SOLID Embedded Engine ™

Administrator Guide

June, 2000
Version 3.51

Ce>

>

SOLID

Solid Information Technology Ltd.
www.solidtech.com
sales@solidtech.com;techsupp@solidtech.com

Copyright © 1992-2000 Solid Information Technology Ltd, Helsinki, Finland.

All rights reserved. No portion of this product may be used in any way except as expressly authorized in writing by
Solid Information Technology Ltd.

Solid logo with the text "SOLID" is aregistered trademark of Solid Information Technology Ltd.

SOLID SynchroNet™, SOLID Embedded Engine™, SOLID Intelligent Transaction™, SOLID Bonsai Tree™,
SOLID SQL Editor™, and SOLID Remote Control ™ are trademarks of Solid Information Technology Ltd.

SOLID Intelligent Transaction patent pending Solid Information Technology Ltd.

This product contains the skeleton output parser for bison (“Bison™). Copyright (c) 1984, 1989, 1990 Bob Corbett
and Richard Stallman.

For aperiod of three (3) years from the date of this license, Solid Information Technology, Ltd. will provide you, the
licensee, with a copy of the Bison source code upon receipt of your written request and the payment of SOLID's rea-
sonable costs for providing such copy.

Document number SSAG-3.51-0600
Date: June 26, 2000

Contents

MV B GO MY et ee e eeeeeseeeeeeeeeseseseeeeeseeeeeseeeeeseseeeseseeeeeseseeeseeeseseseneneeeeeseneseneeeenn iX

1 Introducing SOLID Embedded Engine

About SOLID EMDedded ENQINE........ccciiieieiiiee sttt s e 1-1
SOLID Embedded ENGiNe COMPONENTS.....c.couiiiiiririieriiiriieete e e ss e 1-3
SOL 1D Embedded Engine High Performance ArchiteCture ... 1-6
Distributed Data M anagement with SOLID SynchroNEL...........ccooviierenenenene e 1-11

2 Administering SOLID Embedded Engine

What YOU SNOUIA KNOW ... 2-1
Starting SOLID EmMBedded ENGINEo.ooeiiiiiieieeieeieeei et 2-2
Creating @ NEW Dat@base.co i 2-3
ADOUL SOLID DALADASES.......ceireeerreeerrerenrene st s st e s res e s rese s re e re e re e e ne e erens 2-4
Connecting to SOLID Embedded ENGINe........c.cooiiiiiiiiiireeereseseesieie s 2-5
Viewing the SOL 1D Embedded ENgiNE M ESSAgE L 0OQcveveerieeierienierie et 2-7
Monitoring SOLID Embedded ENGINE.........c.ccoiiiiiiiiii e e 2-7
Shutting Down SOLID Embedded ENGINE. ..ottt snese e 2-12
Performing Backup and RECOVENY ..o e 2-13
Creating ChECKPOINTS.iiiiriiecereee ettt e sr e e r e e er e e e e e nr e e nnenenneneenes 2-16
ClOSING 8 DALADASE.c.eiveieetiieetereet ettt r b bbbt h e bt n e e e 2-17
Changing Database L OCALIONc.eerrirrireererree e sn s 2-18
Running Several Serverson ONE COMPULES ..o 2-18
Entering Timed COMMANGS.......cccoiriiirieirieieseeieree sttt bbb 2-19

3 Using SOLID SQL for Data Management

USING SOLID SQL SYNEAX ...eeveueerieeerieeieeeiere e sss e e snens 3-1
Managing User Privileges and ROIES..........coo i 3-2
MANAGING TADIES ... ettt bbb bt b bbb bbbt bbb 3-6
MANAGING TNUEXESccveecereierreere e er e e e et e e s n e r e n e e neaes 3-8
MaNAGING TrANSACLIONScveuiieeiirieieee ettt ettt b e e b e b se s e e b e e e sere e st sr e st e beseebeneebeneenas 3-11
Managing Database ObjECLSccviiireireereenreee e enes 3-14

4 Using SOLID Data Management Tools

SOLID DBCONSOIE ..ot re e st sttt r et r et neer e e r e e 4-2
SOLID Remote CONtrol (FEIELYPE)oueririieieieie et e 4-4
SOLID SQL Editor (FEIELYPE)eiveuerieeirieeeriierit ettt e 4-10
SOLID SPEEULOATESevieeerieeiereeierieeesree ettt e 4-13
RS O]I 1 N oo P PRSP 4-22
SOLID DAa DICHIONEAIY ...veueeviueeierieiisieiesietesteie sttt ss bbbt bbbt sb e bt b e b ene e e ene s 4-24
Tools Sample: Reloading @ DatabDasecccovveireeinieneeee e 4-25

5 Managing Network Connections

Communication between CHENt and SEIVEYoccecieierieeee e e et 5-1
Managing NEtWOr K NAIMES..........ccoeiiriirrieeeeereesree e n e neaes 5-2
NEEWOr K NAMETOr CHENES.....cciiii ettt et e ste e ae et e e nte b e eae e b e eneennas 5-5
ComMMUNICALION PrOtOCOIS.coiuiiieieiiee ettt se e s te st e e et e e e e sneennesneenneeneeneeas 5-6
Logical Data SOUICE NAMIEScoucirriireeeereeeree st re e er e e s nn e e e e e r e re e reneenes 5-15

6 Configuring SOLID Embedded Engine

Configuration File and Default SEtEINGSovoviriiriir e e 6-1
M ANAGING PAIr GMELENS ...ttt bt b e bt bbbt s e e s ses e s s e s e b s eseasesenes 6-7

7 Performance Tuning

Tuning SQL Statements and APPliCALIONS.......co.ciieiieiieereeee e 7-1
Using Indexesto Improve QUEry Perfor ManCe..........coeieeeiireeineeene et 7-2
Optimizing Batch INsertsand UPAAtes..........ccoeeiiiririiinene st s 7-4
TUNING M EMOTY ATTOCALIONveieteece ettt b e e b e st se e sn s e 7-4

iv. SOLID Administrator Guide

TuniNg CPU CONCUITENCY LOAUceoiiiiiieiiieiirieierie ettt 7-6

TUNINQG T/O ettt bbbt bbb s e e se et e R e et e h e e bt s bt e bt eb e ebesee s e b enneneeneenennis 7-7
TUNING CRECKPOINTS ...ttt bbb bbbt bbb 7-8
USING OPLIMIZEr HINTS....c.oitiiiitiieie ettt b e st b e s e b e e b e b e e nnene e 7-8

Diagnostics and Troubleshooting

ODbSErVING P fOrMANCE. ...t bbb ee bbbt n e en e seaes 8-1
Tracing Communication between Client and SEFVEr ... 8-8
PrODIEM REPOMTING ...eovieeeicteet et b bbb bbbt 8-12
PrODIEM CAOOOIIESeeueeveeeeteieetiee ettt bbbt et bt bbbt bt enns 8-12

Error Codes

BT OF CAlOJOIIES ...ttt sttt bbbt b e bt st bbbt b bbbt b et bt b et b e b en s A-1
SOLID SQL EFTOIS ittt sttt sttt st s b bt e sae e st e sbee s b e et e e s nbeenbeesabeenbeenaeeenreas A-2
SOLID Dat@base EFTOrS.....ccceciueeeeieieestesete et e s e eteesteeeestessesseesaesaeeseesaeestestesstesteestessesnsssseessesseessens A-11
SOLID EXECULADIE EFT OIS ettt ettt ettt et sae e tesbe et et e e besnesneesnaenneeneesreas A-19
SOLID SYSLEIM EITOrS. ..ot s s e A-20
SOLID TAb @ EI T OIS ittt ettt e e et et e s re e e e sbeeseesaeeatesbeeabenbeentesseensesseesesteesreas A-23
S O DS S Y= gl o] SR A-36
SOLID COMMUNICALION EFTOrS...cciiiieiieiieieeieesieeeeeseeeesteeeesseeseesseeseesseessesse e sesseensessesnssssesssessesssnns A-39
SOLID CommUNiCaAtiON WA NINGS.....c.civeirieiereeiisieesie sttt sttt sesre s s seebe e e s s esesne e ssene e A-43
SOLID ProCeOUI B ETTOIS....cei it ccee et etee st sttt et e st e e e e teeaesreesaesaeestesaeestesasesbeeneentesaeesteensesseenees A-43
SOLID SOOI EFTOIS .uiiiiiiiieiiie sttt sttt st saa e st sttt sae e st s sbe e s st e e st e e s eeebe e sbbesbeenbeeenes A-46

Configuration Parameters

LT 1= =T IS ox T o RS B-2
INAEXFIIE SECLION ...ttt ettt r e e e s b e s be e stesaeesbeenbenteeneesbeeseestesnsesreensesaeeseess B-3
L OQgOING SECLION ...ttt sttt et b et b e b e bt et bbbt bbb bt e bt bt b e b e b en s B-4
(070001 0 g T8 a1 r= 14T g TS = o 1 o] o RS B-5
D 1= o LU o= SRS B-5
= < ST ox o) RS B-6
S0 IS o 1 o] o RS B-7
o (= = ox o) o OSSR B-8
L T S = o 1 o TR B-8

C Data Types
SUPPOI O DALA TYPES ...cveuiirieiireresre s sttt r e re e r et r et r et neer e e re e ne e C-1

D SOLID SQL Syntax

ADMIN COMMAND ..ottt r e e e bt neer b renen e D-1
ALTER TABLE ..ottt b e st b e st b e e b e e bbb se bt e st e e s e e e neenene e D-6
ALTER TRIGGER ..ottt et n s ee e e enas D-7
ALTER USER ...ttt b et n e D-7
AL L etttk b e h bR e R R e R e R R R e R R Rt e Rt e Rt bRt e b e b e b e e D-8
1010 1Y 1 e TSP O RS RP TS D-8
CREATE CATALOG ...ttt e s r e r et st ne e D-8
CREATE EVENT .ottt sttt b bbb st bt st b se b e b e sr b e seene e D-11
CREATE INDEX ...ttt er ettt r e sr e n e st n e s enesennesneneneereneene e D-13
CREATE PROCEDURE ..ottt D-14
CREATE ROLE ...ttt bbbttt s e ee e st b st e b eneebeneebeneenas D-21
CREATE SCHEMA ...ttt r e n e D-21
CREATE SEQUENCE ..ottt D-23
CREATE TABLE ...ttt b et b et b e st b e st b et eb e e b e b neene e D-24
CREATE TRIGGER ..ottt ne e e D-25
CREATE USER ...ttt sttt sttt r e r e n e st en e s nenenn e naeneneereneene e D-32
CREATE VIEW ..ottt b b e e e ettt ee st b st b s e b eneebeneenas D-32
DELETE .ottt bRttt e D-33
DELETE (POSITIONE) ...c.veuieiireieieeeeee et D-33
DROP CATALOG ...ttt ettt bbbt b bbbt bbbt b b D-33
DROP EVENT ...ttt n e e D-34
DROP INDEX ..ottt b et nenneresneennenenis D-34
DROP PROCEDURE ..ottt ettt bbb bbb bbb D-34
DROP ROLE ..ottt ettt nner et nen s D-34
DROP SCHEMA ...ttt nn e enens D-35
DROP SEQUENCE ..ottt ettt b bbbt b bbb D-35
DROP TABLE ...ttt nnen et r s D-35
DROP TRIGGER ...ttt et D-36
DROP USER......c ittt bbb et b ettt b et b et eb et D-36
DROP VIEW ..ottt et e nnen et nen s D-36
EXPLAIN PLAN FOR ..ottt D-37

vi SOLID Administrator Guide

HINT e e R e e b e e e R R e R e e e n et r s D-38
INSERT ...ttt h et h ek b bbb ea bt H bbbt b et bt b et b et b e b e b D-45
INSERT (USING QUETY) vttt sttt sttt sttt bbbttt b et b et st enns D-45
REVOKE (ROIETIOM USEN) ... D-45
REVOKE (Privilege from ROIE OF USEN).....cccieiiiiiiiriineniesniesiie et D-46
ROLLBAGCK ..ttt ettt se e bbb bbbt bt bt b e b e e b D-47
S Y 3 SRS PP STT D-47
S T et h b h R R R RS R e R e AR e R R e s R Rt R Rt e en e e n e e e Rt e et ereneenas D-48
SET SCHEMA .ttt ettt e et h b e st b st b eb e e b e st b e se b e se b seebeseebenenas D-51
UPDATE (POSITIONEA)cvveiieiriieieieiesis e en e s D-51
UPDATE (SEAICHEA) ...ttt sttt b e e e D-52
LI oL == = Lo TSSOSO TSRS D-53
QUENY_SPECITICALION ...ttt e e s r e e r e e e e e e e e e enennes D-54
SEANCN_CONTITION ..ttt e e b e e b e bbbt s e bt s e bt re et ne st en e st ereneenas D-54
CHECK_CONTITION ..ottt et b e st b e st b e se b e e st et s e st en e st e eneenas D-55
(0] =T o o SRS S RSSO D-56
SEFING FUNCLION .ttt et b e et s et se b e st se st nb et e st ee et e eneenas D-57
NUMEFTC FUNCEION ...ttt b et D-58
DAt TiME FUNCLION ..ottt et e D-59
SYSEEIM FUNCLION ...ttt b e bt b bbb bt e bbb et n e b e ens D-60
DAL LY. .. e e e b e D-61
Date and TimME LITEI@lS......ccoieeiiierieeire s e D-61
PSEUO COIUMIS. ...ttt ettt se et b et b bbbt bt bt bene b e b D-62

E System Views and System Tables
F Reserved Words
G SOLID Embedded Engine Command Line Options

Glossary

Index

vii

viii SOLID Administrator Guide

Welcome

SOLID Embedded Engine™ is a data management product for today’s smart networks.

SOLID Embedded Engine provides broad operating system support including popular Win-
dows, Unix, and real time operating system. It provides the features you would expect to
find in any industrial-strength database server—multithread architecture, stored procedures,
row level transaction management—but it delivers them with the specia needs of today’s
smart networks.

About This Guide

This SOLID Administrator Guideis designed to make the administration of SOLID
Embedded Engine smoother. This guide provides quick instructions on basic administration
and maintenance, tools and utilities, and also provides reference information.

Organization
This manual contains the following chapters:

« Chapter 1, Introducing SOLID Embedded Engine, familiarizes you with the back-
ground and components of your SOLID data management system.

« Chapter 2, Administering SOLID Embedded Engine, covers the typical administration
tasks such as starting, connecting to, and shutting down servers. It also explains how to

perform routine maintenance such as creating backups and checkpoints, and using timed

commands.

« Chapter 3, Using SOLID SQL for Data Management, gives readers the information they

need to manage users, tables, indexes, and transactions.

« Chapter 4, Using SOLID Data Management Tools, describes the available utilities for

handling database administration, specifying SQL commands and queries, and perform-

ing specific database operations, such as loading and unloading databases.

« Chapter 5, Managing Network Connections, describes how to connect to SOLID
Embedded Engine using different communication protocols.

« Chapter 6, Configuring SOLID Embedded Engine, describes how to set SOLID Embed-
ded Engine parameters for customization to meet your own environment, performance,
and operation needs.

« Chapter 7, Performance Tuning, describes how to optimize SOL 1D Embedded Engineto
improve performance.

« Chapter 8, Diagnostics and Troubleshooting, describes toolsto use for observing per-
formance and tracing problems.

Appendixes

The Appendixes give you detailed information about error messages, configuration parame-
ters, and SOLID SQL functionality.

Glossary

The Glossary of Terms explains some of the terminology used in SOLID documentation.

Audience
This manual assumes general DBM S knowledge, and a familiarity with SQL.

Conventions

Product Name

Inversion 3.0, SOLID Server or SOLID Web Engine is now known as SOLID Embedded
Engine. This guide may still make reference to SOLID Server. Throughout this guide,
"SOLID Server" and "SOLID Embedded Engine" are used synonymously.

In this guide, "Solid server" or "Solid database" isused synonymously to refer to the server
or database used in SOLID Embedded Engine.

Typographic
This manual uses the following typographic conventions.

For mat Used for

WIN.INI Uppercase letters indicate filenames, SQL
statements, macro names, and terms used
at the operating-system command level.

RETCODE SQLFet ch(hdbc) This font is used for sample command
lines and program code.

argument Italicized words indicate information that
the user or the application must provide, or
word emphasis.

SQLTransact Bold type indicates that syntax must be
typed exactly as shown, including func-
tion names.

[Brackets indicate optional items; if in bold
text, brackets must be included in the syn-
tax.

| A vertical bar separates two mutually
exclusive choicesin asyntax line.

{} Braces delimit a set of mutually exclusive
choicesin asyntax ling; if in bold text,
braces must be included in the syntax.

An dlipsisindicates that arguments can be
repeated several times.

A column of three dots indicates continua-
tion of previous lines of code.

Other SOLID Documentation

SOLID Embedded Engine documentation is distributed in an electronic format (PDF,
HTML, or Windows Help files).

Solid Online Services on our Web server offer the latest product and technical information
free of charge. The serviceislocated at:

http://ww. sol i dt ech. com

Electronic Documentation

Xii

Read Me contains installation instructions and additional information about the spe-
cific product version. Thisr eadne. t xt fileistypicaly copied onto your system
when you install the software.

Release Notes contains additional information about the specific product version. This
rel not es. t xt fileistypically copied onto your system when you install the soft-
ware.

SOL 1D SynchroNet Guide introduces you to synchronization concepts and architec-
ture and describes how to set up, use and administer SOLID SynchroNet.

SOLID Programmer Guide describes the interfaces (APIs and drivers) available for
accessing SOLID Embedded Engine and how to use them with a Solid server database.

1

Introducing SOLID Embedded Engine

This chapter introduces you to SOLID Embedded Engine™, a data management product for
today’s smart networks. It describes its benefits, features, main components, and high perfor-
mance architecture.

About SOLID Embedded Engine

SOLID Embedded Engine, developed for this new era of distributed computing systems,
provides what developers need, data storage features that meet the demands and require-
ments of their application environments.

Application developers can rely on SOLID Embedded Engine’s wide range of data types,
volumes, and processing features, which include, multithreaded parallel processing, sym-
metric multiprocessing (SMP), automatic roll-forward recovery, and stored procedures. Fur-
thermore, SOLID Embedded Engine’s portability and ease of deployment areideal in
today’s internetworked environments. SOLID Embedded Engine provides broad operating
systems support in such infrastructure platforms including popular Windows, Unix, and real
time operating systems. It is fully Year 2000 Compliant.

SOLID Embedded Engine delivers performance within SQL-92, scalability, and high avail-
ability; yet it islightweight, flexible, easy-to-use, and maintenance free with automatic oper-
ations.

Introducing SOLID Embedded Engine 1-1

About SOLID Embedded Engine

SOLID Embedded Engine Features

SOLID Embedded Engine is a secure, reliable, and accommodating solution to your data
storage needs. This section includes some of its unique benefits and features.

SOLID Bonsai Tree™

SOLID Embedded Engine features a small, but efficient index, known as The Bonsai Tree.
Thisindex tree residesin the main memory and maintains multiversion information. The
Bonsai Tree performs concurrency control, detecting if any operations conflict with each
other. This minimizes the effort needed for validating transactions. Active new datais sepa-
rated from older, more stable data, which is transferred to a storage server as a highly-opti-
mized batch insert, thus minimizing the hard disk load. The Bonsai Tree offers:

« Both optimistic and pessimistic concurrency control
« Fully seridizable transactions free from phantom updates
« Multi-versioning that allows a consistent view of the database without extralocking

« Row-level locking is available if needed for pessimistic or mixed concurrency control
methods. It can be turned on table by table, and a single transaction can use both pessi-
mistic and optimistic concurrency control methods simultaneoudly.

« Declarative referential integrity ensuring the validity of references between tables.

Wide range of data type support

SOLID Embedded Engine supports binary compatible databases across all platforms. This
support includes:

« Binary Large Objects (BLOBS), such as a picture, video clip, sound excerpt, or afor-
matted text object.

« Datastored in avariable-length format.
« Practically unlimited amount of tables, columns, keys, etc.

« Unicode support for double-byte character sets.

Stored procedures, event alerts, triggers, and sequencer objects
SOLID Embedded Engine provides these active database abjects for reduced overhead:

« Stored procedure are used to execute part of the application logic in the server and for
optimizing queries. A stored procedure can contain several SQL statements or awhole
transaction for execution with asingle call statement.

1-2 SOLID Administrator Guide

SOLID Embedded Engine Components

« Event alerts are used with stored proceduresto signal an event in the database, thereby
freeing the stored procedure from conducting its own database polling.

« Triggers are used to activate a stored procedure, which a Solid server automatically exe-
cutes when a user attempts to change the data in atable. When a user modifies data
within the table, the trigger that corresponds to the command is activated. Triggers serve
severa purposes, such as ensuring database changes do not compromise database integ-
rity, reducing network traffic by transferring logic processing to the server, etc.

« Seguence objects generate number sequences for objects stored in databases. Sequences
have an advantage over separate tables. They are specifically fine-tuned for fast execu-
tion and result in less overhead than normal update statements.

For details on these active database objects, read the SOLID Programmer Guide.

Easy Administration

With SOLID Embedded Engine, al administrative operations, including backups are per-
formed automatically or at the administrator’s request. Built-in timers are available for vari-
ous administrative tasks. For example, administrator’s can specify automated daily or
weekly backups.

SOLID Embedded Engine also features online concurrent backup, and automatic and roll-
forward recovery. Automatic recovery returns the database to the state it wasin at the
moment it encountered the error. To guarantee database integrity, all committed transactions
areread from the transaction log.

SOLID Embedded Engine data management tools let you perform local and remote adminis-
tration tasks, interactive SQL queries, and ASCII data handling, such as loading character
data from character format data files, exporting character data to character format files, and
writing data dictionary definitions of a database. For brief description of thesetools, read
System Tools and Utilities in this chapter.

SOLID Embedded Engine Components

SOLID Embedded Engine, the local data storage system for complex distributed network
environments, contains the components described in the following sections.

Programming interfaces (ODBC and JDBC)

SOLID provides ODBC and JDBC drivers for programming access to SOLID data. SOLID
ODBC Driver conforms to the Microsoft ODBC 3.51 API standard. SOLID ODBC Driver

supported functions are accessed with SOLID ODBC API, aCall Level Interface (CLI) for
Solid databases, which is compliant with ANSI X3H2 SQL CLI. The SOLID JDBC Driver

Introducing SOLID Embedded Engine 1-3

SOLID Embedded Engine Components

allows for application development with a Javatool that accesses the database using JDBC.
For more details on programming interfaces, read the SOLID Programmer Guide.

Network Communications Layer

SOLID Embedded Engine runs on all major network types and supports al of the main com-
munication protocols. Developers can create distributed applications for use in heteroge-
neous computing environments. For more details on network communication, read Chapter
6, Configuring SOLID Embedded Engine,” in this guide.

SQL Parser and Optimizer

Engine

The SQL syntax used is based on the ANSI X3H3-1989 Level 2 standard and ANSI X3H3-
1992 (SQL 2) extensions. SOLID Embedded Engine contains an advanced cost-based opti-
mizer, which ensures that even complex queries can be run efficiently. The SQL Optimizer
automatically maintains information about table sizes, the number of rowsin tables, the
available indices, and the statistical distribution of the index values.

Read Chapter 8,“ Diagnostics and Troubleshooting,” for more details on the SOLID SQL
Optimizer.

Optimizer Hints

Optimizer hints (which is an extension of SQL) are directives specified through embedded
pseudo comments within query statements. The Optimizer detects these directives or hints
and bases its query execution plan accordingly. Optimizer hints allow applications to be opti-
mized under various conditions to the data, query type, and the database. They not only pro-
vide solutions to performance problems occasionally encountered with queries, but shift
control of response times from the system to the user.

Read “ Using Optimizer Hints’ on page 7-8 for more details on optimizer hints.

The SOLID engineisthe core of the SOLID Embedded Engine product. It processes the data
requests submitted via SOLID SQL. The engine stores data and retrieves it from the data-
base.

1-4 SOLID Administrator Guide

SOLID Embedded Engine Components

Figure 1-1 SOLID Embedded Engine Components

Application

ODBC JDBC

Network Communication Layer

"

Network Communication Layer

SQL Parser and Optimizer

Query Executor

]

SOLID Engine

System Tools and Utilities

SOLID Embedded Engine also includes the following tools for data management and admin-
istration:

SOLID DBConsole

SOLID DBConsole is an easy-to-use graphical user interface for administering and monitor-
ing SOLID data management engines and executing SQL queries and commands. With
SOLID DBConsole, you can:

« execute SQL commands

« administer all database serversin anetwork from a single workstation
« generate backups either on-line or as a timed command

« Obtain server statusinformation

« Useeither the interactive or batch mode operation

« have multiple active connections to various servers

Introducing SOLID Embedded Engine 1-5

SOLID Embedded Engine High Performance Architecture

save or print query results

SOLID Remote Control (teletype) and SOLID SQL Editor (teletype) are aso available to
manage databases from the command line.

Tools for handling ASCII data
SOLID Embedded Engine provides the following tools for handling ASCII data:

SOLID Speedloader (SOLLOAD) loads data from external ASCII filesinto a SOLID
database. It is capable of inserting character data from character format. SOLID Speed-
Loader bypasses the SQL parser and uses direct writes to the database file with loading,
which allows for fast loading speed.

SOLID Export (SOLEXP) writes from a SOLID database to character format files. It is
capable of writing control files used by SOLID SpeedLoader to perform dataload oper-
ations.

SOLID Data Dictionary (SOLDD) writes the data dictionary of a database. Thistool
produces a SQL script that contains data definition statements describing the structure
of the database.

Read Chapter 4,“ Using SOLID Data Management Tools,” for details on system tools and
utilities.

SOLID Embedded Engine High Performance Architecture

What differentiates SOLID Embedded Engine from other data management productsisits
high performance architecture. This section provides conceptual information, which can give
you an understanding in configuring SOL 1D Embedded Engine to meet the needs of your
own applications and platforms. It takes a behind the scenes ook at the following processes:

Bonsai Tree Multiversioning and Concurrency Control
Dynamic SQL Optimization

Network Services

Multithread processing

SOLID Bonsai Tree Multiversioning and Concurrency Control

The Bonsai Treeisasmall active index that efficiently stores new data (del etes, inserts,
updates) in central memory, while maintaining multiversion information. Multiple versions
of arow (old and new) can co-exist in the Bonsai Tree. Both the old and new data are used
for concurrency control and for ensuring consistent read levels for all transactions without

1-6 SOLID Administrator Guide

SOLID Embedded Engine High Performance Architecture

any locking overhead. With the Bonsai Tree, the effort needed to validate transactionsis sig-
nificantly reduced.

When atransaction is started, it is given a transaction start number (TSN). The TSN is used
astheread level of the transaction; all key valuesinserted later into the database from other
connections are not visible to searches. This offers consistent index read levels that appear as
if the read operation was performed atomically at the time the transaction was started. This
guarantees read operations are presented with consistent view of the data without the need
for locks.

Later the new committed data is merged to another indexing system, known as the storage
server, and removed from the Bonsai Tree. The presorted key values are merged as a back-
ground operation concurrently with normal database operations. This offers significant I/O
optimization and load balancing. During the merge, the deleted key values are physically
removed.

Storage Server

The storage server uses a B-tree variation to store al permanent indices in the database file.
It stores both secondary keys and the primary keys. Data rows are stored as the primary key
values actually containing all the columns of the rows. There is no separate storage method
for datarows, except for BLOBs and other long column values.

Indices are separated from each other by a system-defined index-identification inserted in
front of every key value. This mechanism divides the index tree into several logical index
subtrees, where the key values of one index are clustered close to each other. For details on
data clustering, read “ Data clustering” on page 3-10.

Index Compression

Two methods are used to store key valuesin the Bonsai Tree and storage server. First, only
the information that differentiates the key value from the previous key value is saved. The
key values are said to be prefix-compressed. Second, in the higher levels of the index tree,
the key value borders are truncated from the end; that is, they are suffix-compressed.

SOLID SQL Optimizer

The SOLID SQL Optimizer, a cost-based optimizer, ensures that the execution of SQL state-
ments is done efficiently. It uses the same techniques as a rules-based optimizer, relying on a
preprogrammed set of rulesin determining the shortest path to the results. For example, the
SQL Optimizer considers whether or not an index exists, if it's unique, and over single or
composite table columns. However, unlike a rule-based optimizer, its cost-based feature can
adapt to the actual contents of the database; for example, the number of rows and the value
distribution of individual columns.

Introducing SOLID Embedded Engine 1-7

SOLID Embedded Engine High Performance Architecture

SOLID Embedded Engine maintains the statistical information about the actual data auto-
matically, ensuring optimal performance. Even when the amount and content of data
changes, the optimizer can till determine the most effective route to the data.

Query Processing

Query processing is performed in small steps to ensure that one time-consuming operation
does not block another application’s request. A query is processed in a sequence containing
the following phases.

Syntax analysis

A SQL query isanalyzed and either a parse tree for the syntax or a syntax error is produced.
When a statement is parsed, the information necessary for its execution is loaded into the
statement cache. Statements are executed repeatedly without re-optimization, aslong asits
execution information remains in the statement cache

Creating the execution graph
The execution graph, with the following features, is created from the query parse tree.

« Complex statements are written to a uniform and more simple form
« I better performance will be realized, OR criteriais converted to UNION clauses

« Intelligent join constraint transfer is performed to produce intermediate join results that
reduce the join process execution time.

Read “ The EXPLAIN PLAN Satement” on page 8-2 for details on each operation or unit in
the execution plan

Processing the execution graph
Processing of the execution graph is performed in three consecutive phases:

« Type-evauation phase

The data types of the columns of the result set are derived from the underlying table and
view definitions

« Estimate-evaluation phase

The cost of retrieving first rows and also entire result setsis evaluated, and an appropri-
ate search strategy is selected dynamically based on the bound parameter values.

The SQL Optimizer bases cost estimates on automatically maintained information of
key value distribution, table sizes, and other dynamic statistical data. No manual updates
to the index histograms or any other estimation information is required.

1-8 SOLID Administrator Guide

SOLID Embedded Engine High Performance Architecture

« Row-retrieval phase

The result rows of the query are retrieved and returned to the client application

SOLID Network Services

SOLID Network Services are based on the remote procedure call (RPC) paradigm, which
makes the communication interface simple to use. When a client sends a request to the
server, it resembles calling alocal function. The Network Servicesinvisibly route the request
and its parameters to the server, where the actual service function is called by the RPC
Server. When the service function completes, the return parameters are sent back to the call-
ing application.

In adistributed system, several applications may request a server to perform multiple opera-
tions concurrently. For maximum parallelism, SOLID Network Services use the operating
system threads when available to offer a seamless multi-user support. On non-thread operat-
ing systems, the Network Services extensively use asynchronous operations for the best pos-
sible performance.

Communication Session Layer

SOLID communication protocol DLLSs (or static libraries) offer a standard internal interface
to each protocol. The protocol interface is BSD-socket like, containing methods, such as lis-
ten, accept, select, connect, read, write, disconnect, and control.

The lowest part of the communication session layer works as a wrapper that takes care of
choosing the correct protocol DLL or library that relates with the given address information.
After this point, the actual protocol information of the session is hidden.

The communication layer detects new communication messages (requests) from applica-
tions by selecting sessions that contain unread data. Where available, the process uses
threads; el sewhere system-specific methods are used. The sessions that contain requests are
written to a message queue (FIFO), where the RPC layer can find them in the order they
arrived. If SOLID Embedded Engineis listening to many protocols simultaneously, the
requests arriving through different protocols are all written to the same message queue.

RPC Session Layer

The RPC session layer contains services for typed parameter passing. Both application and
server use these services for reading and writing all kinds of data, from standard C-types, up
to the most complex internal datatypes.

For a server, the RPC session layer offers utilities for declaring the RPC service set that the
server recognizes. The services are implemented as callback functions. The RPC level iden-

Introducing SOLID Embedded Engine 1-9

SOLID Embedded Engine High Performance Architecture

tifies the requested service, and the RPC server level is able to call the correct callback rou-
tine when requested.

For aclient, the RPC session level also alows many simultaneously pending RPC requests.
A client canin asingle operation wait for any pending request to complete.

Multithread Processing

SOLID Embedded Engine's mutlithread architecture provides an efficient way of sharing the
processor within an application. A thread is a dispatchable piece of code that merely owns a
stack, registers, and its priority. It shares everything else with al other active threadsin a
process. Creating a thread requires much less system overhead than creating a process,
which consists of code, data, an other resources such as open files and open queues.

Threads are loaded into memory as part of the calling program; no disk accessis therefore
necessary when athread isinvoked by another thread. Threads can communicate using glo-
bal variables, events, and semaphores.

If the operating system supports symmetric multi-threading between different processors,
SOL D Embedded Engine automatically takes advantage of the multiple processors.

Types of Threads

The SOLID Embedded Engine threading system consists of general purpose threads and
dedicated thread.

General Purpose Threads

General purpose threads execute tasks from the server’s tasking system. They execute such
tasks as serving user requests, making backups, making checkpoints, making timed com-
mands, and index merging.

General purpose threads take a task from the tasking system, execute the task step to com-
pletion and switch to another task from the tasking system. The tasking system worksin a
round-robin fashion distributing the client operations evenly between different threads.

The number of worker threads can be set inthesol i d. i ni configuration file.

Dedicated Threads

Dedicated threads are dedicated to a specific operation. The following dedicated threads may
exist in the server:

« |/O manager thread

This thread is used for intelligent disk 1/0 optimization and load balancing. All I/O
requests go through the 1/0 manager which determines whether to pass I/O requests to

1-10 SOLID Administrator Guide

Distributed Data Management with SOLID SynchroNet

the cache or to schedule it among other 1/0 requests. 1/0 requests are ordered by their
logical file address. The ordering optimizes thefile 1/0 since the file addresses accessed
on the disk are in close range, reducing the disk read head movement.

« Communication read threads

Applications always connect to alistener session that is running in the selector thread.
After the connection is established, a dedicated read thread can be created for each cli-
ent.

« One communication select thread per protocol (known as the selector thread)

There is usually one communication selector thread per protocol. Each running sector
thread writes incoming requests into a common message queue.

« Communication server thread (also known as the RPC server main thread)

This thread reads requests from the common message queue and serves applications by
calling the requested service functions.

Distributed Data Management with SOLID SynchroNet

SOLID SynchroNet builds on the local data storage capabilities of SOLID Embedded
Engine. It provides system-wide data sharing, which is particularly suited for applicationsin
today’s internetworked systems. With SOLID SynchroNet's asynchronous, bidirectiona data
synchronization, you can store data where it makes sense and distribute the data where it
adds value.

SOLID SynchroNet's new approach to replication addresses the data reliablity shortcomings
of traditional replication models. Its architecture builds data synchronization functionality
inside a business application. Using SOLID SynchroNet SQL extensions and Intelligent
Transactions™, application devel opers, with minimal effort, can provide the logic to ensure
datareliability within the context of their applications.

For details on SOLID SynchroNet, read the SOLID SynchroNet Guide.

Introducing SOLID Embedded Engine 1-11

Distributed Data Management with SOLID SynchroNet

Figure 1-2 System-wide sharing with SOLID SynchroNet

Master

SOLID

Applicati
ppication SynchroNet

NCL —N NCL

NCL N[ne

SOLID SOLID Application
SynchroNet

SynchroNet

Replicai Replica2

NCL=Network Communication
Layer

1-12 SOLID Administrator Guide

2

Administering SOLID Embedded Engine

This chapter covers the basics of SOLID Embedded Engine administration and mainte-
nance. The administrative tasks covered in this chapter include such tasks as creating new
databases, starting up and shutting down SOLID Embedded Engine, and connecting to serv-
ers. It also describes how to administer several servers on one computer.

For administrators, SOLID is practically maintenance free. The maintenance portion of this
chapter covers way to automate tasks, such as backups and checkpoints, through timed com-
mands. It also describes how to change database location, and perform SOLID Embedded
Engine recovery basics, such as restoring databases, and specifying transaction logs.

What You Should Know

This section describes what you need to know about SOLID Embedded Engine before you
begin administration and maintenance.

Installing SOLID Embedded Engine

If you have not yet installed SOLID Embedded Engine, refer to the ReadM e notice deliv-
ered with the software or included on the SOLID Website at:

http://ww sol i dt ech. cond
The ReadM e contains a detailed description of the installation.

Using SOLID Databases 2.20 or Prior

Beginning with SOLID version 2.3 to the current version, the default collation sequenceis
set to the standard Latin-1. SOLID databases that were created with version 2.20 or prior do
not match the Latin-1 collation sequence. To convert thedatato Latin 1 in aversion 2.20
database, you must export the database from its tables, extract data definitions, and load the

Administering SOLID Embedded Engine 2-1

Starting SOLID Embedded Engine

tables to the new database. Read “ Tools Sample: Reloading a Database” on page 4-25 for
details.

Special Roles for Database Administration
SOLID Embedded Engine has two special roles for administration and maintenance:

. SYS ADMIN_ROLE

Thisisthe Database Administrator role and has privileges to all tables, indexes, and
users, aswell astheright to use SOLID DBConsole and SOLID Remote Control (tele-
type). Thisis also the role of the creator of the database.

« SYS CONSOLE_ROLE

Thisrole has the right to use SOLID Remote Control, but has no other administration
privileges.

You define these roles using the GRANT ROLE statement. For details, read “ Managing
User Privileges and Roles’ on page 3-2.

Automated and Manual Administration

Embedded Engine is designed for continuous, unattended operation and ease of deployment.
It requires minimal maintenance. Administrative operations, including backups can be per-
formed programmatically using SQL extensions, which can run automatically or at an
administrator's request.

Sometimes it makes sense to administer systems manually. This chapter refers you to the
tools and methods available for performing manual administration. You can issue adminis-
trative commands equivalent to SOLID SQL's own ADMIN COMMANDs in SOLID
DBConsole or in SOLID Remote Control (teletype). See “ Administrative Commands’ on
page 4-6 for acommands list

Note that with SOLID DBConsole's Administrative window, you can perform most of the
SQL ADMIN COMMAND tasks that you execute on the command line with easy-to-use
dialog boxes. For a description of SOLID DBConsole, read “ SOLID DBConsole” on page
4-2. SOLID SQL Editor (teletype) also lets you enter administrative commands using the
full SQL ADMIN COMMANDs syntax . See“ ADMIN COMMAND” on page D-1 for a
commands list.

Starting SOLID Embedded Engine

When SOLID Embedded Engineis started, it checks if a database already existsin the
SOLID directory, that is, the directory where you installed SOLID executables. If a database

2-2 SOLID Administrator Guide

Creating a New Database

fileisfound, SOLID Embedded Engine will automatically open that database. If not, which
is the case when you start the server for the first time, a new database will be created.

Operating System To Start the Server...

UNIX Enter the command sol i d at the command prompt. When you start
the server for thefirst time, enter the command sol i d -f at the
command prompt to force the server to run in the foreground.

Novell Netware Enter the command | oad sol i d. nl mat the command prompt.

Open VMS Enter the command r un sol i d at the command prompt.

Windows Click theicon labeled SOLI D Enbedded Engi ne inthe SOLID Embed-
ded Engine program group.

Creating a New Database

If a database does not exist, SOLID Embedded Engine will at startup automatically create a
new database. In the Windows environment, creating the database begins with adialog
prompting for the database administrator's username, password, and a name for the default
database catalog. For details, read “ Managing Database Objects’ on page 3-14.

In other environments, if you do not have an existing database, the following message
appears:

Dat abase does not exist. Do you want to create a new dat abase (y/n)?

Answer y(es), and SOLID Embedded Engine prompts you for the database administrator's
username, password, and a name for the default database catal og.

The username and password are case insensitive. The username requires at least two charac-
ters; the password at least three. For both the username and password, the maximum num-
ber of charactersis 80. Use lower case letters from ato z, upper case letters from A to Z and
the underscore character ‘', and numbersfrom 0to 9.

> Note

You must remember your username and password to be able to connect to SOLID Embed-
ded Engine. There are no default usernames; the username you enter when creating the data-
base is the only username available for connecting to the new database.

After accepting the database administrator's username and password, SOLID Embedded
Engine creates the new database.

Administering SOLID Embedded Engine 2-3

About SOLID Databases

By default the database will be created as onefile (sol i d. db) inthe SOLID directory,
where the current working directory islocated. An empty database containing only the sys-
tem tables and views uses approximately 450 KB of disk space. The time it takes to create
the database depends on the hardware platform you are using.

After the database has been created, SOLID Embedded Engine starts listening to the net-
work for client connection requests. In the Windows environment, a SOLID Embedded
Engineicon appears, but in most environments SOLID Embedded Enginerunsinvisibly in
the background as a daemon process.

Windows only If in the Windows environment you double-click the icon of arun-
ning server, nothing will happen. SOLID Embedded Engineisa
background process that only reacts to messages from clients
through the communication interface.

About SOLID Databases

This section describes SOLID database structure and ways you can specify different values
when creating SOLID databases.

Setting Database Size and location

By default, SOLID databases set a block size for the database file as 8192 bytes. SOLID
Embedded Engine uses amultiple of 2 KB. The minimum block sizeis 2 KB and the maxi-
mum is 32 KB. The maximum size of the databaseis 64 TB.

If you want SOLID Embedded Engine to create a database with a different block size, you
have to set a new constant value before creating a new database. If you have an existing data-
base, be sure to move the old database and log files.

To modify the constant value for the new database, go to the SOLID directory and add the
following linesinthesol i d. i ni file, providing the sizein bytes:

[Indexfil e]
Bl ocksi ze=si ze_i n_bytes

After you save the file and start SOLID Embedded Engine, it creates a new database with the
new constant valuesfromthesol i d. i ni file.

Similarly, you can aso modify the The Fi | eSpec parameter to define the following:
« location of the database file to change the default of sol i d. db inthe SOLID directory

« maximum size (in bytes) the database can reach to change the default of value of
2147483647, which equals 2GB.

2-4 SOLID Administrator Guide

Connecting to SOLID Embedded Engine

You can also use the FileSpec parameter to divide the database file into multiple files and
onto multiple disks.

For details on configuration with the FileSpec parameter, read “ Managing Database Files
and Caching (IndexFile section)” on page 6-2.

Defining Database Objects

SOL D database objects include catal ogs, schemas, tables, views, indexes, stored proce-
dures, triggers, and sequences. By default, database object names are qualified with the
object owner’s user id and a system catalog name that you specify when creating a database
for the first time or converting an old database to a new format. You can also specify that
database objects be qualified by a schema name. For details, read “ Managing Database
Objects’ on page 3-14.

SOLID Embedded Engine supports a practically unlimited number of tables, rows, and
indexes. Character strings and binary data are stored in variable length format. This feature
saves disk space because no extra datais stored in the database. It also makes programming
easier on devel opers since the length of strings or binary fields do not have to be fixed. The
maximum size for asingle attribute is 2GB.

By configuring the MaxBlobExpression parameter, you can set the maximum size of LONG
VARCHAR columnsin KBsthat are used in string functions. By default, the size is 65K B.
When BLOBSs (Binary Large Objects), such as objects, images, video, graphics, or binary
fields, are larger than the configured limit, SOLID Embedded Engine automatically detects
this and stores the objects to a a special file areathat has optimized block sizes for large
files. No administrative action is required.

Connecting to SOLID Embedded Engine

After starting SOLID Embedded Engine, you can test the configuration by connecting to the
server from your workstation using SOLID DBConsole or the SOLID teletype tools, SQL
Editor or Remote Control. Read Chapter 4,“ Using SOLID Data Management Tools" for
details on these utilities which are part of the SOLID Data Management tools.

> Note

You need to have SYS ADMIN_ROLE or SYS CONSOLE_ROLE privilegeto be ableto
connect to a server using SOLID DBConsole. For details on creating these roles, read “ Man-
aging User Privileges and Roles’ on page 3-2.

Administering SOLID Embedded Engine 2-5

Connecting to SOLID Embedded Engine

To connect to SOLID Embedded Engine:

1. Viewthesol nsg. out filein your database directory for valid network names that
you can use to connect to SOLID Embedded Engine.

The following messages indicate what names you can use.

Listening of 'ShMem Solid' started.
Listening of ' TGP I P 1313 started.

2. Start one of the following applications and give the network name of the server asa
command line parameter:

Tool Command

SOLID DBConsole java DBConsole -Ddatabasename -Uurl -uuserid -ppassword

For example:

j ava DBConsol e -Dsolid -Ujdbc:solid://
| ocal host: 1313 -udba -pdba

Alternatively, you can start DBConsole without any command line
option. You are then prompted for the database connection infor-
mation.

SOLID Remote Con- solcon " networkname”
trol (teletype)
For example:

sol con "tcp hobbes 1313"

When prompted, enter the database administrator’s user name and

password.
SOLID SQL Editor solsgl " networkname"
(teletype)

For example:

sol sql "tcp hobbes 1313"

When prompted, enter the database administrator’s user name and
password.

After awhile you will see a message indicating that a connection to the server has been
established.

2-6 SOLID Administrator Guide

Monitoring SOLID Embedded Engine

Viewing the SOLID Embedded Engine Message Log

Ensure the database started without errors by checking the message log sol nsg. out ,
located in the SOLID directory. You can view thisfilein SOLID DBConsol€’'s Messages
page from the Administration window.

SOLID Embedded Engine maintains the following message log files:

« The sol nmsg. out log file contains normal informational events, such as connects,
disconnects, checkpoints, backups, etc. If an internal error occurs, the error iswritten to
thesol msg. out file.

« Iftheerrorisfatal, thesol error. out filecontains more detail about the error.

For troubleshooting purposes, SOLID Embedded Engine can also produce optional trace
files that contain information for diagnostics. Monitoring the trace filesis not necessary for
everyday operation of the server. The trace files are primarily needed for troubleshooting of
exceptional events. Refer to Chapter 8,“ Diagnostics and Troubleshooting,” for more details
on SOLID diagnostics.

Monitoring SOLID Embedded Engine

The following sections describe the methods used for querying the status of a SOLID data-
base.

Checking overall database status

You can select the Status option from the SOL 1D DBConsole Administration window. The
status page displays the following information as shown below:

Administering SOLID Embedded Engine 2-7

Monitoring SOLID Embedded Engine

Audeirs - bl 1's ol

Corguraton | Massages|

You can also issue the following command in SOLID DBConsole or SOLID Remote Con-
trol (teletype):

stat us
or in SOLID SQL Editor (teletype):
ADM N COMVAND ' st at us’ ;

The command provides the following statistics information:

2-8 SOLID Administrator Guide

Monitoring SOLID Embedded Engine

0 SQLI D Enbedded Engi ne started at Thu May 27 16:11: 20 1999
O Qurrent directory is D\solid

0 Wsing configuration file D\solid\solid.ini

0 Menory statistics:

0 1400 kil obyt es

0 Transaction count statistics:

0 GComnmit Abort Rol | back Total Read-only Trxbuf Active Validate
0 27 0 18 45 45 0 1 0
0 Cache count statistics:

0 Ht rate FH nd Read Wite

0 93.5 445 29 0

0 Database statistics:

0 Index wites 0 After last nerge 0

0 Log wites 0 After last cp 0

0 Active searches 0 Average 1

0 Dat abase si ze 1232 ki | obyt es

0 Log si ze 274 kil obytes

0 Wser count statistics:

0 Qurrent Maxi num Tot al

0 1 1 2

Following is a description of the result set fields:

« Memory statistics show the amount of memory SOLID has allocated from the operat-
ing system. This number does not include the size of the executable itself.

« Transaction count statistics show the number of different transaction operations since
startup.

« Cache count statistics show cache hit rate and number of cache operations since startup.
Cache hit rate typically is above 95 per cent.

« Database statistics show a number of the most important database operations since star-
tup. "Index writes after last merge" is an important figure here. It reveals the size of the
multi-versioning storage tree of SOLID, known asthe "Bonsai Tree." The smaller this
value s, the better the server performance. A large value indicates that thereis along-
running transaction active in the engine.

« User count statistics shows current and maximum number of concurrent users.

Administering SOLID Embedded Engine 2-9

Monitoring SOLID Embedded Engine

Obtaining Currently Connected Users
To obtain alist of currently connected users:

1. Select the Status option from the SOLID DBConsole Administration window or menu.
2. Onthe Status page, click the Usersicon.
A Usersdialog box displays each user’s name, user id, type, machine id, and login time.

You can also obtain alisting of connected users by entering command user | i st in
SOLID DBConsole or SOLID Remote Control (teletype) or enter the following SOLID SQL
syntax in SOLID SQL Editor (teletype):

ADM N COMVAND ' userlist' ;

The command provides the following kind of result set:

RC TEXT
0 Wser nane: Wser id: Type: Machine id: Logi n ti ne:
0 DBA 1 S Local 27.05 16:13: 22

Throwing out a connected Embedded Engine user
To disconnect a single user from the server, you can:

« Select the Status option from the SOLID DBConsole Administration window or menu,
click the Usersicon, and drop a selected user from the Users dialog box.

or

« Enter commandt hr owout user id inSOLID DBConsole or SOLID Remote Con-
trol (teletype) or enter the following SOLID SQL syntax in SOLID SQL Editor (tele-

type):
ADM N COMVAND ' t hr owout user i d'

Querying the status of the last backups
To obtain a status of the most recently run backup:, you can:

« Select the Status option from the SOLID DBConsole Administration window, and click
the Backup icon to view the backup status on the Backup dialog box.

or

« Enter command st at us backup in SOLID DBConsole or SOLID Remote Control
(teletype) or enter the following SOLID SQL syntax in SOLID SQL Editor (teletype):

ADM N GOMVAND ' st at us backup'

2-10 SOLID Administrator Guide

Monitoring SOLID Embedded Engine

If the last backup is successful, the result set looks as follows:
RC TEXT

If the latest backup has failed, then the RC column returns an error code. Return code
14003 with text "ACTIVE" means that the backup is currently running.

