
SOLID Embedded Engine
Programmer Guide

Version 3.0

Copyright © 1992, 1993, 1994 by Microsoft Corporation

Copyright © 1992-1999 Solid Information Technology Ltd, Helsinki, Finland.

All rights reserved. No portion of this product may be used in any way except as expressly authorized in writing by
Solid Information Technology Ltd.

Solid logo with the text "SOLID" is a registered trademark of Solid Information Technology Ltd.

SOLID SynchroNet™, SOLID Embedded Engine™, SOLID Intelligent Transaction™, and SOLID Bonsai Tree™,
SOLID SQL Editor™, and SOLID Remote Control ™ are trademarks of Solid Information Technology Ltd.

SOLID Intelligent Transaction patent pending Solid Information Technology Ltd.

This product contains the skeleton output parser for bison ("Bison"). Copyright (c) 1984, 1989, 1990 Bob Corbett
and Richard Stallman.

Java is a Trademark of Sun Microsystems, Inc.

For a period of three (3) years from the date of this license, Solid Information Technology, Ltd. will provide you, the
licensee, with a copy of the Bison source code upon receipt of your written request and the payment of Solid's rea-
sonable costs for providing such copy.

Document number SSPG-3.0-0399
Date: March 26, 1999

m-

ct to
ures,
day’s

n

rface.

e

-

t-
f
Welcome

SOLID Embedded EngineTM provides the local data storage needs required for today’s co
plex distributed systems.

SOLID Embedded Engine provides support for real-time operating systems such as
VxWorks and ChorusOS, and for preferred platforms such as Windows 98/NT, Linux,
Solaris, HP-UX and other UNIX platforms. It also provides the features you would expe
find in any industrial-strength database server—multithread architecture, stored proced
optimistic row level transaction management, but delivered with the special needs of to
applications.

About this Guide
The SOLID Programmer Guide contains information about using the different Applicatio
Programming Interfaces of SOLID Embedded Engine.

SOLID SQL API is the native call level interface of SOLID DBMS. SOLID SQL API is
based on the SQL Access Group's CLI specification, a standard dynamic call level inte
The SQL syntax used in SOLID Embedded Engine is based on the ANSI X3H2-1989 level 2
standard including important ANSI X3H2-1992 (SQL2) extensions. Developers also hav
the option of accessing SQL SQL API through ODBC API in the Windows (NT/98/95) envi-
ronments. ODBC provides a single interface for SQL queries to access a variety of rela
tional and non-relational databases.

Even though this manual is written from the viewpoint of ODBC application developers,
most of the information applies also to development of applications that access SOLID SQL
API directly.

In addition to SOLID SQL API, the other APIs, SOLID Light Client and SOLID JDBC
Driver, are available for application development purposes. SOLID Light Client is a ligh
weight version of the SOLID SQL API that is meant for environments where the footprint o
the client application is critical. The SOLID JDBC Driver is a SOLID implementation of the
JDBC 1.2 standard.
 iii

r

d

LID

BMS
Organization
This manual contains the following chapters:

■ Chapter 1, Introduction to SOLID APIs provides an overview of the application pro-
gramming interfaces available for accessing SOLID Embedded Engine.

■ Chapter 2, Using SOLID SQL API and ODBC API covers how to develop applications
using SOLID SQL API and ODBC API.

■ Chapter 3, Calling Stored Procedures, Events, and Sequences explains advanced fea-
tures for developing applications using SOLID Embedded Engine.

■ Chapter 4, Using Unicode in SOLID Embedded Engine describes how to implement the
UNICODE standard, providing the capability to encode characters used in the majo
languages of the world.

■ Chapter 5, Function Reference provides an alphabetic reference to the ODBC API an
SQL API functions.

■ Chapter 6, Using SOLID Light Client describes how to use SOLID Light Client, and
API especially designed for implementing embedded solutions with limited memory
resources.

■ Chapter 7, Using the JDBC Driver describes how to use the SOLID JDBC Driver, a
100% Pure JavaTM implementation of the Java Database Connectivity (JDBCTM) stan-
dard.

Appendixes

The Appendixes give you detailed information about error messages, data types, and SO
SQL functionality, etc.

Glossary

The Glossary of Terms explains some of the terminology used in SOLID documentation.

Audience
This manual assumes a working knowledge of the C programming language, general D
knowledge, and a familiarity with SQL.
iv

 Conventions

Product Name
In version 3.0, SOLID Server or SOLID Web Engine is now known as SOLID Embedded
Engine. This guide may still make reference to SOLID Server. Throughout this guide,
"SOLID Server" and "SOLID Embedded Engine" are used synonymously.

Typographic
This manual uses the following typographic conventions.

Format Used for

WIN.INI Uppercase letters indicate filenames, SQL
statements, macro names, and terms used
at the operating-system command level.

RETCODE SQLFetch(hdbc) This font is used for sample command
lines and program code.

argument Italicized words indicate information that
the user or the application must provide, or
word emphasis.

SQLTransact Bold type indicates that syntax must be
typed exactly as shown, including func-
tion names.

[] Brackets indicate optional items; if in bold
text, brackets must be included in the syn-
tax.

| A vertical bar separates two mutually
exclusive choices in a syntax line.

{} Braces delimit a set of mutually exclusive
choices in a syntax line; if in bold text,
braces must be included in the syntax.

... An ellipsis indicates that arguments can be
repeated several times.

.

.

.

A column of three dots indicates continua-
tion of previous lines of code.
 v

tion

is

-

2

t
Other Solid Documentation
SOLID Embedded Engine documentation is distributed as printed material or in an elec-
tronic format (PDF, HTML, or Windows Help files).

SOLID Online Services on our Web server offer the latest product and technical informa
free of charge. The service is located at:

http://www.solidtech.com/

Electronic Documentation
■ Read Me contains installation instructions and additional information about the spe-

cific product version. This readme.txt file is typically copied onto your system
when you install the software.

■ Release Notes contains additional information about the specific product version. Th
relnotes.txt file is typically copied onto your system when you install the soft-
ware.

■ SOLID SynchroNet Guide describes administrative procedures for SOLID Synchro-
Net. It also provides information about SOLID SQL functionality.

■ SOLID Administrator Guide describes administrative procedures for SOLID Embed-
ded Engine, including tools and utilities, and also reference information.

Where to Find Additional Information
■ For more information about SQL, the following standards are available:

■ Database Language — SQL with Integrity Enhancement, ANSI, 1989 ANSI X3.135
1989.

■ X/Open and SQL Access Group SQL CAE specification (1992).

■ Database Language — SQL: ANSI X3H2 and ISO/IEC JTC1/SC21/WG3 9075:199
(SQL-92).

■ In addition to standards and vendor-specific SQL guides, there are many books tha
describe SQL, including:

■ Date, C. J.: A Guide to the SQL Standard (Addison-Wesley, 1989).

■ Emerson, Sandra L., Darnovsky, Marcy, and Bowman, Judith S.: The Practical SQL
Handbook (Addison-Wesley, 1989).

■ Groff, James R. and Weinberg, Paul N.: Using SQL (Osborne McGraw-Hill, 1990).
vi

■ Gruber, Martin: Understanding SQL (Sybex, 1990).

