fractional seconds fields are non-zero [a]

Data value does not contain a valid time

N/A

22008

22007

SQL_TYPE_TIMESTAMP Fractional seconds fields are not truncated

Fractional seconds fields are truncated 

Data value is not a valid timestamp

N/A

22008

22007
D-48 SOLID Programmer Guide                              



Converting Data from C to SQL Data Types
For information about what values are valid in a SQL_C_TIMESTAMP structure, see “C 
Data Types” earlier in this appendix.

When timestamp C data is converted to character SQL data, the resulting character data is in 
the “yyyy-mm-dd hh:mm:ss[.f...]” format.

The driver ignores the length/indicator value when converting data from the timestamp C data types 
and assumes that the size of the data buffer is the size of the timestamp C data type. The length/indica-
tor value is passed in the StrLen_or_Ind argument in SQLPutData and in the buffer specified with the 
StrLen_or_IndPtr argument in SQLBindParameter. The data buffer is specified with the DataPtr 
argument in SQLPutData and the ParameterValuePtr argument in SQLBindParameter.

C to SQL Data Conversion Examples
The following examples illustrate how the driver converts C data to SQL data:

C Data Type
C Data 
Value SQL Data Type

Column
length

SQL Data
Value

SQL-
STATE

SQL_C_CHAR abcdef\0 a SQL_CHAR 6 abcdef N/A

SQL_C_CHAR abcdef\0 a SQL_CHAR 5 abcde 22001

SQL_C_CHAR 1234.56\0 a SQL_DECIMAL 8 b 1234.56 N/A

SQL_C_CHAR 1234.56\0 a SQL_DECIMAL 7 b 1234.5 22001

SQL_C_CHAR 1234.56\0 a SQL_DECIMAL 4 ---- 22003

SQL_C_
FLOAT

1234.56 SQL_FLOAT not 
applicable

1234.56 N/A

SQL_C_
FLOAT

1234.56 SQL_INTEGER not 
applicable

1234 22001

SQL_C_
FLOAT

1234.56 SQL_TINYINT not 
applicable

---- 22003

SQL_C_TYPE_
DATE

1992,12,31 c SQL_CHAR 10 1992-12-31 N/A

SQL_C_TYPE_
DATE

1992,12,31 c SQL_CHAR 9 ---- 22003

SQL_C_TYPE_
DATE

1992,12,31 c SQL_
TIMESTAMP

not 
applicable

1992-12-31 
00:00:00.0

N/A

SQL_C_TYPE
TIMESTAMP

1992,12,31,
23,45,55,
120000000 d

SQL_CHAR 22 1992-12-31 
23:45:55.12

N/A
                                                                    Data Types D-49



Converting Data from C to SQL Data Types
Notes
[a] “\0” represents a null-termination byte. The null-termination byte is required only if the 
length of the data is SQL_NTS.

[b] In addition to bytes for numbers, one byte is required for a sign and another byte is 
required for the decimal point.

[c] The numbers in this list are the numbers stored in the fields of the SQL_DATE_STRUCT 
structure.

[d] The numbers in this list are the numbers stored in the fields of the SQL_TIMESTAMP_STRUCT 
structure.

SQL_C_TYPE
TIMESTAMP

1992,12,31,
23,45,55,
120000000 d

SQL_CHAR 21 1992-12-31 
23:45:55.1

22001

SQL_C_TYPE
TIMESTAMP

1992,12,31,
23,45,55,
120000000 d

SQL_CHAR 18 ---- 22003
D-50 SOLID Programmer Guide                              



E 

Scalar Functions

ODBC specifies five types of scalar functions:

■ String functions

■ Numeric functions

■ Time and date functions

■ System functions

■ Data type conversion functions

This appendix includes tables for each scalar function category. Within each table, functions 
have been added in ODBC 3.0 to align with SQL-92. Each table also provides the version 
number when the function was introduced. 

ODBC and SQL-92 Scalar Functions
Because functions are often data-source-specific, ODBC does not require a data type for 
return values from scalar functions. To force data type conversion, applications should use 
the CONVERT scalar function.

NoteNote

Keep in mind the different ways in which ODBC and SQL-92 classify functions. ODBC 
classifies scalar functions by argument type, whereas SQL-92 classifies them by return 
value. For example, the EXTRACT function is an ODBC timedate function because the 
extract-field argument is a datetime keyword and the extract_source argument is a datetime 
or interval expression. In SQL-92, the EXTRACT function is a numeric scalar function 
because the return value is numeric.
                                                            Scalar Functions E-1



String Functions
Applications need to call SQLGetInfo to determine which scalar functions a driver sup-
ports. ODBC and SQL-92 information types are available for scalar function classifications. 
Because ODBC and SQL-92 use different classfications, the information types for the same 
function may differ between ODBC and SQL-92. For example, to determine support for the 
EXTRACT function requires SQL_TIMEDATE_FUNCTIONS information type in ODBC 
and SQL_SQL92_NUMERIC_VALUE_FUNCTIONS information type in SQL-92.

String Functions
This section lists string manipulation functions. Applications can call SQLGetInfo with the 
SQL_STRING_FUNCTIONS information type to determine which string functions are sup-
ported by a driver.

String Function Arguments

The following string functions are 1-based, that is, the first character in the string is charac-
ter 1

NoteNote

BIT_LENGTH, CHAR_LENGTH, CHARACTER_LENGTH, OCTET_LENGH, and POSI-
TION string scalar functions were added in ODBC 3.0 to align with SQL-92.

Arguments denoted as... Definition

string_exp can be the name of a column, a string literal, or the result of 
another scalar function, where the underlying data type can 
be represented as SQL_CHAR, SQL_VARCHAR, or 
SQL_LONGVARCHAR.

start, length or count can be a numeric literal or the result of another scalar 
function, where the underlying data type can be repre-
sented as SQL_TINYINT, SQL_SMALLINT, or 
SQL_INTEGER

character_exp are a variable-length character string
E-2 SOLID Programmer Guide                              



String Functions
List of String Functions

Function Description

ASCII(string_exp)
(ODBC 1.0)

Returns the ASCII code value of the leftmost 
character of string_exp as an integer.