Detailed DBMS monitoring and troubleshooting

Besides checking the SOLID DBConsole Status page, you can also take a snapshot that pro-
vides additional information on Embedded Engine performance. Enter the per f non com-
mand in SOLID DBConsole or SOLID Remote Control (teletype) or enter the following
SOLID SQL syntax in SOLID SQL Editor (teletype):

ADM N GCOMWAND ' per f non'

The command returns aresult set where each column represents a snapshot of the perfor-
mance information that reflects the most recent few minutes.

The first column shows average performance information from a period of 55 seconds. The
"Total" column shows average information since Embedded Engine was started. Most num-
bers are events/second. Those numbers that cannot be expressed as events/second (for exam-
ple, database size) are expressed as absolute values.

The output information is categorized as follows:

« Fileoperations

« Cache operations

« RPC and communications operations

« SQL operations

« SA (table-level db-operations) operations

« Transaction operations

« Index write (that is, database file write) operations

« Miscellaneous operations

Administering SOLID Embedded Engine 2-11

Shutting Down SOLID Embedded Engine

Producing a status report

To create a report about the current status of SOLID Embedded Engine, enter the command
report report_fil ename in SOLID DBConsole or SOLID Remote Control (tele-
type) or enter the following SOLID SQL syntax in SOLID SQL Editor (teletype):

ADM N GOMWAND 'report report_fil enang'

Thisreport is primarily meant for SOLID internal use only because it contains information
that requires very detailed understanding about the internals of SOLID Embedded Engine.
End users sometimes are requested to produce the report for troubleshooting purposes.

Shutting Down SOLID Embedded Engine

You can shut down SOLID Embedded Engine in these ways:

« Programmatically from an application such as SOLID DBConsole, SOLID Remote Con-
trol, or SOLID SQL Editor (teletype)*.

To do this, perform the following steps:

1. To prevent new connections to Embedded Engine, close the database(s) by entering
the following command:
cl ose

2. Exit al users of Embedded Engine by entering the following command:

throwout all
3. Stop Embedded Engine by entering the following command:

shut down

* Note that when using SOLID SQL Editor (teletype) for steps 1-3, you enter the
full SQL Syntax, ADMIN COMMAND ’command_name’ (for example, ADMIN
COMMAND 'cl ose’).

« Clicking the server icon and selecting Close from the menu appearing in the Windows
environment.

« Remotely, using the command ' net st op' through the Windows NT system ser-
vices. Note that you may also start up SOLID Embedded Engine remotely, using the
'net start' command.

All the shutdown mechanisms will start the same routine, which writes all buffered datato
the database file, frees cache memory, and finally terminates the server program. Shutting
down a server may take awhile since the server must write all buffered datafrom main
memory to the disk.

2-12 SOLID Administrator Guide

Performing Backup and Recovery

Performing Backup and Recovery

This section describes how to back up your databases and recover from system failure.

Making Backups

Backups are made to secure the information stored in your database files. If you have lost
your database files because of a system failure, you can continue working with the backup
database.

You can initiate a backup in the following ways:

« Automate the backup using atimed command that initiates the backup according to a
pre-defined schedule. Read “ Entering Timed Commands’ in this chapter for details.

« Select the Status option from the SOLID DBConsole Administration window, and click
the Backup icon to initiate the backup from the Backup dialog box.

« Issuing the following command in SOLID DBConsole or SOLID Remote Control (tele-
type):
backup

« Issuethefollowing command in SOLID SQL Editor (teletype):

ADM N GOMVAND ' backup'

> Note

Be sure you have enough disk space in the backup directory for your database and log files.

Viewing SOLID Messages in the Backup Directory

The system copies the SOLID messages file (solmsg.out) file to the backup directory
(parameter BackupCopy Sol nsgout intheCGener al sectionof solid.ini isset
toyes by default). This provides a convenient way to view what operations were per-
formed with a Solid server before performing a backup. This also allows the SOLID mes-
sages file to exist in the backup directory for viewing before restoring the database from a
corresponding backup file.

Backup Procedure

SOLID Embedded Engine uses a multiversioning technique allowing backups to be made
on-line. Thereis no need to close the database file or shut down the server. However, it is
advisable that you automate backups to be run at non-busy hours. After completing the

Administering SOLID Embedded Engine 2-13

Performing Backup and Recovery

backup, copy your backup files on tape using your backup software for protection against
disk crashes.

> Notes

1. You can query programmatically the status of the most recently started backup in
SOLID DBConsole or SOLID Remote Control (teletype) by using the command st a-
t us backup. To query thelist of all completed backups and their success status, use
the command backupl i st . To use these same commandsin SOLID SQL Editor,
enter the SOLID SQL syntax (for example, ADM N COVVAND ' backupl i st).

You can also query backup status in SOLID DBConsole by selecting the Status option
in the Administration window or menu and clicking the Backup icon. A backup status
listing is displayed in a dialog box.

2. The backup directory you enter must be a valid path name in the server operating sys-
tem. For example, if the server runs on a UNIX operating system, path separators must
be slashes, not backslashes.

3. Thetime needed for making a backup isthe time that passed between the messages
Backup startedandBackup conpl et ed successful |y, whichiswritten
tothesol msg. out log files. These messages are displayed on the SOLID DBCon-

sole M essages page.

Before starting the backup process, a checkpoint is created automatically. This guarantees
that the state of a backup database is from the moment the backup process was started. The
following files are then copied to the backup directory:

« databasefile(s)
« configuration file(sol i d. i ni)

« logfile(s) modified or created after the previous backup (parameter BackupCopyLog
inthe Gener al sectionof solid.ini issettoyes by default)

« backup of SOLID messagesfilesol nsg. out (parameter BackupCopy Sol ns-
gout intheGeneral sectionof solid.ini issettoyes by default).

The unnecessary log files are deleted from the original directory after successful backup
(parameter BackupDel et eLog intheGener al sectionof solid.ini issettoyes
by default).

2-14 SOLID Administrator Guide

Performing Backup and Recovery

Correcting a Failed Backup

When SOLID Embedded Engine is performing a backup, the ADM N COMVAND °* st a-
tus backup’ command returnsthe value ‘ACTIVE'. Once the backup is completed, the
command returns either ‘OK’ or ‘FAILED’. You can aso query thisinformation using
SOLID DBConsole.

If the backup failed, you can find the error message that describes the reason for the failure
fromthesol nmsg. out filein the database directory or in the SOLID DBConsole Mes-
sages page (accessed through the Administration window or menu). Correct the cause of the
error and try again. The most common causes for failed backups are:

« thebackup mediais out of disk space
« thebackup directory does not exist
« adatabase directory is defined as the backup directory

Restoring Backups
There are two alternative ways to restore a backup. You can either:

« Return to the state when the backup was created, or

« Revive abackup database to the current state by using log files to add data inserted or
updated data after the backup was made.

To Return to the State when the Backup was Made
1. Shut down SOLID Embedded Engine, if it is running.

2. Deleteadl log files from the log file directory. The default log file names are
sol 00001. I og, sol 00002. | og, etc.

3. Copy the database file(s) from the backup directory to the database file directory.
4. Start SOLID Embedded Engine.

This method will not perform any recovery because no log files exist.

To Revive a Backup Database to the Current State
1. Shut down SOLID Embedded Engine, if it is running.

2. Copy the database file(s) from the backup directory to the database file directory.
3. Copy thelog files from the backup directory to the log file directory.
4. Start SOLID Embedded Engine.

Administering SOLID Embedded Engine 2-15

Creating Checkpoints

SOLID Embedded Engine will automatically use the log files to perform aroll-forward
recovery.

Recovering from Abnormal Shutdown

If the server was closed abnormally, that is, if it was not shut down using the procedures
described earlier, SOLID Embedded Engine automatically uses the log files to perform a
roll-forward recovery during the next start up. No administrative procedures are required to
start the recovery.

ThemessageStarting rol |l -forward recovery appears. After therecovery is
completed, a message indicates how many transactions were recovered. If no transactions
were made since the last checkpoint, thisisindicated by the following message:

Recovery successful |y conpl et ed

Transaction Logging

-

The SOLID Embedded Engine transaction log manager ensures that transaction results are
written to permanent storage immediately at commit time. Transaction logging guarantees
that no committed operations are lost in case of a system failure. When an operation is exe-
cuted in the server, the operation is also saved to atransaction log file. Thelog fileis used
for recovery in case the server is shut down abnormally.

A backup operation copies the log and database files to the backup directory and deletes the
log files from the database directory. You may change this default behavior by changing the

valuesto "no" in the following parameters: BackupCopyLog and BackupDel et eLog in
theGener al sectionof solid.ini.

Tip

For both security and performance reasons, it isa good idea to keep log files and database
files on different physical disk devices. If one disk drive is damaged, you will lose either
your database files or log files but not both.

Creating Checkpoints

Checkpoints are used to store a consistent state of the database onto the database file. Check-
points are needed to provide a starting point for the roll-forward recovery after a system fail-
ure. In theroll-forward recovery, the database will start recovering transactions from the last

2-16 SOLID Administrator Guide

Closing a Database

successful checkpoint. Thelonger it has been since the last checkpoint was created, the more
operations are recovered from the log file(s).

To speed up recoveries, create checkpoints frequently; note, however, that the server perfor-
mance is reduced during the creation of a checkpoint. Furthermore, the speed of checkpoint
creation depends on the amount of database cache used; the more database cache is used, the
longer the checkpoint creation will take. You need to consider these issues when deciding
the frequency of checkpoints. See Appendix B, “ Configuration Parameters” for a descrip-
tion of the use of CacheSi ze parameter.

SOLID Embedded Engine has an automatic checkpoint creation daemon, which creates a
checkpoint after a certain number of writes to the log files. The default checkpoint interval is
every 5000 log writes. You may change the value of the parameter Checkpoi nt | nt er -
val intheGener al section of parameters. To learn how to change a parameter value, see
“Managing Parameters’ on page 6-7 in this guide.

Before and after a database operation, you may want to create a checkpoint manually. You
can do this programmatically from your application with SQL command ADM N COw
MAND ' makecp' . You can also force a checkpoint using a timed command. Read the sec-
tion “Entering Timed Commands” in this chapter for details.

> Note

There can be only one checkpoint in the database at atime. When anew checkpoint is cre-
ated successfully, the older checkpoint is automatically erased. If the server processis termi-
nated in the middle of checkpoint creation, the previous checkpoint is used for recovery.

Closing a Database

You can close the database which means no new connections to the database are allowed. To
do this, issue the following command in SOLID DBConsole or SOLID Remote Control
(teletype):

cl ose
or in SOLID SQL Editor (teletype):
ADM N COMMAND ' status’;

In some cases you may want to prevent users from connecting to the database. For example,
when you are shutting down SOLID Embedded Engine, you need to prevent new users from
connecting to it. After closing the database, only connections from SOLID DBConsole or

Administering SOLID Embedded Engine 2-17

Changing Database Location

Changing

>

SOLID Remote Contral (teletype) will be accepted. Closing the database does not affect
existing user connections.

When the database is closed no new connections are accepted (clients will get SOLID Error
Message 14506).

SOLID DBConsole provides a user interface for managing database connections. For details,
For details, refer to DBConsole Online Help available by selecting Help on the menu bar.

Database Location

Changing a database location in SOLID Embedded Engineis as easy as copying afile from
one directory to another.

Note

To copy a database file, you need to shut down SOLID Embedded Engine to release the
operating system file locks on the database file and log files.

To Change Database Location
1. Verify that SOLID Embedded Engineis not running.

2. Copy the database and log files to the target directory.

3. Copythesolid.ini filetothetarget directory. Check that the database file direc-
tory, log file directory, and backup directory are correctly defined in the configuration
filesolid.ini.

4. Start SOLID Embedded Engine using the target directory as the current working direc-
tory using the command line option - ¢ di rect ory_nane.

Running Several Servers on One Computer

In some cases, you may want to run two or more databases on one computer. For example,
you may need a configuration with a production database and atest database running on the
same compuiter.

SOLID Embedded Engine is able to use one database per database server, but you can start
several engines each using its own database file. To make these engines use different data-
bases, either start the engine processes from the directories your databases are located in or
give the locations of configuration files by using the command line option - ¢

2-18 SOLID Administrator Guide

Entering Timed Commands

di r ect ory_nane to change the working directory. Remember to use different network
names for each database.

Entering Timed Commands

SOLID Embedded Engine has a built-in timer, which allows you to automate your adminis-
trative tasks. You can use timed commands to execute system commands, to create backups,
checkpoints, and database status reports, to open and close databases, and to disconnect
users and shut down servers.

To Enter a Timed Command Manually
Edit the At parameter of the[Srv] sectioninthesol i d. i ni file. Thesyntax is:

At string :=tined command[, tinmed_comrand]
ti med_command : = [day] H+t MM comrand ar gunent
day :=sun | non | tue | wed | thu | fri | sat

If the day is not given, the command is executed daily. For details on valid commands, refer
to the table at the end of this section.

Example:

[Srv]
At =20: 30 makecp, 21: 00 backup, sun 23: 00 shut down

> Note

The format used is HH:MM (24-hour format).

To Enter a Timed Command in SOLID DBConsole
Select the Status option from the SOLID DBConsole Administration window or menu, click
the Scheduler icon, then click New to enter atimed command in the Scheduler dialog box.

In the Scheduler dialog box provide the command, day, time, and argumentsin each of the
applicable fields. For syntax details, refer to the previous section. Refer to the following sec-
tion for alist of valid commands.

Administering SOLID Embedded Engine 2-19

Entering Timed Commands

Arguments and Defaults for the Different Timed Commands

Command Argument Default

backup backup directory the default backup directory that is
set in the configuration file

t hr owout user name, al no default, argument compul sory

makecp no arguments no default

shut down no arguments no default

report report file name no default, argument compul sory

system system command no default

open no argument no default

cl ose no argument no default

2-20 SOLID Administrator Guide

3

Using SOLID SQL for Data Management

You manage SOLID databases aswell asits users and schemausing SOLID SQL state-
ments. This chapter describes the management tasks you perform with SOLID SQL. These
tasks include managing roles and privileges, tables, indexes, transactions, catalogs, and sche-
mas.

Using SOLID SQL Syntax

The SQL syntax is based on the ANSI X3H2-1989 level 2 standard including important
ANSI X3H2-1992 (SQL 2) extensions. User and role management services missing from
previous standards are based on the ANS| SQL 3 draft. Refer to Appendix D, “ SOLID SQL
Syntax” for amore formal definition of the syntax.

SQL statements must be terminated with a semicolon (;) only when using SOLID SQL Edi-
tor or SOLID DBConsole. Otherwise, terminating SQL statements with a semicolon leads to
asyntax error.

You can use SOLID DBConsole (aswell as SOLID SQL Editor and ODBC compliant tools)
to execute SQL statements. To automate the tasks, you may want to save the SQL state-
ments to afile. You can use these files for rerunning your SQL statements later or as a docu-
ment of your users, tables, and indexes.

SOLID SQL Data Types

SOLID SQL supports data types specified in the SQL 2 Standard Entry Level specifications,
aswell asimportant Intermediate Level enhancements. Refer to Appendix C, “ Data Types”
for a compl ete description of the supported data types.

You can also define some data types with the optional length, scale, and precision parame-
ters. In that case, the default properties of the corresponding data type are not used.

Using SOLID SQL for Data Management 3-1

Managing User Privileges and Roles

SOLID SQL Extensions

SOLID SQL providesthe extension ADMIN COMMAND ‘command[command_args]' to
perform basic administrative tasks, such as backups, performance monitoring, and shutdown.

You can use SOLID SQL Editor (teletype) to execute the command options provided by
ADMIN COMMAND. To access a short description of available ADMIN COMMANDS,
execute ADM N COVWAND ' hel p' . For aformal definition of the syntax of these state-
ments, refer to Appendix D, “ SOLID SQL Syntax” in this guide.

> Note

ADMIN COMMAND tasks are also available as administrative commandsin SOLID
DBConsole and SOLID Remote Control (teletype). Read Chapter 3,“ Using SOLID SQL for
Data Management,” for details.

Managing User Privileges and Roles

You can use SOLID DBConsole, SOLID teletype tools, and many ODBC compliant SQL
tools to modify user privileges. Users and roles are created and deleted using SQL state-
ments or commands. A file consisting of several SQL statementsis called a SQL script.

Inthe\ sanpl es\ procedur es directory, you will find a SQL script called Sam

pl e. sqgl , which gives an example of creating users and roles. You can run it using SOLID
DBConsole. To create your own users and roles, you can make your own script describing
your user environment.

User Privileges

When using SOLID databases in a multi-user environment, you may want to apply user priv-
ileges to hide certain tables from some users. For example, you may not want an employee
to see the table in which employee salaries are listed, or you may not want other usersto
mess with your test tables.

You can apply five different kinds of user privileges. A user may be able to view, delete,
insert, update or reference information in atable or view. Any combination of these privi-
leges may also be applied. A user who has none of these privilegesto atable is not able to
usethetableat all.

> Note

Once user privileges are granted, they take effect when the user who is granted the privi-

3-2 SOLID Administrator Guide

Managing User Privileges and Roles

leges logs on to the database. If the user is already logged on to the database when the privi-
leges are granted, they take effect only if the user:

- accesses the table or object on which the privileges are set for the first time
-or disconnects and then reconnects to the database.

User Roles

Privileges can & so be granted to an entity called arole. A roleis agroup of privileges that
can be granted to users as one unit. You can create roles and assign users to certain roles.

Privileges can &l so be granted to an entity called arole. A roleis agroup of privileges that
can be granted to users as one unit. You can create roles and assign users to certain roles.

Note

1. The same string cannot be used both as a user name and arole name.

2. Onceauser roleisgranted, it takes effect when the user who is granted the role logs on
to the database. If the user is already logged on to the database when the role is granted,
the role takes effect when the user disconnects and then reconnects to the database.

The following user names and roles are reserved:

Reserved Names Description

PUBLIC Thisrole grants privilegesto all users. When user privi-
legesto acertain table are granted to the role PUBLI C,
all current and future users have the specified user privi-
legesto thistable. Thisroleis granted automatically to
all users.

SYS ADMIN_ROLE Thisisthe default role for the database administrator.
Thisrole has administration privileges to all tables,
indexes and users, as well as the right to use SOLID
DBconsole and SOLID Remote Control (teletype). This
isalso the role of the creator of the database.

_SYSTEM Thisisthe schema name of all system tables and views.

SYS CONSOLE_ROLE Thisrole has theright to use SOLID DBConsole, but
does not have other administration privileges.

Using SOLID SQL for Data Management 3-3

Managing User Privileges and Roles

Examples of SQL Statements

Below are some examples of SQL commands for administering users, roles, and user privi-
leges.

Creating Users

CREATE USER username IDENTIFIED BY password;

Only an administrator has the privilege to execute this statement. The following example
creates a new user named CALVI Nwith the password HOBBES.

CREATE USER CALM N | DENTI FI ED BY HCBBES,

Deleting Users
DROP USER username;

Only an administrator has the privilege to execute this statement. The following example
deletes the user named CALVI N.

DRCP USER CALM N

Changing a Password
ALTER USER username IDENTIFIED BY new password,

The user user namne and the administrator have the privilege to execute this command. The
following example changes CALVI N' s password to GUBBES.

ALTER USER CALM N | DENTI Fl ED BY GQUBBES,

Creating Roles

CREATE ROLE rolename;

The following example creates a new user role named GUEST_USERS.
CREATE ROLE QUEST_USERS,

Deleting Roles

DROP ROLE role_name;

The following exampl e deletes the user role named GUEST _USERS.
DROP ROLE QUEST USERS;

3-4 SOLID Administrator Guide

Managing User Privileges and Roles

Granting Privileges to a User or a Role
GRANT user_privilege ON table_name TO username or role_name;

The possible user privileges on tables are SELECT, INSERT, DELETE, UPDATE, REFER-
ENCESand ALL. ALL providesauser or arole all five privileges mentioned above. A new
user has no privileges until they are granted.

The following example grants | NSERT and DELETE privileges on atable named
TEST_TABLE to the GUEST_USERS role.

GRANT | NSERT, DELETE ON TEST_TABLE TO GUEST_USERS,
The EXECUTE privilege provides a user the right to execute a stored procedure:
GRANT user_privilege ON procedure_name TO username or role_name;

The following example grants EXECUTE privilege on a stored procedure named SP_TEST
to user CALVIN.

GRANT EXEQUTE ON SP_TEST TO CALM N

Note

Newly granted or updated privileges for users do not always take effect immediately. For
example, if an administrator grants privileges to a user on a specific table, the user only sees
the effect of the privilegesif the user:

- logs on to the database
- or isalready logged on to the database and is now accessing the table for the first time.

In other words, if the user islogged on and has already accessed the table, the new privi-
leges the administrator has granted on the table do not take effect until the user disconnects
from the database and then reconnects.

Granting Privileges to a User by Giving the User a Role
GRANT role_name TO username;

The following example gives the user CALVI N the privileges that are defined for the
GUEST_USERS role.

GRANT GUEST_USERS TO CALM N

Using SOLID SQL for Data Management 3-5

Managing Tables

Managing

Revoking Privileges from a User or a Role
REVOKE user_privilege ON table_name FROM username or role_name;

The following example revokes the | NSERT privilege on the table named TEST_TABLE
from the GUEST _USERS role.

REVCKE | NSERT ON TEST_TABLE FROM GUEST_USERS,

Revoking Privileges by Revoking the Role of a User
REVOKE role_name FROM username;

The following example revokes the privileges that are defined for the GUEST_USERS role
from CALVI N.

REVCKE GUEST_USERS FROM CALM N

Granting Administrator Privileges to a User
GRANT SYS_ADMIN_ROLE TO username;

The following example grants administrator privilegesto CALVI N, who now has all privi-
legesto all tables.

GRANT SYS ADMN ROLE TO CALM N

Note

If the autocommit mode is set OFF, you need to commit your work. To commit your work
use the following SQL statement; COVMM T WORK; If the autocommit modeis set ON, the
transactions are committed automatically.

Tables

A Solid server has adynamic data dictionary that allows you to create, delete and alter tables
on-line. Solid database tables are managed using SQL commands.

In the SOLID directory, you can find a SQL script named sanpl e. sql , which givesan
exampl e of managing tables. You can run the script using SOLID DBConsole.

Below are some examples of SQL statements for managing tables. Refer to Appendix D,
“S0LID SQL Syntax” for aformal definition of the SOLID SQL statements.

3-6 SOLID Administrator Guide

Managing Tables

Tip

If you want to see the names of all tablesin your database, issue the SQL statement SELECT
* FROM TABLES or use predefined command TABLES from SOLID DBConsole. The
table names can be found in the column TABLE_NAME.

Examples of SQL Statements
Below are some examples of SQL commands for administering tables.

Creating Tables

CREATE TABLE table_name (column column type
[,column column typel]...);

All users have privileges to create tables.

The following exampl e creates a new table named TEST with the column | of the column
type | NTEGER and the column TEXT of the column type VARCHAR.

CREATE TABLE TEST (I INTECER TEXT VARGHAR);

Removing Tables
DROP TABLE table_name;

Only the creator of the particular table or users having SYS_ ADM N_ROLE have privileges
to remove tables.

The following example removes the table named TEST.
DRCP TABLE TEST;

Adding Columns to a Table
ALTER TABLE table_name ADD COLUMN column_name
column_type;

Only the creator of the particular table or users having SYS ADM N_ROLE have privileges
to add or delete columnsin atable.

The following example adds the column C of the column type CHAR(1) to thetable TEST.

Using SOLID SQL for Data Management 3-7

Managing Indexes

ALTER TABLE TEST ADD COLUW C GHAR(1);

Deleting Columns from a Table
ALTER TABLE table_name DROP COLUMN
column_name;

A column cannot be dropped if it is part of aunique or primary key. For details on primary
keys, read “ Managing Indexes’ on page 3-8.
The following example statement del etes the column C from the table TEST.

ALTER TABLE TEST DRCP GCLUWN C

> Note

If the autocommit mode is set OFF, you need to commit your work before you can modify
the table you altered. To commit your work after altering atable, use the following SQL
statement: COMM T WORK; . If the autocommit mode is set ON, transactions are committed
automatically.

Managing Indexes

Indexes are used to speed up access to tables. The database engine uses indexes to access the
rows in atable directly. Without indexes, the engine would have to search the whole con-
tents of atable to find the desired row. For details on creating indexes to improve perfor-
mance, read “ Using Indexes to Improve Query Performance” on page 7-2.

There are two kinds of indexes: non-unique indexes and unique indexes. A uniqueindex is
an index where all key values are unique. You can create as many indexes asyou like on a

single table; however, adding indexes does slow down updates, such as inserts, deletes, and
updates on that table.

You can create and del ete indexes using the following SQL statements. Refer to Appendix D,
“ SOLID SQL Syntax” for aformal definition of the syntax for these statement.

Examples of SQL Statements
Below are some examples of SQL commands for administering indexes.

Creating an Index on a Table
CREATE [UNIQUE] INDEX index_name ON base_table_name

3-8 SOLID Administrator Guide

Managing Indexes

[column_identifier [ASC | DESC]
[, column_identifier [ASC | DESC]] ...

Only the creator of the particular table or users having SYS _ADMIN_ROLE have privileges
to create or delete indexes.

The following example creates an index named X_TEST on the table TEST to the column | .
CREATE | NDEX X TEST ON TEST (1);

Creating a Unique Index on a Table
CREATE UNIQUE INDEX index_name ON table_name
(column_name);

The following exampl e creates a unique index named UX_TEST on the table TEST to the
column| .

CREATE N QUE | NDEX UX_TEST ON TEST (1);

Deleting an Index

DROP INDEX index_name;

The following example deletes the index named X_TEST.
DRCP | NDEX X TEST;

> Note

If the autocommit mode is set OFF, you need to commit your work before you can modify
the table on which you altered the indexes. To commit your work after modifying indexes,
use the following SQL statement; COMM T WORK; . If the autocommit mode is set ON, the
transactions are committed automatically.

Primary Keys

A primary key isacolumn or combination of columnsthat uniquely identify each record in a
table. Primary keys like indexes speed up access to tables.

In aSolid server, the difference between primary keys and indexesis that the primary key
clusters datain the database according to the key values. This clustering processis described

Using SOLID SQL for Data Management 3-9

Managing Indexes

in the following section. Without a primary key defined to atable, rows are ordered on disk
according to the time in which they were inserted into the database.

Data clustering

The storage server, part of a Solid server's indexing system, is used to store both secondary
keys and primary keys (containing the actual data values). By defining a primary key for a
table, you allow a Solid server to use the key to physically cluster the data rows to the order
given by the index.

The set of columns used for clustering is called the row reference. The row reference
uniquely identifies the data row. If the user-defined columns for the clustering key are not
unique, the system ensures that the reference is unique by adding a unique row number to
the reference columns. The row reference is also known as the “row identifier.”

The row reference can be any combination of one or more columns. Each table has a differ-
ent set of columnsthat are used for the unique row reference.

Secondary Keys

Some tables also have a secondary key to implement primary key referencing. In this case, a
secondary key value refersto a datarow using the row reference. If al the requested datais
found from the secondary key, no search on the clustering key is performed. Otherwise, the
datais searched from the clustering key using the row reference as the search argument.

Foreign Keys

A foreign key is acolumn or group of columns within atable that refersto, or relates to,
some other table through its values. The foreign key must always include enough columnsin
its definition to uniquely identify arow in the referenced table. A foreign key must contain
the same number of columns as the primary key and be in the same order; however, afor-
eign key can have different column names and default values than the primary key.

The main reason for defining foreign keysisto ensure the validity of references between
tables. Rows in one table must always have corresponding rows in another table, thereby
maintaining referential integrity,

You define the rules for referential integrity as part of the CREATE TABLE statement
through primary and foreign keys. For example:

CREATE TABLE DEPT (
DEPT | NTEGER NOT NULL,
DNAME VARCHAR
PRIMARY KEY (DEPTNO)) ;

3-10 SOLID Administrator Guide

Managing Transactions

CREATE TABLE EMP (
DEPTNO | NTEGER
ENAME VARCHAR
FOREl GN KEY (DEPTNO REFERENCES DEPT (DEPTNO);

Refer to Appendix D, “ SOLID SQL Syntax” for CREATE TABLE syntax detail.

Managing Transactions

A transaction is a group of SQL statements treated as a single unit of work; either all the
statements are executed as a group, or none are executed. This section assumes you know the
fundamentals for creating transactions using standard SQL statements. It describes how
SOLID SQL lets you handle transaction behavior, concurrency control, and isolation levels.

Defining Read-only or Read-write Transactions
To define atransaction to be read-only or read-write, use the following SQL commands:

SET TRANSACTION READ ONLY | READ WRITE
The following options are avail able with this command.
« READ ONLY

Use this option for aread only transaction.
« READWRITE

Use this option for aread and write transaction. This option is the default.

> Note

To detect conflicts between transactions, use the standard ANSI SQL command SET
TRANSACTION ISOLATION LEVEL to define the transaction with a Repeatable Read or
Seriaizable isolation level. For details, read “ Choosing Transaction Isolation Levels’ on
page 3-13.

Transactions are ended with the COMMIT WORK or ROLLBACK WORK commands.

Using SOLID SQL for Data Management 3-11

Managing Transactions

Setting Concurrency Control

The primary model used for concurrency is a multiversioning and optimistic concurrency
control method. Multiversioning means that multiple versions of the same row can co-exist
in the database. Thisway, users are able to concurrently access the database at the same
time, and the view of the data that they accessis consistent throughout the transaction. Data
is always available to users because locking is not used; accessisimproved since deadlocks
no longer apply. For details, read “ SOLID Bonsai Tree Multiversioning and Concurrency
Control” on page 1-6. The optimistic concurrency control is automatically set for all tables.

Setting Pessimistic and Mixed Concurrency Control

When necessary, you can use pessimistic (row-level locking) or mixed concurrency control
methods. There are situations when pessimistic concurrency control is more appropriate. For
example, in some applications there are small areasthat are very frequently updated. In the
case of these so-called hotspots, conflicts are so probable that optimistic concurrency con-
trol wastes effort in rolling back conflicting transactions.

You can also use mixed concurrency control, a combination of row-level locking and opti-
mistic concurrency control. By turning on row-level locking table-by-table, you can specify
that a single transaction use both concurrency control methods simultaneously. This func-
tionality is available for both read-only and read-write transactions.

Note that since pessimistic ordering of SOLID Embedded Engine is managed on the row
level, there is no need to manage page or table level locking.

To set individual tables for optimistic or pessimistic concurrency, use the following SQL
command:

ALTER TABLE base_table_name SET { OPTIMISTIC | PESSIMISTIC}
Note that by default all tables are set for optimistic.

You can also set a database-wide default in the Gener al section of the configuration file
with the following parameter:

Pessinistic = yes

Locking

To control the level of consistency and concurrency in the application, locks are placed on
rows when users are submitting queries or updates to rows. The following lock modes are
used only for pessimistic tables:

« SHARED

3-12 SOLID Administrator Guide

Managing Transactions

Multiple users can hold shared locks on the same row simultaneously. Shared locks are
used on queries.

« UPDATE

When auser accesses arow with the SELECT... FOR UPDATE statement, therow is
locked with an update mode lock. This means that no other user can read or update the
row, and ensures the current user can later update the row.

« EXCLUSIVE

Only one user has an exclusive lock on arow at any given time. Exclusive locks are
used on insert, update, and delete operations.

Setting Lock Timeout

The lock timeout setting is the time in seconds that SOLID Embedded Engine waits for a
lock to be released. By default, lock timeout is set to 30 seconds. When the timeout interval
is reached, Embedded Engine terminates the timed out transaction. For example, if auser is
querying a specific row in atable and the second user isinserting data into the same row, the
insert will not go through until the first user’'s query is completed or times out. Once com-
pleted, alock isthen issued for the second user’s insert transaction.

You can set the lock time out with the following SQL command:
SET LOCK TIMEOUT timeout_in_seconds
Setting Lock Timeout for Optimistic Tables

When you use SELECT FOR UPDATE, the selected rows are locked also for tables with
optimistic concurrency control. To set the lock timeout separately for optimistic tables per
connection, use the following SQL command:

SET OPTIMISTIC LOCK TIMEOUT seconds

Choosing Transaction Isolation Levels

Concurrency control is based on an applications requirements. Some applications need to
execute asif they had the exclusive ownership of the database. Other applications can toler-
ate some degree of interference from other applications running simultaneously. To meet the
needs of different applications, the SQL 2 standard defines four levels of isolation for trans-
actions.

« Read Uncommitted

Thisisolation level allows transactions to read data modified by other transactions that
have not yet committed.

Using SOLID SQL for Data Management 3-13

Managing Database Objects

« Read Committed

Thisisolation level allows atransaction to read only committed data. Still, the view of
the database may change in the middle of a transaction when other transactions commit
their changes. Read Committed does not prevent phantom updates, but it does ensure
that the results set returned by asingle query is consistent by setting the read level to the
latest committed transaction when the query is started.

« Repeatable Read

Thisisolation level isthe default isolation level for SOLID databases. It allows atrans-
action to read only committed data and guarantees that read data will not change until
the transaction terminates. SOLID Embedded Engine additionally ensures that the trans-
action sees a consistent view of the database. Conflicts between transactions are
detected by using transaction write-set validation. Still, phantom updates may occur.

« Serializable

Thisisolation level allows atransaction to read only committed data with a consistent
view of the database. Additionally, no other transaction may change the values read by
the transaction before it is committed because otherwise the execution of transactions
cannot be serialized in the general case.

SOLID Embedded Engine can provide serializable transactions by detecting conflicts
between transactions. It does this by using both write-set and read-set validations.
Because no locks are used, all concurrency control anomalies are avoided, including the
phantom updates.

Setting the Isolation Level
To set the isolation level, use the following SQL command:

SET TRANSACTION ISOLATION LEVEL

READ COMMITTED | REPEATABLE READ | SERIALIZABLE
For example:
SET TRANSACTI ON | SOLATI ON LEVEL REPEATABLE READ,

Managing Database Objects

In keeping with ANSI SQL and |1SO standards, schema and catalog support are provided for
Solid database objects. Catalogs allow you to logically partition databases so you can orga-
nize your datato meet the needs of your business or application.

3-14 SOLID Administrator Guide

Managing Database Objects

A catalog can qualify one or more schemanames. A schemais a persistent database object
that provides a definition for the entire database. It represents a collection of database
objects associated with a specific schema name. These objects include tables, views,
indexes, stored procedures, triggers, and sequences.

The catalog name is used to qualify a database object name. They are qualified in all DML
statements as:

catalog_name.schema_name.database_object
or
catalog_name.user_id.database_object

You can qualify a schemawith one or more database objects. To use a schema name with a
database object, create the schema first.

schema_name.database_object_name
or
user_id.database_object_name

By default, database objects that are created without schema names are qualified using the
user ID of the database object’s creator. For example:

user_id.table_name
Catal og and schema contexts are set using the SET CATALOG or SET SCHEMA statement.

If acatalog context isnot set using SET CATALOG, then all database object names are
resolved always using the default catalog name.

Note

When creating a new database or converting an old database to a new format, the user is
prompted to specify adefault catalog name for the database system catalog. Users can
access the system catal og name without knowing this specified default catalog name. For
example, users can specify the following syntax to access the system catal og:

"', SYSTEM.table
SOLID Embedded Engine translates the empty string (") specified as a catalog name to the

default catalog name. Embedded Engine also provides for automatic resol ution of
_SYSTEM schemato the system catal og, even when users provide no catalog name.

Using SOLID SQL for Data Management 3-15

Managing Database Objects

The following SQL statement provide examples of creating catalogs and schemas. Refer to
Appendix D, “ SOLID SQL Syntax” for aformal definition of the SOLID SQL statements.

Examples of SQL Statements
Below are some examples of SQL commands for managing database objects.

Creating a Catalog
CREATE CATALOG catalog_name

Only the creator of the database or users having SYS ADMIN_ROLE have privilegesto cre-
ate or delete catalogs.

The following exampl e creates a catalog named C and assumes the userid isSM TH
CREATE CATALGG G

SET CATALGG G

CREATE TABLE T;

SHECT * FRMT,

--The nane Tis resolved to CSMTHT

Setting a Catalog and Schema Context

The following example sets a catalog context to C and the schema context to S.
SET CATALGG C

SET SCHEMA S,

CREATE TABLE T;

SELECT * FROMT,

-- the name Tis resolved to CS T

Deleting a Catalog

DROP CATALOG catalog_name;

The following exampl e deletes the catalog named C.
CRCP CATALGG C

Creating a Schema
CREATE SCHEMA schema_name

3-16 SOLID Administrator Guide

Managing Database Objects

Any database user can create a schema; however, the user must have permission to create the
objects that are pertain to the schema (for example, CREATE PROCEDURE, CREATE
TABLE, etc.).

The following example creates a schema named FI NANCE and assumes the user id is
SMITH.

The following example creates a schema named FI NANCE and assumesthe user id is
SMITH:

CREATE SCHEMA FI NANCE;

CREATE TABLE EMPLOYEE (BEMP_ID I NTEGER);

-- This table is qualified to SMTH BEMPLOYEE

SET SCHEMA F NANCE,

CREATE TABLE EMPLOYEE (1D I NTEGER);
SELECT | D FROM BEMPLOYEE,

-- Inthis case, the table is qualified to Fl NANCE BEMPLOYEE

Deleting a Schema

DROP SCHEMA schema_name;

The following exampl e del etes the schema named FI NANCE.
CRCP SCHEVA F NANCE,

Using SOLID SQL for Data Management 3-17

Managing Database Objects

3-18 SOLID Administrator Guide

A

Using SOLID Data Management Tools

This chapter describes SOLID Data Management Tools, a set of utilities for performing vari-
ous database tasks. These tools include:

« SOLID DBConsole, an easy-to-use graphical user interface for administration and con-
figuration tasks, monitoring local and remote Solid servers, issuing SQL queries and
statements, and executing SQL script files.

« SOLID Remote Control (teletype) and SOLID SQL Editor (teletype) for command line
sessions at the operating system prompt.

« SOLID SpeedLoader for loading data from external ASCI| filesinto a SOLID database.
« SOLID Export isa product for unloading datafrom a SOLID database to ASCI| files.

« SOLID Data Dictionary for retrieving data definition statements from a SOLID data-
base.

> Note

Not all SOLID Tools are necessarily part of the standard product delivery, and their avail-
ability on some platforms may be limited. For information about SOLID data management
tools, contact your SOLID sales representative or SOLID Online Services at the SOLID Web
site:

http://wwu sol i dt ech. cond

Using SOLID Data Management Tools 4-1

SOLID DBConsole

SOLID DBConsole

SOLID DBConsoleis ajava-based, graphical user interface for managing, administering,
and querying local and remote Solid servers. Designed for intuitive and efficient ease-of-use,
it allows you to create and manipul ate database schemas, browse data, monitor and manage
both local and remote databases, and configure Solid server parameters.

With SOLID DBConsole you can use an Administration window, which features an intuitive
interface to perform the basic administration tasks described in this manual. You can also
use a Query window to issue administrative commands (equivalent to SOLID SQL ADMIN
COMMANDSs) and create and execute script files.

> Note

To perform administration operationsin SOLID DBConsole requires SYS ADMIN_ROLE
rights.

Starting DBConsole
To start SOLID DBConsole:

« Enter the following command at your operating system prompt:

java DBonsol e

- Or_

« When using Windows, start DBConsole from the icon in your Program Group.

This displays the DBConsole interface, where you perform database tasks by using the
menubar, toolbar, or right-click mouse menus that apply to particular items in the work-
space.

> Note

Ensure that the SOLID database server is running before establishing a database connection.
Use the Add Database dialog box to add additional databases and the Connect dialog box to
connect to the databases. For details, refer to DBConsole Online Help available by selecting

4-2 SOLID Administrator Guide

SOLID DBConsole

Help on the menu bar.

You can also start DBConsole by including one or more of these optional command line
arguments:

java DBConsole options
where options can be:

-Mmode mode = BATCH; specifies that DBConsole run in Batch Mode
without showing the user interface.

-Ddatabasename Specifies a database for connection.

-Uurl Specifies the IDBC URL required for DBConsole to connect to a
Solid server. The format of the JDBC URL is:
JDBC:SOLID://machine_name:port_number
For example: jdbc: solid://|ocal host: 1313

-uuserid Specifies the user ID for accessing the database

-ppassword Specifies the user’'s password for accessing the database

-fqueryfile Executes the SQL statements contained in the script file.

-esgl_strings Executes the SQL strings.

-0Outputfile Specifies the file where resultsets are stored.

-OQuitputfile Specifies the file (which will be opened for writing in append
mode) where resultsets are stored.

-a All transactions are autocommitted.

-h Help Usage

DBConsole Interface Features

>

DBConsole opens each new database connection with three separate windows. a Browse
window, a Query window, and an Administration window. You can move from one window
to another to manage different databases simultaneously.

Note

The features of each window are described briefly in the following sections. For details on
usage, refer to the DBConsole Online Help available by selecting Help on the menu bar.

Using SOLID Data Management Tools 4-3

SOLID Remote Control (teletype)

Query Window

With the Query window, you can issue administrative commands (equivalent to SOLID SQL
ADMIN COMMANDS), SQL queries and statements, or execute a script file that contains
these items. For alist of administrative commands, see “ Administrative Commands’ on

page 4-6.

A results section in the Query window displays error messages and the result set, which you
can print or saveto atext file. If needed, you can cancel execution of a current SQL state-
ment and specify transaction commits and rollbacks. Settings are also available to enable
autocommit and the transaction isolation level for a connection.

Administration Window

With the Administration window, you can monitor server status (including messages) and
control all Solid serversin a network from a single workstation. From the Administration
window, you can perform the following local and remote operations:

« Control user accessto databases

« Control network protocol connections

« Generate backups and checkpoints

« Create timed commands to automate administration

« Configure a Solid server’'s parameters

Browse Window

With the Browse window, you can browse database objects, which include tables, columns,
views, indexes, stored procedures, sequences, roles, and users. A database workspace gives
you aquick view of database connections, databases, and their objectsin atree format. You
can click on anode in the tree to browse an object, which is displayed in table format. For
easier viewing, you can rearrange data columns by moving and resizing table headers.

SOLID Remote Control (teletype)

With SOLID Remote Control (tel etype), you can execute administrative commands (equiva-
lent to the SOLID SQL ADMIN COMMANDS), at the command line, command prompt, or
by executing a script file that contains the commands. For alist of these commands, see

“ Administrative Commands’ on page 4-6.

> Note

The user performing the administration operation must have SYS ADMIN_ROLE or

4-4 SOLID Administrator Guide

SOLID Remote Control (teletype)

SYS _CONSOLE_ROLE rights, or the connection will be refused.

Starting SOLID Remote Control (teletype)

Start SOLID Remote Control by issuing the command sol con or |l oad sol con (Novell
Netware) at the operating system prompt.

You can also specify the following syntax and include these optional command line argu-
ments:

solcon options servername username password

where options can be:

-cdir Change working directory

-ecommand string Execute the specified Remote Control command
-ffilename Execute command string from a script file

-h, -? Help = Usage

Servername is the network name of a Solid server that you are connected to. Logical Data
Source Names can also be used with tools; Refer to Chapter 5,“ Managing Network Connec-
tions,” for further information. The given network name must be enclosed in quotes.

Username is required to identify the user and to determine to determine the user’s authoriza-
tion. Without appropriate rights, execution is denied.

Password is the user’s password for accessing the database.

SOLID Remote Control connectsto the first server specified inthe Connect parameter in
thesol i d.ini file If you specify no arguments, you are prompted for the database
administrator’s user name and password. You can give connection information at the com-
mand line to override the connect definitioninsol i d. i ni .

To exit Remote Control, enter the command exi t .

Examples

Start up Remote Control with the servername and the administrator’s username and pass-
word:

sol con “tcp | ocal host 1313" admin iohi 4y
Start up Remote Control to back up a specific database:
sol con -ebackup “ShMem SOLI D’ dbadnin passwor d

Using SOLID Data Management Tools 4-5

SOLID Remote Control (teletype)

Entering SOLID Remote Control (teletype) Commands

After the connection to the server is established, the command prompt appears.
You can execute all commands at the command line with the -e option or in atext file with
the -f option. You can also execute all SOLID Remote Control commands programmatically

from an application using options of the SQL command “ADMIN COMMAND”. For exam-
ple, you can start a backup with the SQL command ADMIN COMMAND *backup’.

When thereis an error in the command line, SOLID Remote Control givesyou alist of the
possible options as a result. Please be sure to check the command line you entered.

Administrative Commands

Abbrevia-
Command tion Explanation

backup [backup_directory] bak Makes a backup of the database. The default backup
directory is the one defined in parameter BackupDi-
rectory in the General section of the configuration
file.

The backup directory may also be given as an argu-
ment. For example, backup abc creates backup on

directory ‘abc’. All directory definitions are relative
to the SOLID Embedded Engine working directory.

backuplist bls Displays a status list of last backups.

close clo Closes server from new connections; no new connec-
tions are allowed.

describe parameter param des par Returns description text of parmeter.

The following example describes parameter
[Com]Trace=y/n.

descri be paranmeter comtrace

errorcode ec Displays a description of an error code. Provide the
SOLID_error_code error code as an argument. For example: errorcode
10033

exit ex Exits SOLID Remote Control.

4-6 SOLID Administrator Guide

SOLID Remote Control (teletype)

Command

Abbrevia-
tion

Explanation

info options

in

Returns server information. Options are one or more
of the following values, each separated by a space:

« Numusers- number of current users

« Maxusers- maximum number of users
« Sernum - Server serial number

« Dbsize- database size

« Logsize- sizeof logfiles

« Uptime- server up since

« Bcktime - timestamp of last successfully com-
pleted backup

« Cptime - timestamp of last successfully com-
pleted checkpoint

. tracestate - Current trace statem

. monitor state - Current monitor state, number
of users withmonitor enabled, or -1 if all

= openstate - Current open or close state

Values are returned in the same order as requested,
one row for each value.

Example:

ADM N COVMAND ' i nfo dbsize
| ogsi ze’

help

Displays available commands.

makecp

mcp

Makes a checkpoint.

messages [-n] [warnings |
errors] [count]

mes

Displays server messages. Optiona severity and
message numbers can also be defined. For example:

nmessages war ni ng 100

The above example displays the last 100 warnings.

monitor {on | off} [user
username | userid]

mon

Sets server monitoring on and off. Monitoring logs
user activity and SQL callsto sol trace. out
file

Using SOLID Data Management Tools 4-7

SOLID Remote Control (teletype)

Abbrevia-
Command tion

Explanation

notify {user username |user not
id| ALL } message

This command sends an event to a given user with
event identifier NOTIFY. Thisidentifier is used to
cancle an event waiting thread when the statement
timeout is not long enough for a disconnect or to
change the event registration.

The following example sends a notify message to a
user with user id 5; the event then gets the value of
the message parameter.

notify user 5 Cancel ed by adm n

open ope Opens server for new connections; new connections
are alowed.
parameter par Displays server parameter values. For example:

[option][name[=valug]]

« parameter used alone displays all parameters

« parameter general displaysall parameters
from section “general.”

« parameter general.readonly displaysasingle
parameter “readonly” from section “genera.”

« parameter com.trace=yes sets communication
trace on

If -r isused, then only the current parameter values
are returned.

4-8 SOLID Administrator Guide

SOLID Remote Control (teletype)

Command

Abbrevia-
tion

Explanation

perfmon [options][subsystem pmon

Returns performance statistics from the server.

prefix] Options are:
= -creturnsall values as the counter
« -d returns short descriptions
= -Vreturnscurrent values
= -treturnstotal values
By default, some val ues are averages/second.
The subsystem prefix is used to find matches to
vaue names. Only those values are returned that
match the subsystem prefix.
The following example returns al information:
per f mon
The following example returns all values whose
name starts with prefix File as counters.
per f mon-c

pid pid Returns server processid

protocols prot Returnslist of available communication protocols,
one row for each protocol.

report filename rep Generates areport of server info to afile given asan
argument.

shutdown sd Stops SOL 1D Embedded Engine.

status sta Displays server statistics.

status backup sta bak Displays status of the last started backup. The status

can be one of the following:

« If thelast backup was successful or any back-
ups have not been requested, the output is0
SUCCESS.

« Ifthebackup isin process; for example, started
but not ready yet, the output is 14003 ACTIVE.

« If thelast backup failed, the output is:
errorcode ERROR
where the errcode shows the reason for the fail-
ure.

Using SOLID Data Management Tools 4-9

SOLID SQL Editor (teletype)

Abbrevia-

Command tion Explanation

throwout { username | userid | to Exits users from SOLID Embedded Engine. To exit a

al} specified user, give the user id as an argument. To
throw out all users, use the keyword ALL as an argu-
ment.

trace {on | off} sgl | rpc| tra Sets server trace on or off. Thiscommand is similar

sync to the monitor command, but traces different enti-
ties and a different levels. By default, the output is
written to the SOLTRACE.OUT file.

userid uid Returns user identification number of the current
connection.

userlist [-] [name | id] ul Displays alist of users. option -I displays more
detailed output.

version ver Displays server version info.

SOLID SQL Editor (teletype)

With SOLID SQL Editor (teletype), SQL statements (including the SQL ADMIN COM-
MANDS) can beissued at the command line, command prompt, or by executing a script file
that contains the SQL statements. For aformal definition of SQL statements and alist of
ADMIN COMMANDs, refer to Appendix D, “ SOLID SQL Syntax” in this guide. To access
ashort description of available ADMIN COMMANDSs, including short abbreviations, exe-
cute:

ADM N COMVAND ' hel p' .

> Note

The user performing SQL statements must have appropriate user rights on the correspond-
ing tables, or the connection will be refused.

Starting SOLID SQL Editor (teletype)

Start SOLID SQL Editor by issuing the command sol sql orl oad sol sql (Novell Net-
ware) at the operating system prompt.