■ Hursch, Jack L. and Carolyn J.: SQL, The Structured Query Language (TAB Books,
1988).

■ Melton, Jim and Simon, Alan R.: Understanding the new SQL: a complete guide (Mor-
gan Kaufmann, 1993).

■ Pascal, Fabian: SQL and Relational Basics (M & T Books, 1990).

■ Trimble, J. Harvey, Jr. and Chappell, David: A Visual Introduction to SQL (Wiley, 1989).

■ Van der Lans, Rick F.: Introduction to SQL (Addison-Wesley, 1988).

■ Vang, Soren: SQL and Relational Databases (Microtrend Books, 1990).

■ Viescas, John: Quick Reference Guide to SQL (Microsoft Corp., 1989).
 vii

viii

Contents

Welcome ... iii

1 Introduction to SOLID APIs

SOLID SQL API.. 1-1
SOLID Light Client... 1-3
SOLID JDBC Driver... 1-3

2 Using SOLID SQL API and ODBC API

Guidelines for calling Functions.. 2-1
Basic Application Steps..2-7
Connecting to a Data Source... 2-9
Executing SQL Statements.. 2-14
Retrieving Results... 2-29
Function Return Codes.. 2-41
Retrieving Error Messages.. 2-42
Terminating Transactions and Connections... 2-47
Constructing an Application.. 2-48
Sample Application Code... 2-48
Installing and Configuring ODBC Software.. 2-56

3 Stored Procedures, Events, and Sequences

Stored Procedures... 3-1
Using SQL in a stored procedure.. 3-14
Calling other procedures.. 3-21
Using sequences... 3-25
 ix

Using events... 3-26
Procedure privileges... 3-27

4 Using UNICODE in SOLID Embedded Engine

What is Unicode?.. 4-1
Implementing Unicode in SOLID Embedded Engine.. 4-3
Setting Up SOLID Embedded Engine for Unicode Data... 4-5
Unicode and JDBC.. 4-8

5 Function Reference

Function Descriptions...5-1
SOLID SQL API Include Files... 5-5
ODBC Include Files.. 5-5
Diagnostics... 5-5
Tables and Views... 5-5
Catalog Functions... 5-5
Search Pattern Arguments...5-6
SQLAllocConnect (ODBC 1.0, Core).. 5-7
SQLAllocEnv (ODBC 1.0, Core)... 5-9
SQLAllocStmt (ODBC 1.0, Core).. 5-11
SQLBindCol (ODBC 1.0, Core)... 5-14
SQLBindParameter (ODBC 2.0, Level 1)... 5-22
SQLCancel (ODBC 1.0, Core)... 5-37
SQLColAttributes (ODBC 1.0, Core) ... 5-40
SQLColumns (ODBC 1.0, Level 1).. 5-49
SQLConnect (ODBC 1.0, Core)... 5-57
SQLDataSources (ODBC 1.0, Level 2).. 5-63
SQLDescribeCol (ODBC 1.0, Core).. 5-66
SQLDescribeParam (ODBC 1.0, Level 2)... 5-72
SQLDisconnect (ODBC 1.0, Core).. 5-76
SQLDriverConnect (ODBC 1.0, Level 1).. 5-79
SQLDrivers (ODBC 2.0, Level 2).. 5-88
SQLError (ODBC 1.0, Core) ... 5-92
SQLExecDirect (ODBC 1.0, Core).. 5-95
SQLExecute (ODBC 1.0, Core)... 5-103
x SOLID Programming Guide

SQLExtendedFetch (ODBC 1.0, Level 2)... 5-109
SQLFetch (ODBC 1.0, Core)... 5-126
SQLFetchPrev (SOLID Extension)... 5-131
SQLFreeConnect (ODBC 1.0, Core)... 5-136
SQLFreeEnv (ODBC 1.0, Core).. 5-138
SQLFreeStmt (ODBC 1.0, Core)... 5-140
SQLGetConnectOption (ODBC 1.0, Level 1).. 5-143
SQLGetCursorName (ODBC 1.0, Core).. 5-146
SQLGetData (ODBC 1.0, Level 1).. 5-149
SQLGetFunctions (ODBC 1.0, Level 1).. 5-160
SQLGetInfo (ODBC 1.0, Level 1).. 5-165
SQLGetStmtOption (ODBC 1.0, Level 1).. 5-203
SQLGetTypeInfo (ODBC 1.0, Level 1)... 5-207
SQLNumParams (ODBC 1.0, Level 2)... 5-215
SQLNumResultCols (ODBC 1.0, Core).. 5-218
SQLParamData (ODBC 1.0, Level 1)... 5-221
SQLPrepare (ODBC 1.0, Core)... 5-225
SQLPrimaryKeys (ODBC 1.0, Level 2).. 5-231
SQLPutData (ODBC 1.0, Level 1)... 5-236
SQLRowCount (ODBC 1.0, Core).. 5-244
SQLSetConnectOption (ODBC 1.0, Level 1)... 5-247
SQLSetCursorName (ODBC 1.0, Core)... 5-258
SQLSetParam (ODBC 1.0, Deprecated)... 5-261
SQLSetPos (ODBC 1.0, Level 2).. 5-262
SQLSetScrollOptions (ODBC 1.0, Level 2).. 5-278
SQLSetStmtOption (ODBC 1.0, Level 1)... 5-282
SQLSpecialColumns (ODBC 1.0, Level 1)... 5-292
SQLStatistics (ODBC 1.0, Level 1).. 5-300
SQLTables (ODBC 1.0, Level 1).. 5-308
SQLTransact (ODBC 1.0, Core).. 5-314

6 Using SOLID Light Client

What is SOLID Light Client?... 6-1
Getting started with SOLID Light Client ... 6-2
Running SQL Statements on SOLID Light Client ... 6-4
 xi

Special Notes about SOLID Embedded Engine and SOLID Light Client 6-10
SOLID Light Client Functions... 6-10
SOLID Light Client Samples.. 6-18
SOLID Light Client Type Conversion Matrix .. 6-23

7 Using the SOLID JDBC Driver

What is SOLID JDBC Driver?... 7-1
Getting started with SOLID JDBC Driver.. 7-2
Using DatabaseMetadata...7-7
Special Notes About SOLID and JDBC.. 7-8
JDBC Driver Classes and Methods.. 7-9
SolidDriver ... 7-18
SolidResultSet.. 7-19
SolidResultSetMetaData.. 7-20
SolidStatement.. 7-21
Code Examples.. 7-22
SOLID JDBC Driver Type Conversion Matrix .. 7-39

A Error Codes

B ODBC State Transition Tables

C SQL Grammar

D Data Types

E Comparison Between Embedded SQL and ODBC

F Scalar Functions

G Supported ODBC Functions in SOLID Embedded Engine
xii SOLID Programming Guide

1
to

I)
.

fi-
Introduction to SOLID APIs

This chapter provides an overview of the application programming interfaces available
you for accessing SOLID Embedded Engine. These APIs include:

■ SOLID SQL API (Application Programming Interface)

■ SOLID Light Client

■ SOLID JDBC Driver

SOLID SQL API
SOLID SQL API (Application Programming Interface) is the native call level interface (CL
of SOLID Embedded Engine. It is a DLL for Windows and a library for other environments
SOLID SQL API is compliant with ANSI X3H2 SQL CLI and ODBC CLI.