BIT_LENGTH(string_exp)
(ODBC 3.0)

Retruns the length in bits of string expression.

CHAR(code)
(ODBC 1.0)

Returns the character that has the ASCII code 
value specified by code. The value of code 
should be between 0 and 255; otherwise, the 
return value is data source–dependent.

CHAR_LENGTH(string_exp)
(ODBC 3.0)

Returns the length in characters of the string 
expression, if the string expression is of a char-
acter data type; otherwise, returns the length in 
bytes of the string expression (the smallest inte-
ger notless than the number of bits divided by 8). 
(This function is the same as 
CHARACTER_LENGTH function.)

CHARACTER_LENGTH(string_exp)
(ODBC 3.0)

Returns the length in characters of the string 
expression, if the string expression is of a char-
acter data type; otherwise, returns the length in 
bytes of the string expression (the smallest inte-
ger not less than the number of bits divided by 
8). (This function is the same as the 
CHAR_LENGTH function.)

CONCAT(string_exp1, string_exp2)
(ODBC 1.0)

Returns a character string that is the result of 
concatenating string_exp2 to string_exp1. The 
resulting string is DBMS-dependent. 

INSERT(string_exp1, start, length, 
string_exp2)
(ODBC 1.0)

Returns a character string where length charac-
ters have been deleted from string_exp1 begin-
ning at start and where string_exp2 has been 
inserted into string_exp, beginning at start.

LCASE(string_exp)
(ODBC 1.0)

Returns a string equal to that string_exp, with all 
uppercase characters converted to lowercase..

LEFT(string_exp, count)
(ODBC 1.0)

Returns the leftmost count of characters of 
string_exp.

LENGTH(string_exp)
(ODBC 1.0)

Returns the number of characters in string_exp, 
excluding trailing blanks.
                                                                    Scalar Functions E-3



String Functions
LOCATE(string_exp1, string_exp2[, 
start])

Returns the starting position of the first occur-
rence of string_exp1 within string_exp2. The 
search for the first occurrence of string_exp1 
begins with the first character position in 
string_exp2 unless the optional argument, start, 
is specified. If start is specified, the search 
begins with the character position indicated by 
the value of start. The first character position in 
string_exp2 is indicated by the value 1. If 
string_exp1 is not found within string_exp2, the 
value 0 is returned.

If an application can call the LOCATE scalar 
function with the string_exp1, string_exp2, and 
start arguments, the driver returns 
SQL_FN_STR_LOCATE when SQLGetInfo is 
called with an Option of 
SQL_STRING_FUNCTIONS. If the application 
can call the LOCATE scalar function with only 
the string_exp1 and string_exp2 arguments, the 
driver returns SQL_FN_STR_LOCATE_2 when 
SQLGetInfo is called with an Option of 
SQL_STRING_FUNCTIONS. Drivers that sup-
port calling the LOCATE function with either 
two or three arguments return both 
SQL_FN_STR_LOCATE and 
SQL_FN_STR_LOCATE_2.

LTRIM(string_exp)
(ODBC 1.0)

Returns the characters of string_exp, with lead-
ing blanks removed.

OCTET_LENGTH(string_exp)
(ODBC 3.0)

Returns the length in bytes of the string expres-
sion. The result is the smallest integer not less 
than the number of bits divided by 8.

POSITION(character_exp IN 
character_exp)
(ODBC 3.0)

Returns the position of the first character expres-
sion in the second character expression. The 
result is an exact numeric with an implementa-
tion-defined precison and a scale of 0.

REPEAT(string_exp, count)
(ODBC 1.0)

Returns a character string composed of 
string_exp repeated count times.

REPLACE(string_exp1, string_exp2, 
string_exp3)
(ODBC 1.0)

Search string_exp1 for occurrrences of 
string_exp2, and replace with string_exp3.
E-4 SOLID Programmer Guide                              



Numeric Functions
Numeric Functions
This section describes numeric functions that are included in the ODBC scalar function set. 
Applications can call SQLGetInfo with the SQL_NUMERIC_FUNCTIONS information 
type to determine which string functions are supported by a driver.

Except for ABS, ROUND, TRUNCATE, SIGN, FLOOR, and CEILING (which return val-
ues of the same data type as the input parameters), all numeric functions return values of 
data type SQL_FLOAT.

Numberic Function Arguments

RIGHT(string_exp, count)
(ODBC 1.0)

Returns the rightmost count of characters of 
string_exp.

RTRIM(string_exp)
(ODBC 1.0)

Returns the characters of string_exp with trail-
ing blanks removed.

SPACE(count)
(ODBC 2.0)

Returns a character string consisting of count 
spaces.

SUBSTRING(string_exp, start, length)
(ODBC 1.0)

Returns a character string that is derived from 
string_exp, beginning at the character position 
specified by start for length characters.

UCASE(string_exp)
(ODBC 1.0)

Returns a string equal to that in string_exp, with 
all lowercase characters converted to uppercase.

Arguments denoted as... Definition

numeric_exp can be the name of a column, the result of another sca-
lar function, or a numeric literal, where the underly-
ing data type could be represented as 
SQL_NUMERIC, SQL_DECIMAL, SQL_TINYINT, 
SQL_SMALLINT, SQL_INTEGER, SQL_BIGINT, 
SQL_FLOAT, SQL_REAL, or SQL_DOUBLE

float_exp can be the name of a column, the result of another scalar 
function, or a numeric literal, where the underlying data type 
can be represented as SQL_FLOAT.

integer_exp can be the name of a column, the result of another sca-
lar function, or a numeric literal, where the underly-
ing data type can be represented as SQL_TINYINT, 
SQL_SMALLINT, SQL_INTEGER, or SQL_BIGINT
                                                                    Scalar Functions E-5



Numeric Functions
List of Numeric Functions

Function Description

ABS(numeric_exp)
(ODBC 1.0)

Returns the absolute value of 
numeric_exp.

ACOS(float_exp)
(ODBC 1.0)

Returns the arccosine of float_exp as an 
angle, expressed in radians.