You can also specify the following syntax and include these optional command line argu-
ments:

4-10 SOLID Administrator Guide

SOLID SQL Editor (teletype)

solsql options servername username password

where options can be:

-a Auto commit every statement

-cdir Change working directory
-esql-string Execute the SQL string; if used commit can only be done using -a.
-ffilename Execute SQL string from a script file
-h, -? Help = Usage

-ofilename Writeresult set to thisfile
-Ofilename Append result set to thisfile
-sschema_name Use only this schema

-t Print execution time per command

-u Expect input in UTF-8 format

-x onlyresults Print only rows

> Note

If the user name and password are specified at the command line, the server name must also
be specified. Also if the name of the SQL script fileis specified at the command line (not
with the -f option), the server name, user name, and password must also be specified.
Remember to commit work at the end of the SQL script or before exiting SQL Editor.

Servername is the network name of a Solid server that you are connected to. Logical Data
Source Names can al so be used with tools; Refer to Chapter 5,“ Managing Network Connec-
tions,” for further information. The given network name must be enclosed in quotes.

Username is required to identify the user and to determine to determine the user’s authoriza-
tion. Without appropriate rights, execution is denied.

Password is the user’s password for accessing the database.

SOLID SQL Editor connectsto the first server specified in the Connect parameter in the
solid.ini file. If you specify no arguments, you are prompted for the database administrator’s
user name and password.

When thereis an error in the command line, the SOLID SQL Editor gives you alist of the
possible options as a result. Please be sure to check the command line you entered.

To exit SQL Editor, enter the command exi t .

Using SOLID Data Management Tools 4-11

SOLID SQL Editor (teletype)

Examples

Assuming that a database connection is established, this example at the command prompt,
executes the SQL statements terminated by a colon:;

create table testtabl e (val ue integer, name varchar);

commit work;
Start SQL Editor and execute the tables.sql script:
sol sgl “tcp | ocal host 13113" adm n iohe47 tabl es. sql

Executing SQL Statements with SOLID SQL Editor (teletype)

After the connection to the server has been established a command prompt appears. SOLID
0L Editor (teletype) executes SQL statements terminated by a semicolon.

Example:

create table testtabl e (val ue integer, nane varchar);
commit work;

insert into testtable (value, nane) val ues (31, 'Duffy Duck');
sel ect val ue, name fromtesttabl e;
commt work;

drop tabl e testtabl e
commt work;

Executing a SQL Script from a File

To execute a SQL script from afile, the name of the script file must be given as acommand
line parameter:

solsgl servername username password filename

All statements in the script must be terminated by a semicolon. SOLID SQL Editor (tele-
type) exits after all statements in the script file have been executed.

Example:
sol sgl "tcp | ocal host 1313" adnin iohedy tabl es. sql

4-12 SOLID Administrator Guide

SOLID SpeedLoader

> Note

Remember to commit work at the end of the SQL script or before exiting SOLID SQL Edi-
tor (teletype). If a SQL string is executed with the option -e, commit can only be done using
the -a option.

SOLID SpeedLoader

SOLID SpeedLoader isatool for loading data from external ASCII filesinto a SOLID data-
base. SOLID SpeedLoader can load datain a variety of formats and produce detailed infor-
mation of the loading processinto alog file. The format of the import file, that is, the file
containing the external ASCII data, is specified in a control file.

The datais loaded into the database through the SOLID Embedded Engine program. This
enables online operation of the database during the loading. The data to be loaded does not
have to reside in the server computer.

Control File

The control file provides information on the structure of the import file. It gives the follow-
ing information:

« hame of the import file
« format of theimport file

« tableand columnsto be loaded

> Note

Each import file requires a separate control file. SOLID SpeedLoader |oads datainto one
table at atime.

For details about control file format, read “ Control File Syntax” on page 4-16. Please note
the following:

« Thetable must exist in the database in order to perform data loading.
« Catalog support isavailable in SOLID Speedloader. The following syntax is supported:

catalog_name.schema_name.table_name

Using SOLID Data Management Tools 4-13

SOLID SpeedLoader

Import File
The import file must be of ASCII type. The import file may contain the data either in afixed
or adelimited format:

« Infixed-length format data records have afixed length, and the data fields inside the
records have a fixed position and length.

« Indelimited format data records can be of variable length. Each datafield and data
record is separated from the next with a delimiting character such asacomma (thisis
what SOLID Export produces). Fields containing no data are automatically set to
NULL.

Data fields within arecord may be in any order specified by the control file. Please note the
following:

« Dataintheimport file must be of a suitable type. For example, numbers that are pre-
sented in afloat format cannot be loaded into afield of integer or smallint type.

« Dataof varbinary and long varbinary type are hexadecimal encoded in the import file.

Message Log File

During loading, SOLID SpeedLoader produces alog file containing the following informa-
tion:

« Date and time of the loading

« Loading statistics such as the number of rows successfully loaded, the number of failed
rows, and the load time if it has been specified with the option

« Any possible error messages

If the log file cannot be created, the loading process is terminated. By default the name of
thelog file is generated from the name of the import file by substituting the file extension of
theimport file with the file extension. | og. For example, my_t abl e. ctr createsthelog
fileny_t abl e. | og. To specify another kind of file name, use the option -I.

Configuration File

A configuration file is not required for SOLID SpeedLoader. The configuration values for
the server parameters are included in the SOLID Embedded Engine configuration file
solid.ini.

Client copies of thisfile can be made to provide connection information required for SOLID
Speedloader. If no server name is specified in the command line, SOLID SpeedLoader will
choose the server name it will connect to from the server configuration file. For exampleto

4-14 SOLID Administrator Guide

SOLID SpeedLoader

connect to a server using the NetBIOS protocol and with the server name SOLID, the fol-
lowing lines should be included in the configuration file:

[Conj
Connect =net bi os SCLI D

Starting SOLID SpeedLoader

Start SOLID SpeedLoader with the command sol | oad followed by various argument
options. If you start SOLID SpeedLoader with no arguments, you will see a summary of the
arguments with a brief description of their usage. The command line syntax is:

solload options servername username password control_file
where options can be:

-Ccatalog_ name Set the default catalog from where datais read from or written to
-sschema_name Set the default schema

-brecords Number of records to commit in one batch
-cdir Change working directory

-Ifilename Writelog entriesto thisfile

-Lfilename Append log entries to thisfile

-nrecords Insert array size (network version)

-t Print load time

-X emptytable Load data only if there are no rows in the table
-X errors.count Maximum error count

-X nointegrity No integrity checks during load (standal one version)
-X skip:records Number of records to skip

--? Help = Usage

For details on control_file, read following section.

Servername is the network name of a Solid server that you are connected to. Logical Data
Source Names can al so be used with tools; Refer to Chapter 5,“ Managing Network Connec-
tions,” for further information. The given network name must be enclosed in quotes.

Username is required to identify the user and to determine the user’'s authorization. Without
appropriate rights, execution is denied.

Password is the user’s password for accessing the database.

When there is an error in the command line, the SOLID SpeedLoader givesyou alist of the
possible options as a result. Please be sure to check the command line you entered.

Using SOLID Data Management Tools 4-15

SOLID SpeedLoader

Control File Syntax

The controal file syntax has the following characteristics:

« keywords must be given in capital letters

« comments can be included using the standard SQL double-dash (--) comment notation

« Statements can continue from line to line with new lines beginning with any word

SOLID SpeedLoader reserved words must be enclosed in quotes if they are used as data dic-
tionary objects, that is, table or column names. The following list contains all reserved words

for the SOLID SpeedLoader contral file:

AND
APPEND
BLANKS
CHAR
DATA
DECIMAL
ENCLOSED
FIELDS
IBMPC
INSERT
INTO
LONG
NOCNV
NULLIF
NUMERIC
OPTIONS
POSITION
PRESERVE
REPLACE
SKIP
TABLE

4-16 SOLID Administrator Guide

ANSI

BINARY

BY
CHARACTERSET
DATE
DOUBLE
ERRORS
FLOAT
INFILE
INTEGER
LOAD
MSWINDOWS
NOCONVERT
NULLSTR
OPTIONALLY
PCOEM
PRECISION
REAL
SCAND7BIT
SMALLINT
TERMINATED

SOLID SpeedLoader

TIME
TINYINT
VARCHAR

TIMESTAMP
VARBIN
WHITESPACE

The control file begins with the statement LOAD DATA followed by several statements that
describe the data to be loaded. Only comments or the OPTIONS statement may optionally
precede the LOAD DATA statement.

Full Syntax of the Control File

Syntax Element

Definition

control_file ::=[option_part] load_data part into_table part
option_part ::= OPTIONS (options)

options ::=option [, option]

option = [SKIP="int_literal'] |[ERRORS = "int_literal']

load_data part

::= LOAD [DATA] [characterset_specification] [DATE date_mask]
[TIME time_masK]

[TIMESTAMP timestamp_mask] [INFILE filename] [PRESERVE
BLANKS]

characterset_specification

= CHARACTERSET
{ NOCONVERT | NOCNV | ANSI | MSWINDOWS | PCOEM |
IBMPC | SCAND7BIT }

into_table part

::= INTO TABLE tablename [APPEND | INSERT | REPLACE]
[FIELDS TERMINATED BY

{ WHITESPACE | hex_literal |'char']}
[FIELDS[OPTIONALLY] ENCLOSED BY

{"char"| hex_literal} [AND "char" | hex_literal]] (column_list)

hex_literal .:= X'hex_byte _string'
column_list ::= column [, column]
column ::= column_name datatype_spec

[POSITION ('int_literal' {: |-} 'int_literal")]

[DATE date_mask] [TIME time_mask]

[TIMESTAMP timestamp_mask]

[NULLIF BLANKS|NULLIF NULLSTR| NULLIF 'string' | NUL-
LIF ((int_literal' {: | -} 'int_literal") = 'string’)]

Using SOLID Data Management Tools 4-17

SOLID SpeedLoader

Syntax Element Definition

datatype_spec :={BINARY |CHAR[length] | DATE |
DECIMAL [(precision[, scale])] | DOUBLE PRECISION |
FLOAT [(precision)] | INTEGER | LONG VARBINARY | LONG
VARCHAR | NUMERIC [(precision[, scale])] | REAL | SMALL-
INT | TIME |
TIMESTAMP[(timestamp precision)] | TINYINT | VARBINARY |
VARCHAR] (length)]}

The following paragraphs explain syntax elements and their use isin detail.

CHARACTERSET

The CHARACTERSET keyword is used to define the character set used in the input file. If
the CHARACTERSET keyword is not used or if it is used with the parameter NOCON-
VERT or NOCNV, no conversions are made. Use the parameter ANSI for the ANSI charac-
ter set, MSWINDOWS for the MS Windows character set, PCOEM for the ordinary PC
character set, IBMPC for the IBM PC character set, and SCAND7BIT for the 7-bit charac-
ter set containing Scandinavian characters.

DATE, TIME, and TIMESTAMP
These keywords can be used in two places with different functionality:

« When one of these keywordsis used as a part of the load-data-part element, it defines
the format used in the import file for inserting data into any column of that type.

« When akeyword appears as a part of a column definition it specifies the format used
when inserting data into that column.

> Notes
1. Masks used as part of the |oad-data-part element must be in the following order: DATE,
TIME, and TIMESTAMP. Each is optional.

2. Datamust be of the same type in the import-file, the mask, and the column in the table
into which the data is loaded.

4-18 SOLID Administrator Guide

SOLID SpeedLoader

Data Masks

Data Type Available Data Masks

DATE YYYY/YY-MM/M-DD/D

TIME HH/H:NN/N:SS/S

TIMESTAMP YYY/YY-MM/M-DD/D HH/H:NN/N:SS/S

In the above table, year masksare YY Y'Y and Y'Y, month masks MM and M, day masks DD
and D, hour masks HH and H, minute masks NN and N, and second masks SS and S. Masks
within adate mask may be in any order; for example, a date mask could be ‘MM-DD-
YYYY'. If the date data of the import file is formatted as 1995-01-31 13:45:00, use the
mask YYYY-MM-DD HH:NN:SS.

PRESERVE BLANKS
The PRESERVE BLANKS keyword is used to preserve al blanksin text fields.

into_table_part

Theinto_table part element is used to define the name of the table and columns that the
dataisinserted into.

FIELDS TERMINATED BY

The FIELDS TERMINATED BY keyword is used to define the character used to distin-
guish wherefields end in the input file.

The ENCLOSED BY keyword is used to define the character that precedes and follows data
intheinput file.

POSITION

The POSITION keyword is used to define afield's position in the logical record. Both start
and end positions must be defined.

NULLIF

The NULLIF keyword is used to give acolumn aNULL value if the appropriate field has a
specified value. An additional keyword specifies the value the field must have. The keyword
BLANKS setsaNULL valueif thefield is empty; the keyword NULL setsaNULL valueif
thefield isastring 'NULL'; the definition 'string’ setsa NULL valueiif the field matches the
string 'string’; the definition '((start : end) = 'string’)’ setsaNULL value if a specified part of
the field matches the string 'string'.

Using SOLID Data Management Tools 4-19

SOLID SpeedLoader

Loading Fixed-format Records
Examples of the control file when loading data from a fixed-format import file:

-- EAAWPLE 1

LOAD DATA

I NFI LE " EXAMPL. DAT

| NTO TABLE SUPPLI ERS (

NAVE PCSl TI ON(01: 19) GHAR
ADDRESS ~ PCSI TI ON(20: 40) VARCHAR
ID PCSI TI ON(41: 48) | NTEGER)
-- EXAWPLE 2

CPTIONS (KIP =10, BRRIRS = 5)

-- Skipthe first ten records. Sop if
-- errorcount reaches five.

LOAD DATA

| NFI LE ' sanpl e. dat '

-- inport file is naned sanpl e. dat

| NTO TABLE TEST1 (

ID | NTEGER PCSI TI ON(1- 5),,

ANOTHER | D | NTEGER PCSI T1 ON(8- 15),,

DATEL PCSI TI ON(20: 29) DATE ' YYYY-MA DD ,

DATE2 PCSI TI ON(40: 49) DATE ' YYYY-MMDD NULLIF NULL)

Loading Variable-length Records
Examples of the control file when loading data from a variable-length import file:

-- BEXAWPLE 1

LOAD DATA

| NFI LE ' EXAMP2. DAT

| NTO TABLE SUPPLI ERS

Fl BLDS TERM NATED BY ', *

(NAME VARCHAR ADDRESS VARCHAR | D | NTEGER)
-- BEXAMPLE 2

CPTIONS (K P=10, ERRORS=5)

-- Sip the first ten records. Sop if
-- errorcount reaches five.

LQAD

DATE ' YYYY-MM DD HH NN SS

-- The date format in the inport file
| NFI LE ' sanpl e. dat '

4-20 SOLID Administrator Guide

SOLID SpeedLoader

-- The inport file

| NTO TABLE TEST1

-- datais inserted into table named TEST1
FI ELDS TERM NATED BY X 2C

-- Feldtermnator is HEX',' == 2C

-- This line could al so be:

-- FIELDS TERM NATED BY ', *

CPTIONALLY ENOLGSED BY '[' AND ')

-- Fields may al so be encl osed
--wth'[" and ")’

(

| D | NTEGER

ANOTHER | D DEQ MAL(2),

DATEL DATE(20) DATE ' YYYY-MADD HH NN SS
DATE2 NULLI F NULL

-- IDis inserted as integer

-- ANOTHER ID is a decimal nunber with 2

-- digits.

-- DATEL is inserted using the datestring

-- given above

-- The default datestring is used for DATE2.
-- If the colum for DATE2 is '"NJUL' a NLL is
-- inserted.

Running a Sample Load Using Solload

To Run a Sample Load Using Solload
1. Start SOLID Embedded Engine.

2. Createthetableusingthesanpl e. sql script and your SOLID SQL Editor.
3. Start loading using the following command line:
sol | oad "shmemsolid" dba dba delimctr

The user name and password are assumed to be 'dba. To use the fixed length control
file, use the following command line:

sol | oad "shmemsol i d" dba dba fixed.ctr
The output of a successful loading using del i m ct r will be:
SQLI D Speed Loader v. 3. 00. 00xx

Using SOLID Data Management Tools 4-21

SOLID Export

(O Qopyright Solid Informati on Technol ogy Ltd 1992- 2000
Load conpl eted successfully, 19 rows | oaded.

The output of a successful loading using f i xed. ct r will be:

SQLI D Speed Loader v. 3. 00. 00xx
(O Qopyright Solid Informati on Technol ogy Ltd 1992- 2000
Load conpl eted successful ly, 19 rows | oaded.

Hints to Speed up Loading
The following hints can be used to ensure that loading is done with maximum performance:
« Itisfaster not to load data over the network, that is, connect locally if possible.

« Increasing the number of records committed in one batch speeds up the load. By
default, commit is done after each record.

« Disable transaction logging.

To disable logging the LogEnabled parameter needs to be used. The following linesin the
sol i d.ini filewill disablelogging:

[Loggi ng]
LogEnabl ed=no

After the loading has been completed, remember to enable logging again. The following line
inthesol i d. i ni filewill enablelogging:

[Loggi ng]
LogEnabl ed=yes

> Note

Running the server with logging disabled is strongly discouraged. If logs are not written, no
recovery can be made if an error occurs due to power failure, disk error etc.

SOLID Export

SOLID Export isa product for unloading datafrom a SOLID database to ASCI| files.
SOLID Export produces both the import file, that is, the file containing the exported ASCII

4-22 SOLID Administrator Guide

SOLID Export

data, and the control file that specifies the format of the import file. SOLID SpeedLoader
can directly usethesefilesto load datainto a SOLID database.

> Note

The user name used for performing the export operation must have select rights on the table
exported. Otherwise no data is exported.

Starting SOLID Export

Start SOLID Export with the command sol exp. If you start sol exp with no arguments,
you'll see a summary of the arguments with a brief description. The command line syntax is:

solexp options servername username password tablename | *
where options argument can be:

-Ccatalog_name Set the default catalog from where datais read from or written to

-cdir Change working directory

-esgl-string Execute SQL string for export
-ffilename Execute SQL string from file for export
-h, -? Help = Usage

-Ifilename Writelog entriesto thisfile
-Lfilename Append log entries to thisfile
-ofilename Write exported data to thisfile

-sschema_name Use only this schemafor export

> Notes
1. Thesymbol * can be used to export al tables with one command. However, it cannot be
used as awildcard.

2. The-ttablename (Export table) option is still supported in order to keep old scripts
valid.

Servername is the network name of a Solid server that you are connected to. Logical Data
Source Names can al so be used with tools; Refer to Chapter 5,“ Managing Network Connec-
tions,” for further information. The given network name must be enclosed in quotes.

Username is required to identify the user and to determine to determine the user’s authoriza-
tion. Without appropriate rights, execution is denied.

Using SOLID Data Management Tools 4-23

SOLID Data Dictionary

Password is the user’s password for accessing the database.

When thereis an error in the command line, the SOLID Export gives you alist of the possi-
ble options as aresult. Please be sure to check the command line you entered.

SOLID Data Dictionary

SOLID Data Dictionary is a product for retrieving data definition statements from a SOLID
database. SOLID Data Dictionary produces a SQL script that contains data definition state-
ments describing the structure of the database. The generated script contains definitions for

tables, views, procedures, sequences, and events.

> Notes

1. User and role definitions are not listed for security reasons.

2. The user name used for performing the export operation must have select right on the
tables. Otherwise the connection is refused.

Starting SOLID Data Dictionary

Start SOLID Data Dictionary with the command sol dd. If you invoke sol dd with no
arguments, you'll see a summary of the arguments with a brief description. The command
line syntax is:

soldd options servername username password [tablename]
where options can be:

-Ccatalog_ name Set the default catalog from where data definitions are read from or

written to
-cdir Change working directory
-h, -? Help = Usage
-ofilename Write data definitions to thisfile
-Ofilename Append data definitions to thisfile
-sschema_name List definitions from this schema only
-x eventonly List event definitions only
-x indexonly List index definitions only

-x procedureonly List procedure definitions only
-x sequenceonly List sequence definitions only
-x tableonly List table definitions only
-X viewonly List view definitions only

4-24 SOLID Administrator Guide

Tools Sample: Reloading a Database

Servername is the network name of a Solid server that you are connected to. Logical Data
Source Names can al so be used with tools; Refer to Chapter 5,“ Managing Network Connec-
tions,” for further information. The given network name must be enclosed in quotes.

Username is required to identify the user and to determine to determine the user’s authoriza-
tion. Without appropriate rights, execution is denied.

Password is the user’s password for accessing the database.

When thereis an error in the command line, the SOLID Data Dictionary gives you alist of
the possible options as a result. Please be sure to check the command line you entered.

Examples:
sol dd - odat abase. sql “tcp dat abase server 1313" dbadmn f1g32j 4

Print the definition of procedure TEST_PROC:
sol dd -x procedureonly " " dba dba TEST PROC

> Notes
1.

If no table name is given, all definitions are listed to which the user hasrights.

2. If the objectname parameter is provided with one of the -x options, the name is used to
print only the definition of the named object.

3. The-ttablename option is still supported in order to keep old scripts valid.

Tools Sample: Reloading a Database

This example demonstrates how a SOLID Embedded Engine database can be reloaded to a
new one. At the same time the use of each SOLID tool isintroduced with an example. This
reload is a useful procedure since it shrinks the size of the database filesol i d. db toa
minimum.

To Reload the Database:
1. Extract data definitions from the old database.

2. Extract datafrom the old database.

3. Replace the old database with a new one.
4. Load datadefinitions into a new database.
5. Load datainto the new database.

Using SOLID Data Management Tools 4-25

Tools Sample: Reloading a Database

Walkthrough

In this example the server nameis SOLID and the protocol used for connectionsis Shared
Memory. Therefore, the network nameis“ShMem SOLID”. The database has been created
with the user name “dbadmin” and the password “ password” .

1.

Data definitions are extracted with SOLID Data Dictionary. Use the following com-
mand line to extract a SQL script containing definitions for all tables, views, proce-
dures, sequences, and events. The default for the extracted SQL fileissol dd. sql .

sol dd "Shiem SCLI D' dbadm n passwor d

With this command all data definitions are listed into onefile, sol dd. sql (the default
name). As mentioned earlier, user and role definitions are not listed for security rea-
sons. If the database contains users or roles, they need to be appended into thisfile.

All datais extracted with SOLID Export. The export results in control files (files with
the extension .ct r) and datafiles (files with the extension .dat). The default file name
is the same as the exported table name. In 16-bit environments, file names longer than
eight letters are concatenated. Use the following command line to extract the control
and datafilesfor al tables.

sol exp "ShMem SALI D' dbadmi n password *

With this command datais exported from al tables. Each table's datais written to an
import filenamed t abl e_nane. dat . A separate control filet abl e_nane. ctr is
written for each table name.

A new database can be created to replace the old one by deleting thesol i d. db and all
sol ####. | og filesfrom the appropriate directories. When SOLID Embedded Engine
is started for the first time after this, a new database is created.

> Note

It is recommended that a backup is created of the old database before it is deleted. This can
be done using SOLID Remote Control (tel etype).

Use the following command line to create a backup using SOLID Remote Control (tele-
type):
sol con - eBACKLP "Shivem SQOLI D' dbadnin passwor d

With this command, a backup is created. The option -e precedes an administration com-
mand.

4-26 SOLID Administrator Guide

Tools Sample: Reloading a Database

Load data definitions into the new database. This can be done using SOLID SQL Editor
(teletype). Use the following command line to execute the SQL script created by SOLID
Data Dictionary.

sol sgl -fSADD S "Shvem SALI D' dbadnin passwor d

With this command, data definitions are loaded into the new, empty database. Defini-
tions are retrieved with the option -f from the file sol dd. sql . Connection parameters
arethe same asin the earlier examples.

The previous two steps can be performed together by starting SOLID Embedded Engine
with the following command line. The option -x creates a new database, executes com-
mands from afile, and exits. User name and password are defined as well.

solid -Wbadmn -Ppassword -x execut e: sol dd. sql

Load datainto the new database. Thisis be done SOLID Speedloader. To load several
tables into the database a batch file containing a separate command line for each tableis
recommended. In Unix-based operating systems, using the wildcard symbol * is possi-
ble. Use either of the following command lines to load data into the new database.

sol | oad "ShMem SCLI D' dbadnmin password tabl e nane. ctr
With this command, data for one table isloaded. The server isonline.
Batch files that can be used are:

« Shell scriptsin Unix environments

« .com-scriptsinVMS

« .bat -scriptsin Windows 95/98/2000 and NT

Using SOLID Data Management Tools 4-27

Tools Sample: Reloading a Database

4-28 SOLID Administrator Guide

5

Managing Network Connections

Asatrue client/server DBMS, SOLID Embedded Engine provides simultaneous support for
multiple network protocols and connection types. Both the database server and the client
applications can be simultaneously connected to multiple sites using multiple different net-
work protocols.

This chapter describes how to set up network connections for each of the supported plat-
forms.

> Note

Some platforms may limit the number of concurrent usersto asingle SOLID server process
even if the SOLID license accepts higher limits. Refer to the Release Notes for details that
apply to your specific operating system.

Communication between Client and Server

The database server and client transfer information between each other through the com-
puter network using acommunication protocol.

When adatabase server processis started, it will publish at least one network name that dis-
tinguishes it in the network. The server starts to listen to the network using the given net-
work name. The network name consists of a communication protocol and a server name.

To establish a connection from a client to a server they both have to be able to use the same
communication protocol. The client has to know the network name of the server and often
also the location of the server in the network. The client process uses the network name to
specify which server it will connect to.

This chapter will give you information on how to administer network names.

Managing Network Connections 5-1

Managing Network Names

Managing Network Names

The network name of a server consists of a communication protocol and a server name. This
combination identifies the server in the network. The network names are defined with the

Li st en parameter in the[Conj section of the configuration file. Thesol i d. i ni file
should be located in a SOLID Embedded Engine program’s working directory or in the
directory set by the SOLI DDI R environment variable.

A server may use an unlimited number of network names. Note that all components of net-
work names are case insensitive.

Network names are managed in the following ways:

« Using the Protocols page in the SOLID DBConsole accessed through the Administra-
tion window or menu.

« Using the command pr ot ocol s in SOLID Remote Control (teletype) or SOLID
DBConsole.

« Using the SOLID SQL syntax ADMIN COMMAND ’protocols’ in SOLID SQL Editor
(teletype).
« Directly, by editing the server configuration filesol i d. i ni .

Anexampleof anentryinsolid.ini is

[Gonj
Listen = tcpi p 1313, nnpi pe solid

The example contains two network names which are separated by a comma. Thefirst one
uses the protocol TCP/IP and the service port 1313, the other one uses the Named Pipes pro-
tocol with the name *solid’. In our example the ‘tcpip’ and ‘nmpipe’ are communication pro-
tocolswhile ‘1313 and ‘solid’ are server names.

If theLi st en parameter isnot setinthe sol i d. i ni file the environment dependent
defaults are used.

> Notes
1. When adatabase server process is started it publishes the network namesit startsto lis-

ten to. Thisinformation is also written to afile named sol nsg. out located in the
same directory asthesol i d. i ni file.

2. Network names must be unique within one host computer. For example, you cannot
have two database servers running, both listening to the same TCP/IP port in one host,
but it is possible that the same port number isin use in different hosts. Exceptionsto this

5-2 SOLID Administrator Guide

Managing Network Names

arethe NetBIOS and IPX/SPX protocols, which require that used server names are
unique throughout the whole network.

Viewing Supported Protocols for the Server

Because not all protocols are supported in al environments and operating systems, you can
view the protocol options available for your server.

To view supported protocols for a server:

Enter the command pr ot ocol s in SOLID DBConsole or SOLID Remote Control (tele-
type).

-or-

Enter the following SOLID SQL syntax in SOLID SQL Editor (teletype):

ADM N COMVAND ' prot ocol s'

A list of all available communication protocolsis displayed. The command provides the fol-
lowing kind of result set, which contains one row for each supported communication proto-
col:

RC TEXT
0 tc TV IP
0 nb Net Bl G

Viewing Network Names for the Server
Following are ways that you can view network names for the server:

« Select the Status option from the SOLID DBConsole Administration window or menu
and click the Protocolsicon to view the network names listed in the Protocols dialog
box.

« View the parameter Li st en inthe[Conj sectioninthesol i d. i ni file

« Enter the command par anmet er com | i sten inSOLID DBConsole or SOLID
Remote Control (teletype).

- or_

Enter the following SOLID SQL syntax in the SOLID SQL Editor (teletype):
ADM N COMAND ' paraneter coml i sten'

Managing Network Connections 5-3

Managing Network Names

A list of al network names for the server is displayed. The command provides the fol-
lowing kind of result set, which contains one row for each supported communication

protocol:

RC TEXT

0 TGP/ I P 1313

0 NetBI C5 Sol i d

Adding and Modifying a Network Name for the Server

Following are ways you can add and edit network names for a server, which consists of a
communication protocol and a server name; for example, nnpi pe sol i d.

« Select the Status option from the SOLID DBConsole Administration window or menu
and click the Protocolsicon to add or modify the network namesin the Protocols dia-
log box.

« To add network names for the server:

Enter the command par amet er com | i st en=net wor k_nanme in SOLID
DBConsole or SOLID Remote Control (teletype).

- Or-

Enter the following SOLID SQL syntax in SOLID SQL Editor (teletype):
ADM N GOMVAND ' par anet er com | i st en=net wor k_nane'

The command returns the new value as the resultset. If the network name entered is
invalid, the ADMIN COMMAND statement returns an error.

« Insolid.ini,locatetheworking directory of your SOLID Embedded Engine pro-
cess and add a new network name or edit an existing one as a part of the Li st en
parameter entry inthe [Cony section.

Use acomma (,) to separate network names. For example:

[Con
Listen = tcpi p 1313, nnpipe solid

Be sure to save the changes and to restart the SOLID Embedded Engine process to acti-
vate the changes.

5-4 SOLID Administrator Guide

Network Name for Clients

To Remove a Network Name from the Server
Following are ways you can remove network names for a server, which consists of a commu-
nication protocol and a server name; for example, nnpi pe sol i d.

« Select the Status option from the SOLID DBConsole Administration window or menu
and click the Protocols icon to remove the network name in the Protocols dialog box.

« Insolid.ini,locatetheworking directory of your SOLID Embedded Engine pro-
cess and remove the network name in the Li st en parameter entry inthe[Com sec-
tion.

Be sure to save the changes and to restart the SOLID Embedded Engine processto acti-
vate the changes.

> Note

The modifications to network names do not become active immediately after editing the
solid.ini file. Youmustrestart the SOLID Embedded Engine process.

® ™
You can disable a network name using option -d after the protocol name in the network
name;

tcp -d hobbes 1313, shmem -d solid

Network Name for Clients

The network name of a client consists of a communication protocol, an optional host com-
puter name and a server name. By this combination the client specifies the server it will
establish a connection to. The communication protocol and the server name must match the
ones that the server isusing in its network listening name. In addition, most protocols need a
specified host computer name if the client and server are running on different machines. All
components of the client’s network name are case insensitive.

The client’s network names are defined in the configuration filesol i d. i ni inthe[Conj
section with the Connect parameter. Thesol i d. i ni file should be located in the appli-
cation program's working directory or in the directory set by the SOLI DDI R environment
variable.

Managing Network Connections 5-5

Communication Protocols

The following connect lineinthesol i d. i ni of the application workstation will connect
an application (client) using the TCP/IP protocol to a SOLID server running on a host com-
puter named ‘spiff’ and listening with the name (port number in this case) ‘1313'.

[Con
Gonnect = tcpip spiff 1313

If the Connect parameter is not found in the configuration filesol i d. i ni the client uses
the environment dependent default instead. The defaultsfor the Li st en and Connect
parameters are selected so that the application (client) will always connect to alocal SOLID
server listening with a default network name. So the local communication (inside one
machine) does not necessarily need a configuration file for establishing a connection.

> Notes
1. When the connection is requested by client application using the SQLConnect func-
tion the network name of the server is given as a Data Source Name parameter for that

function. If the given nameis not an empty string, its contents are used as a network

name and the Connect parameter in the configuration file is omitted. If an empty
string is passed, the possibly existing Connect parameter is used.

2. Inthe Windows (95, 98, 2000, NT) operating system, the connection can be made by
using the SOLID ODBC Driver. When aclient program is using the SOLID ODBC
Driver, the network name of the server can be used as the ODBC Data Source Name
and the Connect parameter in the configuration file is not used

Communication Protocols

A client process and SOLID Embedded Engine communicate with each other by using com-
puter networks and network protocols. A network operating system—for example, IBM
LAN Server or Novell NetWare—is not necessarily needed. You only need afunctioning
communication protocol for both ends. Supported communication protocols depend on the
type of computer and network you are using.

The following paragraphs describe the supported communication protocols and common
environments that may be used and al so show the required forms of network names for the
various protocols.

> Note

Depending on your network protocol, there may be relevant communication parameters

5-6 SOLID Administrator Guide

Communication Protocols

associated with the protocol. To find the communication parameters in use, be sure to exe-
cute the command par anet er inthe SOLID DBConsole or SOLID Remote Control (tele-
type), or ADM N COMVAND ’ par anet er’ in SOLID SQL Editor. Then you can use the
command descri be paramet er or ADMIN COMMAND 'describe parameter’ to view
details on the specific communication parameter. See “ Managing Parameters’ on page 6-7
for details on these commands.

Shared Memory

TCP/IP

Usually the fastest way two processes can exchange information isto use Shared Memory.
This can be used only when the embedded engine and application processes are both run-
ning in the same computer. The Shared Memory protocol uses a shared memory location for
moving data from one process to another.

To use the Shared Memory protocol in SOLID Embedded Engine, select Shvemfrom the
list of protocolsin SOLID DBConsole and enter server name. The server name hasto be
unique only in this computer.

Format Used in the solid.ini File

Server Li sten = shnmem server nane
Client Connect = shnmem server nane
Note

Server names must be character strings less than 128 characters long.

The TCP/IP protocol istypically used for communicating to a server process running under
aUNIX operating system. When starting a server using the TCP/IP protocol, you must
reserve a port number for it. You will find reserved port numbersinthe/ et c/ servi ces
file of your system. Select afree number greater than 1024 since smaller numbers are usu-
ally reserved for the operating system.

To use the TCP/IP protocol, select TCP/ | P inthelist of protocolsin SOLID DBConsole
and enter a non-reserved port number.

Managing Network Connections 5-7

Communication Protocols

Format Used in the solid.ini File

Server Listen = tcpip server_port_nunber

Client Connect = tcpip [host_conputer_nane]
server_port _nane

> Notes
1. If the server isrunning in the same computer with the client program, the host com-

puter name need not be specified. The client computer has to have the used host name
listedinitset ¢/ host s file or it must be recognized by the DNS (Domain Name

Server). You can aso give the host computer’s TCP/IP address in dotted decimal format
(for example, 194.53.94.97) instead of its host name.

2. On Windows (95, 98, 2000, NT) and UNIX the TCP/IP protocoal is usually included in
the operating system. On other environments (like VAX/VMS) the TCP/IP software
needs to be installed on the system. For alist of supported TCP/IP software, contact
Solid Information Technology Ltd. at: ht t p: / / www. sol i dt ech. cont

3. Thelocal loopback interface address, 127.0.0.1, is the default address when aclient
attempts to open a TCP/IP connection without specifying a hostname.

4. Usingoption-ii p_address or -i host_nanme SOLID Embedded Engine listens
only to the specified |P-address or host name. Thisis useful in multi-homed systems
that support many TCP/IP interfaces (or have multiple ip-addresses). For example, a
server with the following settinginsol i d. i ni accepts connection requests only
from inside the same machine, either referred by 1P-address 127.0.0.1 or with the name
'localhost', if the DNSis correctly configured:

[conj

Listen = tcp -i127.0.0.1 1313

Note that DNS entries can be used instead of |1P-addresses, for example:
[conj

Listen = tcp -ilocal host 1313

5. Using option -i127.0.0.1, which starts the server to listen only to alocal loopback con-
nection, allows TCP/IP listening with a desktop license. To enable TCP/IP usage with
desktop licenses, al entriesinsol i d. i ni haveto be edited to include -i. Note that
default listening of port 1313 (without sol i d. i ni) works automatically.

5-8 SOLID Administrator Guide

Communication Protocols

UNIX Pipes

NetBIOS

The UNIX domain sockets (UNIX Pipes, Named Pipes, portals) are typically used when
communicating between two processes running in the same UNIX machine. UNIX Pipes
usually have avery good throughput. They are also more secure than TCP/IP since Pipes can
only be accessed from applications that run on the computer where the server executes.

When starting a server using UNIX Pipes, you must reserve a unique listening name (inside
that machine) for the server, for instance, 'solid'. Because UNIX Pipes handle the UNIX
domain sockets as standard file system entries, there is always a corresponding file created
for every listened pipe. In SOLID Embedded Engine's case, the entries are created under the
path '/tmp'. Our example listening name 'solid' creates the directory '/tmp/solunp_SOLID'
and shared files into that directory. The ‘/tmp/solunp_' is a constant prefix for all created
objects while the latter part ('SOLID' in this case) is the listening name in upper case format.

Format Used in the solid.ini File

Server Li sten = upi pe server_nane
Client Connect = upi pe server_nane
Notes

1. Server and client processes must run in the same machine in order to use UNIX Pipes
for communication.

2. The server process must have a“write” permission to the directory '/tmp'.

3. Theclient accessing UNIX Pipes must have an “execute’ permission to the directory '/

tmp'.
4. Thedirectory 'tmp' must exist.
5. UNIX Pipes cannot be used in SCO UNIX.

The NetBIOS protocol is commonly used in the Windows (95, 98, 2000, NT) operating sys-
tems.

To use NetBIOS protocol, select Net Bl GS in thelist of available protocolsin SOLID
DBConsole and enter a non-reserved server name.

Managing Network Connections 5-9

Communication Protocols

Format Used in the solid.ini File

Server Li sten = netbi os [aLANA NUVBER] server nane
Client Connect = netbios [aLANA NUMBER] server _nane

> Notes

1. The server name must be a character string at most 16 characterslong. It may not begin
with an asterisk (*).

2. Inthe above format the optional -aLANA_NUMBER is used to override the default
value of the LANA number.

3. InWindows NT the available LANA numbers can be checked using the Network Setup
found in the Control Panel. The default value 0 may not be generally very good. You
should choose the one(s) where the protocol stack matches the other computers you are
using. The LANA number (Network Route: Nbf->EInk3->EInk31) that uses NetBEUI
as atransport usually functions quite smoothly when used for SOLID communication.

4. The server names have to be unique in the whole network. Establishing a connection or
starting the listener using the NetBIOS protocol may be somewhat slow because of the
checks needed for uniqueness.

5. SOLID Embedded Engine and SOLID Client versions 2.2 and later use all available
LANA numbers by default. This makes it unnecessary to specify explicitly which
LANA number the application or embedded engine should use. For backward compati-
bility the parameter ‘-aLANA_NUMBER’ remains available.

Named Pipes

Named Pipesis a protocol commonly used in the Windows (95, 98, 2000, NT) operating
systems.

Windows (95/98) support Named Pipes only in client end communication. Windows NT and
2000 supports Named Pipes both in server and client communication.

5-10 SOLID Administrator Guide

Communication Protocols

DECnet

Format Used in the solid.ini File

Server Li sten = nnpi pe server _nane

Client Connect = nnpi pe [host _conputer _nane]
server _nane

Notes

1. The server names must be character strings at most 50 characters long.

2. If the server isrunning in the same computer with the application program, the host
computer name should not be specified.

3. Inorder to connect to the SOLID Embedded Engine for Windows NT through Named
Pipes, the user must have at |east the same rights as the user, who started the server. For
exampleif an administrator starts the server only, users with administrator’s rights are
able to connect to the server through Named Pipes. Similarly if a user with normal
user’s rights starts the server all users with greater rights are able to connect the server
through Named Pipes. If auser does not have proper rights, SOLID Communication
Error 21306 message will be given.

4. The use of Named Pipes communication from SOLID Remote Control is not recom-
mended. The asynchronous nature of SOLID Remote Control communication may
cause problems with Named Pipes.

The DECnet protocol is used to connect to an embedded engine running on an OpenVMS
system. To use this protocol in Windows (95, 98, 2000, NT) you need to have PATH-
WORKS 32 installed to your client computer.

To use the DECnet protocol, select DECnet inthelist of protocolsin SOLID DBConsole
and enter a non-reserved server name.

Managing Network Connections 5-11

Communication Protocols

IPX/SPX

Format Used in the solid.ini File

Server Li sten = decnet server nane

Client Connect = decnet node_ nane
server _nane

Note

To establish a connection the DECnet node name of the server machine is configured to your
node database. The node name can be given either as anode number suchas‘1.1’ or asa
node name such as ‘VAX1'.

The IPX/SPX protocol is used to communicate with SOLID Embedded Engine for Novell
Netware.

SOLID Embedded Enginefor Novell Netware starts listening with the default listening name
SOLI Dif no listening name is specified in the configuration filesol i d. i ni . When
SOLID Embedded Engine starts, it prints out the network and node information of the server
machine.

The SOLID server listening name can be given as a character string or as a socket number. If
the given network nameis avalid socket number, that is, hex number with exactly 4 charac-
ters (for example, 400F) SOLID Embedded Engine starts listening in the given port. If the
network name could not be interpreted as a socket number it is treated as a server name char-
acter string and is published using Novell NetWare SAP (Service Advertising Protocol).

Connecting to a SOLID Embedded Engine using SAP requires that you specify only the cor-
rect server nameinthe Connect parameter. If the server islistening using some given
port, the full NLM server info (see comment below) has to be given.

To use the IPX/SPX protocol, select | PX/ SPXinthelist of protocolsin SOLID DBCon-
sole and enter a non-reserved server name.

5-12 SOLID Administrator Guide

Communication Protocols

Format Used in the solid.ini File

Server Li sten = spx {servernane | socket nunber}
Client Connect = spx {NLM server _info | server_nane}
Notes

1. The server names must be less than 48 characters long.

2. Inthe aboveformat, NLM server_info stands for a string containing the network num-
ber, the node number, and the socket number separated by colons. For example, NLM
server_info for network 1, node 1, socket number 1313 is
00000001:000000000001:1313. You can abbreviate the information by removing the
leading zeros. The previous Embedded Engine information could thus also be written as
1:1:1313. The server_name stands for an a phanumeric string.

3. The possihility to use socket numbers as the listening name is supported mainly for his-
torical reasons. SAPing is intended to be the primary method.

4. After removing a network name or shutting down SOLID Embedded Engine using
SOLID DBConsole or SOLID teletype tools the server name used may still remain
reserved for up to one minute although everything completes successfully. The error
‘network name in use’ isdisplayed if SOLID Embedded Engine is restarted immedi-
ately. Thisisa‘normal’ NetWare SAP feature and happens more often if your network
consists of more than one NetWare server. Propagating the SAP cancellation packets to
every network node may take awhile.

A Summary of Protocols

The following tables summarize the possible operating systems and required forms for net-
work names for the various communication protocols.

Note

The following tables contain the protocols and operating systems that were available when
this guide was printed. For an updated list, refer to the SOLID Website at:
http://ww. sol i dtech. coni.

Managing Network Connections 5-13

Communication Protocols

Embedded Engine Protocols and Network Names

Protocol

Server OS

Network name in solid.ini file

Shared Memory

Windows 95
Windows 98
Windows 2000
Windows NT

Listen = shmem server

NetBIOS

Windows 95
Windows 98
Windows 2000
Windows NT

Listen = netbios server

Named Pipes

Windows 2000
Windows NT

Listen = nmpipe server

IPX/SPX

Novell Netware

Listen = spx server
Listen = spx socket number

TCP/IP

Windows 95
Windows 98
Windows 2000
Windows NT
UNIX

Listen = tcpip port

UNIX Pipes

UNIX

Listen = upipe server

5-14 SOLID Administrator Guide

Logical Data Source Names

Application Protocols and Network Names

Protocol Server OS Network name in solid.ini file

Shared Memory Windows 95 Connect = shmem server
Windows 98
Windows 2000
Windows NT

NetBIOS Windows 95 Connect = netbios server
Windows 98
Windows 2000
Windows NT

Named Pipes Windows 95 Connect = nmpipe [host] server
Windows 98
Windows 2000
Windows NT

IPX/SPX Novell Netware Connect = spx server
Windows 95 1 Connect = spx NLM server_nfo
Windows 981
Windows 2000 *
Windows NT !

TCP/IP Windows 95 Connect = tcpip [host] port
Windows 98
Windows 2000
Windows NT
UNIX

UNIX Pipes UNIX Connect = upipe server

DECnet Windows 95 2 Connect = decnet host server
Windows 98 ?
Windows 2000 2
Windows NT 2

1) requires Novell's Netware Client for Windows 95, 98, 2000, and NT
2) requires Digital PATHWORKS 32 for Windows 95, 98, 2000, and NT

Logical Data Source Names

SOLID Clients support Logical Data Source Names. These hames can be used for giving a
database a descriptive name. This name can be mapped to a network name in three ways:

1. Using the parameter settingsin the application’ssol i d. i ni file.

Managing Network Connections 5-15

Logical Data Source Names

2. Using the Windows operating systems registry settings.
3. Using settingsin asolid.ini file located in the Windows directory.

This feature is available on all supported platforms. However, on non-Windows platforms,
only thefirst method is available.

A SOLID Client attemptsto open thefilesol i d. i ni first from the directory set by the
SCLI DDI R environment variable. If the file is not found from the path specified by this
variable or if the variable is not set, an attempt is made to open the file from the current
working directory.

To define a Logical Data Source Name using thesol i d. i ni file, you need to create a

sol i d.ini filecontaining thesection[Dat a Sour ces] . In that section you need to
enter the ‘logical name’ and ‘ network name’ pairs that you want to define. The syntax of the
parametersis the following:

[Data Sour ces]
| ogi cal _nane = network_nane, Description
In the description field, you may enter comments on the purpose of thislogical name.

If, for example, you want to define alogical name for the application ‘My_application’, and
the database islocated in a UNIX server that you want to connect to by using TCP/IP. You
should include the following lines to the solid.ini file, which you need to place in the work-
ing directory of your application:

[Data Sour ces]
M/_application = tcpip irix 1313, Sanple data source

When your application now calls the Data Source ‘My_application’, the SOLID Client maps
thistoacall to ‘tepipirix 1313'.

On Windows platforms (95, 98, 2000, NT), the registry can be used to map Data Sources.
These follow the standards of mapping ODBC Data Sources on a system.

In Windows 95, 98, 2000, and NT, a Data Source may be defined in the Windows Registry.
The entry is searched from the path “ software\odbc\odbc.ini”

1. first under the root HKEY _CURRENT_USER and if not found,
2. under the root HKEY_LOCAL_MACHINE.
The order of resolving a Data Source name in Windows systems s the following:

1. Look for the Data Source Name from thesol i d. i ni fileinthe current working direc-
tory, under the section [Dat a Sour ce]

5-16 SOLID Administrator Guide

Logical Data Source Names

2. Look for the Data Source Name from the following registry path
HKEY CURRENT _USER! sof t war e\ odbc\ odbc. i ni \ DSN

3. Look for the Data Source Name from the following registry path
HKEY LOCAL_MACHI NE\ sof t war e\ odbc\ odbc. i ni \ DSN

In case an application uses normal ODBC Data Sources, the network name is mapped nor-
mally using the methods that are provided in the ODBC Driver Manager.

Managing Network Connections 5-17

Logical Data Source Names

5-18 SOLID Administrator Guide

6

Configuring SOLID Embedded Engine

This chapter describes how to configure SOLID Embedded Engine to meet your environ-
ment, performance, and operation needs. It includes the most important parameters and their
settings. The section “ Managing Parameters’ on page 6-7 in this chapter gives you step-by-
step instructions on how to view and set the parameter valuesin SOLID DBConsole, SOLID
Remote Control (teletype), or SQL Editor (teletype).

Configuration File and Default Settings

When SOLID Embedded Engine is started, it attempts to open the configuration file

sol i d.ini firstfromthedirectory set by SOLI DDI R environment variable. If thefileis
not found from the path specified by this variable or if the variable is not set, an attempt is
made to open the file from the current working directory.

The configuration file contains settings for the SOLID Embedded Engine parameters. If the
file does not exist, SOLID Embedded Engine uses default settings for the parameters. Also,
if avalue for a specific parameter isnot set inthesol i d. i ni file, SOLID Embedded
Engine will use a default value for the parameter. The default values depend on the operat-
ing system you are using.

Generally, default settings offer good performance and operability, but in some cases modi-
fying some parameter values can improve performance.

Configuring SOLID Embedded Engine 6-1

Configuration File and Default Settings

Most Important Parameters

This section describes the most important SOLID Embedded Engine parameters and their
default settings. Parameters are grouped according to section categories in the configuration
file. See Appendix B, “ Configuration Parameters’ of this manual for aquick overview of the
section categories and all available parameters.

Defining Network Names (Com section)

When aserver is started, it will start listening to one or more protocols with network names
that distinguish it in the network. A client application uses a similar network name to spec-
ify which protocol to use and which server to connect to.

Connect parameter

The Connect parameter inthe[Com section defines the network name for aclient; thisis
the protocol and name that a client application uses for a server connection. Its default is
Operating System dependent. Refer to Chapter 5, “ Managing Network Connections” for
details on the parameter format.

When an application program is using a SOLID ODBC driver the ODBC Data Source Name
isused and the Connect parameter hasno effect. Thesol i d. i ni file, which includesthe
Connect parameter, must be located in the application program’s working directory or in
the directory set by SCLI DDI R environment variable.