SOLID SQL API has functions that support a rich set of database access operations suf
cient to creating robust database applications, including:

■ Allocating and deallocating handles

■ Getting and setting attributes

■ Opening and closing database connections

■ Accessing descriptors

■ Executing SQL statements

■ Accessing schema metadata

■ Controlling transactions

■ Accessing diagnostic information
 Introduction to SOLID APIs 1-1

SOLID SQL API

d to

s.

the
or an
a-
r Man-
ons

.

h

me,

 to

ck if
A database application calls these functions for all interactions with a database. SOLIDSQL
API enables applications to establish multiple database connections simultaneously an
process multiple statements simultaneously.

A native 32 bit SOLID ODBC Driver is available for maximum power and functionality.
Using SOLID SQL API, users can also access ODBC Driver Manager supported function

The driver maintains a transaction for each active database connection. Depending on
applications request, the driver can automatically commit each SQL statement or wait f
explicit commit or rollback request. When the driver performs a commit or rollback oper
tion, the driver resets all statement requests associated with the connection. The Drive
ager manages the work of allowing an application to switch connections while transacti
are in progress on the current connection.

The ODBC interface is available in Windows 95/98, and Windows NT clients. You can
download the SOLID ODBC Driver Package as a part of the SDK from the SOLID Web site

SOLID SQL API
An application using either the SOLID SQL API directly performs the following tasks.

1. The application allocates memory for an environment handle (henv) and a connection
handle (hdbc); both are required to establish a database connection.

An application may request multiple connections for one or more data sources. Eac
connection is considered a separate transaction space.

2. The SQLConnect call establishes the database connection, specifying the server na
user id, and password.

3. The application then allocates memory for a statement handle and calls either SQLEx-
ecDirect, which both prepares and executes an SQL statement, or SQLPrepare and
SQLExecute, which allows statements to be executed multiple times.

4. If the statement was a SELECT statement, the resulting columns need to be bound
variables in the application. This is done by using SQLBindCol. The rows can be then
fetched using repeatedly SQLFetch.

5. If the statement was a UPDATE, DELETE or INSERT, the application needs to che
the execution succeeded and call SQLTransact to commit the transaction.

6. Finally the application closes the connection.

Read Chapter 2, “Using SOLID SQL API and ODBC API” for more information on using
these APIs.
1-2 SOLID Programmer Guide

SOLID JDBC Driver

l
API,

 SQL

s
a
tadata,
y API
SOLID Light Client
SOLID Light Client allows you to develop small-footprint applications using C (or any too
that conforms to the C function call conversion). It is a 21-function subset of the ODBC
providing full SQL capabilities for application developers accessing SOLID Embedded
Engine databases. It provides functions for controlling database connections, executing
statements, retrieving result sets, committing transactions, and other SOLID Embedded
Engine functionality. Read Chapter 6, “Using SOLID Light Client” for more details.

SOLID JDBC Driver
SOLID JDBC Driver allows you to develop your application with a Java tool that accesse
the database using JDBC. The JDBC API, JavaSoft’s core API for JDK 1.1, defines Jav
classes to represent database connections, SQL statements, result sets, database me
etc. It allows you to issue SQL statements and process the results. JDBC is the primar
for database access in Java. Read Chapter 7, “Using the SOLID JDBC Driver” for more
details.
 Introduction to SOLID APIs 1-3

SOLID JDBC Driver
1-4 SOLID Programmer Guide

2
st

r
 val-

utput

 pro-
Using SOLID SQL API and ODBC API

This chapter describes how to develop applications using SOLID SQL API and ODBC API.
Although this chapter is written from the viewpoint of ODBC application developers, mo
of the information applies also to development of applications that access SOLID SQL API
directly. Topic covered in this chapter include:

■ Guidelines for calling functions

■ Basic application steps

■ Connecting to a data source

■ Executing SQL statements

■ Retrieving status and error information

■ Terminating transactions and connections

■ Constructing an application

Guidelines for calling Functions
This section describes the general characteristics of ODBC functions, determining drive
conformance levels, the role of the Driver Manager, ODBC function arguments, and the
ues ODBC functions return.

General Information
Each SOLID SQL API and ODBC function name starts with the prefix “SQL.” Each func-
tion accepts one or more arguments. Arguments are defined as input (to the driver) or o
(from the the driver).

C programs that call ODBC functions must include the SQL.H, SQLEXT.H, and WIN-
DOWS.H header files. These files define Windows and ODBC constants and types and
vide function prototypes for all ODBC functions.
 Using SOLID SQL API and ODBC API 2-1

Guidelines for calling Functions

and

dard
ica-

sup-
sup-

QL
with
 a

ram-
AE

 SQL.

a

C programs that call SOLID SQL API functions must include the CLI0CORE.H,
CLI0DEFS.H, CLI0ENV.H and CLI01EXT1.H header files. These files define constants
types and provide function prototypes for all SOLID SQL API functions.

Determining Conformance Levels

Driver Conformance
ODBC defines conformance levels for drivers in two areas: the ODBC API and the ODBC
SQL grammar (which includes the ODBC SQL data types). These levels establish stan
sets of functionality. By inquiring the conformance levels supported by a driver, an appl
tion can easily determine if the driver provides the necessary functionality.

NOTE: The following sections refer to SQLGetInfo and SQLGetTypeInfo, which are part
of the Level 1 API conformance level. Although it is strongly recommended that drivers
port this conformance level, drivers are not required to do so. If these functions are not
ported, an application developer must consult the driver documentation to determine its
conformance levels.

API Conformance Levels
ODBC functions are divided into core functions, which are defined in the X/Open and S
Access Group Call Level Interface specification, and two levels of extension functions,
which ODBC extends this specification. To determine the function conformance level of
driver, an application calls SQLGetInfo with the
SQL_ODBC_SAG_CLI_CONFORMANCE and SQL_ODBC_API_CONFORMANCE
flags. Note that a driver can support one or more extension functions but not conform to
ODBC extension Level 1 or 2. To determine if a driver supports a particular function, an
application calls SQLGetFunctions. Note that SQLGetFunctions is implemented by the
Driver Manager and can be called for any driver, regardless of its level.

SQL Conformance Levels
The ODBC SQL grammar, which includes SQL data types, is divided into a minimum g
mar, a core grammar, which corresponds to the X/Open and SQL Access Group SQL C
specification (1992), and an extended grammar, which provides common extensions to
To determine the SQL conformance level of a driver, an application calls SQLGetInfo with
the SQL_ODBC_SQL_CONFORMANCE flag. To determine whether a driver supports
specific SQL extension, an application calls SQLGetInfo with a flag for that extension. See
Appendix C, “SQL Grammar” for more information. To determine whether a driver sup-
ports a specific SQL data type, an application calls SQLGetTypeInfo.
2-2 SOLID Programmer Guide

Guidelines for calling Functions

-
er

the

s

ith

ci-

of
of the

ppli-
ut

ain
Using the Driver Manager
The Driver Manager is a DLL that provides access to ODBC drivers. An application typi
cally links with the Driver Manager import library (ODBC.LIB) to gain access to the Driv
Manager.