ASIN(float_exp)
(ODBC 1.0)

Returns the arcsine of float_exp as an 
angle, expressed in radians.

ATAN(float_exp)
(ODBC 1.0)

Returns the arctangent of float_exp as an 
angle, expressed in radians.

ATAN2(float_exp1, float_exp2)
(ODBC 2.0)

Returns the arctangent of the x and y 
coordinates, specified by float_exp1 and 
float_exp2, respectively, as an angle, 
expressed in radians.

CEILING(numeric_exp)
(ODBC 1.0)

Returns the smallest integer greater than 
or equal to numeric_exp. The return 
value is of the same data type as the 
input parameter.

COS(float_exp)
(ODBC 1.0)

Returns the cosine of float_exp, where 
float_exp is an angle expressed in radi-
ans.

COT(float_exp)
(ODBC 1.0)

Returns the cotangent of float_exp, 
where float_exp is an angle expressed in 
radians.

DEGREES(numeric_exp)
(ODBC 2.0)

Returns the number of degrees con-
verted from numeric_exp radians.

EXP(float_exp)
(ODBC 1.0)

Returns the exponential value of 
float_exp.

FLOOR(numeric_exp)
(ODBC 1.0)

Returns largest integer less than or equal 
to numeric_exp. The return value is of 
the same data type as the input parame-
ter.

LOG(float_exp)
(ODBC 1.0)

Returns the natural logarithm of 
float_exp.
E-6 SOLID Programmer Guide                              



Numeric Functions
LOG10(float_exp)
(ODBC 2.0)

Returns the base 10 logarithm of 
float_exp.

MOD(integer_exp1, integer_exp2)
(ODBC 1.0)

Returns the remainder (modulus) of 
integer_exp1 divided by integer_exp2.

PI( )
(ODBC 1.0)

Returns the constant value of pi as a 
floating point value.

POWER(numeric_exp, integer_exp) Returns the value of numeric_exp to the 
power of integer_exp.

RADIANS(numeric_exp)
(ODBC 2.0)

Returns the number of radians converted 
from numeric_exp degrees.

RAND([integer_exp])
(ODBC 1.0)

Returns a random floating-point value 
using integer_exp as the optional seed 
value.

ROUND(numeric_exp, integer_exp)
(ODBC 2.0)

Returns numeric_exp rounded to 
integer_exp places right of the decimal 
point. If integer_exp is negative, 
numeric_exp is rounded to |integer_exp| 
places to the left of the decimal point.

SIGN(numeric_exp)
(ODBC 1.0)

Returns an indicator or the sign of 
numeric_exp. If numeric_exp is less than 
zero, –1 is returned. If numeric_exp 
equals zero, 0 is returned. If 
numeric_exp is greater than zero, 1 is 
returned.

SIN(float_exp)
(ODBC 1.0)

Returns the sine of float_exp, where 
float_exp is an angle expressed in radi-
ans.

SQRT(float_exp)
(ODBC 1.0)

Returns the square root of float_exp.

TAN(float_exp)
(ODBC 1.0)

Returns the tangent of float_exp, where 
float_exp is an angle expressed in radi-
ans.

TRUNCATE(numeric_exp, integer_exp)
(ODBC 2.0)

Returns numeric_exp truncated to 
integer_exp places right of the decimal 
point. If integer_exp is negative, 
numeric_exp is truncated to |integer_exp| 
places to the left of the decimal point.
                                                                    Scalar Functions E-7



Time and Date Functions
Time and Date Functions
This section lists time and date functions that are included in the ODBC scalar function set. 
Applications can call SQLGetInfo with the SQL_TIMEDATE_FUNCTIONS information 
type to determine which time and date functions are supported by a driver.

Time and Data Arguments

NoteNote

CURRENT_DATE, CURRENT_TIME, and CURRENT_TIMESTAMP timedate scalar 
functions were added in ODBC 3.0 to align with SQL-92.

Arguments denoted as... Definition

timestamp_exp can be the name of a column, the result of another sca-
lar function, or an ODBC_time_escape, 
ODBC_date_escape, or ODBC_timestamp_escape, 
where the underlying data type could be represented 
as SQL_CHAR, SQL_VARCHAR, 
SQL_TYPE_TIME, SQL_TYPE_DATE, or 
SQL_TYPE_TIMESTAMP.

date_exp can be the name of a column, the result of another sca-
lar function, or an ODBC_date_escape or 
ODBC_timestamp_escape, where the underlying data 
type could be represented as SQL_CHAR, 
SQL_VARCHAR, SQL_TYPE_DATE, or 
SQL_TYPE_TIMESTAMP.

 time_exp can be the name of a column, the result of another sca-
lar function, or an ODBC_time_escape or 
ODBC_timestamp_escape, where the underlying data 
type could be represented as SQL_CHAR, 
SQL_VARCHAR, SQL_TYPE_TIME, or 
SQL_TYPE_TIMESTAMP
E-8 SOLID Programmer Guide                              



Time and Date Functions
List of Time and Date Functions

Function Description

CURRENTTIME[(time_precision)]
(ODBC 3.0)

Returns the current local time as a time value. The 
time_precision argument determines the seconds preci-
sion of the returned value.

CURRENT_TIMESTAMP[(timestamp
_precision)]
(ODBC 3.0)

Returns the current local data and local time as a times-
tamp value. The timestamp_precision argument deter-
mines the seconds precision of the returned timestamp.

CURDATE( )
(ODBC 1.0)

Returns the current date.

CURTIME( )
(ODBC 1.0)

Returns the current local time.

DAYNAME(date_exp)
(ODBC 2.0)

Returns a character string containing the data 
source–specific name of the day (for example, Sunday, 
through Saturday or Sun. through Sat. for a data source 
that uses English, or Sonntag through Samstag for a data 
source that uses German) for the day portion of 
date_exp.

DAYOFMONTH(date_exp)
(ODBC 1.0)

Returns the day of the month in date_exp as an integer 
value in the range of 1–31.

DAYOFWEEK(date_exp)
(ODBC 1.0)

Returns the day of the week based on the week field in 
date_exp as an integer value in the range of 1–7, where 
1 represents Sunday.