The following connect line will connect a client program using the TCP/IP protocol to a
SOLID server running in acomputer named * spiff’ and server port number *1313'.

connect = tcpip spiff 1313

Listen parameter

TheLi st en parameter inthe[Conj section defines the network name for the server; this
is the protocol and name that a SOLID server uses when it starts to listen to the network. Its
default is Operating System dependent. Refer to Chapter 5, “ Managing Network Connec-
tions” for details on the parameter format.

Managing Database Files and Caching (IndexFile section)

In SOLID Embedded Engine data and indexes are stored in the same logical files. The term
‘index file' isused as a synonym for the term ‘ database file' . You also control the caching-
related parametersin this section.

6-2 SOLID Administrator Guide

Configuration File and Default Settings

FileSpec_[1-N] parameter

The Fi | eSpec parameter describes the location and the maximum size of the index file
(database file). To define the location and maximum val ue the database file may reach, the
Fi | eSpec parameter accepts the following three arguments:

« databasefile name
« maxfilesize
« device number (optional)

You can also usethe Fi | eSpec parameter to divide the database file into multiple files and
onto multiple disks. To do this, specify another Fi | eSpec parameter identified by the
number 2. The index file will be written to the second file if it grows over the maximum
value of thefirst Fi | eSpec parameter. The default value for this parameter is solid.db,
2147483647 (which equals 2 GB expressed in bytes):

Fi | eSpec_1=S0.| D. OB 2147483647

In the following example, the parameters divide the database file on the disks C:, D: and E:
to be split after growing larger than 1 GB (=1073741824 bytes).

F | eSpec_1=c:\sol db\solid.1 1073741824 1
F | eSpec_2=D\sol db\sol i d. 2 1073741824 2
F | eSpec_3=G\sol db\sol i d. 3 1073741824 3

Note

Theindex file locations entered must be valid path names in the server’'s operating system.
For example, if the server runs on a UNIX operating system, path separators must be slashes
instead of backslashes.

Although the database files reside in different directories, the file names must be unique. In
the above example, it is assumed that C:, D: and E: partitions reside on separate physical
disks.

Splitting the database file on multiple disks will increase the performance of the server
because multiple disk heads will provide parallel accessto the datain your database. There
isno limit to the number of database files you may use.

If the database file is split into multiple physical disks, then multithreaded SOLID Embed-
ded Engine is capable of assigning a separate disk 1/0 thread for each device. Thisway the

Configuring SOLID Embedded Engine 6-3

Configuration File and Default Settings

server can perform database file 1/0 in a parallel manner. Read “ Dedicated Threads’ on
page 1-10 for more details.

CacheSize

The CacheSi ze parameter defines the amount of main memory the server allocates for the
cache. The default value depends on the server operating system; the minimum sizeis 512
KB. Although SOLID Embedded Engine is able to run with asmall cache size, alarger
cache size speeds up the server. The cache size needed depends on the size of the index file,
the number of connected users, and the nature of the operations executed against the server.
For example:

CacheS ze=512

ExtendIncrement

The Ext endl ncr enent parameter defines the number of blocksthat is allocated at one
time when SOLID Embedded Engine needs to allocate more space for the database file. The
default is 50 blocks. For example:

Bxt end! ncr enent =50

Specifying the Backup Directory (General section)

Backups of the database, 1og files and the configuration filesol i d. i ni arecopied to the
backup directory. If you are not using the default 'backup’ directory, the backup directory
must exist and it must have enough disk space for the backup files. It can be set to any exist-
ing directory except the database file directory, the log file directory or the working direc-
tory.

BackupDirectory parameter

The BackupDi r ect ory parameter inthe[Gener al] section defines a name and loca-
tion for your backup directory. Note that default 'backup' is a directory relative to your
SOLID directory. For example if the parameter is:

BackupD r ect or y=backup

then the backup will be written to a directory that is a sub-directory of the SOLID directory.

> Note

The backup directory entered must be avalid path name in the server’s operating system. For
exampleif the server runs on a UNIX operating system, path separators must be slashes

6-4 SOLID Administrator Guide

Configuration File and Default Settings

instead of backslashes.

Specifying the Transaction Log Files Directory (Logging section)

At commit time, transaction results are written immediately to a specified directory. Thisfile
must be stored to alocal drive using local disk names to avoid problems with network 1/0
and to achieve better performance. The default log file directory is the SOLID working
directory.

FileNameTemplate

The parameter Fi | eNanmeTenpl at e inthe Loggi ng section defines a filename struc-
ture for the transaction log files. For example, the following setting

F | eNaneTenpl ate = d:\| ogdi r\ sol ####. | og

instructs SOLID Embedded Engineto create log filesto directory d: \ | ogdi r and to name
them sequentially starting from sol 00001. | og.

Specifying a Directory for the External Sorter Algorithm (Sorter
section)

The external sorter algorithm isused for sorting processes that do not fit in main memory.
Whenthe TnpDi r _[1. .. N] isspecified inthe configuration file, the external sorter
algorithm is enabled. All temporary files used by the external sort are created in a specified
directory (or directories) and are automatically deleted.

TmpDir_[1...N]
TheTrpDi r[1. .. N] parameter inthe Sort er section defines the directory (or directo-
ries) that can be used for the external sorter algorithm. There is no default setting. For example:

TnpD r_1=c:\sol db\tenp. 1
TnpD r_2=d: \ sol db\t enp. 2
TnpD r_3=g:\sol db\tenp. 3

Configuring SOLID Embedded Engine 6-5

Configuration File and Default Settings

ReadAhead

When the I/0 manager is handling along sequential search, it enters aread ahead operation
mode. This ensures that the next file blocks of the search in question are read in the cache in
advance. This naturally improves the overall performance of sequential searches. The
ReadAhead setsthe number of prefetched index leafs during long sequential searches.
The default is 4. For example:

ReadAhead=4

PreFlushPercent

The preflush operations prepare the cache for the alocation of new blocks. The blocks are
written onto the disk from the tail of the cache based on a Least Recently Used (LRC) algo-
rithm. Therefore, when the new cache blocks are needed, they can be taken immediately
without writing the old contents onto the disk. The Pr eFl ushPer cent parameter defines
the percentage of page buffer which iskept clean by the preflush thread. The default is 5. For
example:

Pr eFl ushPer cent =5

Setting Threads for Processing (Srv section)

In addition to the communication, I/O, and log manager threads, SOLID Embedded Engine
can start general purpose threads to execute tasks from the server’s tasking system. Read
“Multithread Processing” on page 1-10 for more details.

The optimum number of threads depends on the number of processors the system has
installed. Usually it is most efficient to have between two and eight threads per processor.

Finding the value that provides the best performance requires experimentation. A good for-
mulato start with is:

threads= (2 x number of processors) + 1

Threads

The Thr eads parameter inthe[Sr v] section defines the amount of general purpose
threads used by SOLID Embedded Engine. The default value is two threads for SOLID
Embedded Engine use. For example:

Thr eads=8
Setting SQL Trace Level (SQL section)

The SQL Info facility lets you specify atracing level on the SQL Parser and Optimizer. For
details on each level, read “ SQL Info Facility” on page 8-1.

6-6 SOLID Administrator Guide

Managing Parameters

Info

The SQL Info facility isturned on by setting the | nf o parameter to anon-zero value in the
[SQL] section of the configuration file. The output is written to afile named sol -
trace. out inthe SOLID directory.

Specifying Network Communication Tracing (Com section)

The communication tracing facility is necessary, for instance, if the network hardware is not
functioning properly. By turning the tracing on, the communication layer is capable of log-
ging even the system specific errors and may help in diagnosing the real problem in the net-
work. The following parameters control the outputting of network trace information.

Trace

By changing Tr ace parameter default setting No to the value Yes, SOLID Embedded
Engine starts logging trace information on network messages on established network con-
nection to the default trace file or to thefile specified in the Tr aceFi | e parameters.

TraceFile

If Trace parameter is set to yes, trace information on network messages is written to afile
specified with this parameter. The default if nofileis specifiedissol t race. out , written
to the current working directory of the server or client depending on which end the tracing is
started.

Specifying the Character Set for an Application (Client section)

By default, the Char act er Set parameter is set to the standard 1SO Latin-1 (8859-1). If
you are running an old SOLID client version (prior to version 3.0), the setting for the charac-
ter set may be obsolete. In this case you need to include the Char act er Set parameter in
thesolid.ini fileandsetittolSO 8859-1 or a setting suitable to your application.

Managing Parameters

You can view and modify SOLID Embedded Engine parameters and their values in the fol-
lowing ways:

« Using the Configuration page in SOLID DBConsole

The DBConsole Configuration page lets you display a parameters listing in atree node
format and change configuration settings through a dialog box. For details, refer to
DBConsole Online Help available by selecting Help on the menu bar.

« Entering the command par anet er in SOLID DBConsole or SOLID Remote Control
(teletype).

Configuring SOLID Embedded Engine 6-7

Managing Parameters

« Entering the SQL extension ADMIN COMMAND 'parameter' in SOLID SQL Editor.
« Directly, by editing thesol i d. i ni fileinthe SOLID directory.

Instructions for using managing parameters with ADMIN COMMAND andinsol i d.ini
is described in the following sections.

> Note

For details on viewing and setting server communication protocol parameters only, read
“Managing Network Connections’ on page 5-1.

Viewing and Setting Parameters with ADMIN COMMAND

With the SOLID SQL extension ADMIN COMMAND, you can change the parameters
remotely through a Solid server without restarting it. All parameters are accessible even if
they are not present inthesol i d. i ni configuration file. If the parameter is not present,
the default value is used.

Viewing All Parameters

To view all parameters, enter the following command in SOLID DBConsole or SOLID
Remote Control (teletype):

par anet er
orin SOLID SQL Editor:
ADM N COVVAND ' par aneter’;

A list of al parameters with current and default valuesis returned. If you need to view com-
munication protocol settings, see “ Managing Network Connections’ on page 5-1.

If desired, you can a so qualify this command with a -r option to display only the current
values. For example:

paraneter -r

The command provides each parameter in one row. Note that there are four parts to the
resultset:

« Section name identifies the parameter category

« Parameter nameisthe name of the parameter

6-8 SOLID Administrator Guide

Managing Parameters

« Valuedisplaysthe parameters current value from the solid.ini fileiif it is present; if the
parameter is not present, it displays the system default value.

« System default displays the default value.

Viewing the Value of a Specific Parameter

To view the value of a specific parameter, enter the following command using SOLID
DBConsole or SOLID Remote Control (teletype):

parameter -r section_name.parameter_name
orin SOLID SQL Editor:
ADMIN COMMAND ’'parameter -r section_name.parameter_name’;
where:
section_name is the category name where the parameter islocated insol i d. i ni
Example:
- seeif communication traceison
paraneter -r comtrace
-or-
ADM N COMVAND ' par aneter -r comtrace';
If you need to view a communication protocol settings, see “ Managing Network Connec-

tions” on page 5-1.

Viewing the Description of a Specific Parameter

You can also view adescription of a specific parameter, which includes valid parameter
types and access modes. Thisis useful information, especially because parameters may need
to be handled dynamically; parameter support may vary between products, platforms, or
releases.

To view a parameter’s description, enter the following command using SOLID DBConsole
or SOLID Remote Control (tel etype):

describe parameter section_name.parameter_name
or in SOLID QL Editor:
ADMIN COMMAND ’'describe parameter section_name.parameter_name’;

where:

Configuring SOLID Embedded Engine 6-9

Managing Parameters

section_name is the category name where the parameter islocated insol i d. i ni
Example:
descri be parameter comtrace
-or-
ADM N GOMWAND ' descri be paraneter comtrace';
The command provides a resultset with the following four rows:
« Row lisashort description of the parameter
« Row 2 showsthe valid types for the parameter
« Row 3 show the parameter access modes, which can be one of the following:
« READ - the parameter is read only and its value cannot be altered.
« WRITE - the parameter value can be altered and the new value is used.

« CREATE - the parameter value is used only when a new database is crested and
cannot be altered.

« STARTUP - the parameter value can be altered and the new valueis used only
when the server is started.

« Row 4 shows the current val ue of the parameter.

Setting a Parameter Value

To set avalue for a specific parameter, enter the following command using SOLID DBCon-
sole or SOLID Remote Control (tel etype):

parameter section_name.parameter_name=value
or in SOLID QL Editor:
ADMIN COMMAND ’'parameter section_name.parameter_name=value’;
where:
section_name is the category name where the parameter islocatedinsol i d. i ni

val ue isavalid parameter value. If no value is specified, this sets the parameter with
adefault (or unset) value.

Example:
-set communication trace is on

paraneter comtrace=yes

6-10 SOLID Administrator Guide

Managing Parameters

- Or-

ADM N GOMVAND ' par aneter comtrace=yes';

> Note

Parameter management operations are not transactional and cannot be rolled back.

The commands return the new value as the resultset. If the parameter’s access mode is
READ (read-only) or the value entered isinvalid, the ADMIN COMMAND statement
returns an error.

Viewing and Setting Parameters in SOLID.INI

1. Openthesolid.ini filelocated inthe working directory of your SOLID Embedded
Engine process.

2. View the value of the parameter.

3. If necessary add the section, parameter and parameter's value.

4. Savethe changes.

You need to restart the SOLID Embedded Engine process to activate the changes.

The parameters displayed are the parameters currently active in the server. If you have not
set a parameter value, the displayed value is the default value for the parameter. The default
values are set at start-up and depend on the operating system SOLID Embedded Engine runs
on.

> Note

To force a parameter val ue change to take effect you must shut down and restart the SOLID
Embedded Engine process.

A Caution

The new parameter values are not checked by the server. Setting an unreasonable value for a
parameter may result in an operation failure the next time the server processis started. Do
not set a parameter to arandom value unless you know what you are doing. Use the default

Configuring SOLID Embedded Engine 6-11

Managing Parameters

parameter values as an indication on the value range.

Constant Parameter Values

The parameter access mode for the Bl ocksi ze parameter in both thel ndexFi | e and
Loggi ng sections of the configuration file are CREATE. This means that the parameter is
set when the database is created and cannot be modified afterwards.

If you want to use a different constant value, you have to create a new database. Before cre-
ating a new database, set the new parameter constant value by editing thesol i d. i ni file
in the SOLID directory.

The following example sets a new block size for the index file by adding the following lines
tothesol i d.ini file

[Indexfil e]

Bl ocksi ze=4096

After editing and saving the sol i d. i ni file, move or delete the old database and log files,
and start SOLID Embedded Engine.

> Note

If you have changed the constant value for the log file block size only, you are only required
to move or delete the log files, not the database file.

The server program will create a new database with the new constant value from the
solid.ini file

6-12 SOLID Administrator Guide

v

Performance Tuning

This chapter discusses techniques that you can use to improve the performance of SOLID
Embedded Engine. The topicsincluded in this chapter are:

Tuning SQL statements and applications
Using indexes to improve query performance
Optimizing batch inserts and updates

Tuning memory alocation

Tuning CPU concurrency load

Tuning 1/0

Tuning checkpoints

Using optimizer hints for performance

Tuning SQL Statements and Applications

Tuning the SQL statements, especially in applications where complex queries are involved,
is generally the most efficient means of improving the database performance.

Be sure to tune your application before tuning the RDBM S because:

during application design you have control over the SQL statements and data to be pro-
cessed

you can improve performance even if you are unfamiliar with the internal working of
the RDBM S you are going to use

if your application is not tuned well, it will not run well even on awell-tuned RDBMS

You should know what data your application processes, what are the SQL statements used,
and what operations the application performs on the data. For example, you can improve

Performance Tuning 7-1

Using Indexes to Improve Query Performance

guery performance when you keep SELECT statements simple, avoiding unnecessary
clauses and predicates.

Evaluating Application Performance

To isolate areas where performance is lacking in your application, SOLID Embedded Engine
provides the following diagnostic tools for observing database performance:

« SQL info facility
« EXPLAIN PLAN statement

These tools are helpful in tuning your application and identifying any insufficient SQL state-
mentsin it. Read Chapter 8, “ Diagnostics and Troubleshooting,” for additional information
on how to use these tools.

Using Indexes to Improve Query Performance

You can use indexes to improve the performance of queries. A query that references an
indexed column in its WHERE clause can use the index. If the query selects only the
indexed column, the query can read the indexed column value directly from the index, rather
than from the table.

If atable has aprimary key, SOLID Embedded Engine orders the rows on disk in the order
of the values of the primary key. Otherwise the rows are ordered using the ROWID, that is,
the rows are stored on disk in the order they are inserted into the database. Read “ Primary
Keys’ on page 3-9.

Searches with row value constructor constraints are optimized to use an index (if oneis
available). For efficiency, SOLID Embedded Engine uses an index to resolve constraints of
theform (A, B, C) >= (1, 2, 3). The condtraints <, <=, >= and > can use the index. Note that
if several row value constraints are defined for one table, only the first one is optimized to
use an index.

Indexes improve the performance of queries that select a small percentage of rows from a
table. You should consider using indexes for queries that select less than 15% of table rows.

Full table scan

If a query does not use an index, SOLID Embedded Engine must perform afull table scan to
execute the query. Thisinvolves reading all rows of atable sequentially. Each row is exam-
ined to determine whether it meets the criteria of the query’s WHERE clause. Finding a sin-
gle row with an indexed query can be substantially faster than finding the row with afull
table scan. On the other hand, a query that selects more than 15% of atable’'s rows may be
performed faster by afull table scan than by an indexed query.

7-2 SOLID Administrator Guide

Using Indexes to Improve Query Performance

To perform afull table scan, every block in thetableis read. For each block, every row
stored in the block is read. To perform an indexed query the rows are read in the order in
which they appear in the index, regardless of which blocks contain them. If ablock contains
more than one selected row it may be read more than once. So, there are cases when afull
table scan requires less 1/0 than an indexed query.

Concatenated indexes

An index can be made up of more than one column. Such an index is called a concatenated
index. It is recommended to use concatenated indexes when possible.

Whether or not a SQL statement uses a concatenated index is determined by the columns
contained in the WHERE clause of the SQL statement. A query can use a concatenated
index if it references aleading portion of the index in the WHERE clause. A leading portion
of an index refersto the first column or columns specified in the CREATE INDEX state-
ment.

Example:
create index job _sal _deptno on enp(job, sal, deptno);
Thisindex can be used by these queries:

select * fromenp where job = ‘clerk’ and sal =

800 and deptno = 20;
select * fromenp where sal = 1250 and job = sal esnan;

select job, sal fromenp where job = ‘nanager’ ;

The following query does not contain the first column of the index inits WHERE clause and
cannot use the index:

select * fromenp where sal = 6000;

Choosing columns to index
The following list gives guidelines in choosing columns to index:

« index columnsthat are used frequently in WHERE clauses

« index columnsthat are used frequently to join tables

« index columnsthat are used frequently in ORDER BY clauses

« index columnsthat have few of the same values or unique values in the table.

« donot index small tables (tables that use only afew blocks) because afull table scan
may be faster than an indexed query

Performance Tuning 7-3

Optimizing Batch Inserts and Updates

« if possible choose a primary key that orders the rows in the most appropriate order

« if only one column of the concatenated index is used frequently in WHERE clauses,
place that column first in the CREATE INDEX statement

« if more than one column in concatenated index is used frequently in WHERE clauses,
place the most selective column first in the CREATE INDEX statement.

Optimizing Batch Inserts and Updates

You can optimize the speed for large batch inserts and updates to SOLID Embedded Engine.
Following are guidelines for increasing speed:

1. Check that you are running the application with the AUTOCOMMIT mode set off.

SOLID ODBC Driver's default setting is AUTOCOMMIT. Thisis the standard setting
according to the ODBC specification. To set your application with AUTOCOMMIT off,
call the SQL SetConnectOption function as in the following example:

rc = SQ.Set Gonnect Qoti on
(hdbc, SQ._AUTGOOM T, SQ._AUTAOOM T_CFF);

2. Do not use large transactions.

It isrecommended to COMMIT transactions after every 100-200 rows inserted.
3. Usestored procedures to further increase the speed of inserts.

The use of stored procedures provides an additional 10-20% speed increase.
4. Lowerthe Mer gel nt er val parameter.

The Mer gel nt er val parameter determines the frequency of writing datafrom SOLID
Embedded Engine’s cache to disk. For large batch operations, set the value to alower
level. The parameter should be set to approximately 100 when running large inserts.

Number 1 and 2 of these guidelines are the most important actions you can take to increase
the speed of batch inserts. The actual rate of insertions also depends on your hardware, on
the amount of data per row and on the existing indices for the table.

Tuning Memory Allocation

Main memory is allocated dynamically according to system usage and the operating system
environment. The basic element of the memory management system is a pool of central
memory buffers of equal size. You can configure the amount and size of memory buffersto
meet the demands of different application environments.

7-4 SOLID Administrator Guide

Tuning Memory Allocation

Tuning Your Operating System
Your operating system may storeinformation in:

« real memory

« Virtua memory

« expanded storage
. disk

Your operating system may also move information from one location to another. Depending
on your operating system, this movement is called paging or swapping. Many operating sys-
tems page and swap to accommaodate large amounts of information that do not fit into real
memory. However, this takes time. Excessive paging or swapping can reduce the perfor-
mance of your operating system and indicates that your system’stotal memory may not be
large enough to hold everything for which you have allocated memory. You should either
increase the amount of total memory or decrease the amount of database cache memory allo-
cated.

Database Cache

The information used by SOLID Embedded Engine is stored either in memory or on disk.
Since memory access is faster than disk access, it is desirable for data requests to be satis-
fied by access to memory rather than access to disk.

Database cache uses available memory to store information that is read from the hard disk.
When an application next time requests this information, the data is read from memory
instead of from the hard disk. The default value of cache depends on the platform used and
can be changed by changing the CacheSi ze parameter. Increasing the value is recom-
mended when there are several concurrent users.

The following values can be used as a starting point:

« adedicated server with 16 MB RAM: Cachesize 4 MB
« adedicated server with 32 MB RAM: Cachesize 10 MB
« adedicated server with 64 MB RAM: Cachesize 30 MB

> Note

You should increase the value of Cachesi ze carefully. If avalueistoo large, it leadsto
poor performance.

Performance Tuning 7-5

Tuning CPU Concurrency Load

Sorting

SOLID Embedded Engine does all sorting by default in memory. The amount of memory
used for sorting is determined by the parameter SORTARRAYSI ZE inthe [SQL] section. If
the amount of datato be sorted does not fit into the allocated memory, you may want to
increase the value of the parameter SORTARRAYSI ZE. If there is not enough memory to
increase the value of SORTARRAYSI ZE you should activate external sort that storesinter-
mediate information to disk.

The external disk sort is activated by adding the following section and parameters in the con-
figurationfilesol i d.ini:

[sorter]
TnpDr_1 =c:\tnp

Additional sort directories are added with similar definitions:

[sorter]

TnpDr_1 =c:\tnp
TnpDr_2 = d:\tnp
TnpDr_3 = e:\tnp

Defining more than one sorter temporary directory on separate physical disks significantly
improves sort performance by balancing the I/0 load to multiple disks.

Tuning CPU Concurrency Load

SOLID Embedded Engine contains shared data structures. Some actions on them are pro-
tected by mutual exclusion semaphores (mutexes) which allow only one thread accessto a
resource at atime. In amulti-CPU machine, it is possible that at some configuration and
workload, one or more mutexed sections can become a bottleneck that limits the maximum
CPU load.

To improve concurrency you can do the following:

« Runthe server with more general purpose (worker) threads (for example, 40-80 threads
may be reasonable on an NT machine running 400 clients). For details on setting
threads, read “ Setting Threads for Processing (Srv section)” on page 6-6.

« Increasethelog file size from the 2048 default. A large blocksize for alog file speeds
up logging considerably (especially under NT and UW-SCSI disks). A recommended
setting is:

[1 oggi ng]
Bl ockSi ze=32728

7-6 SOLID Administrator Guide

Tuning I/O

> Note

Be sure to shut down the server and delete all old log files before changing the blocksize
value.

Tuning I/O

The performance of many software systems isinherently limited by disk I/0. Often CPU
activity must be suspended while I/O activity completes.

Distributing 1/0

Disk contention occurs when multiple processes try to access the same disk simultaneously.
To avoid this, move files from heavily accessed disks to less active disks until they all have
roughly the same amount of 1/O.

Follow these guidelines:
« Useaseparate disk for log files

« divide your database into several files and place each of these database files on a sepa-
rate disk. Read “ Managing Database Files and Caching (IndexFile section)” on page
6-2.

« consider using a separate disk for the external sorter

Setting the Mergelnterval Parameter

SOLID Embedded Engine's indexing system consists of two storage structures, the Bonsai
Tree which stores new datain central memory and the storage server which stores more sta-
ble data. Asthe Bonsai Tree performs concurrency control, storing delete, insert, and update
operations, as well as key values, it merges new commit data to the storage server asa
highly-optimized batch insert. This offers significant I/O optimization and load balancing.

You can adjust the number of index inserts made in the database that causes the merge pro-
cess to start by setting the following parameter in the General section of thesol i d. i ni
file.Forexample:

Mergel nterval = 100

Normally the recommended setting is the default value, which is cache size dependent. The
default is calculated dynamically from the cache size, so that only part of the cacheis used

Performance Tuning 7-7

Tuning Checkpoints

for the Bonsai Tree. If you change the merge interval, be sure that the cache is large enough
to accommodate the Bonsai Tree.

> Note

If the merge interval setting does not allow the Bonsai Tree to fit into cache, thenitis
flushed partialy to the disk; this has an adverse affect on performance.

Tuning Checkpoints

Checkpoints are used to store a consistent state of the database quickly onto the disk.
Checkpoints affect:

« recovery time performance

= runtime performance

Frequent checkpoints can reduce the recovery time in the event of a system failure. If the
checkpoint interval is small, then relatively few changes to the database are made between
checkpoints and relatively few changes must be recovered.

Checkpoints cause SOLID SynchroNet to perform /O, so they momentarily reduce the run-
time performance. This overhead is usually small.

Using Optimizer Hints
Due to various conditions with the data, user query, and database, the SQL Optimizer is not

always able to choose the best possible execution plan. For more efficiency, you may want to
force amerge join because you know, unlike the Optimizer, that your datais aready sorted.

Or sometimes specific predicatesin queries cause performance problems that the Optimizer
cannot eliminate. The Optimizer may be using an index that you know is not optimal. In this
case, you may want to force the Optimizer to use one that produces faster results.

Optimizer hintsis away to have better control over response times to meet your perfor-
mance needs. Within a query, you can specify directives or hints to the Optimizer, which it
then uses to determine its query execution plan. Hints are detected through a pseudo com-
ment syntax from SQL 2.

Hints are available for:

« Selecting merge or nested loop join

7-8 SOLID Administrator Guide

Using Optimizer Hints

« Using afixed join order as givenin the from list
« Selecting internal or external sort

« Selecting a particular index

« Selecting atable scan over an index scan

« Selecting sorting before or after grouping

You can place a hint(s) in a SQL statement as a static string, just after a SELECT, UPDATE,
or DELETE keyword. Hints are not alowed after the INSERT keyword. The hint always fol-
lows the SQL statement that appliesto it.

Table name resolution in optimizer hintsisthe same asin any table namein a SQL state-
ment. When thereis an error in a hint specification, then the whole SQL statement fails with
an error message.

Hints are enabled and disabled using the following configuration parameter in
solid.ini:

[Hi nts]
Enabl eH nts=YES | NO
The default is set to YES.

Optimizer Hints Syntax
The syntax to specify an optimizer hint is:

--(* vendor (SCLID), product (Engine), option(hint)

--hint *)--

hint:=
[MBRE JAN |
LGP JAN |
JA N CROER F XBD |
| NTERNAL SCRT |
EXTERNAL SCRT |

| NDEX [REVERSH] tabl e_nane. i ndex_nane
PR MARY KEY [REVERSE] tabl e _nane

FULL SCAN tabl e nane |

[NJ SCRT BEFCRE GROP BY]

Following is a description of the keywords and clauses used in the syntax:

Performance Tuning 7-9

Using Optimizer Hints

Pseudo comment identifier

The pseudo comment prefix is followed by identifying information. You must specify the
vendor as SOL D, product as Engine, and the option, which is the pseudo comment class
name, as hint.

Hint
Hints always follow the SELECT, UPDATE, or DELETE keyword that appliesto it.

> Note

Hints are not allowed after the INSERT keyword.

Each subselect requiresits own hint; for example, the following are valid uses of hints syn-
tax:

INSERT INTO ... SELECT hint FROM ...
UPDATE hint TABLE ... WHERE column = (SELECT hint ... FROM ...)

DELETE hint TABLE ... WHERE column = (SELECT hint ... FROM ...)

Example 1

SH ECT

--(* vendor (SQLI D, product (Engi ne), option(hint)
--MER&E JAN

--JON CRDER FI XED *) - -

FRCM TABL A TAB2 B
WHERE A I NTF = B I NTF;

Example 2

SHLECT

--(* vendor (SQLI D, product (Engi ne), option(hint)
-- I NDEX TABL. | NDEXL

-- I NDEX TABL. | NDEXL FULL SCAN TAR2 *)--

*

FRCM TABL, TAB2

7-10 SOLID Administrator Guide

Using Optimizer Hints

WHERE TABL. | NTF = TAB2. | NTF;
Hint is a specific semantic, corresponding to a specific behavior. Following is alist of possi-

ble hints:

Hint

Definition

MERGE JOIN

LOOP JOIN

JOIN ORDER FIXED

INTERNAL SORT

EXTERNAL SORT

Directs the Optimizer to choose the merge join access plan in a select
query for al tableslisted in the FROM clause. Use this hint when the
datais sorted by ajoin key and the nested loop join performance is not
adequate.

Note that when datais not sorted before performing the merge opera-
tion, the SOLID query executor sorts the data.

When considering the usage of this hint, keep in mind that the merge
join with a sort is more resource intensive than the merge join without
the sort.

Directs the Optimizer to pick the nested loop join in a select query for
all tableslisted in the FROM clause. By default, the Optimizer does not
pick the nested loop join. Using the loop join when tables are small and
fitin memory may offer greater efficiency than using other join algo-
rithms.

Specifies that the Optimizer use tablesin ajoin in the order listed in the
FROM clause of the query. This means that the Optimizer does not
attempt to rearrange any join order and does not try to find alternate
access paths to complete the join.

Before using this hint, be sure to run the EXPLAIN PLAN to view the
associated plan. This gives you an idea on the access plan used for exe-
cuting the query with thisjoin order.

Specifiesthat the query executor use the internal sort. Use this hint if
the expected result set is small (100s of rows as opposed to 1000s of
rows); for example, if you are performing some aggregates, ORDER
BY with small result sets, or GROUP BY with small result sets, etc.

This hint avoids the use of the more expensive external sort.

Specifiesthat the query executor use the external sort. Use this hint
when the expected result set islarge and does not fit in memory; for
example, if the expected result set has 1000s of rows.

In addition, specify the SORT working directory inthesol i d. i ni
before using the external sort hint. If aworking directory is not speci-
fied, you will receive arun-time error.

Performance Tuning 7-11

Using Optimizer Hints

Hint

Definition

INDEX { REVERSE]
table_name.index_name

PRIMARY KEY
[REVERSE] tablename

FULL SCAN table name

[NO] SORT BEFORE
GROUP BY

Forces a given index scan for a given table. In this case, the Optimizer
does not proceed to evaluate if there are any other indexes that can be
used to build the access plan or whether atable scan is better for the
given query.

Before using this hint, it is recommended that you run the EXPLAIN
PLAN output to ensure that the plan generated is optimal for the given
query.

The optional keyword REVERSE returns the rows in the reverse order.
In this case, the query executor begins with the last page of the index

and starts returning the rows in the descending (reverse) key order of
the index.

Note that in tablename.indexname, the tablenameis afully quaified
table name which includes the catal ogname and schemaname.

Forces a primary key scan for a given table.
The optional keyword REVERSE returns the rows in the reverse order.

If the primary KEY is not available for the given table, then you will
receive arun-time error.

Forces atable scan for a given table. In this case, the optimizer does
not proceed to evaluate if there are any other indexes that can be used
to build the access plan or whether atable scan is better for the given
query.

Before using this hint, it is recommended that you run the EXPLAIN
PLAN output to ensure that the plan generated is optimal for the given
query.

Inthis FULL SCAN, the query executor tries to use the PRIMARY
KEY, if oneisavailable. If not, then it uses the SY STEM KEY.

Indicates whether the SORT operation occurs before the result set is
grouped by the GROUP BY columns.

If the grouped items are few (100s of rows) then use NO SORT
BEFORE. On the other hand, if the grouped items are large (1000s of
rows), then use SORT BEFORE.

Optimizer Hint Examples
SELECT

--(* vendor (SQ.I D, product (Engi ne), option(hint)
-- | NDEX TABL. I DXL *)--

7-12 SOLID Administrator Guide

Using Optimizer Hints

* FROM TABL WHERE | > 100

SH ECT

--(* vendor (SQ.I D, product (Engi ne), option(hint)
-- I NDEX MyGat al og. nySchera. TABL. | DXL *)--

* FROM TABL WERE | > 100

SHELECT

--(* vendor (SQLI D, product (Engi ne), option(hint)
-- JON GRDER F XBD *) - -

* FROM TABL, TABR2 WHERE TABL. | >= TARR. |

SH ECT

--(* vendor (SQ.I D, product (Engi ne), option(hint)
-- LGP JAON*)--

* FROM TABL, TAB2 WHERE TABL. | >= TARR. |

SHELECT

--(* vendor (SQLI D, product (Engi ne), option(hint)
-- | NDEX RBVERSE M/Cat al og. nySchena. TABL. | DX1 *) - -
* FROM TABL WHERE | > 100

SH ECT

--(* vendor (SQ.I D, product (Engi ne), option(hint)
-- SCRT BEFCRE GQROP BY *)--

AQIl) FROMTABL WERE | > 10 GROP BY 12

SELECT

--(* vendor (SQLI D, product (Engi ne), option(hint)
-- | NTERNAL SCRT *)--

* FROMTABL WERE | > 10 CROER BY 12

Performance Tuning 7-13

Using Optimizer Hints

7-14 SOLID Administrator Guide

8

Diagnostics and Troubleshooting

This chapter provides information on the following SOLID Embedded Engine diagnostic
toals:

« SQL info facility and the EXPLAIN PLAN statement used to tune your application and
identify inefficient SQL statements in your application.

« Network trace facility used to trace the server communication
« Pingfacility used to trace client communication

You can use these facilities to observe performance, troubleshooting, and produce high qual-
ity problem reports. These reports | ets you pinpoint the source of your problems by isolating
them under product categories (such as SOLID ODBC API, SOLID ODBC Driver, SOLID
JDBC Driver, etc.).

Observing Performance

You can use the SQL Info facility to provide information on a SQL statement and the SQL
statement EXPLAIN PLAN to show the execution graph that the SQL optimizer selected for
agiven SQL statement. Typically, if you need to contact SOLID Technical support, you will
be asked to provide the SQL statement, EXPLAIN PLAN output, and SQL Info output from
the EXPLAIN PLAN run with info level 8 for more extensive trace output.

SQL Info Facility

Run your application with the SQL Info facility enabled. The SQL Info facility generates
information for each SQL statement processed by SOLID Embedded Engine.

Thel nf o parameter inthe[SQL] section specifies the tracing level on the SQL parser and
optimizer as an integer between 0 (no tracing) and 8 (SOLID info from every fetched row).
Trace information will be output to the file named sol t r ace. out inthe SOLID directory.

Diagnostics and Troubleshooting 8-1

Observing Performance

Example:
[SQl

info=1

SQL Info levels

Info value Information

0 no output

table, index, and view info in SQL format

SQL execution graphs (for SOLID technical support use only)

some SQL estimate info, SOLID selected key name

all SQL estimate info, SOLID selected key info
SOLID info also from discarded keys
SOLID tablelevel info

SQL info from every fetched row

VI N | W[N] P

SOLID info from every fetched row

The SQL Info facility can also be turned on with the following SQL statement (this sets SQL
Info on only for the client that executes the statement):

SET S INFOON LEVEL info value FILE fil e_name
and turned off with the following SQL statement:

SET SQ | NFO OFF

Example:

SET S INFOON LEVEL 1 FLE ‘ny_query. txt’

The EXPLAIN PLAN Statement
The syntax of the EXPLAIN PLAN statement is:

BEXPLAI N PLAN FCR sql _st at enent

The EXPLAIN PLAN statement is used to show the execution plan that the SQL optimizer
has selected for agiven SQL statement. An execution plan is a series of primitive opera-
tions, and an ordering of these operations, that SOLID Embedded Engine performsto exe-
cute the statement. Each operation in the execution plan is called a unit.

8-2 SOLID Administrator Guide

Observing Performance

Unit Description

JOIN UNIT* Join unit joins two or more tables. The join can be done by using
loop join or merge join.

TABLE UNIT Table unit is used to fetch the data rows from atable. Table unit
is aways the last unit in the chain, sinceit isresponsible for
fetching the actual datafrom the index or table.

ORDER UNIT Order unit is used to order rows for grouping or to satisfy
ORDER BY. The ordering can be done in memory or using an
external disk sorter.

GROUPUNIT Group unit is used to do grouping and aggregate cal culation
(SUM, MIN, etc.).

UNION UNIT* Union unit performs the UNION operation. The unit can be done

by using loop join or merge join.

INTERSECT UNIT*

Intersect unit performs the INTERSECT operation. The unit can
be done by using loop join or mergejoin.

EXCEPT UNIT*

Except unit performs the EXCEPT operation. The unit can be
done by using loop join or mergejoin.

*This unit is generated also for queriesthat reference only asingletable. In that case nojoin is exe-
cuted in the unit; it simply passes the rows without manipulating them.

Explain Plan Table Columns
The table returned by the EXPLAIN PLAN statement contains the following columns.

Column Name

Description

ID

The output row number, used only to guarantee that the rows are
unique.

UNIT_ID

Thisistheinternal unitidinthe SQL interpreter. Each unit hasa
different id. The unit id is a sparse sequence of numbers,
because the SQL interpreter generates unit ids also for those
units that are removed during the optimization phase. If more
than one row has the same unit id it means that those rows
belong to the same unit. For formatting reasons the info from
one unit may be divided into several different rows.

PAR_ID

Parent unit id for the unit. The parent id number refersto theid
inthe UNIT_ID column.

Diagnostics and Troubleshooting 8-3

Observing Performance

Column Name

Description

JOIN_PATH

For join, union, intersect, and except unitsthereisajoin path
which specifies which tables are joined in the unit and the join
order for tables. The join path number refersto the unitid in the
UNIT_ID column. It means that the input to the unit comes from
that unit. The order in which the tables are joined is the order in
which the join path is listed. The first listed table is the outer-
most table in aloop join.

UNIT_TYPE

Unit type is the execution graph unit type.

INFO

Info column gives additional info. It may contain, for example,
index usage, the database table name and constraints used in the

database engine to select rows. Note that the constraints listed
here may not match those constraints given in the SQL state-

ment.

The following texts may exist in the INFO column for different types of units.

Unit type

Text in Info column

Description

TABLE UNIT

tablename

The table unit refers to table tablename.

TABLE UNIT

constraints

The constraints that are passed to the data-
base engine are listed. If for examplein
joinsthe constraint value is not known in
advance, the congtraint valueis displayed
asNULL.

TABLE UNIT

SCAN TABLE

Full table scan is used to search for rows.

TABLE UNIT

SCAN indexname

Index indexname is used to search for
rows. If all selected columns are found
from an index, sometimes it isfaster to
scan the index instead of the entire table
because the index has fewer disk blocks.

TABLE UNIT

PRIMARY KEY

The primary key is used to search rows.
This differsfrom SCAN in that the whole
tableis not scanned because thereisalim-
iting constraint to the primary key
attributes.

TABLE UNIT

INDEX indexname

Index indexname is used to search for
rows. For every matching index row, the
actual datarow isfetched separately.

8-4 SOLID Administrator Guide

Observing Performance

Unit type Text in Info column Description

TABLE UNIT INDEX ONLY indexname Index indexname is used to search for
rows. All selected columns are found from
the index, so the actual data rows are not
fetched separately

JOIN UNIT MERGE JOIN Mergejoinis used to join the tables.

JOIN UNIT 3-MERGE JOIN A 3-mergejoin is used to merge the tables.

JOIN UNIT LOOP JOIN Loopjoinisused to join the tables.

ORDER UNIT NO ORDERING REQUIRED No ordering is required, the rows are
retrieved in correct order from the data-
base engine.

ORDER UNIT EXTERNAL SORT External sorter is used to sort the rows. To
enable external sorter, the temporary direc-
tory name must be specified in the Sorter
section of the configuration file.

ORDER UNIT FIELD n USED ASPARTIAL For distinct result sets, an internal sorter

ORDER (in-memory sorter) is used for sorting and
the rows retrieved from the database
engine are partially sorted with column
number n. The partial ordering helps the
internal sorter avoid multiple passes over
the data.

ORDER UNIT nFIELDSUSED FORPAR- Aninternal sorter (in-memory sorter) is

TIAL SORT used for sorting and the rows retrieved
from the database engine are partialy
sorted with n fields. The partial ordering
helps the internal sorter to avoid multiple
passes over the data.

ORDER UNIT NO PARTIAL SORT Internal sorter isused for sorting and the
rows are retrieved in random order from
the database engine.

UNION UNIT MERGE JOIN Mergejoin isused to join the tables.

UNION UNIT 3-MERGE JOIN A 3-merge join is used to merge the tables.

UNION UNIT LOOP JOIN Loopjoinisused to join the tables.

INTERSECT UNIT MERGE JOIN Mergejoinisused to join the tables.

INTERSECT UNIT 3-MERGE JOIN A 3-mergejoin is used to merge the tables.

Diagnostics and Troubleshooting 8-5

Observing Performance

Unit type Text in Info column Description
INTERSECT UNIT LOOP JOIN Loop joinisused to join the tables.
EXCEPT UNIT MERGE JOIN Mergejoin is used to join the tables.
EXCEPT UNIT 3-MERGE JOIN A 3-mergejoin is used to merge the tables.
EXCEPT UNIT LOOP JOIN Loop join is used to join the tables.
Example 1
BEXPLAIN PLAN FCR SELECT * FROM TENKTUPL WHERE UN QUE2_ N BETVWEEN 0 AND
99;
ID UNIT_ID PAR_ID JOIN_PATH UNIT_TYPE INFO
1 2 1 3 JOIN UNIT
2 3 2 0 TABLEUNIT TENKTUP1
3 3 2 0 FULL SCAN
4 3 2 0 UNIQUE2_NI

<=99
5 3 2 0 UNIQUEZ2_NI

>=0
6 3 2 0

Execution graph:
JOIN UNIT 2 getsinput from TABLE UNIT 3

TABLE UNIT 3 for table TENKTUP1 does afull table scan with constraints UNIQUE2_NI
<=99 and UNIQUE2_NI >=0

JOIN UNIT 2

1

JOIN PATH 3

A

TABLEUNIT 3

Example 1. Execution graph

8-6 SOLID Administrator Guide

Observing Performance

Example 2

BEXPLAI N PLAN FCR SELECT * FROM TENKTUPL, TENKTUPZ2 WHERE TENKTUPL. LN QU2
> 4000 AND TENKTUPL. LN QUE2 < 4500 AND TENKTUPL. IN QUE2 =

TENKTUPZ. UIN QUE2;

ID UNIT_ID PAR_ID JOIN_PATH UNIT_TYPE INFO

1 6 1 9 JOINUNIT MERGE JOIN

2 6 1 10

3 9 6 0 ORDER NO ORDER-

UNIT ING

REQUIRED

4 8 9 0 TABLEUNIT TENKTUP2

5 8 9 0 PRIMARY
KEY

6 8 9 0 UNIQUE2 <
4500

7 8 9 0 UNIQUE2 >
4000

8 8 9 0

9 10 6 0 ORDER NO ORDER-

UNIT ING

REQUIRED

10 7 10 0 TABLEUNIT TENKTUPL

11 7 10 0 PRIMARY
KEY

12 7 10 0 UNIQUE2 <
4500

13 7 10 0 UNIQUE2 >
4000

14 7 10 0

Execution graph:

JOIN UNIT 6 the input from order units 9 and 10 are joined using merge join algorithm

Diagnostics and Troubleshooting 8-7

Tracing Communication between Client and Server

ORDER UNIT 9 orders the input from TABLE UNIT 8. Since the dataisretrieved in cor-
rect order, no real ordering is needed

ORDER UNIT 10 orders the input from TABLE UNIT 7. Since the datais retrieved in cor-
rect order, no real ordering is needed

TABLE UNIT 8: rows are fetched from table TENKTUP2 using primary key. Constraints
UNIQUEZ2 < 4500 and UNIQUEZ2 > 4000 are used to select the rows

TABLE UNIT 7: rows are fetched from table TENKTUPL using primary key. Constraints
UNIQUE2 < 4500 and UNIQUE2 > 4000 are used to select the rows

JOIN UNIT 6
f f
JOIN PATH 9 JOIN PATH 10
. f
ORDER UNIT 9 ORDER UNIT 10
y 4
TABLEUNIT 8 TABLEUNIT 7

Example 2. Execution graph

Tracing Communication between Client and Server

SOLID Embedded Engine provides the following tools for observing the communication
between an application and a database server:

« the Network Trace facility
« thePingfacility

You can use these tools to analyze the functionality of the networking between an applica-
tion and an embedded engine. The network trace facility should be used when you want to
know why a connection is not established to an embedded engine. The ping facility is used
to determine how fast packets are transferred between an application and a database server.

The Network Trace Facility

Network tracing can be done on the Embedded Engine computer, on the application com-
puter or on both computers concurrently. The trace information is written to the default trace
file or file specified inthe Tr aceFi | e parameter.

8-8 SOLID Administrator Guide

Tracing Communication between Client and Server

The default name of the output fileissol t r ace. out . Thisfile will be written to the cur-
rent working directory of the server or client depending on which end the tracing is started.

The file contains information about:

« loaded DLLs

« network addresses

« possible errors

The Network Trace facility isturned on by editing the configuration file:
[Con

Trace ={Yes| No}

; default No

TraceFi le = fil e _nane

; default sol trace. out

or by using the environment variables SOL TRACE and SOLTRACEFI LE to override the def-
initions in the configuration file. Setting of SOLTRACE and SOLTRACEFI LE environment

variables have the same effect as the parameters Tr ace and Tr aceFi | e in the configura-
tionfile.

Note

Defining the Tr aceFi | e configuration parameter or the SOLTRACEFI LE environment
variable automatically turns on the Network trace facility.

A third aternative to turn on the Network trace facility is to use the option -t and/or -ofile-
name as a part of the network name. The option -t turns on the Network trace facility. The
option -o turns on the facility and defines the name of the trace output file.

Example 1. Defining Parameter Trace in the Configuration File
[Con

Gonnect = nnp SALID

Listen = nnp SQLID

Trace = Yes

Diagnostics and Troubleshooting 8-9

Tracing Communication between Client and Server

Example 2. Defining Environment Variables
set SALTRACE = Yes
or

set SOLTRACHH LE = trace. out

Example 3. Using Network Name Options
[Con

Gonnect = nnp -t solid

Listen = nnp -t solid

or

[Con

Gonnect = nnp -oclient.out solid

Li sten = nnp -oserver.out solid

The Ping Facility
The Ping facility can be used to test the performance and functionality of the networking.

The Ping facility isbuilt in all SOLID client applications and is turned on with the network
name option -plevel.

The output file will be written to the current working directory of the computer where the
parameter is given. The default name of the output fileissol t r ace. out .

Clients can always use the Ping facility at level 1. Levels 2, 3, 4 or 5 may only be used if the
server is set to use the Ping facility at least at the same level.

The Ping facility levels are:

Setting Function Description

0 no operation do nothing, default

1 check that server isalive exchange one 100 byte message

2 basic functional test exchange messages of sizes 0.1K, 1K,
2K..30K, increment 1K

3 basic speed test exchange 100 messages of sizes 0.1K, 1K,
8K and display each sub-result and total
time

4 heavy speed test exchange 100 messages of sizes 0.1K, 1K,

2K, 4K, 8K, 16K and display each sub-
result and total time

8-10 SOLID Administrator Guide

Tracing Communication between Client and Server

Setting Function Description

5 heavy functional test exchange messages of sizes 1..30K, incre-
ment 1 byte

Note

If aSOLID client does not have an existing server connection, you can use the

SQL Connect() function with the connect string -p1 option (ping test, level 1) to check if
SOLID islistening in a certain address. Without logging into SOL 1D, SQL Connect() can
then check the network layer and ensure SOLID is listening. When used in this manner,
SQL Connect() generates error code 21507, which means the server is alive.

Example 1
The client turns on the Ping facility by using the following network name:

nnp -pl -oping.out SCLID

This runsthe Ping facility at the level 1 into afile named SOLTRACE.OUT. This test checks
if the server is alive and exchanges one 100 byte message to the server.

After the Ping facility has been run, the client exits with the following message:

SCLI D Gommuni cati on return code xxx: Ping test successful /fail ed,
results are in file FFR XX

Example 2

If the server is using the following listen parameter, applications can run the Ping facility at
levels 1,2 and 3, but not 4 and 5.

[Conj
Listen = nnp -p3 SALID

Note

Ping clients running at level greater than 3 may cause heavy network traffic and may cause
downess of application using the network. They will also slow down ordinary SQL clients
connected to the same SOLID Embedded Engine.

Diagnostics and Troubleshooting 8-11

Problem Reporting

Problem Reporting

SOLID Embedded Engine offers sophisticated diagnostic tools and methods for producing
high quality problem reports with very limited effort. Use the diagnostic tools to capture all
the relevant information about the problem.

All problem reports should contain the following files and information:
« solid.ini

« license number

« solmsg.out

« solerror.out

« soltrace.out

« problem description

« stepsto reproduce the problem

« all error messages and codes

« contact information, preferably email address of the contact person

Problem Categories
Most problems can be divided into the following categories:

« SOLID ODBC API

« SOLID ODBC or JDBC Driver

« UNIFACE driver for SOLID Embedded Engine

« Communication problems between the application and SOLID Embedded Engine

The following pages include a detailed instructions to produce proper problem report for
each problem type. Please follow the guidelines carefully.