Applications accessing SOLID SQL API directly bypass the Driver Manager and cannot
therefore use ODBC functions that are implemented in the Driver Manager.

Whenever an application calls an ODBC function, the Driver Manager performs one of
following actions:

■ For SQLDataSources and SQLDrivers, the Driver Manager processes the call. It doe
not pass the call to the driver.

■ For SQLGetFunctions, the Driver Manager passes the call to the driver associated w
the connection. If the driver does not support SQLGetFunctions, the Driver Manager
processes the call.

■ For SQLAllocEnv, SQLAllocConnect, SQLSetConnectOption, SQLFreeConnect,
and SQLFreeEnv, the Driver Manager processes the call. The Driver Manager calls
SQLAllocEnv, SQLAllocConnect, and SQLSetConnectOption in the driver when the
application calls a function to connect to the data source (SQLConnect, or SQLDriver-
Connect) . The Driver Manager calls SQLFreeConnect and SQLFreeEnv in the driver
when the application calls SQLDisconnect.

■ For SQLConnect, SQLDriverConnect, and SQLError , the Driver Manager performs
initial processing then passes the call to the driver associated with the connection.

■ For any other ODBC function, the Driver Manager passes the call to the driver asso
ated with the connection.

If requested, the Driver Manager records each called function in a trace file. The name
each function is recorded, along with the values of the input arguments and the names
output arguments (as listed in the function definitions).

Calling ODBC Functions
The following paragraphs describe general characteristics of ODBC functions.

Buffers
An application passes data to a driver in an input buffer. The driver returns data to an a
cation in an output buffer. The application must allocate memory for both input and outp
buffers. (If the application will use the buffer to retrieve string data, the buffer must cont
space for the null termination byte.)
 Using SOLID SQL API and ODBC API 2-3

Guidelines for calling Functions

s.
ns

ent
 it
up-
early

ies
ent
 Win-
d-
ent

f the

put

s
.

e
he

rs is

r
 the
Note that some functions accept pointers to buffers that are later used by other function
The application must ensure that these pointers remain valid until all applicable functio
have used them. For example, the argument rgbValue in SQLBindCol points to an output
buffer in which SQLFetch returns the data for a column.

CAUTION: ODBC does not require drivers to correctly manage buffers that cross segm
boundaries in Windows 3.1. The Driver Manager supports the use of such buffers, since
passes buffer addresses to drivers and does not operate on buffer contents. If a driver s
ports buffers that cross segment boundaries, the documentation for the driver should cl
state this.

For maximum interoperability, applications that use buffers that cross segment boundar
should pass them in pieces to ODBC functions. None of these pieces can cross a segm
boundary. For example, suppose a data source contains 100 kilobytes of bitmap data. A
dows 3.1 application can safely allocate 100K of memory (beginning at a segment boun
ary) and retrieve the data in two pieces (64K and 36K), each of which begins on a segm
boundary.

Input Buffers
An application passes the address and length of an input buffer to a driver. The length o
buffer must be one of the following values:

■ A length greater than or equal to zero. This is the actual length of the data in the in
buffer. For character data, a length of zero indicates that the data is an empty (zero
length) string. Note that this is different from a null pointer. If the application specifie
the length of character data, the character data does not need to be null-terminated

■ SQL_NTS. This specifies that a character data value is null-terminated.

■ SQL_NULL_DATA. This tells the driver to ignore the value in the input buffer and us
a NULL data value instead. It is only valid when the input buffer is used to provide t
value of a parameter in an SQL statement.

The operation of ODBC functions on character data containing embedded null characte
undefined, and is not recommended for maximum interoperability.

Unless it is specifically prohibited in a function description, the address of an input buffe
may be a null pointer. When the address of an input buffer is a null pointer, the value of
corresponding buffer length argument is ignored.

See “Converting Data from C to SQL Data Types” on page D-33 for more information on
converting buffers.
2-4 SOLID Programmer Guide

Guidelines for calling Functions

n out-

less
can
n the

i-

th

. If
acter

tput
 data)
 a
turns

age
nt.
n uses

es
nvi-
Output Buffers
An application passes the following arguments to a driver, so that it can return data in a
put buffer:

■ The address of the buffer in which the driver returns the data (the output buffer). Un
it is specifically prohibited in a function description, the address of an output buffer
be a null pointer. In this case, the driver does not return anything in the buffer and, i
absence of other errors, returns SQL_SUCCESS.

■ If necessary, the driver converts data before returning it. The driver always null-term
nates character data before returning it.

■ The length of the buffer. This is ignored by the driver if the returned data has a fixed
length in C, such as an integer, real number, or date structure.

■ The address of a variable in which the driver returns the length of the data (the leng
buffer). The returned length of the data is SQL_NULL_DATA if the data is a NULL
value in a result set. Otherwise, it is the number of bytes of data available to return
the driver converts the data, it is the number of bytes after the conversion. For char
data, it does not include the null termination byte added by the driver.

If the output buffer is too small, the driver attempts to truncate the data. If the truncation
does not cause a loss of significant data, the driver returns the truncated data in the ou
buffer, returns the length of the available data (as opposed to the length of the truncated
in the length buffer, and returns SQL_SUCCESS_WITH_INFO. If the truncation causes
loss of significant data, the driver leaves the output and length buffers untouched and re
SQL_ERROR. The application calls SQLError to retrieve information about the truncation
or the error.

See “Converting Data from SQL to C Data Types” on page D-19 for more information about
output buffers.

Environment, Connection, and Statement Handles
When so requested by an application, the Driver Manager and each driver allocate stor
for information about the ODBC environment, each connection, and each SQL stateme
The handles to these storage areas are returned to the application. The application the
one or more of them in each call to an ODBC function.

The ODBC interface defines three types of handles:

■ The environment handle identifies memory storage for global information, including
the valid connection handles and the current active connection handle. ODBC defin
the environment handle as a variable of type HENV. An application uses a single e
ronment handle; it must request this handle prior to connecting to a data source.
 Using SOLID SQL API and ODBC API 2-5

Guidelines for calling Functions

ion
ction
w-

.
t
le is
ver,

which

o

es
mn or
the

 to the

re

-
rn
■ Connection handles identify memory storage for information about a particular con-
nection. ODBC defines connection handles as variables of type HDBC. An applicat
must request a connection handle prior to connecting to a data source. Each conne
handle is associated with the environment handle. The environment handle can, ho
ever, have multiple connection handles associated with it.

■ Statement handles identify memory storage for information about an SQL statement
ODBC defines statement handles as variables of type HSTMT. An application mus
request a statement handle prior to submitting SQL requests. Each statement hand
associated with exactly one connection handle. Each connection handle can, howe
have multiple statement handles associated with it.

For more information about requesting a connection handle, read “Connecting to a Data
Source” in this chapter. For more information about requesting a statement handle, read
“Executing SQL Statements” in this chapter.

Using Data Types
Data stored on a data source has an SQL data type, which may be specific to that data
source. A driver maps data source–specific SQL data types to ODBC SQL data types,
are defined in the ODBC SQL grammar, and driver-specific SQL data types. (A driver
returns these mappings through SQLGetTypeInfo. It also uses the ODBC SQL data types t
describe the data types of columns and parameters in SQLColAttributes , SQLDescribe-
Col, and SQLDescribeParam.)