DAYOFYEAR(date_exp)
(ODBC 1.0)

Returns the day of the year based on the year field in 
date_exp as an integer value in the range of 1–366.
                                                                    Scalar Functions E-9



Time and Date Functions
EXTRACT(extract_field FROM 
extract_source)
(ODBC 3.0)

Returns the extract_field portion of the extract_source. 
The extract_source argument is a datetime or interval 
xpression. The extract_field argument can be one of the 
following keywords"

YEAR
MONTH
DAY
HOUR
MINUTE
SECOND

The precision of the returned value is implementation-
defined. The scale is 0 unless SECOND is specified, in 
which case the scale is not less than the fractional sec-
onds precision of the extract_source field.

HOUR(time_exp)
(ODBC 1.0)

Returns the hour based on the hour field in time_exp as 
an integer value in the range of 0 –23.

MINUTE(time_exp)
(ODBC 1.0)

Returns the minute based on the minute field in 
time_exp as an integer value in the range of 0 –59.

MONTH(date_exp)
(ODBC 1.0)

Returns the month based on the month field in date_exp 
as an integer value in the range of 1–12.

MONTHNAME(date_exp)
(ODBC 2.0)

Returns a character string containing the data 
source–specific name of the month (for example, Janu-
ary through December or Jan. through Dec. for a data 
source that uses English, or Januar through Dezember 
for a data source that uses German) for the month por-
tion of date_exp.

NOW( )
(ODBC 1.0)

Returns current date and time as a timestamp value.

QUARTER(date_exp)
(ODBC 1.0)

Returns the quarter in date_exp as an integer value in 
the range of 1– 4, where 1 represents January 1 through 
March 31.

SECOND(time_exp)
(ODBC 1.0)

Returns the second in time_exp as an integer value in the 
range of 0-59.
E-10 SOLID Programmer Guide                              



Time and Date Functions
TIMESTAMPADD(interval, 
integer_exp, timestamp_exp)
(ODBC 2.0)

Returns the timestamp calculated by adding integer_exp 
intervals of type interval to timestamp_exp. Valid val-
ues of interval are the following keywords:

SQL_TSI_FRAC_SECOND
SQL_TSI_FRAC_SECOND
SQL_TSI_MINUTE
SQL_TSI_HOUR
SQL_TSI_DAY
SQL_TSI_WEEK
SQL_TSI_MONTH
SQL_TSI_QUARTER
SQL_TSI_YEAR

where fractional seconds are expressed in billionths of a 
second For example, the following SQL statement 
returns the name of each emplyee and his or her one-
year anniversary date:

SELECT NAME, {fn
TIMESTAMPADD(SQL_TSI_YEAR, 1, 
HIRE_DATE)} FROM
EMPLOYEES

If timestamp_exp is a time value and interval specfies 
day, weeks, months, quarters, or years, the date portion 
of timestamp_exp is set to the current date before calcu-
lating the resulting timestamp.

If timestamp_exp is a date value and interval specifies 
fractional seconds, seconds, minutes, or hours, the time 
portion of timestamp_exp is set to 0 before calculating 
the resulting timestamp.

An application determines which intervals a data source 
supports by calling SQLGetInfo with the 
SQL_TIMEDATE_ADD_INTERVALS option.
                                                                    Scalar Functions E-11



Time and Date Functions
TIMESTAMPDIFF(interval, 
timestamp_exp1, timestamp_exp2)
(ODBC 2.0)

Returns the integer number of intervals of type interval 
as the amount of full units between timestamp_exp1 and  
timestamp_exp2. 

If an application relies on the old TIMESTAMPDIFF 
semantics, the old behavior can be emulated by the fol-
lowing configuration setting in the SQL section of the 
solid.ini file.

[SQL]
EmulateOLdTIMESTAMPDIFF=YES

Note that the old semantics returns the integer number 
of intervals of type interval by which timestamp_exp2 is 
greater than timestamp_exp1.

Valid values of interval are the following keywords:

SQL_TSI_FRAC_SECOND
SQL_TSI_SECOND
SQL_TSI_MINUTE
SQL_TSI_HOUR
SQL_TSI_DAY
SQL_TSI_WEEK
SQL_TSI_MONTH
SQL_TSI_QUARTER
SQL_TSI_YEAR

where fractional seconds are expressed in billionths of a 
second. For example, the following SQL statement 
returns the name of each employee and the number of 
years they have been employed:
E-12 SOLID Programmer Guide                              



System Functions
System Functions
This section lists system functions that are included in the ODBC scalar function set. Appli-
cations can call SQLGetInfo with the SQL_SYSTEM_FUNCTIONS information type to 
determine which string functions are supported by a driver.

System Functions Arguments

TIMESTAMPDIFF(interval, 
timestamp_exp1, timestamp_exp2) (con-
tinued)

SELECT NAME, {fn 
TIMESTAMPDIFF(SQL_TSI_YEAR,
{fn CURDATE()}, HIRE_DATE)}
FROM EMPLOYEES

If either timestamp expression is a time value and inter-
val specifies days, weeks, months, quarters, or years, the 
date portion of that timestamp is set to the current date 
before calculating the difference between the times-
tamps.

If either timestamp expression is a date value and inter-
val specifies fractional seconds, seconds, minutes, or 
hours, the time portion of of that timestamp is set to 0 
before calculating the difference between the times-
tamps.

An application determines which intervals a data source 
supports by calling SQLGetInfo with the 
SQL_TIMEDATE_DIFF_INTERVALS option.

WEEK(date_exp)
(ODBC 1.0)

Returns the week of the year based on the week field in 
date_exp as an integer value in the range of 1–53.

YEAR(date_exp)
(ODBC 1.0)

Returns the year based on the year field in date_exp as 
an integer value. The range is data source–dependent.