SOLID ODBC API Problems

If the problem concerns the performance of SOLID ODBC API or a specific SQL statement,
you should run SQL info facility at level 4 and include the generated sol t r ace. out file
into your problem report. This file contains the following information:

« Createtable statements

« Createview statements

8-12 SOLID Administrator Guide

Problem Categories

« Createindex statements

« SQL statement(s)

SOLID ODBC Driver Problems

If the problem concerns the performance of SOLID ODBC Driver, please include the fol-
lowing information:

« SOLID ODBC Driver name, version, and size
.« ODBC Driver Manager version and size

If the problem concerns the cooperation of SOLID Embedded Engine and any third party
standard software package, please include the following information:

« Full name of the software

« Version and language

« Manufacturer

« Error messages from the third party software package

Use ODBC trace option to get alog of the ODBC statements and include it to your problem
report.

SOLID JDBC Driver Problems

If the problem is related to the SOLID JDBC Driver, please include the following informa-
tion into your problem report:

« Exact version of JDK or JRK used
« Sizeand date of the SOLIDDriver class package
« Contents of DriverManager.setL ogStream(someOutputStream) output, if available

« Call stack (that is, Exception.printStackTract() output) of the application, if an Excep-
tion has occurred n the application

UNIFACE Driver for SOLID Embedded Engine Problems

If the problem concerns the performance of SOLID UNIFACE Driver, please include follow-
ing information:

« SOLID UNIFACE Driver version and size
« UNIFACE version and platform

Diagnostics and Troubleshooting 8-13

Problem Categories

» Contents of the UNIFACE message frame
« Error codes from the driver, $STATUS, $ERROR
= All necessary files to reproduce the problem (TRXs, SQL scripts, USY S.ASN etc.)

Communication between a Client and Server

If the problem concerns the performance of the communication between a client and server
use the Network trace facility and include the generated trace files into your problem report.
Please include the following information:

« SOLID communication DLLs used: version and size
« other communication DLLs used: version and size

« description of the network configuration

8-14 SOLID Administrator Guide

A

Error Codes

Error Categories

SQL Errors

These errors are caused by erroneous SQL statements and are detected by the SOLID SQL
Parser. Administrative actions are not needed.

Database Errors

These errors are detected by the SOLID Embedded Engine and may demand administrative
actions.

Executable Errors

These errors are caused by the failure of a SOLID Embedded Engine executable or a com-
mand line argument related error. They enable implementing intelligent error handling logic
in system startup scripts.

System Errors
These errors are detected by the operating system and demand administrative actions.

Table Errors

These errors are caused by erroneous SQL statements and detected by SOLID Embedded
Engine. Administrative actions are not needed.

Server Errors

These errors are caused by erroneous administrative actions or client requests. They may
demand administrative actions.

Error Codes A-1

SOLID SQL Errors

Communication Errors

These errors are caused by network errors or faulty configuration of the SOLID Embedded
Engine software. These errors demand administrative actions.

Procedure Errors

These errors are caused by errors in the definition or execution of a stored procedure.
Administrative actions are not needed.

Sorter Errors

These errors are caused by external sorter algorithm errors when solving queries that require
ordering rows.

SOLID SQL Errors

Error code Description

SQL Error 1 Parsing error ‘syntax error’

The SQL parser could not parse the SQL string. Check
the syntax of the SQL statement and try again.

SQL Error 2 Table table can not be opened

You may not have privileges to access the table and its
data.

SQL Error 3 Table table can not be created

Table can not be created. You may not have privileges for
this operation.

SQL Error 4 Illegal type definition column

A column type in your CREATE TABLE statement is
illegal. Use alegal type for the column.

SQL Error 5 Table table can not be dropped

Table can not be dropped. Only the owner (that is, the
creator) can drop it.

SQL Error 6 Illegal value specified for column column

The value specified for columnisinvalid. Check the value
for the column.

A-2 SOLID Administrator Guide

SOLID SQL Errors

Error code Description

SQL Error 7 Insert failed
The server failed to do the insertion. You may not have
INSERT privilege on the table or it may be locked.

SQL Error 8 Delete failed
The server failed to do the deletion. You may not have
DELETE privilege on the table or the row may be locked.

SQL Error 9 Row fetch failed
The server failed to fetch arow. You may not have
SELECT privilege on the table or there may be an exclu-
sive lock on the row.

SQL Error 10 View view can not be created
You cannot create this view. You may not have SELECT
privilege on one or more tables in the query-specification
of your CREATE VIEW statement.

SQLErrorll View view cannot be dropped.
You cannot drop this view. Only the owner (i.e. the cre-
ator) of the view can drop it.

SQLError12 Illegal view definition view
The view definition isillegal. Check the syntax of the
definition.

SQLErrorl3 Illegal column name column
Column nameisillegal. Check that the nameisnot a
reserved name.

SQL Error 14 Call to function function failed
Function call to function failed. Check the arguments and
their types.

SQL Error 15 Arithmetic error
An arithmetic error occurred. Check the operators, values
and types.

SQL Error 16 Update failed

The server failed to update arow. There may alock on a
row.

Error Codes A-3

SOLID SQL Errors

Error code

Description

SQL Error 17

View is not updatable

This view is not updatable. UPDATE, INSERT and
DELETE operations are not allowed.

SQL Error 18

Inserted row does not meet check option condition

You tried to insert arow, but one or more of the column
values do not meet column constraint definition.

SQL Error 19

Updated row does not meet check option condition

You tried to update a row, but one or more of the column
values do not meet column constraint definition.

SQL Error 20

Illegal CHECK constraint

A check constraint given to the table isillegal. Check the
types of the check constraint of thistable.

SQL Error 21

Insert failed because of CHECK constraint

You tried to insert arow, but the values do not meet the
check option conditions.

SQL Error 22

Update failed because of CHECK constraint

You tried to update a row, but the values do not meet the
check option conditions.

SQL Error 23

Illegal DEFAULT value
The DEFAULT value for the column given isillegal.

SQL Error 25

Duplicate columnsin INSERT column list

You have included a column in column list twice.
Remove duplicate columns.

SQL Error 26

At least one column definition required in CREATE
TABLE

You need to specify at least one column definitionin a
CREATE TABLE statement.

SQL Error 27

Illegal REFERENCES column list

There are wrong number of columnsin your REFER-
ENCES ist.

A-4 SOLID Administrator Guide

SOLID SQL Errors

Error code Description

SQL Error 28 Only one PRIMARY KEY allowed in CREATE TABLE
You can use only one PRIMARY KEY in CREATE
TABLE.

SQL Error 29 GRANT failed

Granting privilegesfailed. You may not have privileges
for this operation.

SQL Error 30 REVOKE failed

Revoking privileges failed. You may not have privileges
for this operation.

SQL Error 31 Multiple instances of aprivilege type

You tried to grant privilegesto arole or auser. You have
included multiple instances of a privilege typein the list

of privileges.

SQL Error 32 Illegal constant constant
Illegal constant was found. Check the syntax of the state-
ment.

SQL Error 33 Column name list of illegal length

You have entered different number of columnsin CRE-
ATE VIEW statement to the view and to the table.

SQL Error 34 Conversion between types failed
An expression in UPDATE statement hasillegal typefor a
column.

SQL Error 35 Column names not allowed in ORDER BY for UNION

You can not use column name in an ORDER BY for
UNION statement.

SQL Error 36 Nested aggregate functions

Nested aggregate functions can not be used. For exam-
ple: SUM(AVG(column)).

SQL Error 37 Aggregate function with no arguments

An aggregate function was entered with no arguments.
For example: SUM().

Error Codes A-5

SOLID SQL Errors

Error code

Description

SQL Error 38

Set operation between different row types

You have tried to execute a set operation of tableswith
incompatible row types. The row typesin a set operation
must be compatible.

SQL Error 39

COMMIT WORK failed

Committing a transaction failed.

SQL Error 40

ROLLBACK WORK failed
Rolling back atransaction failed.

SQL Error 41

Savepoint could not be created
A savepoint could not be created.

SQL Error 42

Could not create index index

An index could not be created. You may not have privi-
leges for this operation. You need to be an owner of the
table or have SYS_ADMIN_ROLE to have privilegesto
create index for the table.

SQL Error 43

Could not drop index index

An index could not be dropped. You may not have privi-
leges for this operation. You need to be an owner of the
table or have SYS_ADMIN_ROLE to have privilegesto
drop index from the table.

SQL Error 44

Could not create schema schema

A schema could not be created.

SQL Error 45

Could not drop schema schema

A schema could not be dropped.

SQL Error 46

Illegal ORDER BY specification

You tried to use an ORDER BY column that does not
exist. Refer to an existing column in the ORDER BY
specification.

SQL Error 47

Maximum length of identifier is 31

You have exceeded the maximum length for the identifier.

A-6 SOLID Administrator Guide

SOLID SQL Errors

Error code Description

SQL Error 48 Subquery returns more than one row

You have used a subguery that returns more than one row.
Only subqueries returning one row may be used in this
situation.

SQL Error 49 Illegal expression expression

You tried to insert or update a table using an aggregate
function (SUM, MAX, MIN or AVG) asavaue. Thisis
not allowed.

SQL Error 50 Ambiguous column name column

You have referenced a column which is existsin more
than one table. Use syntax table.column to indicate which
table you want to use.

SQL Error 51 Non-existent function function

You tried to use a function which does not exist.

SQL Error 52 Non-existent cursor cursor

You tried to use a cursor which is not created.

SQL Error 53 Function call sequence error

A function was called in wrong order. Check the
sequence and success of the function calls.

SQL Error 54 Illegal use of a parameter

A parameter was used illegally. For example: SELECT *
FROM TEST WHERE ?< ?,

SQL Error 55 Illegal parameter value

A parameter has an illegal value. Check the type and
value of the parameter.

SQL Error 56 Only ANDs and simple condition predicates allowed in
UPDATE CHECK

All search condition predicates are not supported.

SQL Error 57 Opening the cursor did not succeed

Server failed to open a cursor. You may not have cursor
open at this moment.

Error Codes A-7

SOLID SQL Errors

Error code

Description

SQL Error 58

Column column is not referenced in group-by-clause

You tried to group rows using column. All columnsin
group_by_clause must be listed in your select_list. A star
(“*’) notation is not allowed with GROUP BY.

SQL Error 59

Comparison between incompatible types

You tried to compare values which have incompatible
types. Incompatible types are for example an integer and
adate value.

SQL Error 60

Reference to the insert table not allowed in the source
query

You have referenced in subquery atable where you are
inserting values. Thisis not alowed.

SQL Error 61

Reference to the update table not allowed in subquery

You have referenced in subquery atable where you are
updating values. Thisis not allowed.

SQL Error 62

Reference to the delete table not allowed in subquery

You have referenced in subquery atable where you are
deleting values. Thisis not allowed.

SQL Error 63

Subquery returns more than one column

You have used a subquery that returns more than one col-
umn. Only subqueries returning one column may be used.

SQL Error 64

Cursor cursor not updatable

The cursor opened is not updatable.

SQL Error 65

Insert or update tried on pseudo column

You tried to update a pseudo column (ROWID,
ROWVER). Pseudo columns are not updatable.

SQL Error 66

Could not create user user

A user could not be created. You may not have privileges
for this operation.

SQL Error 67

Could not alter user user

A user could not be altered. You may not have privileges
for this operation.

A-8 SOLID Administrator Guide

SOLID SQL Errors

Error code Description

SQL Error 68 Could not drop user user

A user could not be dropped. You may not have privi-
leges for this operation.

SQL Error 69 Could not createrolerole

A role could not be created. You may not have privileges
for this operation.

SQL Error 70 Could not drop rolerole

A role could not be dropped. You may not have privi-
leges for this operation.

SQL Error 71 Grant rolefailed

Granting role failed. You may not have privileges for this
operation.

SQL Error 72 Revokerole failed

Revoking role failed. You may not have privilegesfor this
operation.

SQL Error 73 Comparison of vectors of different length

You have tried to compare row value constructors that
have different number of dimensions. For example you

have compared (a,b,c) to (1,1).
SQL Error 74 Expression * not compatible with aggregate expression

The aggregate expression can not be used with * col-
umns. Specify columns using their names when used with
this aggregate expression. This usually happens when
GROUP BY expression is used with the * columns.

SQL Error 75 Illegal reference to table table

You have tried to reference atable which isnot in the
FROM list. For example: SELECT T1.* FROM T2.

SQL Error 76 Ambiguous table name table

You have used the syntax table.column name ambigu-
ously. For example: SELECT T1.* FROM T1A,T1B
WHERE A.F1=0;

Error Codes A-9

SOLID SQL Errors

Error code Description

SQL Error 77 Illegal use of aggregate expression
You tried to use aggregate expression illegally. For exam-
ple: SELECT ID FROM TEST WHERE SUM(ID) = 3;

SQL Error 78 Row fetch failed
The server failed to fetch arow. You may not have
SELECT privilege on the table or there may be an exclu-
sivelock on the row.

SQL Error 79 Subqueries not allowed in CHECK constraint
You tried to use subquery in acheck constraint.

SQL Error 80 Sorting failed
External sorter is out of disk space or cache memory.
Modify parametersin configuration filesol i d. i ni .

SQL Error 81 SET syntax resultsin error

SQL Error 82 Improper type used with LIKE

SQL Error 83 Syntax error

SQL Error 84 Parser error statement

SQL Error 85 Incorrect number of values for INSERT

SQL Error 86 Illegal ROWNUM constraint

SQL Error 88 Subquery not alowed in UPDATE expression
Subqueries cannot be used in UPDATE statements.

SQL Error 93 Illegal GROUPBY expression

GROUPBY expressionisillegal.

A-10 SOLID Administrator Guide

SOLID Database Errors

SOLID Database Errors

Error code Description

Database Error 10001 Key value is not found.
Internal error: akey value cannot be found from the data-
base index.

Database Error 10002 Operation failed.

Thisisan internal error indicating that the index of the
table accessed isin inconsistent state. Try to drop and cre-
ate the index again to recover the error.

Database Error 10004 Redefinition.

Unexpected failure occurred in the database engine.

This error may also occur during recovery: either an
index or aview has been redefined during recovery. The
server is not able to do the recovery. Delete log files and
start the server again.

Database Error 10005 Unique constraint violation.

You have violated a unique constraint. This happens when
you have tried to insert or update a column which has a
unigue constraint and the value inserted or updated is not
unique.

This may also occur when you create users, tables or
roles having same names in separate transactions.

Database Error 10006 Concurrency conflict, two transactions updated or deleted
the same row.

Two separate transactions have modified a same row in
the database simultaneously. This has resulted in a con-
currency conflict.

Database Error 10007 Transaction is not serializable.

The transaction committed is not serializable.

Database Error 10010 No checkpoint in database.

This error occurs when the server has crashed in the mid-
dle of creating a new database. Del ete the database and
log files and try to create the database again.

Error Codes A-11

SOLID Database Errors

Error code

Description

Database Error 10011

Database headers are corrupted.

The headers in the database are corrupted. This may be
caused by adisk error or other system failure. Restore the
database from the backup.

Database Error 10012

Node split failed.

Thisisan internal error.

Database Error 10013

Transaction is read-only.

You have tried to write inside atransaction that is set
read-only. Remove the write operation or unset the read-
only mode in the transaction.

Database Error 10014

Resource is locked.

This error occurs when you are trying to use akey value
in an index which has been concurrently dropped.

Database Error 10016

Log fileis corrupted.

One of thelog files of the database is corrupted. You can
not use these log files. Delete them and start the server

again.

Database Error 10017

Too long key value.

The maximum length of the key value has been exceeded.
The maximum value is one third of the size of the index
leaf.

Database Error 10019

Backup is active

You have tried to start a backup when a backup processis
already in progress.

Database Error 10020

Checkpoint creation is active.

You have tried to start a checkpoint when a checkpoint
creation is already in progress.

Database Error 10021

Failed to delete log file.
The deletion of alog file in making a backup has failed.
Reasons for the failure can be:

« Thelogfile has already been deleted from the oper-
ating system.

« Thelogfile has aread-only attribute.

A-12 SOLID Administrator Guide

SOLID Database Errors

Error code Description
Database Error 10023 Wrong log file, maybe the log file is from another data-
base.

The log file in the database directory is from another
SOL D Embedded Engine database. Copy the correct log
filesto the database directory.

The log file in the database directory is from another
SOL 1D Embedded Engine database. Copy the correct log
filesto the database directory.

Database Error 10024 Illegal backup directory.

The backup directory is either an empty string or a dot
indicating that the backup will be created in the current
directory.

Database Error 10026 Transaction is timed out.

An idle transaction has exceeded the maximum idle trans-
action time. The transaction has been aborted.

The maximum value is set in parameter AbortTimeOut in
SRV section. The default value is 120 minutes.

Database Error 10027 No active search.

Internal error.

Database Error 10028 Referential integrity violation, foreign key values exist.
You tried to delete arow that is referenced from aforeign
key.

Database Error 10029 Referential integrity violation, referenced column values
do not exist.

The definition of aforeign key does not uniquely identify
arow in the referenced table.

Database Error 10030 Backup directory 'directory name' does not exist.

Backup directory is not found. Check the name of the
backup directory.

Database Error 10031 Transaction detected a deadlock, transaction is rolled
back.

Deadlock detected. If necessary, begin transaction again.

Error Codes A-13

SOLID Database Errors

Error code

Description

Database Error 10032

Wrong database block size specified.

The block size of the database file differs from the block-
sizegiven in the configuration filesol i d. i ni .

Database Error 10033

Primary key unique constraint violation.

Your primary key definition is not unique.

Database Error 10034

Sequence name sequence conflicts with an existing entity.

Choose a unique name for a sequence. The specified
name is already used.

Database Error 10035

Sequence does not exist.

Check the name of the sequence.

Database Error 10036

Data dictionary operation is active for accessed sequence.

Create or drop operation is active for the accessed
sequence. Try again.

Database Error 10037

Can not store sequence value, the target data typeisille-
gd.

The valid target data types are INTEGER and BINARY.

Database Error 10038

Illegal column value for descending index.

Corrupted datafound in descending index. Drop the index
and create it again.

Database Error 10040

Log filewritefailure, probably the disk containing thelog
filesisfull.

Shut down the server and reserve more disk space for log
files.

Database Error 10041

Database is read-only.

Database Error 10042

Database index check failed, the database file is cor-
rupted.

Database Error 10043

Database free block list corrupted, same block twicein
freelist.

Database Error 10044

Primary key can not contain blob attributes.

Database Error 10046

Operation failed, data dictionary operation is active.

Database Error 10047

Replicated transaction is aborted.

A-14 SOLID Administrator Guide

SOLID Database Errors

Error code Description

Database Error 10048 Replicated transaction contains schema changes, opera-
tion failed.

Database Error 10049 Slave server not available any more, transaction aborted

Database Error 10050 Replicated row contains BLOb columns that cannot be
replicated.

Database Error 10054 Opening the database file failed.

Probably another SOLID processis aready running in the
same directory.

Database Error 10055 Too little cache memory has been specified for the
SOLID process.
Database Error 10056 Cannot open database file. Error text (number).

Most likely the SOLID process does not have correct
access rights to the database file.

Database Error 10057 The database is irrevocably corrupted.
Revert to the latest backup.

Database Error 10058 Database version (number) does not match with SOLID
version.

Possible causes for this error include:

. aversion of SOLID that istoo old is used with this
database

« thedatabase has been corrupted

Database Error 10059 Database version (number) does not match with SOLID
version.

Possible causes for this error include:

. aversion of SOLID that istoo old is used with this
database

« thedatabase has been corrupted

Error Codes A-15

SOLID Database Errors

Error code

Description

Database error 10060

Cannot perform roll-forward recovery in read-only mode.

Read-only mode can be specified in 3 ways. To restart
SOLID in norma mode, verify that:

« SOLID processis not started with command-line
option -x read only

« solid.ini doesnot contain the following param-
eter setting:

[General]
ReadOnl y=yes

« licensefile does not have read-only limitation

Database error 10061

Out of database cache memory blocks.

SOLID process cannot continue because there istoo little
cache memory allocated for the SOLID process. Typica
cause for this problem is a heavy load from several con-
current users. To allocate more cache memory, set the fol-
lowingsol i d. i ni parameter to ahigher value:

[I ndexFi | e]
CacheSi ze=cache size in bytes

NOTE: Allocated cache memory size should not exceed
the amount of physical memory.

Database error 10062

Failed to write to log filename at offset.

Verify that the disk containing the log filesis not full and
is functioning properly. Also, log files should not be
stored on shared disks over the network.

Database error 10063

Cannot create new log filename because such afile
aready existsin thelog file directory.

Probably your log file directory also contains logs from
some other database. SOLID process cannot continue
until invalid log files are removed from the log file direc-
tory. Remove log filename and all other log files with
greater sequence numbers.

A-16 SOLID Administrator Guide

SOLID Database Errors

Error code Description

Database error 10064 Illegal log file name template.
Most likely, the log file name template specified in:

[Loggi ng]

Fi | eNameTenpl at e=nane
contains too few or too many sequence number digit posi-
tions. There should be at least 4 and at most 10 digit posi-
tions.

Database error 10066 Cannot open log filename. Check the following log file
nametemplateinsol i d. i ni :

[Loggi ng]
Fi | eNameTenpl at e=name

and verify that:

« it can be expanded into avalid file namein this envi-
ronment

« SOLID process has appropriate privileges to the log
files directory.

Database error 10067 Cannot create database because old log filename existsin
thelog files directory.

Possibly the database has been deleted without deleting
thelog files or there are log files from some other data-
base in the log files directory of the database to be cre-

ated.

Error Codes A-17

SOLID Database Errors

Error code Description
Database error 10068 Roll-forward recovery cannot be performed because the
configured log file block size number does not match with
block size number of existing filename.
To enablerecovery, edit sol i d. i ni toinclude param-
eter setting:
[Loggi ng]
Bl ockSi ze=bl ocksi ze in bytes
and restart the SOLID process. After successful recovery,
you can change the log file block size by performing
these steps:
1. Shut down the SOLID process.
2. Removeold log files.
3. Editnew block sizeintosol i d. i ni
4. Restart SOLID.
Database error 10069 Roll-forward recovery failed because relation id number

was not found. Database has been irrevocably corrupted.
Please restore the database.

Database error 10070

Roll-forward failed because relation id number was not
found. Database has been irrevocably corrupted. Please
restore the database from the latest backup.

Database error 10073

Database isinconsistent. Illegal index block type size,
address, routine, reachmode. Please restore the database
from the latest backup.

Database error 10074

Roll-forward recovery failed. Please revert to the latest
backup.

Database error 10075

The database you are trying to use has been originally
created with different database block size settings than
your current settings.

Editthesol i d. i ni fileto contain the following param-
eter setting:

[I ndexFi | e]
Bl ockSi ze=bl ocksi ze in bytes

A-18 SOLID Administrator Guide

SOLID Executable Errors

Error code Description

Database error 10076 Roll-forward recovery failed because tablename or
viewname is redefined in the log filename.

Possible causes for this error include:

« another SOLID processis using the samelog file
directory

« oldlogfilesare present in the log file directory

SOLID process cannot use this corrupted log file to
recover. In order to continue, you have the following
aternatives:

1. Revert to thelast backup
2. Revert to the last checkpoint

3. Revert to the last committed transaction within the
last valid log file

Database error 10077 No base catalog given for database conversion (use -C
catalogname)

A database’s base catal og must be provided when con-
verting the database to a new format.

SOLID Executable Errors

Error code Description

Executable Error 10 Failed to open database
Executable Error 11 Failed to connect to database
Executable Error 12 Database test failed
Executable Error 13 Database fix failed
Executable Error 14 License error

Executable Error 15 Database must be converted
Executable Error 16 Database does not exist
Executable Error 17 Database exists

Executable Error 18 Database not created
Executable Error 19 Database create failed

Error Codes A-19

SOLID System Errors

Error code Description

Executable Error 20 Communication init failed
Executable Error 21 Communication listen failed
Executable Error 22 Service operation failed
Executable Error 50 Illegal command line argument
Executable Error 51 Failed to change directory
Executable Error 52 Input file open failed
Executable Error 53 Output file open failed
Executable Error 54 Server connect failed
Executable Error 55 Operation init failed

SOLID System Errors

Error code Description

System Error 11000 File open failure.

The server is unable to open the database file. Reason for
the failure can be:

« Thedatabase file has been set read-only.

« Youdo not have rights to open the database file in
write mode.

« Another SOLID Embedded Engineis using the data-
basefile.

« Correct the error and try again.

System Error 11001 File write failure.

Server is unable to write to the disk. The database files
may have aread-only attribute set or you may not have
rights to write to the disk. Add rights or unset read-only
attribute and try again.

System Error 11002 File write failed, disk full.

Server failed to write to the disk, because the disk isfull.
Free disk space or move the database file to another disk.
You can also split the database file to several disks using
the FileSpec_[1-N] parameter in IndexFile section.

A-20 SOLID Administrator Guide

SOLID System Errors

Error code Description
System Error 11003 File write failed, configuration exceeded.

Writing to the database file failed, because the maximum
database file size set in FileSpec_[1-N] parameter is
exceeded.

System Error 11004 File read failure.

An error occurred reading afile. This may indicate adisk
error in your system.

System Error 11005 File read beyond end of file.
Internal error.
System Error 11006 Fileread failed, illegal file address.

An error occurred reading afile. This may indicate adisk
error in your system.

System Error 11007 Filelock failure.

The server failed to lock the database file. This error
occurs in the Windows version, if you do not have
SHARE.EXE loaded. To correct the failure:

1. Exit Windows

2. Load SHARE.EXE

3. Delete the database file SOLID.DB and log files.

4. Start Windows and launch SOLID Embedded Engine.
System Error 11008 File unlock failure.

Server failed to unlock afile.

System Error 11009 File free block list corrupted.
internal error.
System Error 11010 Too long file name.

Filename specified in parameter FileSpec [1-N] istoo
long. Change the name to a proper file name.

System Error 11011 Duplicate file name specification.

Filename specified in parameter FileSpec [1-N] is not
unigue. Change the name to a proper file name.

Error Codes A-21

SOLID System Errors

Error code

Description

System Error 11012

License information not found, exiting from SOLID
Embedded Engine

Check the existence of your sol i d. | i c file.

System Error 11013

License information is corrupted.

Your sol i d. | i ¢ file has been corrupted.

System Error 11014

Database age limit of evaluation license expired.

System Error 11015

Evaluation license expired.

System Error 11016

Licenseisfor different CPU architecture.

System Error 11017

Licenseisfor different OS environment.

System Error 11018

Licenseisfor different version of this OS.

System Error 11019

Licenseisnot valid for this server version.

System Error 11020

License information is corrupted.

System Error 11021

Problem with Your license, please contact Solid Informa-
tion Technology Ltd. immediately.

System Error 11022

Desktop licenseis only for local protocol communica-
tion, cannot use protocol protocol for listening.

System Error 11024

Desktop licenseis only for local communication, cannot
use name name for listening.

System Error 11025

Licensefile filenameis not compatible with this server
executable.

Server has been started with an incompatible license file.
You need to update your license file to match the server
version.

System Error 11026

Backup directory contains afile which could not be
removed.

Some file could not be removed from the backup direc-
tory. The backup directory may point to awrong location.

System Error 11027

No such parameter section section.

Parameter was not found from the specified section in the
solid.ini file

System Error 11028

No such parameter section.name.

Parameter does not exist.

A-22 SOLID Administrator Guide

SOLID Table Errors

Error code Description

11029 Not allowed to set parameter value.

User isnot allowed to set the parameter value.

11030 Cannot set values to multiple parameters.

Only one parameter can be set at one time.

11031 Illegal typefor parameter.
Parameter typeisillegal.

11032 Cannot set new value for parameter section.name.

A new value cannot be set for the parameter.

SOLID Table Errors

Error code Description

Table Error 13001 Illegal character constant constant.
Anillegal character constant was found in the SQL state-
ment.

Table Error 13002 Type CHAR not allowed for arithmetic.

You have entered a cal culation having a character type
constant. Character constants are not supported in arith-
metical.

Table Error 13003 Adggregate function function not available for ordinary
cal.

Aggregate functions can not be used for ordinary func-
tion calls.

Table Error 13004 Illegal aggregate function parameter parameter.

Anillegal parameter has been given to an aggregate func-
tion. Aggregate function parameters can only be column
names or numbers.

Table Error 13005 SUM and AVG not supported for CHAR type.

Aggregate functions SUM and AV G are not supported for
character type parameters.

Error Codes A-23

SOLID Table Errors

Error code Description

Table Error 13006 SUM or AVG not supported for DATE type.

Aggregate functions SUM and AV G are not supported for
date type parameters.

Table Error 13007 Function function is not defined.

The function you tried to use is not defined.

Table Error 13009 Division by zero.

A division by zero has occurred.

Table Error 13011 Table table does not exist.

You have referenced a table which does not exist or you
do not have REFERENCES privilege on the table.

Table Error 13013 Table name table conflicts with an existing entity.
Choose a unique name for atable. The specified nameis
already used.

Table Error 13014 Index index does not exist.

You have referenced an index which does not exist.

Table Error 13015

Column column does not exist on table table.

You have referenced a column in a table which does not
exist.

Table Error 13016

User does not exist.

You have referenced a user which does not exist.

Table Error 13018

Join tableis not supported

Joined tables are not supported in this version of SOLID
Embedded Engine.

Table Error 13019 Transaction savepoints are not supported.
Transaction savepoints are not supported in this version
of SOLID Embedded Engine.

Table Error 13020 Default values are not supported.

Default column values are not supported in this version of
SOLID Embedded Engine.

A-24 SOLID Administrator Guide

SOLID Table Errors

Error code Description

Table Error 13021 Foreign keys are not supported.
Foreign keys are not supported in this version of SOLID
Embedded Engine.

Table Error 13022 Descending keys are not supported.

Descending keys are not supported in this version of
SOL 1D Embedded Engine.

Table Error 13023 Schemais not supported.
Schemais not supported in this version of SOLID
Embedded Engine.

Table Error 13025 Update through a cursor with no current row.

You have tried to update using cursor, but you do not have
current row in the cursor.

Table Error 13026 Delete through a cursor with no current row

You have tried to delete using cursor, but you do not have
current row in the cursor.

Table Error 13028 View view does not exist.

You have referenced a view which does not exist.

Table Error 13029 View name view conflicts with an existing entity.
Choose a unique name for aview. The specified nameis
already used.

Table Error 13030 No value specified for NOT NULL column column.

You have not specified avalue for acolumn which is
defined NOT NULL.

Table Error 13031 Data dictionary operation is active for accessed table or
key.
You can not access the table or key, because a data dictio-

nary operation is currently active. Try again after the data
dictionary operation has completed.

Table Error 13032 Illegal type type.

You have tried to create a table with a column having an
illegal type.

Error Codes A-25

SOLID Table Errors

Error code

Description

Table Error 13033

Illegal parameter parameter for type type.

The type of the parameter you entered isillegal in this
column.

Table Error 13034

Illegal constant constant.

You have entered anillegal constant.

Table Error 13035

Illegal INTEGER constant constant.

You have entered an illegal integer type constant. Check
the syntax of the statement and try again.

Table Error 13036

Illegal DECIMAL constant constant.

You have entered an illegal decimal type constant. Check
the decimal number and try again.

Table Error 13037

Illegal DOUBLE PREC constant constant.

You have entered an illegal double precision type con-
stant. Check the number and try again.

Table Error 13038

Illegal REAL constant constant.

You have entered an illegal real type constant. Check the
real number and try again.

Table Error 13039

Illegal assignment.

You have tried to assign an illegal value for a column.

Table Error 13040

Aggregate function function is not defined.
The aggregate function you tried to use is not supported.

Table Error 13041

Type DATE not allowed for arithmetic.

DATE type columns or constants are not allowed in arith-
metical.

Table Error 13042

Power arithmetic not allowed for NUMERIC and DECI-
MAL datatype.

Decimal and numeric data types do not support power
arithmetical.

Table Error 13043

Illegal date constant constant.

A date constant isillegal. The correct form for date con-
stantsis: YYYY-MM-DD.

A-26 SOLID Administrator Guide

SOLID Table Errors

Error code Description

Table Error 13045 Reference privileges are not supported.

Reference privileges are not supported in this version of
SOLID Embedded Engine.

Table Error 13046 Illegal user name user.

User name entered isnot legal. A legal user nameis at
least 2 and at most 31 charactersin length. A user name
may contain characters from A to Z, numbers from 0to 9
and underscore character *_’

Table Error 13047 No privileges for operation.

You have no privileges for the attempted operation.
Table Error 13048 No grant option privilege for entity name.

You have no privileges to grant privileges for the entity.
Table Error 13049 Column privileges cannot be granted WITH GRANT

OPTION

Granting column privileges WITH GRANT OPTION is
not supported in this version of SOLID Embedded
Engine.

Table Error 13050 Too long constraint value.

Maximum constraint length has been exceeded. Maxi-
mum constraint length is 255 characters.

Table Error 13051 Illegal column name column.
You have tried to create atable with anillegal column
name.

Table Error 13052 Illegal comparison operator operator for a pseudo col-
umn column.

You have tried to use an illegal comparison operator for a
pseudo column. Legal comparison operators for pseudo
columns are: equality ‘=" and non-equality ‘<>*.

Table Error 13053 Illegal datatype for a pseudo column.

You have tried to use an illegal datatype for a pseudo col-
umn. Data type of pseudo columnsis BINARY.

Error Codes A-27

SOLID Table Errors

Error code

Description

Table Error 13054

Illegal pseudo column data, maybe datais not received
using pseudo column.

You have tried to compare pseudo column data with non-
pseudo column data. Pseudo column data can only be
compared with data received from a pseudo column.

Table Error 13055

Update not allowed on pseudo column.

Updates are not allowed on pseudo columns.

Table Error 13056

Insert not allowed on pseudo column.

Inserts are not allowed on pseudo columns.

Table Error 13057

Index name index already exists.

You have tried to create an index, but an index with the
same name aready exists. Use another name for the
index.

Table Error 13058

Constraint checks were not satisfied on column column.

Column has constraint checks which were not satisfied
during an insert or update.

Table Error 13059

Reserved system name name.

You tried to use aname which is areserved system name
such as PUBLIC and SYS_ADMIN_ROLE.

Table Error 13060

User name user not found.

You tried to reference a user name which is not created.

Table Error 13061

Role name role not found.

You tried to reference arole name which is not created.

Table Error 13062

Admin option is not supported.

Admin option is not supported in this version of SOLID
Embedded Engine.

Table Error 13063

Name name already exists.

You tried to use arole or user which already exists. User
names and role names must all be different, that is, you
can not have a user named HOBBES and arole named
HOBBES.

A-28 SOLID Administrator Guide

SOLID Table Errors

Error code Description

Table Error 13064 Not avalid user name user.

You tried to create an invalid user name. A valid user
name has at least 2 characters and at most 31 characters.

Table Error 13065 Not avalid role name role.

You tried to create an invalid role name. A valid user
name has at least 2 characters and at most 31 characters.

Table Error 13066 User user not found inrole role.
You tried to revoke arole from a user and the user did not
have that role.

Table Error 13067 Too short password.

You have entered atoo short password. Password length
must be at least 3 characters.

Table Error 13068 Shutdown isin progress.

You are unable to compl ete this operation, because server
shutdown isin progress.

Table Error 13070 Numerical overflow.

A numerical overflow has occurred. Check the values and
types of numerical variables.

Table Error 13071 Numerical underflow.

A numerical underflow has occurred. Check the values
and types of numerical variables.

Table Error 13072 Numerical value out of range.

A numerical valueis out of range. Check the values and
types of numerical variables.

Table Error 13073 Math error.

A mathematical error has occurred. Check the mathemat-
icsin the statement and try again.

Table Error 13074 Illegal password.

You have tried to enter anillegal password.

Error Codes A-29

SOLID Table Errors

Error code

Description

Table Error 13075

Illegal role namerole.

You have tried to enter aniillegal role name. A legal role
nameisat least 2 and at most 31 charactersin length. A
user role may contain characters from A to Z, numbers
from 0 to 9 and underscore character * ’

Table Error 13076

NOT NULL must not be specified for added column col-
umn.

You have tried to add a column to atable using ALTER
TABLE statement. NOT NULL constraint is not allowed
in ALTER TABLE statement when the table already
includes data.

Table Error 13077

Last column can not be dropped.

You have tried to drop the final columnin atable. Thisis
not allowed; at least one column must remain in the table.

Table Error 13078

Column aready exist on table.

You have tried to create a column which already existsin
atable.

Table Error 13079

Illegal search constraint.

Check the search engine. There may be mismatch
between data types.

Table Error 13080

Incompatible types, can not modify column column from
type type to type type.

You have tried to modify column to adata typethat is
incompatible with the original definition, such as VAR-
CHAR and INTEGER

Table Error 13081

Descending keys are not supported for binary columns.

You can not define descending key for abinary column.

Table Error 13082

Function function: parameter * not supported.

You can not use parameter star (*) with ODBC Scalar
Functions.

Table Error 13083

Function function: Too few parameters.

The function expects more parameters. Check the func-
tion call.

A-30 SOLID Administrator Guide

SOLID Table Errors

Error code Description

Table Error 13084 Function function: Too many parameters.
The function expects fewer parameters. Check the func-
tion call.

Table Error 13085 Function function: Run-time failure.

An error was detected during the execution of the func-
tion. Check the parameters.

Table Error 13086 Function function: type mismatch in parameter parame-
ter number.

A erroneous type of parameter detected in the given posi-
tion of the function call. Check the function call.

Table Error 13087 Function function: illegal value in parameter parameter
number.

Anillegal value for a parameter detected in the given
position of the function call. Check the function call.

Table Error 13090 Foreign key column column data type not compatible
with referenced column data type.

References specification error. Check that the column
data type are compatible between referencing and refer-
enced tables.

Table Error 13091 Foreign key does not match to the primary key or unique
congtraint of the referenced table.

References specification error. Check that the column
data type are compatible between referencing and refer-
enced tables and that the foreign key is unique for the ref-
erenced table.

Table Error 13092 Event name event conflicts with an existing entity.

Choose a unique name for an event. The specified name
is already used.

Table Error 13093 Event event does not exist.

You referenced to a nonexistent event. Check the name of
event.

Table Error 13094 Duplicate column column in primary key definition.

Duplicate columns are not allowed in atable-constraint-
definition. Remove duplicate columns from the definition.

Error Codes A-31

SOLID Table Errors

Error code

Description

Table Error 13095

Duplicate column column in unique constraint definition.

Duplicate columns are not allowed in atable-constraint-
definition. Remove duplicate columns from the definition.

Table Error 13096

Duplicate column column in index definition.

Duplicate columns are not alowed in CREATE INDEX
statement. Remove duplicate columns.

Table Error 13097

Primary key columns must be NOT NULL.

Error in a column_constraint_definition. Define primary
key columns NOT NULL. For example: CREATE
TABLE DEPT (DEPTNO INTEGER NOT NULL,
DNAME VARCHAR, PRIMARY KEY (DEPTNO));

Table Error 13098

Unique constraint columns must be NOT NULL.

Error in a column_constraint_definition. Define unique
columns NOT NULL. For example: CREATE TABLE
DEPT4 (DEPTNO INTEGER NOT NULL, DNAME
VARCHAR, UNIQUE(DEPTNO));

Table Error 13099

No REFERENCES privileges to referenced columnsin
table table.

You do not have privileges to reference to the table.

Table Error 13100

Illegal table mode combination.

You have defined illegal combination of locking. Check
locking type of tables.

Table Error 13101

Only execute privileges can be used with procedures.

Table Error 13102

Execute privileges can be used only with procedures.

Table Error 13103

Illegal grant or revoke operation.

Table Error 13104

Sequence name sequence conflicts with an existing entity.

Choose a unique name for a sequence. The specified
name is already used.

Table Error 13105

Sequence sequence does not exist.

You referenced a nonexistent sequence. Check the name
of sequence.

Table Error 13106

Foreign key reference existsto table table.

A-32 SOLID Administrator Guide

SOLID Table Errors

Error code Description

Table Error 13107 Illegal set operation.
You tried to execute a hon-existent set operation.

Table Error 13108 Comparison between incompatible types datatype and
datatype.

Table Error 13109 There are schema objects for this user, drop failed

Table Error 13110 NULL values given for NOT NULL column column.

Table Error 13111 Ambiguous entity name name.

Table Error 13112 Foreign keys are not supported with main memory tables.

Table Error 13113 Illegal arithmetic between types datatype and datatype.

Table Error 13114 String operations are not alowed on values stored as
BLOBsor CLOBs.

Table Error 13115 Function function_name: Too long value (stored as
CLOB) in parameter parameter.
The parameter value was stored as CLOB and cannot be
used with afunction.

Table Error 13116 Column column_name specified more than once.
Column was specified more than once in the GRANT or
REVOKE statement.

Table Error 13117 Wrong number of parameters
Wrong number of parameters when converting subscrip-
tion parameters to base publication parameter types.

Table Error 13118 Column privileges are supported only for base tables.
Column privileges are allowed only for base tables; they
cannot be used, for example, for views.

Table Error 13119 Types column_type and column_type are not union com-
patible.
Column types are not union compatible.

Table Error 13120 Too long entity name ‘entity_name’

Entity name is too long, maximum entity name is 254
characters.

Error Codes A-33

SOLID Table Errors

Error code

Description

Table Error 13121

Too many columns, maximum number of columnsis
value.

Too many columns; the default maximum number of col-
umns is 1000. It can be changed using the following
parameter inthesol i d. i ni file

[Srv]
MaxQpenCur sor s=n

Table Error 13122

Operation is not supported for atable with sync history.

Operation is not supported because the table has synchro-
nization history defined.

Table Error 13123

Table ‘table_name' is not empty.

Some operations are allowed only for empty tables.

Table Error 13124

User id user_id not found.

Internal user id was not found; the user may have been
dropped.

Table Error 13125

Illegal LIKE pattern ‘ pattern’

Illegal like pattern was given as a search constraint.

Table Error 13126

Illegal type datatype for LIKE pattern.

Only CHAR and WCHAR allowed for LIKE search con-
straints.

Table Error 13127

Comparison failed because at least one of the was too
long.

Comparison failed because at least one of the column val-
ues was stored asa BLOB or CLOB.

Table Error 13128

LIKE predicate failed because value is too long.

LIKE predicate failed because the column value is stored
asaCLOB.

Table Error 13129

LIKE Predicate failed because pattern istoo long.

LIKE predicate failed because pattern value is stored asa
CLOB.

Table Error 13130

Illegal type datatype for LIKE ESCAPE character.

Like ESCAPE character must be CHAR or WCHAR
type.

A-34 SOLID Administrator Guide

SOLID Table Errors

Error code Description

Table Error 13131 Too many nested triggers.

Maximum number of nested triggersis reached. Triggers
may be nested, for example, by activating other triggers
from atrigger or causing recursive cycle when activating
triggers. Default value for maximum allowed nested trig-
gersis 16. It can be changed using a configuration param
eter:

{sQ]
MaxNest edTri gger s=n

Table Error 13132 Too many nested procedures.

Maximum number of nested proceduresis reached. Pro-
cedures may be nested, for example, by activating other
procedures from a procedure or causing a recursive cycle
when activating procedures. Default value for maximum
allowed nested procedures is 16. It can be changed using
a configuration parameter:

SQL
MaxNest edTri gger s=n

Table Error 13133 Not avalid license for this product.

The license file is for another SOLID product.
Table Error 13134 Operationis allowed only for base tables.

Given operation is available only for base tables.
Table Error 13137 Illegal grant/revoke mode

Grant or revoke mode is not allowed for given database
objects.

Table Error 13138 Index index_name given in index hint does not exist.

Index name given in optimizer hint is not found for a
table.

Table Error 13139 Catalog catalog_name does not exist.
Catalog nameis not avalid catalog.

Table Error 13140 Catalog catalog_name already exists.
Catalog nameis an existing catalog.

Error Codes A-35

SOLID Server Errors

Error code Description

Table Error 13141 Schema schema_name does not exist.
Schema name is not avalid schema.

Table Error 13142 Schema schema_name already exists.
Schemaname is an existing schema.

Table Error 13143 Schema schema_nameis an existing user.

Schema name specifies an existing user name.

Table Error 13144

Commit and rollback are not allowed inside trigger.

Commit or rollback are not supported inside trigger exe-
cution. Thiserror is also given if atrigger calls a proce-
dure that tries to execute commit or rollback command.

Table Error 13145 Sync parameter not found.
Parameter name given in command SET SYNC PARAM-
ETER name NONE is not found.

Table Error 13146 There are schema objects for this catalog, drop failed.

Catalog contains schema object and cannot be dropped.
Schema objects like tables and procedures need to be
dropped before catalog can be dropped.

Table Error 13151

Cannot drop a column that is part of primary or unique
key.

Table definition contains a column that is part of apri-
mary or unique key in an index.

SOLID Server Errors

A-36

Error code

Description

Server Error 14501

Operation failed.

This error occurs when atimed command fails. Check the
arguments of timed commands.

Server Error 14502

RPC parameter isinvalid.

A network error has occurred.

SOLID Administrator Guide

SOLID Server Errors

Error code

Description

Server Error 14503

Communication error.

A communication error has occurred.

Server Error 14504

Duplicate cursor name cursor.

You have tried to declare a cursor with a cursor name
which isaready in use. Use another name.

Server Error 14505

Connect failed, illegal user name or password.

You have entered either a user name or a password that is
not valid.

Server Error 14506

Server is closed, no new connections allowed.

You have tried to connect to a closed server. Connecting
was aborted.

Server Error 14507

Maximum number of licensed user connections exceeded.

You have tried to connect to a server which has all
licenses currently in use. Connecting was aborted.

Server Error 14508

The operation has timed out.

You have launched an operation that has been aborted.

Server Error 14509

Version mismatch.

A version mismatch has occurred. The client and server
are different versions. Use same versionsin the client and
the server.

Server Error 14510

Communication write operation failed.

A write operation failed. This indicates a network prob-
lem. Check your network settings.

Server Error 14511

Communication read operation failed.

A read operation failed. Thisindicates a network prob-
lem. Check your network settings.

Server Error 14512

There are users logged to the server.

You can not shutdown the server now. There are users
connected to the server.

Server Error 14513

Backup processis active.

You can not shutdown the server now. The backup pro-
cessisactive

Error Codes A-37

SOLID Server Errors

Error code

Description

Server Error 14514

Checkpoint creation is active.

You can not shutdown the server now. The checkpoint
creation is active.

Server Error 14515

Invalid user id.

You tried to drop a user, but the user id is not logged in to
the server.

Server Error 14516

Invalid user name.

You tried to drop a user, but the user name is not logged
in to the server.

Server Error 14517

Someone has updated the at commands at the same time,
changes not saved.

You tried to update timed commands at the same time
another user was doing the same. Your changes will not
be saved.

Server Error 14518

Connection to the server is broken, connection lost.

Possible network error. Reconnect to the server.

Server Error 14519

The user was thrown out from the server, connection lost.

Possible network error.

Server Error 14521

Failed to create a new thread for the client.

Server Error 14529

The operation timed out.

Server Error 14530

The connected client does not support UNICODE data
types.
Connected client isan old version client that does not

support UNICODE data types. UNICODE data type col-
umns cannot be used with old clients.

Server Error 14531

Too many open cursor, max limit is value.

There are too many open cursors for one client; maxi-
mum number of open cursors for one connection is 1000.
The value can be changed using a configuration value:

[Srv]
MaxQpenCur sor s=n

A-38 SOLID Administrator Guide

SOLID Communication Errors

Error code Description

Server Error 14533 Operation cancelled

Operation was cancelled because client application called
ODBC or JDBC cancel function.

Server Error 14534 Only administrative statements are allowed.

Only administrative statements are allowed for the con-
nection.

SOLID Communication Errors

Error code Description

Communication Error 21300 Protocol protocol is not supported.

Protocol is not supported.

Communication Error 21301 Cannot load the dynamic link library <library> or one of
its components.

The server was unable to load the dynamic link library or
a component needed by this library. Check the existence
of necessary libraries and components.

Communication Error 21302 Wrong version of dynamic link library library.

The version of thislibrary iswrong. Update this library to
anewer version.

Communication Error 21303 Network adapter card is missing or needed <protocol>
software is not running.

The network adapter card is missing or not functioning.

Communication Error 21304 Out of protocol resources

The network protocol is out of resources. Increase the
protocols resources in the operating system.

Communication Error 21305 An empty or incomplete network name was specified.

The network name specified is not legal. Check the net-
work name.

Error Codes A-39

SOLID Communication Errors

Error code

Description

Communication Error 21306

Server network name not found, connection failed.

The server was not found. 1) Check that the server isrun-
ning. 2) Check that the network nameisvalid. 3) Check
that the server is listening given network name.

Communication Error 21307

Invalid connect info network name.

The network name given as the connect info is not legal.
Check the network name.

Communication Error 21308

Connection is broken (protocol read/write operation
failed with code internal code).

The connection using the protocoal is broken. Either aread
or awrite operation has failed with an internal error inter-
nal code.

Communication Error 21309

Failed to accept a new client connection, out of protocol
resources.

The server was not able to establish a new client connec-
tion. The protocol is out of resources. Increase the proto-
col’sresourcesin the operating system.

Communication Error 21310

Failed to accept a new client connection, listening of net-
work name interrupted.

The server was not able to establish anew client connec-
tion. The listening has been interrupted.

Communication Error 21311

Failed to start a selecting thread for network name.
A thread selection has failed for network name.

Communication Error 21312

Listening info network name already specified for this
Server.

A network name has already been specified for this
server. A server can not use a same network name more
than once.

Communication Error 21313

Already listening with the network name network name.