Each SQL data type corresponds to an ODBC C data type. By default, the driver assum
that the C data type of a storage location corresponds to the SQL data type of the colu
parameter to which the location is bound. If the C data type of a storage location is not
default C data type, the application can specify the correct C data type with the fCType argu-
ment in SQLBindCol, SQLGetData, or SQLBindParameter. Before returning data from
the data source, the driver converts it to the specified C data type. Before sending data
data source, the driver converts it from the specified C data type.

See Appendix D, “Data Types” for more informaton about data types. The C data types a
defined in SQL.H and SQLEXT.H.

NOTE: The C data types of SOLID SQL API are defined in CLI0DEFS.H.

Function Return Codes
When an application calls a function, the driver executes the function and returns a pre
defined code. These return codes indicate success, warning, or failure status. The retu
codes are:

SQL_SUCCESS
2-6 SOLID Programmer Guide

Basic Application Steps

an

infor-

he

utes
e-

e

 the

ct
ending
SQL_SUCCESS_WITH_INFO

SQL_NO_DATA_FOUND

SQL_ERROR

SQL_INVALID_HANDLE

SQL_STILL_EXECUTING

SQL_NEED_DATA

If the function returns SQL_SUCCESS_WITH_INFO or SQL_ERROR, the application c
call SQLError to retrieve additional information about the error. Read “Retrieving Error
Messages” for a complete description of return codes and error handling.

Basic Application Steps
To interact with a data source, a simple application:

1. Connects to the data source. It specifies the data source name and any additional
mation needed to complete the connection.

2. Processes one or more SQL statements.

■ The application places the SQL text string in a buffer. If the statement includes
parameter markers, it sets the parameter values.

■ If the statement returns a result set, the application assigns a cursor name for t
statement or allows the driver to do so.

■ The application submits the statement for prepared or immediate execution.

■ If the statement creates a result set, the application can inquire about the attrib
of the result set, such as the number of columns and the name and type of a sp
cific column. It assigns storage for each column in the result set and fetches th
results.

■ If the statement causes an error, the application retrieves error information from
driver and takes appropriate action.

3. Ends each transaction by committing it or rolling it back.

4. Terminates the connection when it has finished interacting with the data source.

The following diagram lists the ODBC function calls than an application makes to conne
to the data source, process SQL statements, and disconnect from the data source. Dep
on its needs, an application may call other ODBC functions.
 Using SOLID SQL API and ODBC API 2-7

Basic Application Steps
Process SQL Statements

Receive Results

SQLFreeEnv

CLOSE option

DROP option

SQLFreeStmt

SQLDisconnect

SQLFreeConnect

SQLAllocConnect

SQLConnect

SQLAllocStmt

SQLAllocEnv

SQLFreeEnv
2-8 SOLID Programmer Guide

Connecting to a Data Source

tion to

atform
 data

core
BC
 addi-

eg-

ry,
ec-
ource
river

es.

r-
ce
Connecting to a Data Source
This section briefly introduces data sources. It then describes how to establish a connec
a data source.

About Data Sources
A data source consists of the data a user wants to access, its associated DBMS, the pl
on which the DBMS resides, and the network (if any) used to access that platform. Each
source requires that a driver provide certain information in order to connect to it. At the
level, this is defined to be the name of the data source, a user ID, and a password. OD
extensions allow drivers to specify additional information such as a network address or
tional passwords.

NOTE: If the used data source name can be interpreted as a valid SOLID Embedded Engine
(server) network name, the client first connects using the information given in the data
source name. A valid network name consists of a communication protocol, and optional host
computer name and a server name. See SOLID Administrator Guide for more informa-
tion about listen names.

If the data source name is not a valid SOLID Embedded Engine (server) listen name, the
information needed to locate a server in the network is read from the ODBC.INI file or r
istry.

The connection information for each data source is stored in the ODBC.INI file or regist
which is created during installation and maintained with an administration program. A s
tion in this file lists the available data sources. Additional sections describe each data s
in detail, specifying the driver name, a description, and any additional information the d
needs in order to connect to the data source.

NOTE: Applications that directly access the SOLID SQL API must connect to the server
using a valid listen name. If the data source name is not a valid SOLID Embedded Engine
(server) listen name, all SOLID client applications search for a valid listen name from:

1) the SOLID.INI file
2) the ODBC.INI or registry

See SOLID Administrator Guide for more information about the use of data source nam

Initializing the API Environment
Before an application can use any other ODBC function, it must initialize the ODBC inte
face and associate an environment handle with the environment. To initialize the interfa
and allocate an environment handle, an application:
 Using SOLID SQL API and ODBC API 2-9

Connecting to a Data Source

ecla-

e
 and

n. To

ecla-

es
le in

 infor-

n.

at

is-

 the

y, or
r the
river
1. Declares a variable of the type HENV. For example, the application could use the d
ration:

HENV henv1;

2. Calls SQLAllocEnv and passes it the address of the variable. The driver initializes th
ODBC environment, allocates memory to store information about the environment,
returns the environment handle in the variable.

These steps should be performed only once by an application; SQLAllocEnv supports one
or more connections to data sources.

Allocating a Connection Handle
Before an application can connect to a driver, it must allocate a handle for the connectio
allocate a connection handle, an application:

1. Declares a variable of the type HDBC. For example, the application could use the d
ration:

HDBC hdbc1;

2. Calls SQLAllocConnect and passes it the address of the variable. The driver allocat
memory to store information about the connection and returns the connection hand
the variable.

Connecting to a Data Source
Next, the application specifies a specific driver and data source. It passes the following
mation to the driver in a call to SQLConnect:

■ Data source name The name of the data source being requested by the applicatio

■ User ID The login ID or account name for access to the data source if appropriate
(optional).

■ Authentication string (password) A character string associated with the user ID th
allows access to the data source (optional).

When an application calls SQLConnect, the Driver Manager uses the data source name to
read the name of the driver DLL from the appropriate section of the ODBC.INI file or reg
try. It then loads the driver DLL and passes the SQLConnect arguments to it. If the driver
needs additional information to connect to the data source, it reads this information from
same section of the ODBC.INI file.

If the application specifies a data source name that is not in the ODBC.INI file or registr
if the application does not specify a data source name, the Driver Manager searches fo
default data source specification. If it finds the default data source, it loads the default d
2-10 SOLID Programmer Guide

Connecting to a Data Source

ata

r-
ent

i-

 an

ct

nd
e
ion.

r
DLL and passes the application-specified data source name to it. If there is no default d
source, the Driver Manager returns an error.

NOTE: When an application uses SOLID SQL API directly and calls SQLConnect and does
not specify a SOLID Embedded Engine network name, it is read from the parameter Con-
nect in the [Com] section of the SOLID.INI file. The SOLID.INI file must reside in the cu
rent working directory of the application or in path specified by the SOLIDDIR environm
variable.

ODBC Extensions for Connections
ODBC extends the X/Open and SQL Access Group Call Level Interface to provide add
tional functions related to connections, drivers, and data sources. The remainder of this
chapter describes these functions. To determine if a driver supports a specific function,
application calls SQLGetFunctions.