Arguments denoted as... Definition

exp can be the name of a column, the result of another sca-
lar function, or a literal, where the underlying data 
type could be represented as SQL_NUMERIC, 
SQL_DECIMAL, SQL_TINYINT, SQL_SMALLINT, 
SQL_INTEGER, SQL_BIGINT, SQL_FLOAT, 
SQL_REAL, SQL_DOUBLE, SQL_TYPE_DATE, 
SQL_TYPE_TIME, or SQL_TYPE_TIMESTAMP.
                                                                    Scalar Functions E-13



Explicit Data Type Conversion
Values returned are represented as ODBC data types

List of System Functions
.

Explicit Data Type Conversion
Explicit data type conversion is specified in terms of SQL data type definitions.

The ODBC syntax for the explicit data type conversion function does not restrict conver-
sions. The validity of specific conversions of one data type to another data type is dependent 
on each driver-specific implementation. The driver, as it translates the ODBC syntax into the 
native syntax, reject those conversions that, although legal in the ODBC syntax, are not sup-
ported by the data source. Applications can call the ODBC function SQLGetInfo to inquire 
about conversions supported by the data source.

value can be a literal constant, where the underlying data 
type can be represented as SQL_NUMERIC, 
SQL_DECIMAL, SQL_TINYINT, SQL_SMALLINT, 
SQL_INTEGER, SQL_BIGINT, SQL_FLOAT, 
SQL_REAL, SQL_DOUBLE, SQL_TYPE_DATE, 
SQL_TYPE_TIME, or SQL_TYPE_TIMESTAMP.

integer_exp can be the name of a column, the result of another sca-
lar function, or a numeric literal, where the underly-
ing data type can be represented as SQL_TINYINT, 
SQL_SMALLINT, SQL_INTEGER, or SQL_BIGINT

Function Description

DATABASE( )
(ODBC 1.0)

Returns the name of the database corresponding to the 
connection handle. (The name of the database is also avail-
able by calling SQLGetConnectOption with the 
SQL_CURRENT_QUALIFIER connection option.)

IFNULL(exp,value
(ODBC 1.0)

If exp is null, value is returned. If exp is not null, exp is 
returned. The possible data type(s) of value must be com-
patible with the data type of exp

USER( )
(ODBC 1.0)

Returns the user’s name in the DBMS. ( The user’s autho-
rization name is also available via SQLGetInfo by speci-
fying the information type: SQL_USER_NAME.) This can 
be different from the login time.

Arguments denoted as... Definition
E-14 SOLID Programmer Guide                              



Explicit Data Type Conversion
The format of the CONVERT function is:

CONVERT(value_exp, data_type)

The function returns the value specified by value_exp converted to the specified data_type, 
where data_type is one of the following keywords:

The ODBC syntax for the explicit data type conversion function does not support specifica-
tion of conversion format. If specification of explicit formats is supported by the underlying 
data source, a driver must specify a default value or implement format specification.

The argument value_exp can be a column name, the result of another scalar function, or a 
numeric or string literal. For example:

{ fn CONVERT( { fn CURDATE() }, SQL_CHAR) }

converts the output of the CURDATE scalar function to a character string.

ODBC does not require a data type for return values from scalar functions (because the func-
tions are often data source-specific); applications should use the CONVERT scalar function 
whenever possible to force data type conversion.

The following two examples illustrate the use of the CONVERT function. These examples 
assume the existence of a table called EMPLOYEES, with an EMPNO column of type 
SQL_SMALLINT and an EMPNAME column of type SQL_CHAR. 

If an application specifies the following:

SQL_BIGINT SQL_SMALLINT

SQL_BINARY SQL_DATE

SQL_CHAR SQL_TIME

SQL_DECIMAL SQL_TIMESTAMP

SQL_DOUBLE SQL_TINYINT

SQL_FLOAT SQL_VARBINARY

SQL_INTEGER SQL_VARCHAR

SQL_LONGVARBINARY SQL_WCHAR

SQL_LONGVARCHAR SQL_WLONGVARCHAR

SQL_NUMERIC SQL_WVARCHAR

SQL_REAL
                                                                    Scalar Functions E-15



SQL-92 CAST Function
SELECT EMPNO FROM EMPLOYEES WHERE {fn CONVERT(EMPNO,SQL_CHAR)}LIKE '1%'

SOLID ODBC driver translates the request to:

SELECT EMPNO FROM EMPLOYEES WHERE CONVERT_CHAR(EMPNO) LIKE '1%'

If an application specifies the following:

SELECT {fn ABS(EMPNO)}, {fn CONVERT(EMPNAME,SQL_SMALLINT)}
FROM EMPLOYEES WHERE EMPNO <> 0

SOLID ODBC driver translates the request to:

SELECT ABS(EMPNO), CONVERT_SMALLINT(EMPNAME) FROM EMPLOYEES
WHERE EMPNO <> 0

SQL-92 CAST Function
The ODBC CONVERT function has an equivalent function in SQL-92: the CAST function. 
The syntax for these equivalent functions are:

{ fn CONVERT (value_exp, data_type)} / * ODBC
CAST (value_exp AS data_type) /* SQL 92

Support for the CAST function is at the FIPS Transitional level. For details on data type con-
version in the CAST function, see the SQL-92 specification.

To determine application support for the CAST function, call SQLGetInfo with the 
SQL_SQL_CONFORMANCE information type. The CAST function is supported if the 
return value for the information type is:

■ SQL_SC_FIPS127_2_TRANSITIONAL

■ SQL_SC_SQL92_INTERMEDIATE

■ SQL_SC_SQL92_FULL

If the return value is SQL_SC_ENTRY or 0, call SQLGetInfo with the 
SQL_SQL92_VALUE_EXPRESSIONS information type. If the SQL_SVE_CAST bit is set, 
the CAST function is supported.
E-16 SOLID Programmer Guide                              



Index
A
Ad Hoc Query

code example 2-29
ALTER TRIGGER (statement) 3-53
APIs

for accessing SOLID 1-1
SOLID Light Client 5-1, 6-1

Applications
constructing 2-21
testing and debugging 2-35

Autocommit mode
cursors 2-7
SOLID JDBC Driver 6-7
SOLID Light Client 5-9
transactions 2-7