You have tried to add a network nameto a server when it
is already listening with that network name. A server can
not use a same network name more than once.

A-40 SOLID Administrator Guide

SOLID Communication Errors

Error code Description

Communication Error 21314 Cannot start listening, network name network name is
used by another process.

The server can not start listening with the given network
name. Another process in this computer is using the same
network name.

Communication Error 21315 Cannot start listening, invalid listening info network
name.

The server can not start listening with the given listening
info. The given network name isinvalid. Check the syn-
tax of the network name.

Communication Error 21316 Cannot stop the listening of network name. There are cli-
ents connected.

You can not stop listening of this network name. There
are clients connected to this server using this network
name.

Communication Error 21317 Failed to save the listen information into the configura-
tionfile.

The server failed to save this listening information to the
configuration file. Check the file access rights and format
of the configuration file.

Communication Error 21318 Operation failed because of an unusual protocol return
code code.

Possible network error. Create connection again.

Communication Error 21319 RPC request contained an illegal version number.

Either the message was corrupted or there may be amis-
match between server and client versions.

Communication Error 21320 Called RPC serviceis not supported in the server.

There maybe a mismatch between server and client ver-
sions.

Communication Error 21321 Protocol protocol is not valid, try using switch '-a for
specifying another adapter id instead of switch.

Thisisreturned if the NetBIOS LAN adapter id givenin
listen/connect string is not valid.

Error Codes A-41

SOLID Communication Errors

Error code

Description

Communication Error 21322

The host machine given in connect info '%s was not
found.

Thisisreturned in clients if the host machine name given
in connect info is not valid.

Communication Error 21323

Protocol protocol can not be used for listening in this
environment.

This message is displayed if the server end communica
tion using specified protocol is not supported.

Communication Error 21324

The process does not have the privilege to create amail-
box.

Communication Error 21325

Only one listening name is supported in this server.

In some operating systems like Novell Netware only one
listening name is supported.

Communication Error 21326

Failed to establish an internal number socket connection
code number.

SOLID uses one connect socket for internal use. Creation
of this socket has failed; the local loopback may not be
working correctly.

A-42 SOLID Administrator Guide

SOLID Procedure Errors

SOLID Communication Warnings

Error code Description

Warning Code 21100 Illegal value value for configuration parameter parame-
ter, using default.

Anillegal value was given to the parameter parameter.
The server will use adefault value for this parameter.

Warning Code 21101 Invalid protocol definition protocol in configuration file.

The protocol is defined illegally in the configuration file.
Check the syntax of the definition.

SOLID Procedure Errors

Error code Description

Procedure Error 23001 Undefined symbol symbol.
You have used a symbol that has not been defined in a pro-
cedure definition.

Procedure Error 23002 Undefined cursor cursor.

You have used a cursor that has not been defined in a pro-
cedure definition.

Procedure Error 23003 Illegal SQL operation operation.

Procedure Error 23004 Syntax error: parse error, line line number.

Check the syntax of your procedure.

Procedure Error 23005 Procedure procedure not found.
Procedure Error 23006 Wrong number of parameters for procedure procedure.
Procedure Error 23007 Procedure name value conflicts with an existing entity.

Choose a unique name for a procedure. The specified
nameis aready used.

Procedure Error 23009 Event event does not exist, line line number.
Procedure Error 23010 Incompatible event event parameter type, line line num-
ber.

Error Codes A-43

SOLID Procedure Errors

Error code Description

Procedure Error 23011 Wrong number of parameter for event event, line line
number.

Procedure Error 23012 Duplicate wait for event event, line line number.

Procedure Error 23013 Undefined sequence sequence.

Procedure Error 23014 Duplicate sequence name sequence.

Procedure Error 23015 Sequence sequence not found.

Procedure Error 23016 Incompatible variable type in call to sequence sequence,
line line number.

Procedure Error 23017 Duplicate symbol symbol.
You have duplicate definitions for a symbol.

Procedure Error 23018 Procedure owner owner not found.

Procedure Error 23019 Duplicate cursor name ‘cursor’

Procedure Error 23020 Illegal option option for WHENEVER SQLERROR ...
statement.

Procedure Error 23021 RETURN ROW not alowed in procedure with no return
type, line line number.

Procedure Error 23022 SQL String variable variable must be of character data
type, line line number.

Procedure Error 23023 Call syntax error: syntax, line line number.

Procedure Error 23024 Trigger trigger_name not found.
Trigger name not found.

Procedure Error 23025 Trigger name trigger_name conflicts with an existing
entity.
Trigger name conflicts with some other database object.
Triggers share the same name space, as for example, in
table and procedures.

Procedure Error 23026 Variable variableis ot of character type, line line number.

A CHAR or WCHAR variable isrequired for the opera-
tions like RETURN SQLERROR variable.

A-44 SOLID Administrator Guide

SOLID Procedure Errors

Error code Description

Procedure Error 23027 Duplicate reference to column column_name in trigger
definition.
One column can be reference only once in the trigger def-
inition.

Procedure Error 23028 Commit and rollback are not allowed in triggers.
Trigger body may not contain commit or rollback state-
ments.

Procedure Error 23501 Cursor cursor isnot open.

Procedure Error 23502 Illegal number of columnsin EXECUTE ... procedurein
CUrsor CUrsor.

Procedure Error 23503 Previous SQL operation operation failed in cursor cursor.

Procedure Error 23504 Cursor cursor is not executed.

Procedure Error 23505 Cursor cursor isnot a SELECT statement.

Procedure Error 23506 End of tablein cursor cursor.

Procedure Error 23507 Illegal type conversion in cursor cursor from type data
type to type data type.

Procedure Error 23508 Illegal assignment, line line number.

Procedure Error 23509 In procedure line line number Stmt statement was not in
error state in RETURN SQLERROR OF ...

Procedure Error 23510 In procedure line line number Transaction cannot be set
read only, because it has written aready.

Procedure Error 23511 In procedure line line number USING part is missing for
dynamic parameters for procedure.

Procedure Error 23512 In procedure line line number USING list is too short for
procedure.

Procedure Error 23513 In procedure line line number Comparison between
incompatible types data type and data type.

Procedure Error 23514 In procedure line line number type data typeisillegal for
logical expression.

Procedure Error 23515 In procedure line line number assignment of parameter

parameter in list list failed.

Error Codes A-45

SOLID Sorter Errors

Error code

Description

Procedure Error 23516

In CALL procedure assignment of parameter
parameter failed.

Procedure Error 23518

User error: error_text

User generated error in a procedure or trigger. User can
generate this error by using a statement RETURN
SQLERROR string or RETURN SQLERROR variable.
Variable must be of CHAR or WCHAR type.

Procedure Error 23519

Fetch previousis not supported for procedures.

Fetch previous row does not work for result sets returned
by a procedure.

SOLID Sorter Errors

Error code

Description

Sorter Error 24001

Sort failed due to insufficient configured TmpDir space

Sorter Error 24002

Sort failed due to insufficient physical TmpDir space

Sorter Error 24003 Sort failed due to insufficient sort buffer space
Sorter Error 24004 Sort failed due to too long row (internal failure)
Sorter Error 24005 Sort failed dueto 1/0 error

A-46 SOLID Administrator Guide

B

Configuration Parameters

By managing the parameters of your SOLID Embedded Engine, you can modify the envi-
ronment, performance, and operation of the server.

When SOLID Embedded Engineis started, it attempts to open the configuration file

sol i d.ini inthecurrent directory. The configuration values for the server parameters are
included in thisfile. If the file does not exist, SOLID Embedded Engine will use the default
settings for the parameters. Also, if avalue for aparameter isnot setinthesol i d. i ni

file, SOLID Embedded Engine will use a default value for the parameter. The default values
depend on the operating system you are using.

Generally, the default settings offer the best performance and operability, but in some spe-
cial cases modifying a parameter will improve performance. You can change the parame-
tersin the following ways:

« Using the SOLID DBConsole Configuration page.

« Entering the command par anet er in SOLID DBConsole (Query window or com-
mand line) or SOLID Remote Control (teletype).

« Entering ADM N COMVAND ' par aneter' inSOLID SQL Editor
« Manually editing the configuration filesol i d. i ni .

Configuration Parameters B-1

General Section

General Section

[General]

Description

Default

MaxOpenFiles

the maximum number of files kept concurrently open dur-
ing SOLID Embedded Engine sessions

OS depend.

BackupDirectory

makes a backup of the database if the default "backup’
isused or may also be given as an argument. For exam-
ple, backup abc, creates a backup on directory 'abc’. All
directory definitions are relative to the SOLID Embedded
Engine working directory unless the full path is provided.

"backup’ directory

BackupCopyL og if set toyes, backup operation will copy log filestothe yes
backup directory
BackupDeletelog if settoyes, oldlog fileswill be deleted after backup yes
operation
BackupCopylniFile if settoyes, sol i d.ini filewill becopied to the yes
backup directory
BackupCopySolmsgout If settoyes, sol msg. out fileiscopiedtothebackup yes
directory
Checkpoint the number of inserts made in the database that causes 5000
Interval automatic checkpoint creation
Mergelnterval the number of index inserts made in the database that Cache size depend.
causes the merge process to start
Readonly if settoyes, databaseis set to read-only mode no
LongSequentia the number of sequential fetches after which searchis 500
SearchLimit treated as long sequential search
SearchBuffer the maximum percentage of search buffers from thetotal 50
Limit buffered memory reserved for open cursors
Transaction the hash table size for incompl ete transactions Cache size depend.
HashSize

B-2 SOLID Administrator Guide

IndexFile Section

IndexFile Section

[IndexFile]

Description Default

FileSpec_[1-N]

the file name followed with maximum size (in bytes) of solid.db 2147483647
that database file, for example:
c:\sol 1. db 2000000

This parameter also has an optional parameter after the
maxsize: physical drive number. The number value itself
is not essential, but it is used as ahint for 1/0 threads on
which 1/0 requests can be parallelized.

This file must be stored to alocal drive using local disk
names to avoid problems with network 1/O and to achieve
better performance.

BlockSize

the block size of the index file in bytes; use multipleof 2 8192
KB: minimum 2 KB, maximum 32 KB

CacheSize

the size of database cache memory for the server in bytes; OS depend.
the minimum 512 KB

Extendlncrement

the number of blocksthat is allocated at one time when 50
SOLID Embedded Engine needs to allocate more space
for the database file

ReadAhead sets the number of prefetched index leafs during long 4
sequential searches
PreFlushPercent Percentage of page buffer which is kept clean by preflush 5

thread

Configuration Parameters B-3

Logging Section

Logging Section

[Logging] Description Default
LogEnabled whether logging is enabled or not yes
BlockSize the block size of log files 2048
MinSplitSize when thisfile sizeisreached, logging will be continuedto 1 MB

the following log file after the next checkpoint

FileNameTemplate the path and naming convention used when creating log ~ sol####.log
files; template characters are replaced with sequential
numbering; for example:
c:\solid\Il og\sol #####.| og

This file must be stored to alocal drive using local disk
names to avoid problems with network 1/O and to achieve
better performance.

DigitTemplate the template character that will be replaced inthename ~ #
Char template of thelog file

B-4 SOLID Administrator Guide

Data Sources

Communication Section

[Com]

Description

Default

Listen

the network name for server; the protocol and server
name that SOLID Embedded Engine uses when it starts
listening to the network

OS depend.

Connect

the network name for client; the protocol and name that a
SOLID Embedded Engine client uses for server connec-
tion; in a Windows environment ODBC Data Source
Name overrides the value of this parameter

OS depend.

MaxPhysMsglLen

the maximum length of asingle physical network mes-
sage in bytes; longer network messages will be split into
smaller messages of thissize

OS depend.

ReadBufSize

the buffer size in bytes for the data read from the network

OS depend.

WriteBufSize

the buffer sizein bytes for the data written into the net-
work

OS depend.

Trace

if this parameter is set to yes, trace information on net-
work messages is written to afile specified with the
TraceFile parameter

no

TraceFile

if this parameter is set to yes, trace information on net-
work messages is written to afile specified with this
parameter

sol trace. out (writtentothe
current working directory of the
server or client depending on which
end the tracing is started)

Data Sources

[Data Sources]

Description

Default

<logica name> =
<network name>,
<Description>

These parameters can be used to give alogical nameto a

SOLID Embedded Engine.

Configuration Parameters B-5

Server Section

Server Section

[Srv]

Description

Default

At The syntax is:
At := timed_command [, timed_command)]

timed_command := [day] HH:MM command argument
day := sun | mon | tue| wed | thu | fri | sat

If entered, allows you specify acommand to automate an
administrative task, such as executing system commands,

creating backups, checkpoints, and database status reports.

For example:
AT=20:30 makecp, 21:00 backup,sun 23:00 shutdown

If you specify backup, the
default is the backup directory
set with the BackupDirectory
parameter in the General sec-
tion. Also if the day is not
given, the command is exe-
cuted daily.

RowsPerMessage the number of rows returned from the server in one net- 10
work message

ConnectTimeOut specifies the continuous idle time in minutes after that an 480
connection is dropped; negative or zero value means infi-
nite

AbortTimeOut specifies the time in minutes after that an idle transactionis 120
aborted; negative or zero value meansinfinite

Threads the number of threads used for database accessin SOLID OS depend.
Embedded Engine.

Echo if settoyes, contentsof sol nsg. out filearedisplayed no
also at the server’'s command window

Name the informal name of the server, equivalent to the -n com-
mand line option

AllowConnect if set to no only connections from Remote Control or yes
DBConsole are allowed

MessagelogSize The maximum size of the solmsg.out filein bytes. The OS depend.
deafult is 60 KB.

MaxOpenCursors The maximum number of cursors that a database client can 1000

have simultaneously open.

B-6 SOLID Administrator Guide

SQL Section

SQL Section

[SQL] Description Default
Info Set the level of informational messages [0-8] printed from 0
the server (0=no info, 8=all info); information iswritten
into the file defined by parameter InfoFileName.
SQLInfo Set the level of informational SQL level messages [0-8] no default
(0=no info, 8=all info); information is written into afile
defined by parameter InfoFileName.
InfoFileName Default globa info file name. sol trace. out
InfoFileSize Maximum size of theinfo file. The default is 1 MB. no default
InfoFileFlush If set to yes, flushesinfo file after every write operation yes
SortArraySize Size of the array that SQL uses when ordering result set; OS depend.
for optimal performance this should be as big as the big-
gest retrieved result set that cannot be ordered by key val-
ues, for large sorts use external sorter,
ProcedureCache Size of cache memory for parsed proceduresin number of 5
procedures.
MaxNestedProcedures Maximum number of allowed nested procedures. If this 16
parameter is defined too high, the server stack may
become insufficient depending on the operating system.
TriggerCache Size of cache memory that each user has for triggers. 10
MaxNestedTriggers Maximum number of allowed nested triggers. Thismaxi- 16
mum number includes both direct and indirect nesting, so
both A->A->A and A->B->A are counted as three nested
triggers.
MaxBlobExpression Maximum size of LONG VARCHAR columnsin KBs 64

Size

that can be used in string functions.

EmulateOldTIMESTAMPDIFF

Ifincludedinthesol i d.ini fileand setto"Yes', the
old TIMESTAMPDIFF behavior is emulated by the
server. This old behavior returns the integer number of
intervals of type interval by which timestamp_exp2 is
greater than timestamp_expl. Otherwise, the default is the
new behavior which returns the integer number of inter-
val as the amount of full units between timestamp_expl
and timestamp_exp2.

The default "No" returns
the integer number of inter-
val as the amount of full
units between
timestamp_expl and
timestamp_exp2

Configuration Parameters B-7

Sorter Section

Sorter Section

[Sorter] Description Default

MaxCacheUse maximum percentage of cache pages used for sorting;

Percent range from 10% to 50%

MaxM emPerSort maximum memory available in bytes for one sort

MaxFilesTotal maximum number of files used for sorting

TmpDir_[1-N] name of the directory that contains temporary files cre- no default
ated during sorting

Hints Section

[Hints] Description Default

EnableHints Ifincludedinthesol i d. i ni fileand setto "Yes', al Yes

hintsthat areinthesol i d. i ni fileare enabled.

B-8 SOLID Administrator Guide

C

Data Types

Supported Data Types

The tablesin this appendix list the supported data types by category. the following abbrevia-
tions are used in each table.

Abbreviation Description
DEFLEN the defined length of the column;
for example, for CHAR(24) the precision and
length is 24
DEFPREC the defined precision;
for example, for NUMERIC(10,3) itis 10
DEFSCALE the defined scale;
for example, for NUMERIC(10,3), itis 3
MAXLEN the maximum length of column
N/A not applicable

Data Types C-1

Supported Data Types

Character Data Types

Data type Size Precision Scale Length Display size

CHAR, 2G* DEFLEN N/A DEFLEN DEFLEN
WCHAR

VARCHAR, 2G** DEFLEN N/A DEFLEN DEFLEN
WVARCHAR

LONGVAR- 2G MAXLEN N/A MAXLEN MAXLEN
CHAR,

LONG
WVARCHAR

* defaultis 1
** default is 254

Numeric Data Types

Data type Range Precision Scale Length Display size
DECIMAL +3.6e16 16 DEFSCALE 18 18
NUMERIC +3.6e16 DEFPREC DEFSCALE DEFPREC DEFPREC
+2 +2
TINYINT [-128, 127] 3 0 1(bytes) 4 (signed)
[0, 255] 3 (unsigned)
SMALLINT [-32768, 5 0 2 (bytes) 6 (signed)
32767] 5 (unsigned)
[0, 65535]
INTEGER [-2%, 2% 10 0 4 (bytes) 11 (signed)
[0, 23] 10 (unsigned)
REAL +1.7014117 7 N/A 4 (bytes) 13
€38
FLOAT +8.9884657 15 N/A 8(bytes) 22
€307
DOUBLE +8.9884657 15 N/A 8 (bytes) 22

PRECISION €307

C-2 SOLID Administrator Guide

Supported Data Types

Binary Data Types

Data type Size Precision Scale Length Display size
BINARY 2G* DEFLEN N/A DEFLEN DEFLEN x 2

VARBINARY 2G** DEFLEN N/A DEFLEN DEFLEN x 2

LONGVAR- 2G MAXLEN N/A MAXLEN MAXLEN x 2
BINARY

* defaultis 1

** default is 254

Date Data Type

Data type Range Precision Scale Length Display size

DATE N/A 10* N/A 6** 10*

* the number of charactersin the yyyy-mm-dd format
** the size of the DATE_STRUCT structure

Time Data Type

Data type Range Precision Scale Length Display size

TIME N/A 8 N/A 6** 8

* the number of characters in the hh:mm:ss format
** the size of the TIME_STRUCT structure

Timestamp Data Type

Data type Range Precision Scale Length Display size

TIMESTAMP N/A 19* 9 16** 19/29* **

* the number of charactersin the 'yyyy-mm-dd hh:mm:ss.fffffffff' format
** the size of the TIMESTAMP_STRUCT structure
*** gzeis 29 with adecimal fraction part

Data Types C-3

Supported Data Types

The Smallest Possible Non-zero Numbers

Data type Value
DOUBLE 2.2250738585072014e-308
REAL 1.175494351e-38

Description of Different Column Values in the Tables

The range of a numeric column refers to the minimum and maximum values the column can
store. The size of character columns refers to the maximum length of data that can be stored
in the column of that data type.

The precision of anumeric column refers to the maximum number of digits used by the data
type of the column. The precision of anon-numeric column refersto the defined length of
the column.

The scale of anumeric column refersto the maximum number of digits to the right of the
decimal point. Note that for the approximate floating point number columns, the scaleis
undefined, since the number of digits to the right of the decimal point is not fixed.

The length of a column is the maximum number of bytes returned to the application when
dataistransferred to its default C type. For character data, the length does not include the
null termination byte. Note that the length of acolumn may differ from the number of bytes
needed to store the data on the data source.

The display size of acolumn is the maximum number of bytes needed to display datain
character form.

C-4 SOLID Administrator Guide

D

SOLID SQL Syntax

SOLID Embedded Engine SQL syntax is based on the ANSI X3H2-1989 level 2 standard
including important ANSI X3H2-1992 (SQL 2) extensions. User and role management ser-
vices missing from previous standards are based on the ANSI SQL 3 draft.

This appendix presents a simplified description of the SQL statements including some exam-
ples. The sameinformation isincluded in the SOL D Programmer Guide.

ADMIN COMMAND

ADMIN COMMAND ‘command_name'

command_name ::= BACKUP | BACKUPLIST | CLOSE | DESCRIBE PARAMETER
| ERRORCODE | EXIT | HELP | INFO | MAKECP | MESSAGES
| SHUTDOWN | MONITOR | NOTIFY | OPEN | PARAMETERS | PERFMON
| PID | PROTOCOLS | REPORT | SHUTDOWN | STATUS
| STATUS BACKUP | THROWOUT | TRACE | USERID | USERLIST
| VERSION

Usage

This SQL extension executes administrator commands. The command_name in the syntax is
a SOLID DBConsole or SOLID Remote Control (teletype) command string (without the
quotes); for example, backup.

If you are entering these commands in the SOLID SQL Editor (teletype), be sure to use the
full SOLID SQL syntax; for example, ADM N COMVAND ' backup’ . Abbreviationsfor
ADMIN COMMANDSs are also available; for example, ADM N COMVAND ’ bak’ . To
access alist of abbreviated commands, execute ADM N COMVAND ' hel p' .

SOLID SQL Syntax D-1

ADMIN COMMAND

The result set contains two columns; RC INTEGER and TEXT VARCHAR(254). Integer
column RC isa command return code (0 if success), varchar column TEXT is the command
reply. The TEXT field contains the same lines that are displayed on SOLID DBConsole
screen, one line per one result row.

Note that all options of the ADMIN COMMAND are not transactional and cannot be rolled
back.

Following is a description of the syntax for each ADMIN COMMAND command option:

Option Syntax Description
ADMIN COMMAND 'backup Makes a backup of the database. The default backup direc-
[backup_directory]’ tory is the one defined in the configuration parameter Gen-

eral.BackupDirectory. The backup directory may also be
given as an argument. For example, backup abc creates
backup on directory ‘abc’. All directory definitions arerela-
tive to the SOLID Embedded Engine working directory.

ADMIN COMMAND 'backuplist’ Displays astatus list of last backups.

ADMIN COMMAND 'close' Closes the server from new connections; no new connec-
tions are allowed.

ADMIN COMMAND 'describe Returns description text of parameter.

parameter paran The following example describes parameter

[Com]Trace=y/n.
ADM N COVWMAND ' descri be paraneter

comtrace'
ADMIN COMMAND 'errorcode Displays adescription of an error code. Gives the code num-
SOLID_error_code ber as an argument. For example, 'errorcode 10033
ADMIN COMMAND 'help' Displays available commands.

D-2 SOLID Administrator Guide

ADMIN COMMAND

Option Syntax Description
ADMIN COMMAND ‘info Returns server information. Options are one or more of the
options following vaues, each separated by a space:

« Numusers- number of current users

» Maxusers- maximum number of users
« Sernum - Server serial number

« Dbsize- database size

» Logsize- sizeof log files

« Uptime- server up since

= Bcktime- timestamp of last successfully completed
backup

« Cptime- timestamp of last successfully completed
checkpoint

. tracestate - Current trace statem

. monitor state - Current monitor state, number of users
withmonitor enabled, or -1 if al

« openstate - Current open or close state

Values are returned in the same order as requested, one row
for each value.

Example:
ADM N COVWAND ' i nfo dbsize | ogsize’
ADMIN COMMAND 'makecp' Makes a checkpoint.

ADMIN COMMAND 'messages Displays server messages. Optional severity and message
[-n] [warnings|errors] [count]' numbers can aso be defined. For example:

ADMIN COMMAND 'messages warnings 100’ displays
last 100 warnings.

ADMIN COMMAND 'monitor Sets server monitoring on and off. Monitoring logs user
{on | off} [user username|user activity and SQL callstosol t race. out file

id]'

SOLID SQL Syntax D-3

ADMIN COMMAND

Option Syntax

Description

ADMIN COMMAND 'notify
{user username | user id | ALL }
message'

This command sends an event to a given user with event
identifier NOTIFY. Thisidentifier is used to cancel an event-
waiting thread when the statement timeout is not long
enough for a disconnect or to change the event registration.

Thefollowing example sends a notify message to a user with
user id 5; the event then gets the value of the message
parameter.

ADMIN COMMAND 'notify user 5 Canceled by admin'

ADMIN COMMAND 'open’

Opens server for new connections; new connections are
allowed.

ADMIN COMMAND 'parameter
[option][name[=val ug]]'

Displays and sets server parameter values. For example:
« parameter used alone displays all parameters.

« parameter general displays all parameters from sec-
tion “generd.”

= parameter general.readonly displays asingle parame-
ter “readonly” from section “general.”

= parameter com.trace=yes sets communication trace
on

If -r isused, then only the current parameter values are
returned.

ADMIN COMMAND "'perfmon
[options] [subsystem prefix]’

Returns performance statistics from the server. Options are:
« -creturnsall values as the counter

= -d returns short descriptions

= -vreturnscurrent values

« -treturnstotal values

By default, some values are averages/second.

The subsystem prefix is used to find matches to value
names. Only those values are returned that match the sub-
system prefix.

The following example returns all information:
ADM N COVMAND ' per f non'

The following example returns all values whose name starts
with prefix File as counters.

ADM N COVWWAND ' perfnon-c File'

D-4 SOLID Administrator Guide

ADMIN COMMAND

Option Syntax Description

ADMIN COMMAND ‘pid' Returns server processid.

ADMIN COMMAND ‘protocols Returnslist of available communication protocols, one row
for each protocol.

Example:
ADM N COVMAND ' pr ot ocol s'

ADMIN COMMAND 'report file- Generates areport of server info to afile given as an argu-
name' ment.

ADMIN COMMAND ‘'shutdown’ Stops SOLID Embedded Engine.

ADMIN COMMAND 'status Displays server statistics.
ADMIN COMMAND 'status Displays status of the last started backup. The status can be
backup' one of the following:

« If thelast backup was successful or any backups have
not been requested, the output is 0 SUCCESS.

« If the backup isin process; for example, started but not
ready yet, the output is 14003 ACTIVE.

« If thelast backup failed, the output is:
errorcode ERROR
where the errcode shows the reason for the failure

ADMIN COMMAND 'throwout ~ Exits users from SOLID Embedded Engine. To exit a speci-
{username | userid | all } fied user, give the user id as an argument. To throw out all
users, use the keyword ALL as an argument.

ADMIN COMMAND ‘trace{on | Sets server trace on or off. This command is similar to the

off} sgl | rpc|sync monitor command, but traces different entities and a differ-
ent levels. By default, the output is written to the sol -
trace. out file

ADMIN COMMAND ‘userid' Returns user identification number of the current connec-
tion.

Example:
ADM N COVMAND ' useri d'

ADMIN COMMAND 'userlist[-]] Displaysalist of users. option -1 displays more detailed out-
[name|id]' put.

ADMIN COMMAND 'version' Displays server version info.

SOLID SQL Syntax D-5

ALTER TABLE

ALTER TABLE

ALTER TABLE base_table_name
{ADD [COLUMN] column_identifier data_type |
DROP [COLUMN] column_identifier | RENAME [COLUMN]
column_identifier column_identifier |
MODIFY [COLUMN]
column_identifier data-type} | MODIFY SCHEMA schema_name |
SET {OPTIMISTIC | PESSIMISTIC}

> Note

Keywords CASCADE and RESTRICT are not supported in the SQL grammar of SOLID
Embedded Engine. Objects are always dropped with drop behavior RESTRICT.

Usage
The structure of atable may be modified through the ALTER TABLE statement. Within the
context of this statement, columns may be added, modified, or removed.

The server allows users to change the width of a column using the ALTER TABLE com-
mand. A column width can be increased at any time (that is, whether atableis empty [no
rows] or non-empty). However, the ALTER TABLE command disallows decreasing the col-
umn width when the table is non-empty; atable must be empty to decrease the column
width.

Note that a column cannot be dropped if it is part of aunique or primary key.

The owner of atable can be changed using the ALTER TABLE base table name MODIFY
SCHEMA schema_name statement. This statement gives all rights to the new owner of the
table including creator rights. The old owner’s access rights to the table, excluding the cre-
ator rights, are preserved.

Individual tables can be set to optimistic or pessimistic with the command ALTER TABLE
base table name SET { OPTI M STI C | PESSI M STI C} . By default, all tables are
optimistic. A database-wide default can be set in the Gener al section of the configuration
file with the parameter Pessi m stic = yes.

D-6 SOLID Administrator Guide

ALTER USER

Example
ALTER TABLE TEST ADD X | NTE(ER

ALTER TABLE TEST RENAME GOLUWN X Y,
ALTER TABLE TEST MO FY GOLUWN X SVALLI NT;
ALTER TABLE TEST DRCP GOLUWN X

ALTER TRIGGER
ALTER TRIGGER trigger_name_attr SET ENABLED | DISABLED

trigger_name_attr ;= [catalog_name.[schema_name]]trigger _name |

Usage
You can alter trigger attributes using the ALTER TRIGGER command. The valid attributes
are ENABLED and DISABLED trigger.

The ALTER TRIGGER command causes a Solid server to ignore the trigger when an acti-
vating DML statement isissued. With this command, you can also enable atrigger that is
currently inactive or disable atrigger that is currently active.

You must be the owner of atable, or auser with DBA authority to alter atrigger from the
table.

Example
ALTER TR GEER SET ENABLED tri g _on_enpl oyee;

ALTER USER

ALTER USER user_name IDENTIFIED BY password

Usage
The password of a user may be modified through the ALTER USER statement.

Example
ALTER USER MANACER | DENTI FI ED BY QCPTG

SOLID SQL Syntax D-7

CALL

CALL

COMMIT

CALL procedure_name [(parameter [, parameter ...])]

Usage
Stored procedures are called with statement CALL.

Example
CALL proctest;

COMMIT WORK

Usage
The changes made in the database are made permanent by COMM T statement. It terminates
the transaction.

Example
AOW T WRK

CREATE CATALOG

CREATE CATALOG catalog_name

Usage

Catalogs allow you to logically partition databases so you can organize your data to meet the
needs of your business or application. A database can have one or more catalogs. Users are
prompted for a default catalog name when creating a new database or converting an old data-
base to a new format. This default catalog name allows for backward compatibility of Solid
databases prior to version 3.5.

A catalog can have zero or more schema_names. The default schemanameisuser_id. A
schema can have zero or more database object names. A database object can be qualified by
aschemaor user ID.

The catalog name is used to qualify a database object name. Database object names are qual-
ifiedin al DML statements as:

catalog_name.schema_name.database_object

D-8 SOLID Administrator Guide

CREATE CATALOG

or
catalog_name.user_id.database_object
Only auser with DBA authority (SYS_ADMIN_ROLE) can create a catalog for a database.

To use schemas, a schema name must be created before creating the database object name.
However, a database object name can be created without a schema name. In such cases, data-
base objects are qualified using user_id only. For details on creating schemas, read “ CRE-
ATE SCHEMA" on page D-21.

A catalog context can be set in a program using:
SET CATALOG catalog_name

A catalog can be dropped from a database using:
DROP CATALOG catalog_name

When dropping a catalog name, all objects associated with the catalog name must be
dropped prior to dropping the catalog.

Following are the rules for resolving catalog names:

« A fully qualified name (catalog_name.schema_name.database object _name) does not
need any name resolution, but will be validated.

« If acatalog context is not set using SET CATALOG, then all database object names are
resolved always using the default catal og name as the catalog name. The database object
name is resolved using schema name resol ution rules. For details on these rules, read
“ CREATE SCHEMA” on page D-21.

« If acatalog context is set and the catalog name cannot be resolved using the
catalog_name in the context, then database object_name resolution fails.

« To access a database system catal og, users do not need to know the system catalog
name. Users can specify ""._SY STEM .table. Embedded Engine translates the empty
string """ used as a catalog name to the default catalog name. Embedded Engine also pro-
vides automatic resolution of _SY STEM schema to the system catal og, even when the
catalog name is not provided.

Examples
CREATE CATALGG C
SET CATALGG C
CREATE SHEWA S
SET SGEMVA S

SOLID SQL Syntax D-9

CREATE CATALOG

CREATE TABLE T;
SHECT * FRIMT;
-- thenane Tis resolved to CS. T

-- Assune the userid is SMTH

CREATE CATALOG C

SET CATALGG G

CREATE TABLE T,

SHECT * FRMT;

--The nane Tis resolved to CSMTH T

-- Assune there is no Catal og context set.

-- Meaning the default catal og nane is BASE or the setting
-- of the base catal og.

CREATE SOHEVA S,

SET SOHEMA S

CREATE TABLE T,

SELECT * FROMT;

--The nane T is resolved to <BASE>. S T

CREATE CATALGG CL;
SET CATALGG CI;

CREATE SCHEMA SI;

SET SCHEMA SL;

CREATE TABLE T1 (c1 | NTEGER);

CREATE CATALGG C2;
SET CATALGG @2

CREATE SCHEMA S2;

SET SCHEVA &2;

CREATE TABLE T1 (c2 | NTEGER)

SET CATALGG BASE;

D-10 SOLID Administrator Guide

CREATE EVENT

SET SCHEMA USER

SELECT * FRM T1;

-- This select will give an error as it
-- cannot resol ve the T1.

CREATE EVENT

CREATE EVENT event_name [(parameter_definition [, parameter_definition ...])]

Usage

Event alerts are used to signal an event in the database. Events are simple objects with a
name. The use of event alerts removes resource consuming database polling from applica-
tions.

An event object is created with the SQL statement
CREATE EVENT event _nane [paraneter |ist]

The name can be any user-specified a phanumeric string. The parameter list specifies param-
eter names and parameter types. The parameter types are normal SQL types.

Events are dropped with the SQL statement
DRCP BEVENT event _nane

Events are triggered and received inside stored procedures. Special stored procedure state-
ments are used to trigger and receive events.

The event is triggered with the stored procedure statement

PCST EVENT event _nane [par anet er s]

Event parameters must be local variables or parameters in the stored procedure where the
event istriggered. All clients that are waiting for the posted event will receive the event.

To make a procedure wait for an event to happen, the WAI T EVENT construct isused in a
stored procedure:

wait_event staterent ::=
VWA T EVENT
[event _specification ...]
ENDWAT

SOLID SQL Syntax D-11

CREATE EVENT

event _specification ::=
WHEN event _name (paraneters) BEAN
stat enent s
END EVENT

Each connection hasits own event queue. To specify the events to be collected in the event
gueue command REGISTER EVENT event_name (parameters) is used. Events are removed
from the event queue with command UNREGISTER EVENT event_name (parameters).

Example of aprocedure that waits for an event:
"create procedure event wait (il integer)
returns (result varchar)

begi n

declare i integer;

decl are c char(4);

i =0

wait event
when test1 begin
result :="eventl;
return;

end event

when test2(i) begin

end event
when test3(i, ¢) begin

end event

end wai t

D-12 SOLID Administrator Guide

CREATE INDEX

if i < 0then
result :="if";
post event testl;
el se
result :="'else';
post event test2(i);
post event test3(i, c);
end if

end";

The creator of an event or the database administrator can grant and revoke access rights.
Access rights can be granted to users and roles. The select accessright gives waiting access
to an event. The insert access right gives triggering access to an event.

Example
CREATE BVENT ALERT1(1 INTEGEER C GHAR(4));

CREATE INDEX

CREATE [UNIQUE] INDEX index_name
ON base_table_name
(column_identifier [ASC | DESC]
[, column_identifier [ASC | DESC]] ...)

Usage

Creates an index for atable based on the given columns. Keyword UNI QUE specifies that
columns being indexed must contain unique values. Keywords ASC and DESC specify
whether the given columns should be indexed in ascending or descending order. If not speci-
fied ascending order is used.

Example
CREATE N QUE | NDEX UX_TEST ON TEST (1);

SOLID SQL Syntax D-13

CREATE PROCEDURE

CREATE | NDEX X TEST ON TEST (I, J);

CREATE PROCEDURE

CREATE PROCEDURE procedure_name [(parameter_definition
[, parameter_definition ...])]

[RETURNS (parameter_definition [, parameter_definition ...]J)]
BEGIN procedure_body END;
parameter_definition ::= parameter_name data_type
procedure_body ::= [declare_statement; ...]

procedure_statement; [procedure_statement; ...]

declare_statement ::= DECLARE variable_name data_type

procedure_statement ::= prepare_statement | exec_statement | fetch_statement |
control_statement | post_statement | wait_event_statement |

wait_register_statement

prepare_statement ::= EXEC SQL PREPARE cursor_name sql_statement
execute_statement ::=
EXEC SQL EXECUTE
cursor_name
[USING (variable [, variable ...])]
[INTO (variable [, variable ...])] |
EXEC SQL {CLOSE | DROP} cursor_name |
EXEC SQL {COMMIT | ROLLBACK} WORK |
EXEC SQL SET TRANSACTION {READ ONLY | READ WRITE} |
EXEC SQL WHENEVER SQLERROR {ABORT | ROLLBACK [WORK], ABORT}
EXEC SEQUENCE sequence_name.CURRENT INTO variable |

D-14 SOLID Administrator Guide

CREATE PROCEDURE

EXEC SEQUENCE sequence_name.NEXT INTO variable |
EXEC SEQUENCE sequence_name SET VALUE USING variable

fetch_statement ::= EXEC SQL FETCH cursor_name

post_statement :;= POST EVENT event_name [parameters]

wait_event_statement ::=
WAIT EVENT
[event_specification ...]
END WAIT

event_specification ::=
WHEN event_name (parameters) BEGIN
statements
END EVENT

wait_register-statement ::=
REGISTER EVENT event_name (parameters) |
UNREGISTER EVENT event_name (parameters)

control_statement ::=
SET variable_name = value | variable_name := value |
WHILE expression
LOOP procedure_statement... END LOOP |
LEAVE |
IF expression THEN procedure_statement ...
[ELSEIF procedure_statement ... THEN] ...

SOLID SQL Syntax D-15

CREATE PROCEDURE

ELSE procedure_statement ... END IF |
RETURN | RETURN SQLERROR OF cursor_name | RETURN ROW

Usage

Stored procedures are simple programs, or procedures, that are executed in the server. The
user can create a procedure that contains several SQL statements or awhole transaction and
execute it with asingle call statement. Usage of stored procedures reduces network traffic
and allows more strict control to access rights and database operations.

Procedures are created with the statement
CREATE PROCEDURE name body
and dropped with the statement

DROP PROCEDURE name
Procedures are called with the statement
CALL name [parameter ...]

Procedures can take several input parameters and return asingle row or several rowsasa
result. The result is built from specified output parameters. Procedures are thus used in
ODBC in the same way asthe SQL SELECT statement.

Procedures are owned by the creator of the procedure. Specified access rights can be granted
to other users. When the procedureis run, it has the creator's access rights to database
objects.

The stored procedure syntax is a proprietary syntax modeled from SQL 3 specifications and
dynamic SQL. Procedures contain control statements and SQL statements.

The following control statements are available in the procedures:

Control statement Description
set variable = expression Assigns avaueto avariable. The value

can be either aliteral value (e.g., 10 or
'text’) or another variable. Parameters are
considered as normal variables.

variable := expression Alternate syntax for assigning values to
variables.

D-16 SOLID Administrator Guide

CREATE PROCEDURE

while
expr
loop
statement-list
end loop

leave

if
expr
then
statement-list1
else
statement-list2
end if
if
exprl
then
statement-listl
elseif
expr2
then
statement-list2
end if

return

return sglerror of cursor-name

return row

Loops while expression is true.

Leaves the innermost while loop and con-
tinues executing the procedure from the
next statement after the keyword end loop.

Executes statements-list1 if expression
expr istrue; otherwise, executes statement-
list2.

If exprlistrue, executes statement-listl. If
expr2 istrue, executes statement-list2. The
statement can optionally contain multiple
el seif statements and also an el se state-
ment.

Returns the current values of output
parameters and exits the procedure. If a
procedure has a one return row statement,
return behaves like return norow.

Returns the sglerror associated with the
cursor and exits the procedure.

Returns the current values of output
parameters and continues execution.

SOLID SQL Syntax D-17

CREATE PROCEDURE

return norow Returns the end of the set and exits the
procedure.

All SQL DML and DDL statements can be used in procedures. Thus the procedure can, for
example, create tables or commit atransaction. Each SQL statement in the procedureis
atomic.

Preparing SQL Statements
The SQL statements are first prepared with the statement

EXEC SQL PREPARE cursor sql-statement

The cursor specification is a cursor name that must be given. It can be any unique cursor
name inside the transaction. Note that if the procedure is not a compl ete transaction, other
open cursors outside the procedure may have conflicting cursor names.

Executing Prepared SQL Statements
The SQL statement is executed with the statement

EXEC SQL EXECUTE cursor [opt-using] [opt-into]
The optional opt-using specification has the syntax
USING (variable_list)

where variable list containsalist of procedure variables or parameters separated by a
comma. These variables are input parameters for the SQL statement. The SQL input parame-
ters are marked with the standard question mark syntax in the prepare statement. If the SQL
statement has no input parameters, the USING specification isignored.

The optional opt_nto specification has the syntax
INTO (variable_list)

where variable list contains the variables that the column values of the SQL SELECT state-
ment are stored into. The INTO specification is effective only for SQL SELECT statements.

After the execution of UPDATE, INSERT and DEL ETE statements an additional variableis
available to check the result of the statement. Variable SQLROWCOUNT contains the num-
ber of rows affected by the last statement.

Fetching Results
Rows are fetched with the statement

EXEC SQL FETCH cursor

D-18 SOLID Administrator Guide

CREATE PROCEDURE

If the fetch completed successfully, the column values are stored into the variables defined in
the opt_into specification.

Checking for Errors

The result of each EXEC SQL statement executed inside a procedure body is stored into the
variable SQLSUCCESS. This variable is automatically generated for every procedure. If the
previous SQL statement was successful, avalue oneis stored into SQLSUCCESS. After a
failed SQL statement, a value zero is stored into SQLSUCCESS.

EXEC SQL WHENEVER SQLERROR {ABORT | [ROLLBACK [WORK], ABORT}

is used to decrease the need for IF NOT SQLSUCCESS THEN tests after every executed
SQL statement in a procedure. When this statement isincluded in a stored procedure all
return values of executed statements are checked for errors. If statement execution returns an
error, the procedure is automatically aborted. Optionally the transaction can be rolled back.

The error string of latest failed SQL statement is stored into variable SQLERRSTR.

Using Transactions

EXEC SQL {COMMIT | ROLLBACK} WORK

is used to terminate transactions.

EXEC SQL SET TRANSACTION {READ ONLY | READ WRITE}

is used to control the type of transactions.

Using Sequencer Objects and Event Alerts
Refer to the usage of the CREATE SEQUENCE and CREATE EVENT statements.

Procedure Stack Functions

The following functions may be used to analyze the current contents of the procedure stack:
PROC_COUNT(), PROC_NAME(N), PROC_SCHEMA(N).

PROC_COUNT() returns the number of proceduresin the procedure stack. Thisincludesthe
current procedure.

PROC_NAME(N) returns the Nth procedure name is the stack. First procedure position is
zero.

PROC_SCHEMA(N) returns the schema name of the Nth procedure in procedure stack.

SOLID SQL Syntax D-19

CREATE PROCEDURE

Example 1
"create procedure test2(tableid integer)
returns (cnt integer)
begi n
exec sqgl prepare cl sel ect count(*) from
sys_tables where id > ?;
exec sgl execute cl using (tableid) into
(cnt);
exec sqgl fetch cl;
end";

Example 2
"create procedure return_tabl es
returns (nane varchar)
begi n
exec sgl whenever sqlerror rollback, abort;
exec sql prepare cl select table name
fromsys_tabl es;
exec sgl execute cl into (nane);
whi | e sgl success | oop
exec sqgl fetch cl;
if not sqgl success
then | eave;
end if
return row
end | oop;
exec sqgl close cl;
end";

D-20 SOLID Administrator Guide

CREATE SCHEMA

CREATE ROLE

CREATE ROLE role_name

Usage
Creates anew user role.

Example
CREATE ROLE GUEST _USERS,

CREATE SCHEMA

CREATE SCHEMA schema_name

Usage

Creates a collection of database objects, such as tables, views, indexes, events, triggers,
sequences, and stored procedures for a database user. The schemaname is used to qualify a
database object name. Database object names are qualified in all DML statements as:

catalog_name.schema_name.database_object_name
or
user_id.database_object_name

To logically partition a database, users can create a catal og before they create a schema. For
details on creating a catalog, read CREATE CATALOG. Note that when creating a new data-
base or converting an old database to a new format, users are prompted for a default catalog
name.

To use schemas, a schema name must be created before creating the database object name
(such as atable name or procedure name). However, a database object name can be created
without a schema name. In such cases, database objects are qualified using user_id only.

You can specify the database object namesin a DML statement explicitly by fully qualify-
ing them or implicitly by setting the schema name context using:

SET SCHEMA schema_name
A schema can be dropped from a database using:
DROP SCHEMA schema_name

When dropping a schemaname, al objects associated with the schema name must be
dropped prior to dropping the schema.

SOLID SQL Syntax D-21

CREATE SCHEMA

A schema context can be removed using:
SET SCHEMA USER
Following are the rules for resolving schema names:

« A fully qualified name (catalog_nameschema_name.database object_name) does not
need any name resolution, but will be validated.

« If aschemacontext isnot set using SET SCHEMA, then all database object names are
resolved always using the user id as the schema name.

« If the database object name cannot be resolved from the schema name, then the data-
base object name is resolved from all existing schema names.

« If nameresolution finds either zero matching or more than one matching database
object name, then a Solid server issues a name resolution conflict error.

Examples

-- Assune the userIDis SMTH

CREATE SCHEMA FI NANCE,

CREATE TABLE BEMPLOYEE (EMP_I D | NTEGER);

SET SCHEMA FH NANCE,

CREATE TABLE EMPLOYEE (I D I NTEGER) ;

SELECT | D FROM EMPLOYEE;

-- Inthis case, the table is qualified to Fl NANCE BEMPLOYEE
SELECT BWP_| D FROM EMPLOYEE,

-- This will give an error as the context is with FI NANCE and
-- table is resolved to Fl NANCE EMPLOYEE

--The followng are valid schena statenents: one with a schema cont ext,
--the other wi thout.

SH ECT | D FROM Fl NANCE. EMPLOYEE,

SH ECT BW_| D FROM SM TH EMPLOYEE

--The followng statenent will resolve to schema SMTH w t hout a schena
- - cont ext

SH ECT BW_| D FROM BVPLOYEE,

D-22 SOLID Administrator Guide

CREATE SEQUENCE

CREATE SEQUENCE

CREATE [DENSE] SEQUENCE sequence_name

Usage
Sequencer objects are objects that are used to get sequence numbers.

Using a dense sequence guarantees that there are no holesin the sequence numbers. The
seguence number allocation is bound to the current transaction. If the transaction rolls back,
also the sequence number allocations are rolled back. The drawback of dense sequencesis
that the sequence is locked out from other transactions until the current transaction ends.

Using a sparse sequence guarantees uniqueness of the returned values, but they are not
bound to the current transaction. If a transaction allocates a sparse sequence number and
later rolls back, the sequence number issimply lost.

The advantage of using a sequencer object instead of a separate table is that the sequencer
object is specifically fine-tuned for fast execution and requires less overhead than normal
update statements.

Sequence values can be incremented and used within SQL statements. These constructs can
be used in SQL:

sequence_name.CURRVAL
sequence_name.NEXTVAL

Sequences can also be used inside stored procedures. The current sequence value can be
retrieved using the following stored procedure statement:

EXEC SEQUENCE sequence_name.CURRENT INTO variable

The new sequence value can be retrieved using the following stored procedure statement:
EXEC SEQUENCE sequence_name.NEXT INTO variable

Sequence values can be set with the following stored procedure statement:

EXEC SEQUENCE sequence_name SET VALUE USING variable

Select access rights are required to retrieve the current sequence value. Update access rights
arerequired to allocate new sequence values. These access rights are granted and revoked in
the same way as table access rights.

Examples

CREATE DENSE SEQUENCE SEQYL,
| NSERT | NTO GRDER (i d) VALUES (order_sequence. NEXTVAL) ;

SOLID SQL Syntax D-23

CREATE TABLE

CREATE TABLE

CREATE TABLE base_table_name (column_element [, column_element] ...)
base table_name ::= base_table_identifier | schema_name.base_table_identifier |

catalog_name.schema_name.base_table_identifier

column_element ::= column_definition | table_constraint_definition

column-definition ::= column_identifier

data_type [column_constraint_definition [column_constraint_definition] ...]

column-constraint-definition ::= NOT NULL | NOT NULL UNIQUE |
NOT NULL PRIMARY KEY | REFERENCES ref_table_name referenced_columns
| CHECK (check_condition)

table_constraint_definition ::= UNIQUE (column_identifier [, column_identifier] ...) |
PRIMARY KEY (column_identifier [, column_identifier] ...) |
CHECK (check-condition) |

FOREIGN KEY (column-identifier [, column-identifier] ...)
REFERENCES table-name (column-identifier [, column-identifier] ...)

Usage

Tables are created through the CREATE TABLE statement. The CREATE TABLE state-
ment requires alist of the columns created, the data types, and, if applicable, sizes of values
within each column, in addition to other related alternatives (such as whether or not null val-
ues are permitted).