Connecting to a Data Source With SQLDriverConnect
SQLDriverConnect supports:

■ Data sources that require more connection information than the three arguments in
SQLConnect.

■ Dialog boxes to prompt the user for all connection information.

■ Data sources that are not defined in the ODBC.INI file or registry.

SQLDriverConnect uses a connection string to specify the information needed to conne
to a driver and data source.

A connection string contains the following information:

■ Data source name or driver description

■ Zero or more user IDs

■ Zero or more passwords

■ Zero or more data source-specific parameter values

The connection string is a more flexible interface than the data source name, user ID, a
password used by SQLConnect. The application can use the connection string for multipl
levels of login authorization or to convey other data source-specific connection informat

An application calls SQLDriverConnect in one of three ways:

■ Specifies a connection string that contains a data source name. The Driver Manage
retrieves the full path of the driver DLL associated with the data source from the
 Using SOLID SQL API and ODBC API 2-11

Connecting to a Data Source

s

r

a

quest
r for
n

y,
ault
ource
ODBC.INI file or registry. To retrieve a list of data source names, an application call
SQLDataSources.

■ Specifies a connection string that contains a driver description. The Driver Manage
retrieves the full path of the driver DLL. To retrieve a list of driver descriptions, an
application calls SQLDrivers.

■ Specifies a connection string that does not contain a data source name or a driver
description. The Driver Manager displays a dialog box from which the user selects
data source name. The Driver Manager then retrieves the full path of the driver DLL
associated with the data source.

The Driver Manager then loads the driver DLL and passes the SQLDriverConnect argu-
ments to it.

The application may pass all the connection information the driver needs. It may also re
that the driver always prompt the user for connection information or only prompt the use
information it needs. Finally, if a data source is specified, the driver may read connectio
information from the appropriate section of the ODBC.INI file or registry.

After the driver connects to the data source, it returns the connection information to the
application. The application may store this information for future use.

If the application specifies a data source name that is not in the ODBC.INI file or registr
the Driver Manager searches for the default data source specification. If it finds the def
data source, it loads the default driver DLL and passes the application-specified data s
name to it. If there is no default data source, the Driver Manager returns an error.

The Driver Manager displays the following dialog box if the application calls SQLDriver-
Connect and requests that the user be prompted for information.
2-12 SOLID Programmer Guide

Connecting to a Data Source

 to

ppli-
anism

-

 func-
arac-
g to
On request from the application, the driver displays a dialog box similar to the following
retrieve login information.

Translating Data
An application and a data source can store data in different formats. For example, the a
cation might use a different character set than the data source. ODBC provides a mech
by which a driver can translate all data (data values, SQL statements, table names, row
counts, and so on) that passes between the driver and the data source.

The driver translates data by calling functions in a translation DLL. A default translation
DLL can be specified for the data source in the ODBC.INI file or registry; the application
can override this by calling SQLSetConnectOption. When the driver connects to the data
source, it loads the translation DLL (if one has been specified). After the driver has con
nected to the data source, the application may specify a new translation DLL by calling
SQLSetConnectOption.

Translation functions may support several different types of translation. For example, a
tion that translates data from one character set to another might support a variety of ch
ter sets. To specify a particular type of translation, an application can pass an option fla
the translation functions with SQLSetConnectOption.

Additional Extension Functions
ODBC also provides the following functions related to connections, drivers, and data
sources. See Chapter 5, “Function Reference” for more information about these functions .

Function Description

SQLDataSources Retrieves a list of available data sources. The Driver
Manager retrieves this information from the ODBC.INI
file or registry. An application can present this informa-
tion to a user or automatically select a data source.
 Using SOLID SQL API and ODBC API 2-13

Executing SQL Statements

es a
ld
nts to
es not

L
Executing SQL Statements
An application can submit any SQL statement supported by a data source. ODBC defin
standard syntax for SQL statements. For maximum interoperability, an application shou
only submit SQL statements that use this syntax; the driver will translate these stateme
the syntax used by the data source. If an application submits an SQL statement that do
use the ODBC syntax, the driver passes it directly to the data source.

Note For CREATE TABLE and ALTER TABLE statements, applications should use the
data type name returned by SQLGetTypeInfo in the TYPE_NAME column, rather than the
data type name defined in the SQL grammar.

The following diagram shows a simple sequence of ODBC function calls to execute SQ
statements. Note that statements can be executed a single time with SQLExecDirect or pre-
pared with SQLPrepare and executed multiple times with SQLExecute. Note also that an
application calls SQLTransact to commit or roll back a transaction.

SQLDrivers Retrieves a list of installed drivers and their attributes.
The Driver Manager retrieves this information from the
ODBCINST.INI file or registry. An application can
present this information to a user or automatically
select a driver.

SQLGetFunctions Retrieves functions supported by a driver. This func-
tion allows an application to determine at run time
whether a particular function is supported by a driver.

SQLGetInfo Retrieves general information about a driver and data
source, including filenames, versions, conformance lev-
els, and capabilities.

SQLGetTypeInfo Retrieves the SQL data types supported by a driver and
data source.

SQLSetConnectOption

SQLGetConnectOption

These functions set or retrieve connection options, such
as the data source access mode, automatic transaction
commitment, timeout values, function tracing, data
translation options, and transaction isolation.
2-14 SOLID Programmer Guide

Executing SQL Statements
Initialize

Repeatable Execution?

No Yes

Kind of Statement?

SELECT
statement

UPDATE, DELETE,
or INSERT statement

Terminate

SQLNumResultCols
SQLDescribeCol

SQLBindCol

SQLFetch

More Rows?

SQLFreeStmt

Yes
No

SQLPrepare
SQLSetParam

SQLExecute

SQLSetParam
SQLExecDirect

SQLRowCount

SQLTransact
if repeat

if more processing
 Using SOLID SQL API and ODBC API 2-15

Executing SQL Statements

e for

lara-

ation

in

ate

 source
r to the
cess
r

te
Allocating a Statement Handle
Before an application can submit an SQL statement, it must allocate a statement handl
the statement. To allocate a statement handle, an application:

1. Declares a variable of type HSTMT. For example, the application could use the dec
tion:

HSTMT hstmt1;

2. Calls SQLAllocStmt and passes it the address of the variable and the connected hdbc
with which to associate the statement. The driver allocates memory to store inform
about the statement, associates the statement handle with the hdbc, and returns the state-
ment handle in the variable.

Executing an SQL Statement
An application can submit an SQL statement for execution in two ways:

■ Prepared Call SQLPrepare and then call SQLExecute.

■ Direct Call SQLExecDirect.

These options are similar, though not identical to, the prepared and immediate options
embedded SQL. See Appendix E, “Comparison Between Embedded SQL and ODBC” for a
comparison of the ODBC functons and embedded SQL.

Prepared Execution
An application should prepare a statement before executing it if either of the following is
true:

■ The application will execute the statement more than once, possibly with intermedi
changes to parameter values.

■ The application needs information about the result set prior to execution.