B
Binary data

retrieving in parts 5-34, 5-39
specifying conversions

SQLGetData 5-33, 5-39
Binding

assigning storage for rowsets 2-16
column-wise 2-16
row-wise 2-16
Unicode 4-5

Bit data
specifying conversions

SQLGetData 5-33, 5-39
Bookmarks

using 2-18

C
C data types

specifying conversions
SQLGetData 5-33, 5-39

CALL statement
invoking procedures 3-2

Character data
retrieving in parts 5-34, 5-39
specifying conversions

SQLGetData 5-33, 5-39
COMMIT statements

stored procedures 3-25
Comparison operators

described 3-6
Configuring

ODBC software 2-35
Connections

terminating 2-20
Control structures

in stored procedures 3-8
Converting data

specifying conversions
SQLGetData 5-33, 5-39

CREATE EVENT statement 3-57
CREATE PROCEDURE statement

Declare section 3-4
parameter section 3-2

CREATE SEQUENCE statement 3-56
CREATE TRIGGERstatement 3-29
CURRENT_CATALOG() (scalar function) 2-3
CURRENT_SCHEMA() (scalar function) 2-3
Cursors

autocommit 2-7
                                                                Index-1



closing in stored procedures 3-17
default management in stored procedures 3-26
dropping in stored procedures 3-18
executing in stored procedures 3-16
fetching in stored procedures 3-17
handling in stored procedures 3-15
in stored procedures 3-26
parameter markers 3-20
preparing in stored procedures 3-15
SOLID support for 2-17
specifying concurrency 2-18
specifying type 2-17
types supported 2-17
using cursors 2-15

D
Data

returning in a stored procedure 3-15
Data source

connecting to 2-4
retrieving catalog information 2-9

Data types
Unicode 4-3

Date data
specifying conversions

SQLGetData 5-33, 5-39
DDL

Driver Manager 2-2
Debugging

applications 2-35
Documentation

electronic ix
Driver Manager

described 2-2
DROP EVENT statement 3-57
DROP TRIGGER (statement) 3-52

E
Error handling

stored procedures 3-18
Errors

format 2-18
JDBC Driver 6-8
Light Client API functions 5-9

processing messages 2-20
receiving in triggers 3-43
sample messages 2-19

Events
code example 3-58
using 3-56

Expressions
in stored procedures 3-6

F
Floating point data

specifying conversions
SQLGetData 5-33, 5-39

Functions
executing asynchronously 2-10
for triggers 3-53
for Unicode strings 4-5
guidelines for calling 2-1
ODBC additional extensions to SQL 2-15
return codes 2-3
SOLID Light Client 5-11
stack viewing in stored procedures 3-27

G
GRANT EXECUTE ON statement 3-27

I
IF statement

described 3-8
IF-THEN construct

described 3-8
IF-THEN-ELSE construct

described 3-9
IF-THEN-ELSEIF construct

described 3-10
Installing

ODBC software 2-35
Integer data

specifying conversions
SQLGetData 5-33, 5-39

IS NULL operator
described 3-8
Index-2  SOLID Programmer Guide                                                                    



J
Java

database access in 6-1
Java classes

CallableStatement 6-9
DatabaseMetadata 6-8

L
Length, column

result sets 5-24
Logical operations

described 3-7
LOGIN_CATALOG() (scalar function) 2-3
Loops

in stored procedures 3-12

N
NOT operator

described 3-13
Nullability

columns 5-26
Nulls

handling 3-12
Numeric data

specifying conversions
SQLGetData 5-33, 5-39

O
ODBC

additional functions to SQL 2-15
calling functions 2-2
calling procedures 2-10
Driver Manager 2-2
installing and configuring software 2-35
using extensions to SQL 2-10

Optimizer hints 2-11

P
Parameter values

setting 2-8
Parameters

using in triggers 3-37
Precision

columns
result sets 5-25

Privileges
stored procedures 3-27

PROC_COUNT function
stored procedure stack 3-27

PROC_NAME (N) function
stored procedure stack 3-27

PROC_SCHEMA (N)
stored procedure 3-27

Procedures
See also Stored procedures
calling in ODBC 2-10

R
Referential integrity

triggers 3-42
Result sets

Light Client API functions 5-9
reading for JDBC 6-5

Return code
for functions 2-3

RETURN keyword 3-14
ROLLBACK statements

stored procedures 3-25
Rowsets

assigning storage for 2-16

S
Scalar functions

native 2-3
Scale

columns
result sets 5-26

Sequences
using 3-55

SET statement
in stored procedures 3-5

SOLID
implementing Unicode 4-3

SOLID Data Dictionary
Unicode 4-4

SOLID DBConsole
Unicode client environments 4-5
                                                                    Index-3



SOLID Export
Unicode 4-4

SOLID JDBC Driver
classes and methods 6-10
code examples 6-27
connection to the database 6-3
conversion matrix 6-50
described 1-3, 6-1
getting started 6-2
registering 6-2
running SQL statements 6-3
see also Java classes 6-8
SolidCallableStatement class 6-11
SolidConnection class 6-13
SolidDatabaseMetaData class 6-23, 6-25
SolidDriver class 6-14
SolidPreparedStatement class 6-15
SolidResultSet class 6-17, 6-25
SolidStatement class 6-23
Unicode 4-6

SOLID Light Client
building a sample program 5-2
conversion matrix 5-43
described 1-3, 5-1
getting started 5-2
migrating from standard ODBC interface 5-11
migrating standard ODBC applications to 5-11
network traffic in fetching data 5-11
non-ODBC functions 5-38
samples 5-14
setting up the development environment 5-2
Unicode 4-6