Example

CREATE TABLE DEPT (DEPTNO | NTEGER NOT NULL, DNAME VARCHAR PR MARY
KEY(DEPTND) ;

D-24 SOLID Administrator Guide

CREATE TRIGGER

CREATE TABLE DEPT2 (DEPTNO | NTEGER NOT NULL PR MARY KEY, DNAME VARCHAR) ;
CREATE TABLE DEPT3 (DEPTNO | NTEGER NOT NULL UN QUE, DNAME VARCHAR) ;

CREATE TABLE DEPT4 (DEPTNO | NTEGER NOT NULL, DNAME VARCHAR
N QE(DEPTND) ;

CREATE TABLE BWP (DEPTNO | NTEGER ENAME VARCHAR FCREI QN KEY (DEPTNO
REFERENCES DEPT (DEPTNO)) ;

CREATE TABLE EMP2 (DEPTNO | NTEGER ENAME VARGHAR CHECK (ENAME |'S NOT
NULL), FORE QN KEY (DEPTNQ REFERENCES DEPT (DEPTNO));

CREATE TRIGGER

CREATE TRIGGER trigger_name ON table_name time_of operation
triggering_event [REFERENCING column_reference] trigger_body

where:

trigger_name .= literal

time_of operation ;= BEFORE | AFTER

triggering_event :: = INSERT | UPDATE | DELETE

column_reference ;= OLD old_column_name [AS] old_col_identifier
[, REFERENCING column_reference |
NEW new_column_name [AS] new_col_identifier
[, REFERENCING column_reference]

trigger_body ::= trigger_body:= [declare_statement] trigger_statement
{, trigger_statement]}

old_column_name .= literal

SOLID SQL Syntax D-25

CREATE TRIGGER

new_column_name = literal
old_col_identifier .= literal
new_col_identifier .= literal

> Note

This appendix isintended to provide a quick reference to using SOLID SQL commands. For
details on when and how to use triggers, read Chapter 3, " Sored Procedures, Events, Trig-
gers, and Sequences in the SOL 1D Programmer Guide.

Usage

A trigger activates a stored procedure code, which a Solid server automatically executes
when a user attempts to change the datain atable. You may create one or more triggers on a
table, with each trigger defined to activate on a specific INSERT, UPDATE, or DELETE
command. When a user modifies data within the table, the trigger that corresponds to the
command is activated.

You can only use inline or stored procedures with triggers. In addition, you must first store
the procedure with the CREATE PROCEDURE command. A procedure invoked from atrig-
ger body can invoke other triggers.

To create a trigger, you must be a DBA or owner of the table on which the trigger is being
defined.

Triggers are created with the statement

CREATE TRIGGER name body

and dropped from the system catalog with the statement
DROP TRIGGER name

Triggers are disabled by using the statement

ALTER TRIGGER name

When you disable atrigger defined on atable, a Solid server ignores the trigger when an
activating DML statement is issued. With this command, you can also enable atrigger that is
currently inactive.

D-26 SOLID Administrator Guide

CREATE TRIGGER

> Note

Following is a brief summary of the keywords and clauses used in the CREATE TRIGGER
command. For more in depth information on usage, read Chapter 3 in the SOL 1D Program-
mer Guide.

Trigger name
The trigger_name identifies the trigger and can contain up to 254 characters.

Trigger body

Thetrigger_body is the statement or statements to be executed when atrigger fires. The trig-
ger body definition isidentical to the stored procedure definition. The trigger parameters are
the table column values. For details on creating atrigger body, read “ CREATE PROCE-
DURE” on page D-14.

A trigger body may also invoke any procedure registered with a Solid server. Solid proce-
dure invocation rules follow standard procedure invocation practices.

In a procedure definition, you can use COMMIT and ROLLBACK statements. But, in atrig-
ger body, you cannot use COMMIT (including AUTOCOMMIT and COMMIT WORK) and
ROLLBACK statements; you can use only the WHENEVER SQLERROR ABORT state-
ment.

You must explicitly check for business logic errors and raise an error.

Trigger Event Clauses

The BEFORE or AFTER clause specifies whether to execute the trigger before or after the
the invoking DML statement, which modifies data.

The INSERT | UPDATE | DELETE clause indicates the trigger action when auser actionis
attempted (INSERT, UPDATE, DELETE).

Statements related to processing atrigger occurs first before commits and autocommits from
theinvoking DML (INSERT, UPDATE, DELETE) statements on tables. If atrigger body or
aprocedure called within the trigger body attempts to execute a COMMIT (including
AUTOCOMMIT or COMMIT WORK) or ROLLBACK, than a Solid server returns an
appropriate run-time error.

INSERT specifiesthat the trigger is activated by an INSERT on the table. Loading n rows of
datais considered as n inserts.

SOLID SQL Syntax D-27

CREATE TRIGGER

> Note

There may be some performance impact if you try to load the data with triggers enabled.
Depending on your business need, you may want to disable the triggers before loading and
enable them after loading. For details, see“ ALTER TRIGGER” on page D-7.

DELETE specifies that the trigger is activated by a DELETE on the table.

UPDATE specifies that the trigger is activated by an UPDATE on the table. Note the follow-
ing rulesfor using the UPDATE clause:

« The same column cannot be referenced by more than one UPDATE trigger.

« A Solid server allows for recursive update to the same table and does not prohibit recur-
sive updates to the same row.

A separate trigger can be generated for each INSERT, DELETE, or UPDATE operation on a
table. You can define, by default, up to one trigger for each combination of table, event
(INSERT, UPDATE, DELETE) and time (BEFORE and AFTER). This means there can be a
maximum of 6 triggers per table.

> Note

The triggers are applied to each row. Thismeansthat if there are 10 inserts, atrigger is exe-
cuted 10 times.

Referencing Clause

This clause is optional when creating atrigger on an INSERT/UPDATE/DELETE opera-
tion. It provides away to reference the current column identifiersin the case of INSERT and
DELETE operations, and both the old column identifier and the new updated column identi-
fier by aliasing the table on which an UPDATE operation occurs.

You must specify the old_column_identifier or the new_col_identifier to access them before
and after an UPDATE operation. A Solid server does not provide access to them unless you
define them using the REFERENCING subclause.

OLD old_column_name ASold_col_identifier or
NEW new_column_name AS new_col_identifier

D-28 SOLID Administrator Guide

CREATE TRIGGER

The subclause of the REFERENCING clause allows you to reference the values of columns
both before and after an UPDATE operation.

It produces a set of old and new column values which can be passed to an inline or stored
procedure; once passed, the procedure contains logic (for example, domain constraint check-
ing) used to evaluate these parameter values.

Usethe OLD ASclauseto aliasthe table€'s old identifier asit exists before the UPDATE. Use
the NEW AS clause to alias the table's new identifier asit exists after the UPDATE.

You cannot use the same name for the old_column_name and the new_column_name, or for
the old_column_identifier and the new_column_identifier.

Each column that is referenced as NEW or OLD should have a separate REFERENCING
subclause.

The statement atomicity in atrigger is such that operations made in atrigger are visible to
the next SQL statements inside the trigger. For example, if you execute an INSERT state-
ment in atrigger and then also perform a select in the same trigger, then the inserted row is
visible.

In the case of AFTER trigger, an inserted row or an updated row is visible in the after insert
trigger, but a deleted row cannot be seen for a select performed within the trigger. In the case
of a BEFORE trigger, an inserted or updated row isinvisible within the trigger and a deleted
row isvisible.

The table below summarizes the statement atomicity in atrigger, indicating whether the row
isvisibleto the SELECT statement in the trigger body.

Operation BEFORE TRIGGER AFTER TRIGGER
INSERT row isinvisible row isvisible
UPDATE previousvalueisinvisible new valueisvisible
DELETE row isvisible row isinvisible

Other Restrictions
« You cannot define triggers on aview (even if the view is based on asingle table).

« You cannot alter atable that has atrigger defined on it when the dependent columns are
affected.

« You cannot create atrigger on asystem table.

SOLID SQL Syntax D-29

CREATE TRIGGER

« To usethe stored procedure that atrigger calls, provide the catal og, schema/owner and
name of the table on which the trigger is defined. and specify whether to enable or dis-
ablethe triggersin the table. For more details on triggers and stored procedures, see
Chapter 3 of the SOL 1D Programmer Guide.

« You cannot execute triggers that reference dropped or altered objects. To prevent this
error:

« Recreate any referenced object that you drop.
« Restore any referenced object you changed back to its original state (known by the
trigger).
= You can use reserved words in trigger statementsiif they are enclosed in double quotes.
For example, the following CREATE TRIGGER statement references a column named
"data" which is areserved word.
"CREATE TRGER TR GL ON TMPT BECRE | NSERT
REFERENG NG NEW" DATA" AS NEWDATA
BEQ N
BEND'

Setting the Maximum Number of Nested Triggers

Triggers can invoke other triggers or atrigger can invokeitself (or recursive triggers). You
can nest triggers up to 16 levels deep. The maximum number of nested triggersis set in the
MaxNest edTri gger s parameter in the SQL section of the SOLID.INI configuration
file

[SQL] MaxNest edTri gger s=n
where n is the maximum number of nested triggers.
The default is 16 triggers.

Setting the Triggers Cache

Triggers are cached on a separate cache in the Solid server; each user has a separate cache
for triggers. Asthe triggers are executed, the trigger procedure logic is cached in the trigger
cache and is resumed when the trigger is executed again.

The cachesizeissetinthe Tri gger Cache parameter in the SQL section of the
SOLID.INI configuration file:

[SQL] Trigger Cache=n

where n is the number of triggersthat is reserved for the cache.

D-30 SOLID Administrator Guide

CREATE TRIGGER

Checking for Errors

At times, it is possible to receive an error in executing atrigger. The error may be due to exe-
cution of SQL statements or business logic. If atrigger returns an error, it causes its invok-
ing DML command to fail. To automatically return errors during the execution of an DML
statement, you must use the WHENEV ER SQLERROR ABORT statement in the trigger
body. Otherwise, errors must be checked explicitly within the trigger body after each proce-
dure call or SQL statement.

For any errorsin the user written business logic as part of the trigger body, users can receive
errorsin a procedure variable using the SQL statement;

RETURN SQLERROR error_string

or
RETURN SQLERROR char_variable
The error isreturned in the following format:
User error: <error_string>

If auser does not specify the RETURN SQLERROR statement in the trigger body, then all
trapped SQL errors are raised with a default error_string determined by the system. For
details, see“ Error Codes’ on page A-1inthe SOLID Administrator Guide.

Note

Triggered SQL statements are a part of the invoking transaction. If the invoking DML state-
ment fails due to either the trigger or another error that is generated outside the trigger, all
SQL statements within the trigger are rolled back along with the failed invoking DML com-
mand.

Triggers Stack Functions
The following functions may be used to analyze the current contents of the trigger stack:

TRIG_COUNT() returns the number of triggersin the trigger stack. This includes the cur-
rent trigger. The return value is an integer.

TRIG_NAME(n) returns the nth trigger name in the trigger stack. The first trigger position
or offset is zero.

TRIG_SCHEMA(n) returns the nth trigger schema name in the trigger stack. The first trig-
ger position or offset is zero. the return value is a string.

SOLID SQL Syntax D-31

CREATE USER

Example
"CREATE TR GER TR GER Bl ON TR GER TEST
BEFCRE | NSERT
REFERENG NG NEWBI AS NEWBI
BEG N
EXEC S PREPARE Bl | NSERT | NTO TR GEER QUTPUT VALUES (
"B', TRGNAVEO0), TRGSGHEWO));
BEXEC S EXEQUTE Bl ;
SET NEWB = 'TRGERB';
BND';

CREATE USER

CREATE USER user_name IDENTIFIED BY password

Usage
Creates a new user with a given password.

Example
CREATE USER HCBBES | DENTI FI ED BY CALM N

CREATE VIEW

CREATE VIEW viewed_table_name [(column_identifier [, column_identifier]...)]

AS query-specification

Usage
A view can be viewed as avirtual table; that is, atable that does not physically exist, but
rather is formed by a query specification against one or more tables.

Example
CGREATE M EWTEST M EW
(MEWI, MEWG M EWID
AS SHECT I, G 1D FROM TEST;

D-32 SOLID Administrator Guide

DROP CATALOG

DELETE

DELETE FROM table_name [WHERE search_ondition]

Usage
Depending on your search condition the specified row(s) will be deleted from a given table.

Example
CELETE FROM TEST WHERE | D = 5;
CELETE FROM TEST;

DELETE (positioned)

DELETE FROM table_name WHERE CURRENT OF cursor_name

Usage
The positioned DELETE statement deletes the current row of the cursor.

Example
DELETE FROM TEST WHERE QRRENT F WY_ORSCR

DROP CATALOG

DROP CATALOG catalog_name

Usage

The DROP CATALOG statement drops the specified catalog from the database. All the
obj ects associated with the specified catalog_name must be dropped prior to using this state-
ment; the DROP CATALOG statement is not a cascaded operation.

Example
DRCP CATALGG (1,

SOLID SQL Syntax D-33

DROP EVENT

DROP EVENT

DROP EVENT event_name

Usage
The DROP EVENT statement removes the specified event from the database.

Example
DRCP EVENT EVENT_TEST;

DROP INDEX

DROP INDEX index_name

Usage
The DROP | NDEX statement removes the specified index from the database.

Example
DRCP | NDEX UX_TEST;

DROP PROCEDURE

DROP PROCEDURE procedure_name

Usage
The DROP PROCEDURE statement removes the specified procedure from the database.

Example
DRCP PROCEDURE PROCTEST;

DROP ROLE

DROP ROLE role_name

Usage
The DROP ROLE statement removes the specified role from the database.

D-34 SOLID Administrator Guide

DROP TABLE

Example
DRCP ROLE GQEST _USERS,

DROP SCHEMA

DROP SCHEMA schema_name

Usage

The DROP SCHEMA statement drops the specified schema from the database. All the
objects associated with the specified schema_name must be dropped prior to using this state-
ment; the DROP SCHEMA statement is not a cascaded operation.

Example
DRCP SGHEVA FI NANCE;

DROP SEQUENCE

DROP SEQUENCE sequence_name

Usage
The DROP SEQUENCE statement removes the specified sequence from the database.

Example
DRCP SEQUENCE SEQYL;

DROP TABLE

DROP TABLE base_table_name

> Note

Objects are always dropped with drop behavior RESTRICT.

Usage
The DROP TABLE statement removes the specified table from the database.

SOLID SQL Syntax D-35

DROP TRIGGER

Example
DRCP TABLE TEST;

DROP TRIGGER

DROP TRIGGER [catalog_name[schema_name]]trigger_name

DROP TRIGGER trigger_name
DROP TRIGGER schema_name.trigger_name
DROP TRIGGER catalog_name.schema_name.trigger_name

Usage
Drops (or deletes) atrigger defined on atable from the system catal og.

You must be the owner of atable, or auser with DBA authority to delete atrigger from the
table.

Example
DROP TRGAER TR A

DROP USER

DROP USER user_name

Usage

The DROP USER statement removes the specified user from the database. All the objects
associated with the specified user_name must be dropped prior to using this statement; the
DROP USER statement is not a cascaded operation.

Example
DRCP USER HBBES,

DROP VIEW

DROP VIEW viewed_table_name

Usage
The DROP VI EWstatement removes the specified view from the database.

D-36 SOLID Administrator Guide

GRANT

> Note

Objects are always dropped with drop behavior RESTRICT.

Example
DRCP M EWTEST_M BEW

EXPLAIN PLAN FOR

GRANT

EXPLAIN PLAN FOR sql_statement

Usage
The EXPLAI N PLAN FOR statement shows the selected search plan for the specified SQL
statement.

Example
BEXPLAI N PLAN FCR sel ect * fromtabl es;

GRANT {ALL | grant_privilege [, grant_privilege]...}
ON table_name

TO {PUBLIC | user_name [, user_namel]... |
role_name [, role_name]... }

[WITH GRANT OPTION]

GRANT role_name TO user_name
grant_privilege ::= DELETE | INSERT | SELECT |

UPDATE [(column_identifier [, column_identifier]...)] |
REFERENCES [(column_identifier [, column_identifier]...)]

SOLID SQL Syntax D-37

HINT

GRANT EXECUTE ON procedure_name

TO {PUBLIC | user_name [, user_name]... | role_name [, role_name]... }

GRANT {SELECT | INSERT} ON event_name

TO {PUBLIC | user_name [, user_name]... | role_name [, role_name]... }

GRANT {SELECT | UPDATE} ON sequence_name

TO {PUBLIC | user_name [, user_name]... | role_name [, role_name]... }

Usage
The GRANT statement is

1. used to grant privilegesto the specified user or role.
2. used to grant privileges to the specified user by giving
the user the privileges of the specified role.

If you do use the optional W TH GRANT OPTI ON, you give permission for the user(s) to
whom you are granting the privilege to passit on to other users.

Example
GRANT GUEST_USERS TO CALM N
CGRANT | NSERT, DELETE ON TEST TO GUEST _USERS,

HINT

--(* vendor (SOLID), product (Engine), option(hint)
--hint *)--

hint:=

[MERGE JOIN |
LOOP JOIN |

JOIN ORDER FIXED |

D-38 SOLID Administrator Guide

HINT

INTERNAL SORT |

EXTERNAL SORT |

INDEX [REVERSE] table_name.index_name |
PRIMARY KEY [REVERSE] table_name
FULL SCAN table_name |

[NO] SORT BEFORE GROUP BY]

Following is a description of the keywords and clauses used in the syntax:

Pseudo comment identifier

The pseudo comment prefix is followed by identifying information. You must specify the
vendor as SOLID, product as Engine, and the option, which is the pseudo comment class
name, as hint.

Hint
Hints aways follow the SELECT, UPDATE, or DELETE keyword that appliesto it.

Note

Hints are not allowed after the INSERT keyword.

Each subselect requiresits own hint; for example, the following are valid uses of hints syn-
tax:

INSERT INTO ... SELECT hint FROM ...
UPDATE hint TABLE ... WHERE column = (SELECT hint ... FROM ...)

DELETE hint TABLE ... WHERE column = (SELECT hint ... FROM ...

Example 1

SH ECT

--(* vendor (SQ.I D, product (Engi ne), option(hint)
--MERGE JAN

--JON CRDER FI XBD *) - -

*

FROM TABL A TAB2 B,

SOLID SQL Syntax D-39

HINT

WHRE A INTF = B. I NTF,

Example 2

SH ECT

--(* vendor (SQ.I D, product (Engi ne), option(hint)
-- I NDEX TABL. | NDEXL

-- I NDEX TABL. | NDEXL FULL SCAN TAB2 *)--

FROM TABL, TAB2

WHERE TABL. | NTF = TAB2. | NTF;

Hint is a specific semantic, corresponding to a specific behavior. Following is alist of possi-
ble hints:

Hint Definition

MERGE JOIN Directs the Optimizer to choose the merge join access plan in aselect
query for al tableslisted in the FROM clause. Use this hint when the
datais sorted by ajoin key and the nested loop join performanceis not
adequate. The MERGE JOIN option selects the merge join only where
thereis an equal predicate between tables. Otherwise, the Optimizer
selects LOOP JOIN even if the MERGE JOIN hint is specified.

Note that when datais not sorted before performing the merge opera-
tion, the SOLID query executor sorts the data.

When considering the usage of this hint, keep in mind that the merge
join with a sort is more resource intensive than the merge join without
the sort.

LOOP JOIN Directs the Optimizer to pick the nested loop join in a select query for
all tableslisted in the FROM clause. By default, the Optimizer does not
pick the nested loop join. Using the loop join when tables are small and
fit in memory may offer greater efficiency than using other complex
join agorithms.

JOIN ORDER FIXED Specifies that the Optimizer usetablesin ajoinin the order listed in the
FROM clause of the query. This means that the Optimizer does not
attempt to rearrange any join order and does not try to find alternate
access paths to complete the join.

Before using this hint, be sure to run the EXPLAIN PLAN to view the
associated plan. This gives you an idea on the access plan used for exe-
cuting the query with thisjoin order.

D-40 SOLID Administrator Guide

HINT

Hint

Definition

INTERNAL SORT

Specifies that the query executor use the interna sort. Use this hint if
the expected result set is small (100s of rows as opposed to 1000s of
rows); for example, if you are performing some aggregates, ORDER
BY with small result sets, or GROUP BY with small result sets, etc.

This hint avoids the use of the more expensive external sort.

EXTERNAL SORT

Specifies that the query executor use the external sort. Use this hint
when the expected result set is large and does not fit in memory; for
example, if the expected result set has 1000s of rows.

In addition, specify the SORT working directory inthesol i d. i ni
before using the externa sort hint. If aworking directory is not speci-
fied, you will receive arun-time error.

INDEX { REVERSE]
table_name.index_name

Forces a given index scan for agiven table. In this case, the Optimizer
does not proceed to evaluate if there are any other indexes that can be
used to build the access plan or whether atable scan is better for the
given query.

Before using this hint, it is recommended that you run the EXPLAIN
PLAN output to ensure that the plan generated is optimal for the given
query.

The optional keyword REVERSE returns the rows in the reverse order.
In this case, the query executor begins with the last page of the index
and starts returning the rows in the descending (reverse) key order of
the index.

Note that in tablename.indexname, the tablenameis afully qualified
table name which includes the catalogname and schemaname.

PRIMARY KEY
[REVERSE] tablename

Forces a primary key scan for a given table.
The optional keyword REVERSE returns the rows in the reverse order.

If the primary KEY is not available for the given table, then you will
receive arun-time error.

SOLID SQL Syntax D-41

HINT

Hint Definition

FULL SCAN table name Forces atable scan for agiven table. In this case, the optimizer does
not proceed to evaluate if there are any other indexes that can be used
to build the access plan or whether atable scan is better for the given
query.

Before using this hint, it is recommended that you run the EXPLAIN
PLAN output to ensure that the plan generated is optimal for the given
query.

Inthis FULL SCAN, the query executor triesto use the PRIMARY
KEY, if oneisavailable. If not, then it usesthe SY STEM KEY.

[NO] SORT BEFORE Indicates whether the SORT operation occurs before the result set is
GROUPBY grouped by the GROUP BY columns.

If the grouped items are few (100s of rows) then use NO SORT
BEFORE. On the other hand, if the grouped items are large (1000s of
rows), then use SORT BEFORE.

Usage

Due to various conditions with the data, user query, and database, the SQL Optimizer is not
always able to choose the best possible execution plan. For more efficiency, you may want to
force amerge join because you know, unlike the Optimizer, that your datais aready sorted.

Or sometimes specific predicatesin queries cause performance problems that the Optimizer
cannot eliminate. The Optimizer may be using an index that you know is not optimal. In this
case, you may want to force the Optimizer to use one that produces faster results.

Optimizer hintsis away to have better control over response times to meet your perfor-
mance needs. Within a query, you can specify directives or hints to the Optimizer, which it
then uses to determine its query execution plan. Hints are detected through a pseudo com-
ment syntax from SQL 2.

You can place ahint(s) in a SQL statement as a static string, just after a SELECT, INSERT,
UPDATE, or DELETE keyword. The hint always follows the SQL statement that appliesto
it.

Table name resolution in optimizer hints is the same asin any table name in a SQL state-
ment. When there is an error in a hint specification, then the whole SQL statement fails with
an error message.

Hints are enabled and disabled using the following configuration parameter in the
SOLID.INI.

D-42 SOLID Administrator Guide

HINT

[Hi nts]
Enabl eHints = YES | NO

The default is YES.

Example

SH ECT

--(* vendor (SQLI D, product (Engi ne), option(hint)
-- | NDEX TABL. I DXL *)--

* FROM TABL WERE | > 100

SHELECT

--(* vendor (SQLI D, product (Engi ne), option(hint)
-- I NDEX M/Gat al og. nySchera. TABL. | DXL *)--

* FROM TABL WHERE | > 100

SH ECT

--(* vendor (SQ.I D, product (Engi ne), option(hint)
-- JON GRDER F XBD *) - -

* FROM TABL, TAB2 WHERE TABL. | >= TARR. |

SHELECT

--(* vendor (SQLI D, product (Engi ne), option(hint)
-- LOP JAN*)--

* FROM TABL, TABR2 WHERE TABL. | >= TARR. |

SH ECT

--(* vendor (SQ.I D, product (Engi ne), option(hint)
-- | NDEX REVERSE M/Cat al og. nySchena. TABL. | DXL *) - -
* FROM TABL WERE | > 100

SELECT
--(* vendor (SQLI D, product (Engi ne), option(hint)
-- SORT BEFCGRE QROP BY *)--

SOLID SQL Syntax D-43

HINT

AVJ) FROMTABL WHERE | > 10 GROP BY |2

SH ECT

--(* vendor (SQ.I D, product (Engi ne), option(hint)
-- | NTERNAL SCRT *)--

* FRAMTABL WERE | > 10 CROER BY 12

D-44 SOLID Administrator Guide

REVOKE (Role from User)

INSERT

INSERT INTO table_name [(column_identifier [, column_identifier]...)]

VALUES (insert_value][, insert_value]...)

Usage

There are severa variations of the | NSERT statement. In the simplest instance, avalueis
provided for each column of the new row in the order specified at the time the table was
defined (or atered). In the preferable form of the | NSERT statement the columns are speci-
fied as part of the statement and they needn’t to be in any specific order aslong as the orders
of the column and value lists match with one another.

Example
| NSERT | NTO TEST (G D) VALUES (0.22, 5);
| NSERT | NTO TEST VALUES (0.35, 9);

INSERT (Using Query)

INSERT INTO table_name [(column_identifier [, column_identifier]...)]

query_specification

Usage

The query specification creates avirtual table. Using the | NSERT statement the rows of cre-
ated virtual table are inserted into the specified table (the degree and data types of the vir-
tual table and inserted columns must match).

Example
INSERT INTO TEST (G 1D SHLECT A B FROM | NPUT_TO TEST:

REVOKE (Role from User)

REVOKE {role_name [, role_name]... }
FROM {PUBLIC | user_name [, user_name]... }

Usage
The REVOKE statement is used to take arole away from users.

SOLID SQL Syntax D-45

REVOKE (Privilege from Role or User)

Example
REVCKE GEST _USERS FROM HOBBES,

REVOKE (Privilege from Role or User)
REVOKE
{ALL | revoke_privilege [, revoke_privilege]... } ON table-name
FROM {PUBLIC | user_name [, user_namel]... | role_name [, role_name]... }
revoke-privilege ::= DELETE | INSERT | SELECT |
UPDATE [(column_identifier [, column_identifier]...)] |
REFERENCES

REVOKE EXECUTE ON procedure_name

FROM {PUBLIC | user_name [, user_namel]... | role_name [, role_name]... }

REVOKE {SELECT | INSERT} ON event_name FROM

{PUBLIC | user_name [, user_name]... | role_name [, role_name]... }

REVOKE {SELECT | INSERT} ON sequence_name

FROM {PUBLIC | user_name [, user_namel]... | role_name [, role_name]... }

> Note

Keywords CASCADE and RESTRICT are not supported in the SQL grammar of SOLID
Embedded Engine.

Usage
The REVOKE statement is used to take privileges away from users and roles.

D-46 SOLID Administrator Guide

SELECT

Example
REVCKE | NSERT ON TEST FROM GUEST_USERS,

ROLLBACK

SELECT

ROLLBACK WORK

Usage
The changes made in the database are discarded by ROLLBACK statement. It terminates the
transaction.

Example
ROLLBACK WIRK;

SELECT [ALL | DISTINCT] select-list
FROM table_reference_list
[WHERE search_condition]
[GROUP BY column_name [, column_namel]...]
[HAVING search_condition]
[[UNION | INTERSECT | EXCEPT] [ALL] select_statement]...
[ORDER BY {unsigned integer | column_name}
[ASC | DESC]]

Usage
The SELECT statement is used to retrieve information.

Important

SOLID provides a consistent view of data within one transaction; that is, it sees the database
asit was at the moment it was started. Thisisimplemented by the multiversion SOLID Bon-
sai Treethat storesthe active data, that is, data that has been written to the database since the
beginning of the oldest active transaction in central memory. Also a SELECT begins a new
transaction and if not committed or rolled back, it remains active thus causing the Bonsai

SOLID SQL Syntax D-47

SET

SET

Tree to grow.

New datais merged to the main storage tree as soon as no transaction needs to see the old
versions of the rows. To ensure the efficient operation of the Bonsai Tree, also commit read-
only transactions as soon as all rows are retrieved. Thisreleases the read level and alows the
merge process to keep the Bonsai Tree smaller.

Using AUTOCOWM T does not help. Thisis because SOLID cannot immediately commit
SEL ECTs since the rows need to be retrieved by the client application first. In AUTOCOMW

M T mode, the next SQL statement processing triggers the commit for previous SELECT
statement. But if that next statement never comes, the transaction is left open until the con-
nection timeout expires.

Example
SELECT | D FROM TEST;

SEHECT DSTINCT ID, CFROMTEST WHERE ID = 5;
SELECT D STINCT | D FROM TEST GRDER BY | D ASC

SEHLECT NAME, ADDRESS FRCM QUSTOMERS UN ON SEHLECT NAME, DEP FROM
PERSONNEL,

SET CATALOG ’catalog_name’

SET SQL INFO {ON | OFF} [FILE {file_name | "file_name" | 'file_name'}]
[LEVEL info_level]

SET SQL SORTARRAYSIZE {array-size | DEFAULT}

SET SQL JOINPATHSPAN {path-span | DEFAULT}

SET SQL CONVERTORSTOUNIONS
{YES [COUNT value] | NO | DEFAULT}

D-48 SOLID Administrator Guide

SET

SET OPTIMISTIC LOCK TIMEOUT seconds

SET LOCK TIMEOUT timeout-in-seconds

SET SCHEMA 'schema_name’ | 'user_name’

SET SCHEMA USER

SET STATEMENT MAXTIME minutes

SET TRANSACTION READ ONLY

SET TRANSACTION READ WRITE

SET TRANSACTION ISOLATION LEVEL READ COMMITTED

SET TRANSACTION ISOLATION LEVEL
REPEATABLE READ

SET TRANSACTION ISOLATION LEVEL SERIALIZABLE

Usage
All the settings are read per user session unlike the settingsinthesol i d. i ni filewhich
are automatically read each time SOLID Embedded Engine is started.

InSQL | NFOthe default fileisagloba sol t race. out shared by al users. If thefile
nameisgiven, al future | NFO ON settingswill usethat file unless anew fileis set. It isrec-
ommended that the file nameis given in single quotes, because otherwise the file nameis
converted to uppercase. The info output is appended to the file and the file is never trun-
cated, so after the info file is not needed anymore, the user must manualy delete the file. If
the file open fails, the info output is silently discarded.

SOLID SQL Syntax D-49

SET

The default SQL | NFO LEVEL is4. A good way to generate useful info output isto set
info on with a new file name and then execute the SQL statement using EXPLAI N PLAN
FOR syntax. This method gives all necessary estimator information but does not generate
output from the fetches which may generate a huge output file.

The sort array isused for in memory sortsin the SQL interpreter. The minimum value for
SORTARRAYSI ZE is100. If asmaller valueis given, minimum value 100 will be used. If
large sorts are needed, it is recommended that the external sorter facility is used (in Sorter
section in solid.ini) instead on using very large SORTARRAYSI ZE.

The COUNT parameter in SQL CONVERTORSTOUNI ONS tells how many ors are converted
to unions. The default is 10 which should be enough in most cases.

SET CATALOG setsthe catalog name context in a program.

SET OPTIMISTIC LOCK TIMEOUT sets lock time out separately for optimistic tables per
connection. Note that when using SELECT FOR UPDATE, the selected rows are locked
also for tables with optimistic concurrency control.

SET SCHEMA sets the schema name context when implicitly qualifying a database object
name in a session. To remove the schema context, use the SET SCHEMA USER com-
mand. For details, read “* SET SCHEMA” on page D-51.

SET STATEMENT MAXTIME sets connection specific maximum execution time in min-
utes. Setting is effective until anew maximum time if set. Zero time means no maximum
time, which is a'so the defaullt.

The SET TRANSACTION settings are borrowed from ANSI SQL. It sets the transaction
isolation level. To detect conflicts between transactions, define the transaction with a
Repeatable Read or Serializableisolation level using the SET TRANSACTION ISOLA-
TION LEVEL command.

Example
SET S INFOON HLE "sqglinfo.txt' LEVEL 5

D-50 SOLID Administrator Guide

UPDATE (Positioned)

SET SCHEMA

SET SCHEMA {'schema_name’ | USER | 'user_name'}

Usage

SOLID Embedded Engine supports SQL 89 style schemas for database entity name qualify-
ing. All created database entities belong to a schema, and different schemas may contain
entities with same name. In keeping with the ANSI SQL 2 standard, the user_name or
schema_name may be enclosed in single quotes.

The default schema can be changed with the SET SCHEMA statement. Schema can be
changed to the current user name by using the SET SCHEMA USER statement. Alterna-
tively schema can be set to ‘user_name’ which must be avalid user name in the database.

The algorithm to resolve entity names [schema_name.]table_identifier is the following:
1. If schema_name isgiven then table_identifier is searched only from that schema.
2. If schema_name isnot given, then

a. First table_identifier is searched from default schema. Default schemaisinitialy
the same as user name, but can be changed with SET SCHEMA statement

b. Thentable identifier is searched from all schemasin the database. If more than
one entity with same table_identifier and type (table, procedure, ...) isfound, a
new error code 13110 (Ambiguous entity name table_identifier) is returned.

The SET SCHEMA statement effects only to default entity name resolution and it does
not change any access rights to database entities. It sets the default schema name for
unqualified namesin statements that are prepared in the current session by an execute
immediate statement or a prepare statement.

Example
SET SCHEMA ' AUSTOMERS

UPDATE (Positioned)
UPDATE table_name
SET [table_name.]column_identifier = {expression | NULL}
[, [table_name.]column_identifier = {expression | NULL}]...
WHERE CURRENT OF cursor_name

SOLID SQL Syntax D-51

UPDATE (Searched)

Usage
The positioned UPDATE statement updates the current row of the cursor. The name of the
cursor is defined using ODBC API function named SQLSet Cur sor Nane.

Example
UPDATE TEST SET C = 0. 33

WHERE AURRENT OF WALRSCR

UPDATE (Searched)

UPDATE table-name
SET [table_name.]column_identifier = {expression | NULL}
[, [table_name.]column_identifier = {expression | NULL}]...
[WHERE search_condition]
Usage
The UPDATE statement is used to modify the values of one or more columnsin one or more

rows, according the search conditions.

Example
UPDATE TEST SET C=0.44 WERE ID =5

D-52 SOLID Administrator Guide

Table_reference

Table_reference

Table_reference

table reference list ::=table_reference [, table-reference ...]

table _reference ::=table_name [[AS] correlation_name] |
derived_table [[AS] correlation_name

[(derived_column_list)]] | joined_table

table_name ::=table_identifier | schema_name.table_identifier

derived_table ::= subquery

derived_column_list ::=column_name_list

joined_table ::=cross_join | qualified_join | (joined_table)

Cross_join ::=table_reference CROSS JOIN table_reference

qualified_join ::=table_reference [NATURAL] [join_type] JOIN
table_reference [join_specification]

join_type = INNER | outer_join_type [OUTER] | UNION

outer_join_type =LEFT | RIGHT | FULL

join_specification ::= join_condition | named_columns_join

join_condition ::= ON search_condition

named_columns_join ::= USING (column_name_list)

column_name_list ::= column_identifier [{ , column_identifier} ...]

SOLID SQL Syntax D-53

Query_specification

Query_specification

Query_specification

query_specification

::= SELECT [DISTINCT | ALL] select_list
table_expression

select_list =% | select_sublist
[{, select_sublist} ...]
select_sublist ::= derived_column |

[table_name | table identifier].*

derived_column

= expression [[AS] column_aliag]]

table_expression

::= FROM table reference list

[WHERE search_condition]

[GROUP BY column_name_list

[[UNION | INTERSECT | EXCEPT] [ALL] [CORRE-
SPONDING [BY (column_name list)]]
query_specification]

[HAVING search_condition]

Search_condition

Search_condition

search_condition

::=search_item | search_item{ AND |OR }
search_item

search_item ::=[NOT] { search_test |
(search_condition) }
search_test ::= comparison_test | between test |

like test | null_test | set_test |
quantified_test | existence_test

comparison_test

= eression { = | <>| <|<=|>|>=}
{ expression | subquery }

between_test ::= column_identifier [NOT] BETWEEN
expression AND expression
like_test ::= column_identifier [NOT] LIKE value

[ESCAPE value]

D-54 SOLID Administrator Guide

Check_condition

Search_condition

null_test

::= column_identifier IS[NOT] NULL

Set_test

= expression [NOT] IN ({ value
[,value]... | subquery})

quantified_test

:= expresson { =| <> | <|<=|>|>=}
[ALL | ANY | SOME] subquery

existence test

::= EXISTS subquery

Check_condition

Check_condition

check_condition

::= check_item | check_item{ AND | OR}
check item

check_item

2= [NOT] { check_test |
(check_condition) }

check_test

::= comparison_test | between_test |
like test | null_test | list_test

comparison_test

= eression { = | <>| <|<=|>|>=}
{ expression | subquery }

between_test

::= column_identifier [NOT] BETWEEN
expression AND expression

like_test

::= column_identifier [NOT] LIKE value
[ESCAPE value]

null_test

::= column_identifier IS[NOT] NULL

list_test

;= expression [NOT] IN ({ value
[,value]...})

SOLID SQL Syntax D-55

Expression

Expression
Expression
expression ::= expression_item | expression_item

{+]_|*|/} expression_item

expression_item

=[+]_1{ value| column_identifier | function |
case_expression | cast_expression | (expression) }

value

::=literal | USER | variable

function

::=set_function | null_function | string_function |
numeric_function |

datetime_function | system function |
datatypeconversion_function

set_function

;= COUNT (*) |
{ AVG | MAX | MIN | SUM | COUNT }

({ ALL | DISTINCT } expression)

null_function

:={ NULLVAL_CHAR() | NULLVAL_INT()}

datatypeconversion_function

::= CONVERT_CHAR(value_exp) |
CONVERT_DATE(value_exp) |
CONVERT_DECIMAL (value_exp) |
CONVERT_DOUBLE(value_exp) |
CONVERT_FLOAT (value_exp) |
CONVERT_INTEGER(value_exp) |
CONVERT_LONGVARCHAR(value_exp) |
CONVERT_NUMERIC(value_exp) |
CONVERT_REAL (value_exp) |
CONVERT_SMALLINT(value_exp) |
CONVERT_TIME(value_exp) |
CONVERT_TIMESTAMP(value_exp) |
CONVERT_TINYINT(value_exp) |
CONVERT_VARCHAR(value_exp)

case_expression

::= case_abbreviation | case_specification

case_abbreviation

= NULLIF(value_exp, value_exp) |
COALESCE(value_exp {, value_exp}...)

D-56 SOLID Administrator Guide

String Function

Expression

case_specification

::= CASE [value_exp]
WHEN value_exp
THEN {value_exp}
[WHEN value_exp
THEN {value_exp} ...]
[ELSE {value_exp}]
END

cast_expression

::= CAST (value-exp AS -data-type)

String Function

Function Purpose

ASCII(str) Returns the integer equivalent of string str
CHAR(code) Returns the character equivalent of code
CONCAT(str1, str2) Concatenates str2 to strl

stri{ +|||} str2 Concatenates str2 to strl

INSERT(str1, start, length,
str2)

Merges strings by deleting length characters from str1 and
inserting str2

LCASE(str) Converts string str to lowercase

LEFT(str, count) Returns leftmost count characters of string str
LENGTH(str) Returns the number of charactersin str
LOCATE(str, str2 [, start]) Returns starting position of str1 within str2
LTRIM(str) Removes leading spaces of str

POSITION (str1IN str2)

Returns starting position of str1 within str2

REPEAT (str, count)

Returns characters of str repeated count times

REPLACE(str1, str2, str3)

Replaces occurrences of str2 in str1 with str3

RIGHT (str, count)

Returns the rightmost count characters of string str

RTRIM(str)

Removes trailing spacesin str

SPACE(count)

Returns a string of count spaces

SUBSTRING(str, start,
length)

Derives substring from str beginning at start

SOLID SQL Syntax D-57

Numeric Function

Function

Purpose

UCASE(str)

Converts str to uppercase

Numeric Function

Function Purpose

ABS(numeric) Absolute value of numeric
ACOS(float) Arccosine of float
ASIN(float) Arcsine of float
ATAN(float) Arctangent of float

ATANZ2(floatl, float2)

Arctangent of the x and y coordinates, specified by floatl
and float2, respectively, as an angle, expressed in radians

CEILING(numeric)

Smallest integer greater than or equal to numeric

COS(float) Cosine of float

COT(float) Cotangent of float

DEGREES(numeric) Converts numeric radians to degrees
EXP(float) Exponentia value of float

FLOOR(numeric) Largest integer less than or equal to numeric
LOG(float) Natural logarithm of float

LOG10(float) Base 10 log of float

MOD(integerl, integer2)

Modulus of integer1 divided by integer2

P10

Pi as afloating point number

POWER(numeric, integer)

Value of numeric raised to the power of integer

RADIANS(numeric)

Number of radians converted from numeric

ROUND (numeric, integer)

Numeric rounded to integer

SIGN(numeric) Sign of numeric
SQRT (float) Square root of float
TAN(float) Tangent of float

TRUNCATE(numeric, inte-
ger)

Numeric truncated to integer

D-58 SOLID Administrator Guide

Date Time Function

Date Time Function

Function Purpose

CURDATE() Returns the current date

CURTIME() Returns the current time

DAY NAME(date) Returns a string with the day of the week

DAY OFMONTH(date) Returns the day of the month as an integer between 1 and 31

DAY OFWEEK (date) Returns the day of the week as an integer between 1 and 7,
where 1 represents Sunday

DAY OFY EAR(date) Returns the day of the year as an integer between 1 and 366

EXTRACT (datefield FROM Isolatesasingle field of a datetime or ainterval and con-

date_exp) vertsit to anumber.

HOUR(time_exp) Returns the hour as an integer between 0 and 23

MINUTE(time_exp) Returns the minute as an integer between 0 and 59

MONTH(date) Returns the month as an integer between 1 and 12

MONTHNAME(date) Returns the month name as a string

NOW() Returns the current date and time as a timestamp

QUARTER(date) Returns the quarter as an integer between 1 and 4

SECOND(time_exp) Returns the second as an integer between 0 and 59

TIMESTAMPADD(interval, Calculates atimetamp by adding integer_exp intervals of
integer_exp, timestamp_exp) typeinterval to timestamp_exp

Keywords used to express valid TIMESTAMPADD interval
values are;

SQL_TS|_FRAC_SECOND
SQL_TS|_SECOND
SQL_TS|_MINUTE
SQL_TS|_HOUR
SQL_TS|_DAY
SQL_TSI_WEEK
SQL_TS|_MONTH
SQL_TS|_QUARTER
SQL_TS|_YEAR

SOLID SQL Syntax D-59

System Function

Function

Purpose

TIMESTAMPDIFF(interval,
timestamp-expl, timestamp-
exp2)

Returns the integer number of intervals by which timestamp-
exp2 is greater than timestamp-expl

Keywords used to express valid TIMESTAMPDIFF interval
values are;

SQL_TS|_FRAC_SECOND
SQL_TS|_SECOND
SQL_TSI_MINUTE
SQL_TS|_HOUR
SQL_TS|_DAY
SQL_TSI_WEEK
SQL_TS|_MONTH
SQL_TS|_QUARTER
SQL_TS|_YEAR

WEEK (date)

Returns the week of the year as an integer between 1 and 52

Y EAR(date)

Returns the year as an integer

System Function

Function

Purpose

IFNULL (exp, value)

If exp isnull, returns value; if not, returns exp

USER()

Returns the user authorization name

uIC()

Returns the connection id associated with the connection

D-60 SOLID Administrator Guide

Date and Time Literals

Data_type

Data_type

data_type

:={BINARY |

CHAR [length] | DATE |
DECIMAL [(precision[,scale])] |
DOUBLE PRECISION |

FLOAT [(precision)] |

INTEGER |

LONG VARBINARY |

LONG VARCHAR |

LONG WVARCHAR |

NUMERIC (precision[,scale])] |
REAL |

SMALLINT |

TIME |

TIMESTAMP (timestamp precision)] |
TINYINT | VARBINARY |
VARCHART (length)]} |
WCHAR |

WVARCHAR [length]

Date and Time Literals

Date/time literal

date literal

“YYYY-MM-DD’

time_literal

"HH:MM:SS

timestamp_literal

“YYYY-MM-DD HH:MM:SS’

SOLID SQL Syntax D-61

Pseudo Columns

Pseudo Columns
The following pseudo columns may also be used in the select-list of a SELECT statement:

Pseudo column Type Explanation

ROWVER VARBINARY (254) Version of therow in atable.

ROWID VARBINARY (10) Persistent id for arow in atable.

ROWNUM DECIMAL(16,2) Row number indicates the
sequence in which arow was
selected from atable or set of

joined rows. The first row
selected has a ROWNUM of 1,
the second row has 2, etc.
ROWNUM is chiefly useful for
limiting the number of rows
returned by a query for example,
WHERE ROWNUM < 10).

> Note

Since ROWID and ROWVER refer to asingle row, they may only be used with queries that
return rows from a single table.

D-62 SOLID Administrator Guide

E

System Views and System Tables

System Views

SOLID Embedded Engine supports views as specified in the X/Open SQL Standard.

COLUMNS

The COLUMNS system view identifies the columns which are accessible to the current user.

Column name Data type Description

TABLE_CATALOG WVARCHAR the name of the catalog containing
TABLE_NAME

TABLE_SCHEMA WVARCHAR the name of the schema containing
TABLE_NAME

TABLE_NAME WVARCHAR the name of the table or view

COLUMN_NAME WVARCHAR the name of the column of the specified table
or view

DATA_TYPE WVARCHAR the data type of the column

SQL_DATA_TYPE_NUM SMALLINT ODBC compliant data type number

CHAR_MAX_LENGTH INTEGER maximum length for a character data type

column; for others NULL

System Views and System Tables E-1

System Views

Column name Data type Description

NUMERIC_PRECISION INTEGER the number of digits of mantissa precision of
the column, if DATA_TY PE is approximate
numeric data type,
NUMERIC_PREC_RADIX indicates the
units of measurement; for other numeric
types contains the total number of decimal
digits allowed in the column; for character
datatypes NULL

NUMERIC PREC RADIX SMALLINT the radix of numeric precision if
DATA_TYPE is one of the approximate
numeric data types; otherwise NULL

NUMERIC_SCALE SMALLINT total number of significant digitsto the right
of the decimal point; for INTEGER and
SMALLINT O; for others NULL

NULLABLE CHAR if column is known to be not nullable 'NO';
otherwise 'YES
NULLABLE_ODBC SMALLINT ODBC, if column is known to be not nul-
lable'0"; otherwise'1'
REMARKS LONG WVAR- reserved for future use
CHAR
SERVER_INFO
The SERVER_INFO system view provides attributes of the current database system or
server.
Column name Data type Description
SERVER_ATTRIBUTE WVARCHAR identifies an attribute of the server
ATTRIBUTE_VALUE WVARCHAR the value of the attribute

E-2 SOLID Administrator Guide

System Tables

TABLES
The TABLES system view identifies the tables accessible to the current user.

Column name Data type Description

TABLE_CATALOG WVARCHAR the name of the catalog contain-
ing TABLE_NAME

TABLE_SCHEMA WVARCHAR the name of the schema contain-
ing TABLE_NAME

TABLE_NAME WVARCHAR the name of the table or view

TABLE_TYPE WVARCHAR the type of the table

REMARKS LONG WVARCHAR reserved for future use

USERS
The USERS system view identifies users and roles.

Column name Data type Description

ID INTEGER User or roleid

NAME WVARCHAR User or role name

TYPE WVARCHAR User type, either USER or
ROLE

PRIV INTEGER Privilege information

PRIORITY INTEGER Reserved for future use

PRIVATE INTEGER Is user private or public (used in

SOLID SynchroNet only)

System Tables

SQOL_LANGUAGES

The SQL_LANGUAGES system table lists the SQL standards and SQL dialects which are

supported.

System Views and System Tables E-3

System Tables

Column name Data type Description

SOURCE WVARCHAR the organization that defined this
specific SQL version

SOURCE_YEAR WVARCHAR the year the relevant standard was
approved

CONFORMANCE WVARCHAR the conformance level at which
conformance to the relevant stan-
dard

INTEGRITY WVARCHAR indicates whether the Integrity
Enhancement Feature is supported

IMPLEMENTATION WVARCHAR identifies uniquely the vendor's
SQL language; NULL if SOURCE
is'ISO'

BINDING_STYLE WVARCHAR the binding style 'DIRECT",
*EMBED' or ' MODULE'

PROGRAMMING_LANG WVARCHAR the host language used

SYS_ATTAUTH

Column name Data type Description

REL_ID INTEGER tableid

UR_ID INTEGER user or roleid

ATTR_ID INTEGER columnid

PRIV INTEGER privilegeinfo

GRANT_ID INTEGER grantor id

GRANT_TIM TIMESTAMP grant time

SYS CARDINAL
Column name Data type Description

E-4 SOLID Administrator Guide

System Tables

REL_ID INTEGER therelationid asin

SYS TABLES
CARDIN INTEGER the number of rowsin the table
SIZE INTEGER the size of the datain the table
LAST_UPD TIMESTAMP the timestamp of the last update

inthe table

SYS_CATALOGS

The SYS CATALOGS lists available catalogs.