A prepared statement executes faster than an unprepared statement because the data
compiles the statement, produces an access plan, and returns an access plan identifie
driver. The data source minimizes processing time as it does not have to produce an ac
plan each time it executes the statement. Network traffic is minimized because the drive
sends the access plan identifier to the data source instead of the entire statement.

IMPORTANT1: Committing or rolling back a transaction, either by calling SQLTransact or
by using the SQL_AUTOCOMMIT connection option, can cause the data source to dele
the access plans for all hstmts on an hdbc. For more information, see the
SQL_CURSOR_COMMIT_BEHAVIOR and SQL_CURSOR_ROLLBACK_BEHAVIOR
information types in SQLGetInfo.
2-16 SOLID Programmer Guide

Executing SQL Statements

CT
til

-run-

ode

arame-

the

eter
IMPORTANT2: Committing also read-only transactions is required in SOLID Embedded
Engine. The first SQL statement that is executed after the last commit (including a SELE
statement) starts a new transaction. If this transaction is not committed, it stays alive un
the client disconnects or the transaction is timed out. These “accidentally created” long
ning transactions can cause significant performance problems in SOLID Embedded Engine.
AUTOCOMMIT mode does not solve ths issue because SELECTs in AUTOCOMMIT m
are committed in the beginning of the next executed statement.

To prepare and execute an SQL statement, an application:

1. Calls SQLPrepare to prepare the statement.

2. Sets the values of any statement parameters. For more information, read “Setting
Parameter Values” in this chapter.

3. Retrieves information about the result set, if necessary. For more information, read
“Determining the Characteristics of a Result Set” in this chapter.

4. Calls SQLExecute to execute the statement.

5. Repeats steps 2 through 4 as necessary.

Direct Execution
An application should execute a statement directly if both of the following are true:

■ The application will execute the statement only once.

■ The application does not need information about the result set prior to execution.

To execute an SQL statement directly, an application:

1. Sets the values of any statement parameters. For more information, see “Setting P
ter Values” later in this chapter.

2. Calls SQLExecDirect to execute the statement.

Setting Parameter Values
An SQL statement can contain parameter markers that indicate values that the driver
retrieves from the application at execution time. For example, an application might use
following statement to insert a row of data into the EMPLOYEE table:

INSERT INTO EMPLOYEE (NAME, AGE, HIREDATE)
VALUES (?, ?, ?)

An application uses parameter markers instead of literal values if:

■ It needs to execute the same prepared statement several times with different param
values.
 Using SOLID SQL API and ODBC API 2-17

Executing SQL Statements

cify
r, as

formed

-

ny
ntly
■ The parameter values are not known when the statement is prepared.

■ The parameter values need to be converted from one data type to another.

To set a parameter value, an application performs the following steps in any order:

■ Calls SQLBindParameter to bind a storage location to a parameter marker and spe
the data types of the storage location and the column associated with the paramete
well as the precision and scale of the parameter.

■ Places the parameter’s value in the storage location.

These steps can be performed before or after a statement is prepared, but must be per
before a statement is executed.

Parameter values must be placed in storage locations in the C data types specified in SQL-
BindParameter. For example:

Storage locations remain bound to parameter markers until the application calls SQL-
FreeStmt with the SQL_RESET_PARAMS option or the SQL_DROP option. An applica
tion can bind a different storage area to a parameter marker at any time by calling
SQLBindParameter. An application can also change the value in a storage location at a
time. When a statement is executed, the driver uses the current values in the most rece
defined storage locations.

Parameter Value SQL Data Type C Data Type Stored Value

ABC SQL_CHAR SQL_C_CHAR ABC\0 a

10 SQL_INTEGER SQL_C_SLONG 10

10 SQL_INTEGER SQL_C_CHAR 10\0 a

1 P.M. SQL_TIME SQL_C_TIME 13,0,0 b

1 P.M. SQL_TIME SQL_C_CHAR {t '13:00:00'}\0a,c

a “\0” represents a null-termination byte; the null termination byte is required only if the
parameter length is SQL_NTS.

b The numbers in this list are the numbers stored in the fields of the TIME_STRUCT struc-
ture.

c The string uses the ODBC date escape clause. For more information, see “Date, Time, and
Timestamp Data” later in this chapter.
2-18 SOLID Programmer Guide

Executing SQL Statements

i-
ts.
ction

e

ica-

e the

i-
ccess
in-

r

Performing Transactions
In auto-commit mode, every SQL statement is a complete transaction, which is automat
cally committed. In manual-commit mode, a transaction consists of one or more statemen
In manual-commit mode, when an application submits an SQL statement and no transa
is open, the driver implicitly begins a transaction. The transaction remains open until th
application commits or rolls back the transaction with SQLTransact.

If a driver supports the SQL_AUTOCOMMIT connection option, the default transaction
mode is auto-commit; otherwise, it is manual-commit. An application calls SQLSetConnec-
tOption to switch between manual-commit and auto-commit mode. Note that if an appl
tion switches from manual-commit to auto-commit mode, the driver commits any open
transactions on the connection.

Applications should call SQLTransact, rather than submitting a COMMIT or ROLL-
BACK statement, to commit or roll back a transaction. The result of a COMMIT or ROLL-
BACK statement depends on the driver and its associated data source.

IMPORTANT: Committing or rolling back a transaction, either by calling SQLTransact or
by using the SQL_AUTOCOMMIT connection option, can cause the data source to clos
cursors and delete the access plans for all hstmts on an hdbc. For more information, see the
SQL_CURSOR_COMMIT_BEHAVIOR and SQL_CURSOR_ROLLBACK_BEHAVIOR
information types in SQLGetInfo.

ODBC Extensions for SQL Statements
ODBC extends the X/Open and SQL Access Group Call Level Interface to provide add
tional functions related to SQL statements. ODBC also extends the X/Open and SQL A
Group SQL CAE specification (1992) to provide common extensions to SQL. The rema
der of this chapter describes these functions and SQL extensions.

To determine if a driver supports a specific function, an application calls SQLGetFunc-
tions. To determine if a driver supports a specific ODBC extension to SQL, such as oute
joins or procedure invocation, an application calls SQLGetInfo.

Retrieving Information About the Data Source’s Catalog
The following functions, known as catalog functions, return information about a data
source’s catalog:

■ SQLTables returns the names of tables stored in a data source.

■ SQLColumns returns the names of columns in one or more tables.

■ SQLPrimaryKeys returns the names of columns that comprise the primary key of a
single table.
 Using SOLID SQL API and ODBC API 2-19

Executing SQL Statements

ti-

 that

lts by

-

tion

s the

e
ed
ary,
■ SQLSpecialColumns returns information about the optimal set of columns that
uniquely identify a row in a single table or the columns in that table that are automa
cally updated when any value in the row is updated by a transaction.

■ SQLStatistics returns statistics about a single table and the indexes associated with
table.

Each function returns the information as a result set. An application retrieves these resu
calling SQLBindCol and SQLFetch.