SOLID ODBC API
described 1-1
Unicode 4-5, 4-6

SOLID ODBC Driver
Unicode 4-5, 4-6

SOLID Remote Control
Unicode client environments 4-5

SOLID Speedloader
Unicode 4-4

SOLID SQL Editor
Unicode client environments 4-5

SolidCallableStatement class
methods 6-11

SolidConnection class
methods 6-13

SolidDatabaseMetaData class
methods 6-23, 6-25

SolidDriver class
methods 6-14

SolidPreparedStatement class
methods 6-15

SolidResultSet class
methods 6-17, 6-25

SolidStatement class
methods 6-23

SQL
using in stored procedures 3-26
using ODBC extensions 2-10

SQL data types
columns

result sets 5-25
specifying conversions

SQLGetData 5-33, 5-39
SQL statement

running on SOLID Light Client 5-5
SQL statements

running with JDBC 6-3
SQLAllocConnect

function description 5-21
SQLAllocEnv

function description 5-22
SQLAllocStmt

function description 5-22
SQLERRNUM (variable)

error code 3-18
SQLError

SOLID Light Client API 5-9
SQLERROR (variable)

error string 3-19
SQLERROR of cursorname (variable) 3-19
SQLERRSTR (variable)

error string 3-18
SQLGetCol

function description 5-38
Light Client

conversion matrix 5-43
SQLROWCOUNT (variable)

row count 3-19
Index-4  SOLID Programmer Guide                                                                    



SQLSetParamValue
function description 5-38
Light Client 5-43

SQLSUCCESS (variable)
stored procedures 3-18

Static SQL
code example 2-21

Stored procedures
assigning values to variables 3-5
CREATE PROCEDURE statement 3-2
cursors 3-26
declaring local variables 3-4
default cursor management 3-26
described 3-1
error handling 3-18
exiting 3-14
loops 3-12
naming
nesting procedures 3-23
parameter markers in cursors 3-20
positioned updates and deletes 3-24
privileges 3-27
procedure body 3-5
procedure stack viewing 3-27
SOLID JDBC Driver 6-9
transactions 3-25
triggers 3-36
using events

 3-56
using parameters 3-2
using SQL 3-15, 3-26

Strings
zero-length 3-14

SYS_TRIGGERS (system table) 3-54
System table

for triggers 3-54

T
Testing

applications 2-35
Time data

specifying conversions
SQLGetData 5-33, 5-39

Timestamp data
specifying conversions

SQLGetData 5-33, 5-39
Transactions

autocommit mode 2-7
SOLID JDBC Driver 6-7
SOLID Light Client 5-9
stored procedures 3-25
terminating 2-20
using triggers in 3-37

Translation
affect on Unicode columns 4-6

Triggers
altering attributes 3-53
code example 3-43
comments and restrictions 3-35
creating 3-29
dropping 3-52
executing errors 3-43
functions for analyzing and debugging 3-53
obtaining information 3-53
parameter settings 3-55
privileges and security 3-42
procedures 3-36
referential integrity 3-42
setting cache 3-55
setting default or derived columns 3-36
setting nested maximum 3-55
transactions 3-37
using 3-28–3-56
using parameters and variables 3-37

U
Unicode

character translation 4-6
compliance 4-1
creating columns for storing data 4-4
data types 4-3
described 4-1
encoding forms 4-2
file names 4-3
implementing in SOLID 4-3
internal storage format 4-3
loading data 4-4
ordering data columns 4-3
setting up for SOLID 4-4
SOLID Data Dictionary 4-4
                                                                    Index-5



SOLID Export 4-4
SOLID JDBC Driver 4-6
SOLID Light Client 4-6
SOLID ODBC API 4-5, 4-6
SOLID ODBC Driver 4-5
SOLID Remote Control 4-5
SOLID Speedloader 4-4
SOLID SQL Editor 4-5
standard 4-2–4-3
string functions 4-5
user names and passwords 4-4
using in database entity names 4-4
variables and binding 4-5

V
Variables

assigning in stored procedures 3-5
Unicode 4-5
using in triggers 3-37

W
WHILE-LOOP statement 3-11

Z
Zero-length strings 3-14
Index-6  SOLID Programmer Guide                                                                    


	SOLID™Programmer Guide
	Welcome
	About this Guide
	Organization
	Audience
	Conventions
	Product Name
	Typographic


	Other SOLID Documentation
	Electronic Documentation

	Where to Find Additional Information

	1 Introduction to SOLID APIs
	SOLID ODBC Driver
	Using SOLID ODBC Driver Functions
	ODBC API Basic Application Steps

	SOLID Light Client
	SOLID JDBC Driver

	2 Using SOLID ODBC API
	Calling Functions
	Using the ODBC Driver Manager
	Data Types
	SOLID Native Scalar Functions


	Connecting to a Data Source
	Configuring the SOLID ODBC Data Source for Windows
	Retrieving User Login Information

	Executing Transactions
	Cursors and Autocommit

	Setting SOLID Parameter Values
	Retrieving Information About the Data Source’s Catalog
	Executing Functions Asynchronously

	Using ODBC Extensions to SQL
	Procedures
	Hints
	Additional Extension Functions

	Using Cursors
	Assigning Storage for Rowsets (Binding)
	Column-Wise Binding
	Row-Wise Binding

	Cursor Support
	Specifying the Cursor Type
	Cursor Support
	Cursors and Autocommit
	Specifying Cursor Concurrency


	Using Bookmarks
	Error Text Format
	Sample Error Messages
	Processing Error Messages

	Terminating Transactions and Connections
	Terminating Statement Processing
	Terminating Transactions
	Terminating Connections

	Constructing an Application
	Sample Application Code
	Static SQL Example
	Interactive Ad Hoc Query Example


	Testing and Debugging an Application
	Installing and Configuring ODBC Software

	3 Stored Procedures, Events, Triggers, and Sequences
	Stored Procedures
	Basic procedure structure
	Naming Procedures
	Parameter Section
	Declare Section
	Procedure Body
	Assignments
	Expressions
	Comparison Operators
	Logical Operators
	IS NULL Operator

	Control Structures
	IF Statement
	IF-THEN
	IF-THEN-ELSE
	IF-THEN-ELSEIF
	WHILE-LOOP
	Leaving Loops
	Handling Nulls
	NOT Operator
	Zero-Length Strings
	Example
	Exiting a Procedure
	Returning Data


	Using SQL in a Stored Procedure
	Error Handling
	SQLSUCCESS
	SQLERRNUM
	SQLERRSTR
	SQLROWCOUNT
	SQLERROR
	SQLERROR OF cursorname