SYS_COLUMNS

Column name Data type Description

ID INTEGER catalogid

NAME WVARCHAR catalog name

CREATIME TIMESTAMP create date and time

CREATOR WVARCHAR creator name
Column name Data type Description
ID INTEGER unique column identifier
REL_ID INTEGER therelationidasin SYS_TABLES
COLUMN_NAME WVARCHAR the name of the column
COLUMN_NUMBER INTEGER the number of the column in the

table (in creation order)

DATA_TYPE WVARCHAR the data type of the column
SQL_DATA_TYPE_NUM SMALLINT ODBC compliant data type number
DATA_TYPE_NUMBER INTEGER internal data type number
CHAR_MAX_LENGTH INTEGER maximum length for a CHAR field
NUMERIC_PRECISION INTEGER numeric precision
NUMERIC_PREC _RADIX SMALLINT numeric precision radix
NUMERIC_SCALE SMALLINT numeric scale

System Views and System Tables E-5

System Tables

Column name Data type Description
NULLABLE CHAR are NULL values allowed (Yes, No)
NULLABLE_ODBC SMALLINT ODBC, are NULL values alowed
(1.0
FORMAT WVARCHAR reserved for future use
DEFAULT_VAL VARBINARY reserved for future use
ATTR_TYPE INTEGER user defined (0) or internal (>0)
REMARKS LONG WVARCHAR reserved for future use
SYS_EVENTS
Column name Data type Description
ID INTEGER unique event identifier
EVENT_NAME WVARCHAR the name of the event
EVENT_PARAMCOUNT INTEGER number of parameters
EVENT_PARAMTYPES LONG VARBINARY typesof parameters
EVENT_TEXT WVARCHAR the body of the event
EVENT_SCHEMA WVARCHAR the owner of the event
EVENT_CATALOG WVARCHAR the owner of the event
CREATIME TIMESTAMP creation time
TYPE INTEGER reserved for future use
SYS_FORKEYPARTS
Column name Data type Description
KEY_CATALOG INTEGER creator name or the owner of the
key
ID INTEGER foreign key identifier
KEYP_NO INTEGER keypart number
ATTR_NO INTEGER column number

E-6 SOLID Administrator Guide

System Tables

ATTR_ID INTEGER column identifier
ATTR_TYPE INTEGER column type
CONST_VALUE VARBINARY possible internal constant value;
otherwise NULL
SYS_FORKEYS
Column name Data type Description
ID INTEGER foreign key identifier
REF_REL_ID INTEGER referenced table identifier
CREATE_REL_ID INTEGER creator table identifier
REF_KEY_ID INTEGER referenced key identifier
REF_TYPE INTEGER reference type
KEY_SCHEMA WVARCHAR creator name
KEY_CATALOG WVARCHAR creator name or the owner of the
key
KEY_NREF INTEGER number of referenced key parts
SYS_INFO
Column name Data type Description
PROPERTY WVARCHAR the name of the property
VALUE_STR WVARCHAR vaue asastring
VALUE_INT INTEGER value as an integer
SYS KEYPARTS
Column name Data type Description
ID INTEGER unique key identifier

System Views and System Tables E-7

System Tables

SYS_KEYS

SYS_PROCEDURES

REL_ID INTEGER therelationid asin
SYS TABLES
KEYP_NO INTEGER keypart identifier
ATTR_ID INTEGER column identifier
ATTR_NO INTEGER the number of the column in the
table (in creation order)
ATTR_TYPE INTEGER the type of the column
CONST_VALUE VARBINARY constant value or NULL
ASCENDING CHAR is the key ascending (Yes) or
descending (No)
Column name Data type Description
ID INTEGER unique key identifier
REL_ID INTEGER therelationid asin SYS TABLES
KEY_NAME WVARCHAR the name of the key
KEY_UNIQUE CHAR isthe key unique (Yes, No)
KEY_NONUNIQUE_ODBC SMALLINT ODBC, isthe key NOT unique (1,
0)
KEY_CLUSTERING CHAR isthe key aclustering key (Yes,
No)
KEY_PRIMARY CHAR isthe key aprimary key (Yes, No)
KEY_PREJOINED CHAR reserved for future use
KEY_SCHEMA WVARCHAR the owner of the key
KEY_NREF INTEGER internal system specific informa-
tion
Column name Data type Description

E-8 SOLID Administrator Guide

System Tables

ID

INTEGER

unique procedure identifier

PROCEDURE_NAME

WVARCHAR

procedure name

PROCEDURE_TEXT

LONG WVARCHAR procedure body

PROCEDURE_BIN

LONG VARBINARY compiled form of the procedure

PROCEDURE_SCHEMA WVARCHAR the name of the schema contain-
ing PROCEDURE_NAME

PROCEDURE_CATALOG WVARCHAR the name of the catalog contain-
ing PROCEDURE_NAME

CREATIME TIMESTAMP creation time

TYPE INTEGER reserved for future use

System Views and System Tables E-9

System Tables

SYS_PROCEDURE_COLUMNS
The SYS PROCEDURE_COLUMNS defines input parameters and result set columns.

Column name Data type Description
PROCEDURE_ID INTEGER procedureid
COLUMN_NAME WVARCHAR procedure column name
COLUMN_TYPE SMALLINT procedure column type
(SQL_PARAM_INPUT or
SQL_RESULT_COL)
DATA_TYPE SMALLINT column’s SQL datatype
TYPE_NAME WVARCHAR column’s SQL data type name
COLUMN_SIZE INTEGER size of the procedure column
BUFFER_LENGTH INTEGER column size in bytes
DECIMAL_DIGITS SMALLINT decimal digits of the procedure
column
NUM_PREC_RADIX SMALLINT radix for numeric data types (2,
10, or NULL if not applicable)
NULLABLE SMALLINT whether the procedure column
acceptsaNULL value
REMARKS WVARCHAR adescription of the procedure
column
COLUMN_DEF WVARCHAR column’s default value. Always
NULL, that is, no default value
is specified.
SQL_DATA_TYPE SMALLINT SQL datatype
SQL_DATETIME_SUB SMALLINT subtype code for datetime.
Always NULL.
CHAR_OCTET_LENGTH INTEGER maximum length in bytes of a
character or binary data type col-
umn.
ORDINAL_POSITION INTEGER ordinal position of the column
IS NULLABLE WVARCHAR aways"YES"

E-10 SOLID Administrator Guide

System Tables

SYS_RELAUTH

Column name Data type Description
REL_ID INTEGER relationid
UR_ID INTEGER user or roleid
PRIV INTEGER privilege info
GRANT_ID INTEGER grantor id
GRANT_TIM TIMESTAMP grant time
GRANT_OPT CHAR grant option info

SYS_SCHEMAS

The SYS _SCHEMAS lists avail able schemas.

SYS_SEQUENCES

Column name Data type Description

ID INTEGER schemaid

NAME WVARCHAR schema name

OWNER WVARCHAR schema owner name

CREATIME TIMESTAMP create date and time

SCHEMA_CATALOG WVARCHAR schema catalog

Column name Data type Description

SEQUENCE_NAME WVARCHAR sequence name

ID INTEGER uniqueid

DENSE CHAR is the sequence dense or sparse

SEQUENCE_SCHEMA WVARCHAR the name of the schema containing
SEQUENCE_NAME

SEQUENCE_CATALOG WVARCHAR the name of the catalog containing
SEQUENCE_NAME

CREATIME TIMESTAMP creation time

System Views and System Tables E-11

System Tables

SYS_SYNONYM

Column name Data type Description

TARGET_ID INTEGER reserved for future use

SYNON INTEGER reserved for future use

SYS TABLEMODES

Column name Data type Description

ID INTEGER relationid

MODE WVARCHAR specia mode info

MODIFY_TIME TIMESTAMP last modify time

MODIFY_USER WVARCHAR last user that modified

SYS TABLES

Column name Data type Description

ID INTEGER unique table identifier

TABLE_NAME WVARCHAR the name of the table

TABLE_TYPE WVARCHAR the type of the table (BASE
TABLE or VIEW)

TABLE_SCHEMA WVARCHAR the name of the catalog contain-
ing TABLE_NAME

TABLE_CATALOG WVARCHAR the name of the catalog contain-
ing TABLE_NAME

CREATIME TIMESTAMP the creation time of the table

CHECKSTRING LONG WVARCHAR possible check option defined for
the table

REMARKS LONG WVARCHAR reserved for future use

E-12 SOLID Administrator Guide

System Tables

SYS_TRIGGERS

SYS_TYPES

Column name Data type Description

ID INTEGER unique table identifier

TRIGGER_NAME WVARCHAR trigger name

TRIGGER_TEXT LONG WVARCHAR trigger body

TRIGGER_BIN LONG VARBINARY compiled form of the trigger

TRIGGER_SCHEMA WVARCHAR the name of the schema contain-
ing TRIGGER_NAME

TRIGGER_CATALOG WVARCHAR the name of the catalog contain-
ing TRIGGER_NAME

TRIGGER_ENABLED CHAR if triggers are enabled "YES'; oth-
erwise "NO."

CREATIME TIMESTAMP the creation time of the trigger

TYPE INTEGER reserved for future use

REL_ID INTEGER therelationid

Column name Data type Description

TYPE_NAME WVARCHAR the name of the data type

DATA_TYPE SMALLINT ODBC, data type number

PRECISION INTEGER ODBC, the precision of the data
type

LITERAL_PREFIX WVARCHAR ODBC, possible prefix for literal
values

LITERAL_SUFFIX WVARCHAR ODBC, possible suffix for literal
values

CREATE_PARAMS WVARCHAR ODBC, the parameters needed to
create a column of the datatype

NULLABLE SMALLINT ODBC, can the data type contain

NULL values

System Views and System Tables E-13

System Tables

CASE_SENSITIVE SMALLINT ODBC, isthe data type case sensi-
tive

SEARCHABLE SMALLINT ODBC, the supported search oper-
ations

UNSIGNED_ATTRIBUTE SMALLINT ODBC, isthe data type unsigned

MONEY SMALLINT ODBC, whether the datais a
money data type

AUTO_INCREMENT SMALLINT ODBC, whether the datatypeis
autoincrementing

LOCAL_TYPE_NAME WVARCHAR ODBC, has the data type another
implementation defined name

MINIMUM_SCALE SMALLINT ODBC, the minimum scale of the
datatype

MAXIMUM_SCALE SMALLINT ODBC, the maximum scale of the

datatype

SYS_UROLE
The SYS _UROLE contains mapping of usersto roles.
Column name Data type Description
u_ID INTEGER User id
R_ID INTEGER Roleid
SYS_USERS
The SYS USERS list information about users and roles.
Column name Data type Description
ID INTEGER User or roleid
NAME WVARCHAR User or role name
TYPE WVARCHAR User type, either USER or ROLE
PRIV INTEGER Privilege information
PASSW VARBINARY Password inencrypted format
PRIORITY INTEGER Reserved for future use

E-14 SOLID Administrator Guide

System Tables

SYS_VIEWS

PRIVATE INTEGER Is user private or public (used in
SOLID SynchroNet only)

LOGIN_CATALOG WVARCHAR Reserved for future use

Column name Data type Description

V_ID INTEGER unique identifier for this view

TEXT LONG WVARCHAR view definition

CHECKSTRING LONG WVARCHAR possible CHECK OPTION defined
for the view

REMARKS LONG WVARCHAR reserved for future use

System Views and System Tables E-15

System Tables

E-16 SOLID Administrator Guide

-

Reserved Words

Thefollowing words are reserved in several SQL standards: ODBC 3.0, X/Open
and SQL Access Group SQL CAE specification, Database Language - SQL: ANSI
X3H2 (SQL-92). Some words are used by SOLID SQL. Applications should avoid
using any of these keywords for other purposes. The following table contains also
potentia reserved words; these markings are enclosed in parenthesis.

Reserved word oDBC X/Open SQL ANSI SQL2 SOLID SQL
ABSOLUTE . .

ACTION . .

ADA .

ADD
ADMIN .
AFTER) .
ALIAS (*)

ALL
ALLOCATE . . .

ALTER
AND
ANY
APPEND .
ARE . .

AS

Reserved Words F-1

Reserved word

OobBC

X/Open SQL

ANSI SQL2

SOLID SQL

ASC

ASSERTION

ASYNC

®)

AT

AUTHORIZATION

AVG

BEFORE

BEGIN

BETWEEN

BINARY

BIT

BIT_LENGTH

BOOKMARK

BOOLEAN

BOTH

BREADTH

BY

CALL

CASCADE

CASCADED

CASE

CAST

CATALOG

CHAR

CHAR_LENGTH

CHARACTER

CHARACTER_LENGT
H

F-2 SOLID Administrator Guide

Reserved word

ODBC

X/Open SQL

ANSI SQL2

SOLID SQL

CHECK

CLOSE

COALESCE

COLLATE

COLLATION

COLUMN

COMMIT

COMMITBLOCK

COMMITTED

COMPLETION

CONNECT

CONNECTION

CONSTRAINT

CONSTRAINTS

CONTINUE

CONVERT

CORRESPONDING

COUNT

CREATE

CROSS

CURRENT

CURRENT_DATE

CURRENT_TIME

CURRENT_TIMESTA
MP

CURRENT_USER

CURSOR

CYCLE

Reserved Words F-3

Reserved word obDBC X/Open SQL ANSI SQL2 SOLID SQL

DATA 3 .
DATE . . .
DAY . .

DEALLOCATE . . .

DEC
DECIMAL
DECLARE
DEFAULT
DEFERRABLE . .

DEFERRED . .

DELETE
DENSE .
DEPTH ©

DESC
DESCRIBE . . .

DESCRIPTOR . . .

DIAGNOSTICS . . .

DICTIONARY ©

DISCONNECT . . .

DISTINCT
DOMAIN . . .
DOUBLE
DROP
EACH O]

ELSE . . .
ELSEIF ® .
ENABLE .

F-4 SOLID Administrator Guide

Reserved word ODBC X/Open SQL ANSI SQL2 SOLID SQL

END
END-EXEC . .

EQUALS ©

ESCAPE . . .
EVENT .
EXCEPT . . .
EXCEPTION . . .

EXEC
EXECUTE
EXISTS
EXPLAIN .
EXPORT .
EXTERNAL . . .
EXTRACT . . .
FALSE . .

FETCH
FIRST . .

FIXED .
FLOAT
FOR
FOREIGN
FOREVER .
FORTRAN .

FORWARD .
FOUND . . .

FROM
FROMFIXED .
FULL . . .

Reserved Words F-5

Reserved word obDBC X/Open SQL ANSI SQL2 SOLID SQL

GENERAL ©

GET
GLOBAL . .

GO . .

GOTO . . .

GRANT
GROUP
HAVING
HINT .
HOUR . .

IDENTIFIED .
IDENTITY . .

IE) .
IGNORE .)

IMMEDIATE . . .

IMPORT .
IN
INCLUDE . .

INDEX . . .
INDICATOR . .

INITIALLY . .

INNER . . .
INPUT . .

INSENSITIVE . .

INSERT
INT
INTEGER
INTERNAL .

F-6 SOLID Administrator Guide

Reserved word

ODBC

X/Open SQL

ANSI SQL2

SOLID SQL

INTERSECT

INTERVAL

INTO

IS

ISOLATION

JAVA

JOIN

KEY

LANGUAGE

LAST

LEADING

LEAVE

LEFT

LESS

LEVEL

LIKE

LIMIT

LOCAL

LOCK

LONG

LOOP

LOWER

MAINMEMORY

MASTER

MATCH

MAX

MERGE

MESSAGE

Reserved Words F-7

Reserved word oDBC X/Open SQL ANSI SQL2 SOLID SQL

MIN . . .
MINUTE . .

MODIFY * .
MODULE . .

MONTH . .

NAMES . .

NATIONAL . .

NATURAL . . .
NCHAR . .

NEW) .
NEXT . . .
NO . . .
NONE . *)

NOT
NULL
NULLIF . . .
NUMERIC
OBJECT)
OCTET_LENGTH . .

OF
OFF . *)

oID)

OLD) .
ON
ONLY . . .
OPEN . . .

OPERATION *

OPERATORS)

F-8 SOLID Administrator Guide

Reserved word ODBC X/Open SQL ANSI SQL2 SOLID SQL

OPTIMISTIC .
OPTION . . .
OR
ORDER
OTHERS ®

OUTER . . .
OUTPUT . .

OVERLAPS . .

PARAMETERS ©

PARTIAL . .

PASCAL .

PENDANT ©

PESSIMISTIC .
PLAN .
PLI .

POSITION . .

POST .
PRECISION
PREORDER)

PREPARE
PRESERVE . .

PRIMARY
PRIOR . .

PRIVATE ©

PRIVILEGES . . .
PROCEDURE . . .
PROPAGATE .

Reserved Words

Reserved word oDBC X/Open SQL ANSI SQL2 SOLID SQL

PROTECTED Q]

PUBLIC
PUBLICATION .
READ . .
REAL . . .
RECURSIVE *

REF)

REFERENCES
REFERENCING *) .
REGISTER .
RELATIVE . .

RENAME .
REPEATABLE .
REPLACE)

REPLICA .
REPLY .
RESIGNAL *

RESTART .
RESTRICT
RESULT .
RETURN) .
RETURNS) °
REVERSE .
REVOKE
RIGHT . . .
ROLE * .
ROLLBACK
ROUTINE O]

F-10 SOLID Administrator Guide

Reserved word ODBC X/Open SQL

ANSI SQL2

SOLID SQL

ROW

)

ROWID .
ROWNUM .
ROWSPERMESSAGE .
ROWVER .
ROWS . .

SAVEPOINT © .
SCAN .
SCHEMA . . .
SCROLL . .

SEARCH Q)

SECOND . .

SECTION . . .

SELECT
SENSITIVE ©

SEQUENCE Q) .
SERIALIZABLE .
SESSION . .

SESSION_USER . .

SET
SIGNAL ©

SIMILAR ©

SIZE . .

SMALLINT
SOME . . .
SORT .
SPACE .

QL

Reserved Words F-11

Reserved word obDBC X/Open SQL ANSI SQL2 SOLID SQL

SQLCA . .
SQLCODE . .

SQLERROR
SQLEXCEPTION Q)

SQLSTATE . .

SQLWARNING . Q)

START .
STRUCTURE Q)

SUBSCRIBE .
SUBSCRIPTION .
SUBSTRING . .

SUM . . .

SYNC_CONFIG .
SYSTEM .

SYSTEM_USER .

TABLE
TEMPORARY . .

TEST ®

THEN . : :
THERE Q)

TIME . . .
TIMEOUT .
TIMESTAMP . . .
TIMEZONE_HOUR -« .
TIMEZONE_MINUTE - .

TINYINT .
TO
TRAILING .

F-12 SOLID Administrator Guide

Reserved word ODBC X/Open SQL ANSI SQL2 SOLID SQL

TRANSACTION . . .
TRANSACTIONS .
TRANSLATE . .

TRANSLATION . .

TRIGGER ® .
TRIM . .

TRUE . .

TYPE)

UNDER)

UNION
UNIQUE
UNKNOWN . .

UNREGISTER .
UPDATE
UPPER . .

USAGE . .

USER
USING
VALUE
VALUES
VARBINARY .
VARCHAR
VARIABLE ©

VARWCHAR .
VARYING . . .

VIEW
VIRTUAL ©

VISIBLE ©

Reserved Words F-13

Reserved word

OobBC

X/Open SQL

ANSI SQL2

SOLID SQL

WAIT

®)

WCHAR

WHEN

WHENEVER

WHERE

WHILE

WITH

WITHOUT

WORK

WRITE

WCHAR

WVARCHAR

YEAR

ZONE

F-14 SOLID Administrator Guide

G

SOLID Embedded Engine Command Line
Options

General Options

Option Description Examples
-cdir Changes working directory.
-f Starts server in foreground.
-h Displays help.
-m Monitors users’ messages and SQL state-
ments.
-nname Sets server name.
-g{start |install | The Windows NT version of SOLID Embed- SCLI D. EXE
remove}, name, ded Engineis by default an icon exe ver- -s"install, SCLI D,
fullexepath, sion. Using the option -sstart, SOLID D:\ SOLI D\ SOLI D. EXE
[autostart] Embedded Engine can be started as a ser- -sstart -cd:\SOLI D

vice executable and started and stopped from

the service manager. If SOLID Embedded

Engine is started without the -sstart option, SCLI D. EXE -

it starts as an icon exe like thew95, w98, and s"instal |, SOLI D,

w2000 versions. The service version of D: \ SOLI D\ SOLI D. EXE
SOL D Embedded Engine cannot interact -sstart
with the display and cannot create a new -cd:\SQLI D, autostart”

database. The service version writes warn-

ing and error messages also to the NT event

log. SOLID Embedded Engine can also SQLI D. EXE

install and remove servicesusing thiscom- - S"renove, SOLI D'
mand line option.

SOLID Embedded Engine Command Line Options

G-1

General Options

Option Description Examples
-Uusername See option -x execute or -x exit. If used with-

out the -x option, specifies the username for

the database being created.
-Ppassword See option -x execute or -x exit. If used with-

out the -x option, specifies the given pass-
word for the database being created.

-x autoconvert Converts database format to version 3.5 and

-Ccatalogname starts server process. -Ccatalognameis
required to specify the default system cata
log name for the database.

-X convert Converts database format to version 3.5 and

-Ccatalogname exits. -Ccatalogname is required to specify
the default system catalog name for the data-
base.

-x executelinput Prompts for the database administrator'suser sol i d. exe -x exe-

file name and password, creates anew database, cute:init.sql
executes SQL statements from afile, and
exits. The options -U and -P can be used to
give the database the administrator's user
name and password.

sol i d. exe -x exe-
cute:init.sql
- Udba -Pdba

-X exit Prompts for the database administrator'suser sol i d. exe -x exit
name and password, creates a new database,
and exits. Options -U and -P can be used to
give the database administrator's user name
and password.

solid.exe -x exit -Udba
- Pdba

-x forcerecovery Does aforced roll-forward recovery.

-X hide Hides server icon.

-x ignoreerrors Ignoresindex errors.

-Xx testblocks Tests database blocks.

-X testindex Tests database index.

-? Help = Usage.

G-2 SOLID Administrator Guide

Glossary

This glossary gives you a description of the terminology used in SOLID documentation.

Binary Large Object (BLOb)

A BLOb isalarge block of binary information such as a picture, video clip, sound excerpt,
or aformatted text document. BL Obs can be saved to and retrieved from SOLID Embedded
Engine.

Catalog

A catalog logically partitions a database so that datais organized in ways that meet business
or application requirements. A catalog can qualify one or more schemas. A schemais a per-
sistent database object that provides a definition for the entire database; it represents a col-
lection of database objects associated with a specific schemaname. The catalog nameis
used to qualify a database object name, such as tables, views, indexes, stored procedures,
triggers, and sequences. They are qualified as: catalog_name.schema_name.database_object
or catalog_name.user_id.database objectin DML statements.

Checkpoint

Checkpoints are used to store a consistent state of the database quickly onto the disk. After a
system crash, the database will start recovering transactions from the latest checkpoint. The

more frequently checkpoints are made, the fewer transactions need to be recovered from the
log file.

Client/server computing

Client/server computing divides alarge piece of software into modules that need not all be
executed within the same memory space nor on the same processor. The calling module
becomes the ‘client’ that requests services, and the called module becomes the ‘server’ that
provides services. Client and server processes exchange information by sending messages
through a computer network. They may run on different hardware and software platforms as
appropriate for their special functions.

Glossary-1

Two basic client/server architecture types are called two-tier and three-tier application archi-
tectures.

Communication protocol

A communication protocol is a set of rules and conventions used in the communication
between servers and clients. The server and client have to use the same communication pro-
tocol in order to establish a connection.

Database administrator
The database administrator is a person responsible for tasks such as:

« Mmanaging users, tables, and indices
« backing up data
« alocating disk space for the database files

Database management system (DBMS)

A DBMSisasystem that stores information in and retrieves information from a database. A
DBM S typically consists of a database server, administration utilities, an application inter-
face, and development tools.

Database procedures (Stored procedures)

Database procedures allow programmers to split the application logic between the client and
the server. These procedures are stored in the database, and they accept parametersin the
activation call from the client application. This arrangement is beneficial especially in the
case of heavy updates that first require extensive queries and that can beinitiated with a
small amount of parameter information. In these cases, the network traffic is significantly
reduced, and much better performance can be achieved.

Event Alerts

Events are objects with a name and parameters. Event alerts are used to signal an event in
the database. The signal is sent from an application using the POST EVENT command. The
signal is received by one or more client applications waiting for the event. The use of event
alerts removes resource consuming database polling from applications.

Log file (Transaction log)

Thisfile holds alog of all committed operations executed by the database server. If asystem
crash occurs, the database server uses thislog to recover all datainserted or modified after
the latest checkpoint.

Glossary-2 SOLID Administrator Guide

Network name

The network name of a server consists of a communication protocol and a server name. This
combination identifies the server in the network.

SOLID Clients support Logical Data Source Names. These names can be used to give a
database a descriptive name. This name is mapped to a network name using either parame-
ter settingsin the clientssol i d. i ni file or in Windows operating systems’ registry set-
tings.

Open Database Connectivity (ODBC)

ODBC isaprogramming interface standard for SQL database programs. SOLID Embedded
Engine offers a native ODBC programming interface.

Optimizer Hints

Optimizer hints (which is an extension of SQL) are directives specified through embedded
pseudo comments within query statements. The Optimizer detects these directives or hints
and bases its query execution plan accordingly. Optimizer hints allow applications to be opti-
mized under various conditions to the data, query type, and the database. They not only pro-
vide solutions to performance problems occasionally encountered with queries, but shift
control of response times from the system to the user.

Relational database management system (RDBMS)

SOLID Embedded Engine is an RDBMS, which stores and retrieves information that is orga-
nized into two-dimensional tables. This name derives from the relational theory that formal-
izes the data mani pul ation requests as set operations and allows mathematical analysis of
these sets. RDBM Ss typically support the SQL language for data mani pulation reguests.

Sequence objects

Sequence objects generate number sequences for objects stored in databases. Sequences
have an advantage over separate tables. They are specifically fine-tuned for fast execution
and result in less overhead than normal update statements.

SQL Access Group’s Call Level Interface (SAG CLI)

SAG CLI isaprogramming interface standard that defines the functions that are used to sub-
mit dynamic SQL clauses to a database server for execution. The ODBC interface is also
based on SAG CLI. The SOLID SQL API conformsto the SAG CLI standard.

Schema

All tables are contained in a higher level construct called schema. It is a place where tables
and related objects are gathered together under one qualifying name. For each schemathere

Glossary-3

are zero or more tables, and for each table, there is exactly one schemato which it belongs.
The relationship between a schema and its tables is similar to that of an operating system
directory and the files contained within that directory.

SOLID directory

The default directory for storing SOLID DBMS database files. Thisisthe server program’s
working directory.

Structured Query Language (SQL)

SQL isastandardized query language designed for handling database requests and adminis-
tration. The SQL syntax used in SOLID Embedded Engine is based on the ANSI X3H2-
1989 Level 2 standard including important ANSI X3H2-1992 (SQL 2) extensions. For a
more formal definition of the syntax, refer to Appendix D SOLID SQL Syntax of SOLID
Administrator Guide.

Three-tier client/server architecture model

Compared to the two-tier architecture the three-tier architecture has an additional layer or
layers of application servers. This allows splitting the application logic between client pro-
cesses to a specialized application server process handling the resources management, other
I/O, or calculation intensive tasks.

Instead of sending small SQL statements the client application sends whole procedures for
the application server to be processed. This reduces the number of messages thus minimiz-
ing the network load. The application logic is often more easily managed because several
applications use centrally maintained procedures.

Triggers

Triggers are pieces of logic, which a Solid server automatically executes when a user
attempts to change the datain atable. When a user modifies data within the table, the trig-
ger that corresponds to the command (such as insert, delete, or update) is activated.

Two-tier client/server architecture model

Generdly, the two-tier architecture refers to a client/server system, where a client applica-
tion containing al the business logic is running on aworkstation and a database server is
taking care of data management.

Glossary-4 SOLID Administrator Guide

Index

A
abnormal shutdown
recovering from, 2-16
ADMIN COMMAND
setting parameters, 6-8
ADMIN COMMAND ’perfmon’
server performance, 2-11
ADMIN COMMAND ' status backup’
querying last backup status, 2-10
ADMIN COMMAND ’status
querying database status, 2-7
ADMIN COMMAND 'throwout’
disconnecting users, 2-10
ADMIN COMMAND ’userlist’
querying for connected users, 2-10
ADMIN COMMAND statement, D-1
ADMIN COMMAND ' report report_filename’
producing report for troubleshooting, 2-12
administration
features, 1-3
ALTER TABLE statement, D-6
ALTER TRIGGER statement, D-7
ALTER USER statement, D-7
Application
specifying character set for, 6-7
architecture
multithread processing, 1-10
automating administrative tasks, 2-2, 2-19

B
backup

querying, 2-10
BackupCopyLog (parameter), 2-14

BackupCopySolmsgout (parameter), 2-13
BackupDeletel og (parameter), 2-14
BackupDirectory (parameter), 6-4
backups

automating, 2-19

failed, 2-15

making manually, 2-13

onling, 2-13

restoring, 2-15
BLOBSs (Binary Large Objects)

defining, 2-5
Blocksize (parameter), 2-4

C
cache
database, 7-5
CacheSize (parameter), 6-4
CALL statement, D-8
catalogs
creating, D-8
described, 3-15, G1
changing database location, 2-18
checkpoints, 2-16
automatic daemon, 2-17
automating, 2-19
erasing automatically, 2-17
frequency, 2-17
closing SOLID Embedded Engine, 2-12
cluster, 3-9
columns
addingto atable, 3-7
deleting from atable, 3-8
setting LONG VARCHAR, 2-5

Index-1

COLUMNS systemview, E-1
command line options, G-1
COMMIT statement, D-8
committing work

after dtering table, 3-8, 3-9

after atering usersand roles, 3-6
communication

between client and server, 5-1

selecting aprotocol, 5-6

tracing problems, 8-8
communication protocols, 5-6

DECnet, 511

IPX/SPX, 5-12

Named Pipes, 5-10

NetBIOS, 5-9

selecting, 5-6

Shared Memory, 5-7

summary, 5-13

TCP/IP, 5-7

UNIX Pipes, 5-9
Communication Session Layer

described, 1-9
concatenated indexes, 7-3
concurrency control

SOLID Bonsai Tree, 1-6
configuration file, B-1
Connect (parameter), 6-2
connecting to SOLID Embedded Engine, 2-5
control file

SOLID SpeedLoader, 4-13,4-16
CREATE CATALOG statement, 3-16, D-8
CREATE EVENT statement, D-11
CREATE INDEX statement, D-13
CREATE PROCEDURE statement, D-14
CREATE ROLE statement, D-21
CREATE SCHEMA statement, D-21
CREATE SEQUENCE statement, D-23
CREATE TABLE statement, D-24
CREATE TRIGGER statement, D-25
CREATE USER statement, D-32
CREATE VIEW statement, D-32
creating reports

automating, 2-19

Index-2 SOLID Administrator Guide

D
data management
using SOLID SQL, 3-1
data source name, 5-6
Data Sources, 5-15
definingin solid.ini, 5-16
datatype
SOLID Embedded Engine support, 1-2
datatypes
SOLID sQL, 3-1
database
see also index file
block size, 2-4
changing location, 2-18
checking last backup status, 2-10
checking overal status, 2-7
closing, 2-17
automating, 2-19
creating, 2-3
currently connected users, 2-10
defining objects, 2-5
disconnecting auser, 2-10
location, 2-4,6-2
monitoring, 2-11
opening
automating, 2-19
performance, 2-11
querying last backup, 2-10
recovery, 2-16
severa databases on one computer, 2-18
size, 2-4,6-2
troubleshooting, 2-11
database objects
managing, 3-14
DECnet, 511
DELETE (positioned) statement, D-33
DELETE statement, D-33
documentation
electronic, Xxii
DROP CATALOG statement, D-33
DROP EVENT statement, D-34
DROP INDEX statement, D-34
DROP PROCEDURE statement, D-34
DROP ROLE statement, D-34
DROP SCHEMA statement, D-35

DROP SEQUENCE statement, D-35
DROP TABLE statement, D-35
DROP TRIGGER statement, D-36
DROP USER statement, D-36
DROP VIEW statement, D-36

E
error handling
database errors, A-11
error codes, A-1to A-46
SOLID communication errors, A-39
SOLID communication warnings, A-43
SOLID Embedded Engine errors, A-36
SOLID executable errors, A-19
SOLID procedure errors, A-43
SOLID sorter errors, A-46
SOLID SQL errors, A-2
SOLID system errors, A-20
SOLID tableerrors, A-23
events
defined, 1-2
executing system commands
automating, 2-19
execution graph
defined, 1-8
EXPLAIN PLAN statement, 8-2, D-37
ExtendIncrement (parameter), 6-4
external sorting, 7-6

specify adirectory for External Sorter algorithm,

=
FileNameTemplate (parameter), 6-5

FileSpec, 6-3
FileSpec (parameter), 2-4, 6-3

G
GRANT statement, D-37

H
HINT statement, D-38

import file

SOLID SpeedLoader, 4-14

index file
changing block size, 6-12
location, 6-3

maximum size, 6-3
splitting to multiple disks, 6-3
indexes, 7-2
creating, 3-8, 3-16
creating auniqueindex, 3-9
deleting, 3-9, 3-16, 3-17
foreign key, 3-10
managing, 3-8
Info (parameter), 6-7
ini file
SOLID SpeedLoader, 4-14
INSERT (Using Query)
statement, D-45
INSERT statement, D-45
installing SOLID Embedded Engine, 2-1
IPX/SPX, 5-12

L
Listen (parameter), 6-2
listen name, 5-2,5-4,5-5
logfile, 2-16
SOLID SpeedLoader, 4-14
log files
solerror.out, 2-7
solmsg.out, 2-7
logging
transactions, 2-16
logon
see connecting to SOLID Embedded Engine

M
manua administration, 2-2
MaxBlobExpression (parameter), 2-5
monitoring

SOLID Embedded Engine, 2-7
multi-column indexes, 7-3
multithread processing

described, 1-10
multiversioning

SOLID Bonsai Tree, 1-6

N

Named Pipes, 5-10
NetBIOS, 5-9
Network communication

communication session layer, 1-9

specifying tracing for, 6-7

troubleshooting, 8-14
Network communications

SOLID Network Services, 1-9
network names, 5-2,5-4,5-5

activating modifications, 5-5

adding, 5-4

clients, 5-5

DECnet, 5-12

defining, 6-2

IPX/SPX, 5-13

modifying, 5-4

Named Pipes, 511

NetBIOS, 5-10

removing, 5-5

Shared Memory, 5-7

TCP/IP, 5-8

UNIX Pipes, 59

viewing, 5-3
Network trace facility, 8-8
non-graphical user interfaces

creating new database, 2-3

O
ODBC

data source name, 5-6
optimizer hints

described, 1-4

using, 7-8

P

parameters, B-1
BackupCopyLog, 2-14,2-16
BackupCopySolmsgout, 2-13
BackupDeleteLog, 2-14,2-16
BackupDirectory, 6-4
Blocksize, 2-4
CacheSize, 6-4
Checkpointinterval, 2-17

Index-4 SOLID Administrator Guide

Connect, 6-2

default settings, 6-1

EnableHints, 7-9

Extendincrement, 6-4

FileNameTemplate, 6-5

FileSpec, 2-4,6-3

Info, 6-7

Listen, 6-2,6-3

managing, 6-7

MaxBlobExpression, 2-5

PreFlushPercent, 6-6

ReadAhead, 6-6

setting, 6-8

setting in solid.ini, 6-11

Threads, 6-6

TmpFile, 6-5

Trace, 6-7

TraceFile, 6-7

viewing, 6-8

with constant values, 6-12
parameters passing

RPC Session Layer, 1-9
passwords

criteria, 2-3

entering, 3-4
performance

indexes, 7-2

snapshot of, 2-11
Ping facility, 8-10
PreFlushPercent (parameter), 6-6
privileges

managing, 3-2
problem reporting, 8-12
PUBLIC role

described, 3-3

query processing
described, 1-8
querying database
ADMIN COMMAND ’status’,

R
ReadAhead (parameter), 6-6

2-7

recovery, 2-16
referential integrity, 3-10
reports
creating astatus report, 2-12
REVOKE (Privilege from Role or User) statement, D-
46
REVOKE (Role from User) statement, D-45
roles
_SYSTEM, 3-3
for database administration, 2-2
PUBLIC, 3-3
SYS ADMIN_ROLES, 3-3
SYS CONSOLE ROLE, 3-3
ROLLBACK statement, D-47
RPC session layer
parameter passing, 1-9
running several servers, 2-18

S
_SYSTEM
described, 3-3
schemas
described, 3-15
SELECT statement, D-47
sequencer objects
define, 1-2
server names
see network names
SERVER_INFO
systemview, E-2
SET CATALOG statement, 3-15
SET SCHEMA statement, 3-15, D-51
SET statement, D-48
Shared Memory, 5-7
shutting down SOLID Embedded Engine, 2-12
automating, 2-19
SOLDD, 4-24
SOLEXP, 4-23
SOLID Bonsai Tree
concurrency control, 1-6
described, 1-2
index compression, 1-7
multiversion, 1-6
SOLID Data Dictionary
defined, 1-6

starting, 4-24
SOLID DBConsole
administering multiple servers manually, 2-2
described, 4-2
interface features, 4-3
performing batch mode operations, 2-2
starting, 4-2
SOLID Embedded Engine
background, 1-1
closing, 2-12
command line options, G-1
connectingto, 2-5
data management, 3-1
described, 1-1
features, 1-2
installing, 2-1
monitoring, 2-7
starting, 2-2
SOLID Embedded Engine architecture, 1-6
SOLID Export
defined, 1-6
starting, 4-23
SOLID JDBC Driver
troubleshooting, 8-13
SOLID Network Services
described, 1-9
SOLID ODBC Driver
troubleshooting, 8-13
SOLID Remote Control (Teletype)
commands, 4-6
starting, 4-5
SOLID SpeedLoader
control file, 4-13
control filesyntax, 4-16
defined, 1-6
import file, 4-14
ini file, 4-14
logfile, 4-14
SOLID SQL
compliance, 3-1
data managment, 3-1
datatypes, 3-1
extensions, 3-2
using, 3-1
SOLID SQL API

Index-5

troubleshooting, 8-12
SOLID SQL Editor (Teletype)
executing SQL statements, 4-12
starting, 4-10
SOLID SQL Optimizer
described, 1-7
SOLID UNIFACE Driver
troubleshooting, 8-13
SOLLOAD, 4-15
sorting, 7-6
SQL Infofacility, 8-1
SQL Parser and Optimizer
described, 1-4
SQL scripts, 3-2
samplesql, 3-6
userssql, 3-2
SQL statements, 3-1
examplesfor administering indexes, 3-8
examples for managing database objects, 3-16
examplesfor managing indexes, 3-8, 3-16
examplesfor managing tables, 3-6
examplesfor managing usersand roles, 3-4
tuning, 7-1
SQL tracelevel
setting, 6-6
SQL_LANGUAGES system table, E-3
starting SOLID Embedded Engine, 2-2
starting SOLID Remote Control (Teletype), 4-2, 4-5, 4-
10
storage server
described, 1-7
stored procedures
defined, 1-2
SYS ADMIN_ROLE
described, 3-3
for administration, 2-2
SYS ATTAUTH systemtable, E-4
SYS CARDINAL systemtable, E-4
SYS CATALOGS system table, E-5
SYS COLUMNS systemtable, E-5
SYS CONSOLE_ROLE
described, 3-3
for database administration, 2-2
SYS EVENTSsystemtable, E-6
SYS FORKEYPARTS system table, E-6

Index-6 SOLID Administrator Guide

SYS FORKEYSsystemtable, E-7
SYS INFO system table, E-7
SYS KEYPARTS system table, E-7
SYS KEYSsystemtable, E-8
SYS PROCEDURE_COLUMNS system table, E-10
SYS PROCEDURES system table, E-8
SYS RELAUTH systemtable, E-11
SYS SCHEMAS systemtable, E-11, E-14
SYS SEQUENCES system table, E-11
SYS SYNONYM system table, E-12
SYS TABLE system tables, E-12
SYS TABLEMODES system table, E-12
SYS TYPES
systemtable, E-13
SYS UROLE systemtable, E-14
SYS VIEWS systemtable, E-15
system tables, E-3
systemviews, E-1

T
tables
adding columnsto, 3-7
committing work after altering, 3-8, 3-9
creating, 3-7
deleting columnsfrom, 3-8
managing, 3-6
removing, 3-7
TABLES systemview, E-3
TCP/IP, 5-7
threads
general purpose, 1-10
setting for processing, 6-6
typesof, 1-10
Threads (parameter), 6-6
throwing out users
automating, 2-19
timed commands, 2-19
TmpFile (parameter), 6-5
Trace (parameter), 6-7
tracefiles
described, 2-7
TraceFile (parameter), 6-7
tracing communication, 8-8
transaction
logging, 2-16

transaction log files
specifying directory, 6-5
tuning SQL statements, 7-1

U
UNIX Pipes, 5-9
UPDATE (Positioned) statement, D-51
UPDATE (Searched) statement, D-52
user and roles
committing work after altering, 3-6
user names
reserved names, 3-3
user privileges, 3-2
granting, 3-5
granting administrator privileges, 3-6
revoking, 3-6
user roles, 3-3
administrator role, 3-3, 3-6
changing password, 3-4
creating, 3-4
deleting, 3-4
givingauser arole, 3-5
granting privilegesto, 3-5
reserved role names, 3-3
revoking privilegesfrom, 3-6
revoking therole of auser, 3-6
system consolerole, 3-3

usernames
criteria, 2-3
default, 2-3
users
creating, 3-4
deleting, 3-4

throwing out, 2-19
USERS system view, E-3

\%
viewing MessageLog, 2-7

W
Windows registry
data sources, 5-16

Index-7

Index-8 SOLID Administrator Guide

	Administrator Guide
	Welcome
	About This Guide
	Organization
	Audience
	Conventions
	Product Name
	Typographic

	Other SOLID Documentation
	Electronic Documentation

	1 Introducing SOLID Embedded Engine
	About SOLID Embedded Engine
	SOLID Embedded Engine Features
	SOLID Bonsai TreeTM
	Wide range of data type support
	Stored procedures, event alerts, triggers, and sequencer objects
	Easy Administration

	SOLID Embedded Engine Components
	Programming interfaces (ODBC and JDBC)
	Network Communications Layer
	SQL Parser and Optimizer
	Optimizer Hints

	Engine
	System Tools and Utilities
	SOLID DBConsole
	Tools for handling ASCII data

	SOLID Embedded Engine High Performance Architecture
	SOLID Bonsai Tree Multiversioning and Concurrency Control
	Storage Server
	Index Compression

	SOLID SQL Optimizer
	Query Processing

	SOLID Network Services
	Communication Session Layer
	RPC Session Layer

	Multithread Processing
	Types of Threads

	Distributed Data Management with SOLID SynchroNet

	2 Administering SOLID Embedded Engine
	What You Should Know
	Installing SOLID Embedded Engine
	Using SOLID Databases 2.20 or Prior
	Special Roles for Database Administration
	Automated and Manual Administration

	Starting SOLID Embedded Engine
	Creating a New Database
	About SOLID Databases
	Setting Database Size and location
	Defining Database Objects

	Connecting to SOLID Embedded Engine
	Viewing the SOLID Embedded Engine Message Log
	Monitoring SOLID Embedded Engine
	Checking overall database status
	Querying the status of the last backups
	Detailed DBMS monitoring and troubleshooting

	Shutting Down SOLID Embedded Engine
	Performing Backup and Recovery
	Making Backups
	Viewing SOLID Messages in the Backup Directory
	Backup Procedure

	Correcting a Failed Backup
	Restoring Backups
	Recovering from Abnormal Shutdown
	Transaction Logging

	Creating Checkpoints
	Closing a Database
	Changing Database Location
	Running Several Servers on One Computer
	Entering Timed Commands

	3 Using SOLID SQL for Data Management
	Using SOLID SQL Syntax
	SOLID SQL Data Types
	SOLID SQL Extensions

	Managing User Privileges and Roles
	Managing Tables
	Managing Indexes
	Primary Keys
	Data clustering

	Foreign Keys

	Managing Transactions
	Defining Read-only or Read-write Transactions
	Setting Concurrency Control
	Setting Pessimistic and Mixed Concurrency Control

	Choosing Transaction Isolation Levels
	Setting the Isolation Level

	Managing Database Objects

	4 Using SOLID Data Management Tools
	SOLID DBConsole
	Starting DBConsole
	DBConsole Interface Features
	Query Window
	Administration Window
	Browse Window

	SOLID Remote Control (teletype)
	Starting SOLID Remote Control (teletype)
	Entering SOLID Remote Control (teletype) Commands

	SOLID SQL Editor (teletype)
	Starting SOLID SQL Editor (teletype)
	Executing SQL Statements with SOLID SQL Editor (teletype)
	Executing a SQL Script from a File

	SOLID SpeedLoader
	Control File
	Message Log File
	Configuration File
	Starting SOLID SpeedLoader
	Control File Syntax

	Loading Fixed-format Records
	Loading Variable-length Records
	Running a Sample Load Using Solload
	Hints to Speed up Loading

	SOLID Export
	Starting SOLID Export

	SOLID Data Dictionary
	Starting SOLID Data Dictionary

	Tools Sample: Reloading a Database

	5 Managing Network Connections
	Communication between Client and Server
	Managing Network Names
	Network Name for Clients
	Communication Protocols
	Shared Memory
	TCP/IP
	UNIX Pipes
	NetBIOS
	Named Pipes
	DECnet
	IPX/SPX
	A Summary of Protocols

	Logical Data Source Names

	6 Configuring SOLID Embedded Engine
	Configuration File and Default Settings
	Most Important Parameters
	Defining Network Names (Com section)
	Managing Database Files and Caching (IndexFile section)
	Specifying the Backup Directory (General section)
	Specifying the Transaction Log Files Directory (Logging section)
	Specifying a Directory for the External Sorter Algorithm (Sorter section)
	Setting Threads for Processing (Srv section)
	Setting SQL Trace Level (SQL section)
	Specifying Network Communication Tracing (Com section)
	Specifying the Character Set for an Application (Client section)

	Managing Parameters
	Viewing and Setting Parameters with ADMIN COMMAND
	Viewing All Parameters
	Viewing the Value of a Specific Parameter
	Viewing the Description of a Specific Parameter
	Setting a Parameter Value

	Viewing and Setting Parameters in SOLID.INI
	Constant Parameter Values

	7 Performance Tuning
	Tuning SQL Statements and Applications
	Evaluating Application Performance

	Using Indexes to Improve Query Performance
	Full table scan
	Concatenated indexes

	Optimizing Batch Inserts and Updates
	Tuning Memory Allocation
	Tuning Your Operating System
	Database Cache
	Sorting

	Tuning CPU Concurrency Load
	Tuning I/O
	Distributing I/O
	Setting the MergeInterval Parameter

	Tuning Checkpoints
	Using Optimizer Hints
	Optimizer Hints Syntax
	Optimizer Hint Examples

	8 Diagnostics and Troubleshooting
	Observing Performance
	SQL Info Facility
	The EXPLAIN PLAN Statement

	Tracing Communication between Client and Server
	The Network Trace Facility
	The Ping Facility

	Problem Reporting
	Problem Categories
	SOLID ODBC API Problems
	SOLID ODBC Driver Problems
	SOLID JDBC Driver Problems
	UNIFACE Driver for SOLID Embedded Engine Problems
	Communication between a Client and Server

	A Error Codes
	Error Categories
	SOLID SQL Errors
	SOLID Database Errors
	SOLID Executable Errors
	SOLID System Errors
	SOLID Table Errors
	SOLID Server Errors
	SOLID Communication Errors
	SOLID Communication Warnings
	SOLID Procedure Errors
	SOLID Sorter Errors

	B Configuration Parameters
	General Section
	IndexFile Section
	Logging Section
	Communication Section
	Data Sources
	Server Section
	SQL Section
	Sorter Section
	Hints Section

	C Data Types
	Supported Data Types
	Character Data Types
	Numeric Data Types
	Binary Data Types
	Date Data Type
	Time Data Type
	Timestamp Data Type
	The Smallest Possible Non-zero Numbers

	D SOLID SQL Syntax
	ADMIN COMMAND
	ALTER TABLE
	ALTER TRIGGER
	ALTER USER
	CALL
	COMMIT
	CREATE CATALOG
	CREATE EVENT
	CREATE INDEX
	CREATE PROCEDURE
	CREATE ROLE
	CREATE SCHEMA
	CREATE SEQUENCE
	CREATE TABLE
	CREATE TRIGGER
	CREATE USER
	CREATE VIEW
	DELETE
	DELETE (positioned)
	DROP CATALOG
	DROP EVENT
	DROP INDEX
	DROP PROCEDURE
	DROP ROLE
	DROP SCHEMA
	DROP SEQUENCE
	DROP TABLE
	DROP TRIGGER
	DROP USER
	DROP VIEW
	EXPLAIN PLAN FOR
	GRANT
	HINT
	INSERT
	INSERT (Using Query)
	REVOKE (Role from User)
	REVOKE (Privilege from Role or User)
	ROLLBACK
	SELECT
	SET
	SET SCHEMA
	UPDATE (Positioned)
	UPDATE (Searched)
	Table_reference
	Query_specification
	Search_condition
	Check_condition
	Expression
	String Function
	Numeric Function
	Date Time Function
	System Function
	Data_type
	Date and Time Literals
	Pseudo Columns

	E System Views and System Tables
	System Views
	COLUMNS
	SERVER_INFO
	TABLES
	USERS

	System Tables
	SQL_LANGUAGES
	SYS_ATTAUTH
	SYS_CARDINAL
	SYS_CATALOGS
	SYS_COLUMNS
	SYS_EVENTS
	SYS_FORKEYPARTS
	SYS_FORKEYS
	SYS_INFO
	SYS_KEYPARTS
	SYS_KEYS
	SYS_PROCEDURES
	SYS_PROCEDURE_COLUMNS
	SYS_RELAUTH
	SYS_SCHEMAS
	SYS_SEQUENCES
	SYS_SYNONYM
	SYS_TABLEMODES
	SYS_TABLES
	SYS_TRIGGERS
	SYS_TYPES
	SYS_UROLE
	SYS_USERS
	SYS_VIEWS

	F Reserved Words
	G SOLID Embedded Engine Command Line Options
	General Options

	Glossary
	Index