	Parameter Markers in Cursors

	Calling other Procedures
	Positioned Updates and Deletes
	Transactions
	Default Cursor Management
	Notes on SQL
	Functions for Procedure Stack Viewing

	Procedure privileges
	Using Triggers
	How Triggers Work
	Creating Triggers
	CREATE TRIGGER command

	Keywords and Clauses
	Triggers Comments and Restrictions

	Triggers and Procedures
	Setting Default or Derived Columns
	Using Parameters and Variables
	Triggers and Transactions
	Recursion and Concurrency Conflict Errors
	Insert/Update/Delete Operations for BEFORE/AFTER Triggers
	Error Handling

	Triggers and Referential Integrity
	Trigger Privileges and Security
	Trigger Execution Errors
	Trigger Example
	Dropping Triggers
	Example of Dropping and Recreating a Trigger

	Altering Trigger Attributes
	Obtaining Trigger Information
	Trigger Functions
	Trigger System Table
	Trigger Parameter Settings
	Setting Nested Trigger Maximum
	Setting the Trigger Cache


	Using Sequences
	Using Events
	Event Example


	4 Using UNICODE
	What is Unicode?
	What Characters Does the Unicode Standard Include?
	Encoding Forms

	Implementing Unicode
	Setting Up Unicode Data
	Creating Columns for Storing Unicode Data
	Loading Unicode Data
	Using Unicode in Database Entity Names
	Unicode User Names and Passwords
	SOLID Data Dictionary, SOLID Export, and SOLID Speedloader
	SOLID DBConsole and teletype tools
	Unicode and SOLID ODBC Driver
	Old Client Versions
	Unicode Variables and Binding
	String Functions
	Translations

	SOLID Light Client
	Unicode and SOLID JDBC Driver

	5 Using SOLID Light Client
	What is SOLID Light Client?
	Getting started with SOLID Light Client
	Setting up the Development Environment and Building a Sample Program
	Insert the library file into your project
	Include header files

	Verifying the Development Environment Setup
	Connecting to a Database using the Sample Application

	Running SQL Statements on SOLID Light Client
	Executing Statements with SOLID Light Client
	Statement with parameters
	Reading Result Sets
	Transactions and Autocommit Mode
	Handling Database Errors


	Special Notes about using SOLID Light Client
	Network Traffic in Fetching Data
	Unicode and ODBC Support
	Notes for Programmers Familiar with ODBC

	SOLID Light Client Function Summary
	Summary of Functions

	SOLID Light Client Samples
	SOLID Light Client Function Reference
	SQLAllocConnect (ODBC 1.0, Core)
	SQLAllocEnv (ODBC 1.0, Core)
	SQLAllocStmt (ODBC 1.0, Core)
	SQLConnect (ODBC 1.0, Core)
	SQLDescribeCol (ODBC 1.0, Core)
	SQLDisconnect (ODBC 1.0, Core)
	SQLError (ODBC 1.0, Core)
	SQLExecDirect (ODBC 1.0, Core)
	SQLExecute (ODBC 1.0, Core)
	SQLFetch (ODBC 1.0, Core)
	SQLFreeConnect (ODBC 1.0, Core)
	SQLFreeEnv (ODBC 1.0, Core)
	SQLFreeStmt (ODBC 1.0, Core)
	SQLGetCursorName (ODBC 1.0, Core)
	SQLGetData (ODBC 1.0, Level 1)
	SQLNumResultCols (ODBC 1.0, Core)
	SQLPrepare (ODBC 1.0, Core)
	SQLRowCount (ODBC 1.0, Core)
	SQLSetCursorName (ODBC 1.0, Core)
	SQLTransact (ODBC 1.0, Core)
	Non-ODBC SOLID Light Client Functions
	SQLGetCol
	SQLSetParamValue
	SOLID Light Client Type Conversion Matrix


	6 Using the SOLID JDBC Driver
	What is SOLID JDBC Driver?
	Getting started with SOLID JDBC Driver
	Registering SOLID JDBC Driver
	Connecting to the Database
	Running SQL Statements with JDBC
	Executing a Simple Statement
	Statement with Parameters
	Reading result sets
	Transactions and Autocommit Mode
	Handling Database Errors


	Using DatabaseMetadata
	Special Notes About SOLID and JDBC
	Executing stored procedures
	Interface CallableStatement


	JDBC Driver Interfaces and Methods
	Array
	Blob
	CallableStatement
	Clob
	Connection
	DatabaseMetaData
	Driver
	PreparedStatement
	Ref
	ResultSet
	ResultSetMetaData
	SQLData
	SQLInput
	SQLOutput
	Statement
	Struct
	ResultSet (updatable)

	Code Examples
	Sample 1:
	Sample 2
	Sample 3
	Sample 4

	SOLID JDBC Driver Type Conversion Matrix

	A SOLID Supported ODBC Functions
	B Error Codes
	C SQL Minimum Grammar
	SQL Statements
	SQL Statement Elements
	Data Type Support
	Parameter Data Types
	Parameter Markers

	Literals in ODBC
	Interval Literal Syntax
	Numeric Literal Syntax

	List of Reserved Keywords

	D Data Types
	SQL Data Types
	C Data Types
	Data Type Identifiers
	SQL Data Types
	SQLGetTypeInfo Result Set Example

	C Data Types
	64-Bit Integer Structures
	Default C Data Types
	SQL_C_TCHAR

	Numeric Literals
	Conversion Rules
	Rules for Character Source to Numeric Target
	Rules for Numeric Source to Character Target


	Overriding Default Precision and Scale for Numeric Data Types
	Data Type Identifiers and Descriptors
	Pseudo-Type Identifiers

	Decimal Digits
	Transfer Octet Length
	Constraints of the Gregorian Calendar
	Converting Data from SQL to C Data Types
	Table Description—SQL to C

	Converting Data from C to SQL Data Types

	E Scalar Functions
	ODBC and SQL-92 Scalar Functions
	String Functions
	Numeric Functions
	Time and Date Functions
	System Functions
	Explicit Data Type Conversion
	SQL-92 CAST Function

	Index