Sending Parameter Data at Execution Time
To send parameter data at statement execution time, such as for parameters of the
SQL_LONGVARCHAR or SQL_LONGVARBINARY types, an application uses the follow
ing three functions:

■ SQLBindParameter

■ SQLParamData

■ SQLPutData

To indicate that it plans to send parameter data at statement execution time, an applica
calls SQLBindParameter and sets the pcbValue buffer for the parameter to the result of the
SQL_LEN_DATA_AT_EXEC(length) macro. If the fSqlType argument is
SQL_LONGVARBINARY or SQL_LONGVARCHAR and the driver returns “Y” for the
SQL_NEED_LONG_DATA_LEN information type in SQLGetInfo, length is the total num-
ber of bytes of data to be sent for the parameter; otherwise, it is ignored.

The application sets the rgbValue argument to a value that, at run time, can be used to
retrieve the data. For example, rgbValue might point to a storage location that will contain
the data at statement execution time or to a file that contains the data. The driver return
value to the application at statement execution time.

When the driver processes a call to SQLExecute or SQLExecDirect and the statement
being executed includes a data-at-execution parameter, the driver returns
SQL_NEED_DATA. To send the parameter data, the application:

1. Calls SQLParamData, which returns rgbValue (as set with SQLBindParameter) for
the first data-at-execution parameter.

2. Calls SQLPutData one or more times to send data for the parameter. (More than on
call will be needed if the data value is larger than the buffer; multiple calls are allow
only if the C data type is character or binary and the SQL data type is character, bin
or data source–specific.)
2-20 SOLID Programmer Guide

Executing SQL Statements

r. If

 con-
xe-
sted
hese

 state-

G.

he
3. Calls SQLParamData again to indicate that all data has been sent for the paramete
there is another data-at-execution parameter, the driver returns rgbValue for that parame-
ter and SQL_NEED_DATA for the function return code. Otherwise, it returns
SQL_SUCCESS for the function return code.

4. Repeats steps 2 and 3 for the remaining data-at-execution parameters.

For additional information, see the description of “SQLBindParameter (ODBC 2.0,
Level 1)” in Chapter 5, “Function Reference.”

Executing Functions Asynchronously
By default, a driver executes ODBC functions synchronously; the driver does not return
trol to an application until a function call completes. If a driver supports asynchronous e
cution, however, an application can request asynchronous execution for the functions li
below. (All of these functions either submit requests to a data source or retrieve data. T
operations may require extensive processing.)

Asynchronous execution is performed on a statement-by-statement basis. To execute a
ment asynchronously, an application:

1. Calls SQLSetStmtOption with the SQL_ASYNC_ENABLE option to enable asyn-
chronous execution for an hstmt. (To enable asynchronous execution for all hstmts asso-
ciated with an hdbc, an application calls SQLSetConnectOption with the
SQL_ASYNC_ENABLE option.)

2. Calls one of the functions listed earlier in this section and passes it the hstmt. The driver
begins asynchronous execution of the function and returns SQL_STILL_EXECUTIN

NOTE: If the application calls a function that cannot be executed asynchronously, t
driver executes the function synchronously.

SQLColAttributes SQLGetTypeInfo SQLSpecialColumns

SQLColumns SQLNumParams SQLStatistics

SQLDescribeCol SQLNumResultCols SQLTables

SQLDescribeParam SQLParamData

SQLExecDirect SQLPrepare

SQLExecute SQLPrimaryKeys

SQLExtendedFetch SQLPrimaryKeys

SQLFetch SQLPutData

SQLGetData SQLSetPos
 Using SOLID SQL API and ODBC API 2-21

Executing SQL Statements

lica-

gu-

s a
ncel-

n.

 the X/
xten-
3. Performs other operations while the function is executing asynchronously. The app
tion can call any function with a different hstmt or an hdbc not associated with the origi-
nal hstmt. With the original hstmt and the hdbc associated with that hstmt, the
application can only call the original function, SQLAllocStmt, SQLCancel, or
SQLGetFunctions.

4. Calls the asynchronously executing function to check if it has finished. While the ar
ments must be valid, the driver ignores all of them except the hstmt argument. For
example, suppose an application called SQLExecDirect to execute a SELECT state-
ment asynchronously. When the application calls SQLExecDirect again, the return
value indicates the status of the SELECT statement, even if the szSqlStr argument con-
tains an INSERT statement.

If the function is still executing, the driver returns SQL_STILL_EXECUTING and the
application must repeat steps 3 and 4. If the function has finished, the driver return
different code, such as SQL_SUCCESS or SQL_ERROR. For information about ca
ing a function executing asynchronously, see “Terminating Statement Processing” this
chapter.

5. Repeats steps 2 through 4 as needed.

To disable asynchronous execution for an hstmt, an application calls SQLSetStmtOption
with the SQL_ASYNC_ENABLE option. To disable asynchronous execution for all hstmts
associated with an hdbc, an application calls SQLSetConnectOption with the
SQL_ASYNC_ENABLE option.

NOTE: ODBC drivers for SOLID Embedded Engine do not support asynchronous executio

Using ODBC Extensions to SQL
ODBC defines the following extensions to SQL, which are common to most DBMS’s:

■ Date, time, and timestamp data

■ Scalar functions such as numeric, string, and data type conversion functions

■ LIKE predicate escape characters

■ Outer joins

■ Procedures

The syntax defined by ODBC for these extensions uses the escape clause provided by
Open and SQL Access Group SQL CAE specification (1992) to cover vendor-specific e
sions to SQL. Its format is:

--(*vendor(vendor-name), product(product-name)
2-22 SOLID Programmer Guide

Executing SQL Statements

ither

e

ax

s, a
d
ns to

p-

ation

e
ement
extension *)--

For the ODBC extensions to SQL, product-name is always “ODBC”, since the product
defining them is ODBC. Vendor-name is always “Microsoft”, since ODBC is a Microsoft
product. ODBC also defines a shorthand syntax for these extensions:

{extension}

Most DBMS’s provide the same extensions to SQL as does ODBC. Because of this, an
application may be able to submit an SQL statement using one of these extensions in e
of two ways:

■ Use the syntax defined by ODBC. An application that uses the ODBC syntax will b
interoperable among DBMS’s.

■ Use the syntax defined by the DBMS. An application that uses DBMS-specific synt
will not be interoperable among DBMS’s.

Due to the difficulty in implementing some ODBC extensions to SQL, such as outer join
driver might only implement those ODBC extensions that are supported by its associate
DBMS. To determine whether the driver and data source support all the ODBC extensio
SQL, an application calls SQLGetInfo with the SQL_ODBC_SQL_CONFORMANCE flag.
For information about how an application determines whether a specific extension is su
ported, see the section that describes the extension.

NOTE: Many DBMS’s provide extensions to SQL other than those defined by ODBC. To
use one of these extensions, an application uses the DBMS-specific syntax. The applic
will not be interoperable among DBMS’s.

Date, Time, and Timestamp Data
The escape clauses ODBC uses for date, time, and timestamp data are:

--(*vendor(Microsoft),product(ODBC) d ' value ' *)--

--(*vendor(Microsoft),product(ODBC) t ' value ' *)--

--(*vendor(Microsoft),product(ODBC) ts ' value ' *)--

where d indicates value is a date in the “yyyy-mm-dd” format, t indicates value is a time in
the “hh:mm:ss” format, and ts indicates value is a timestamp in the “yyyy-mm-dd
hh:mm:ss[.f...]” format. The shorthand syntax for date, time, and timestamp data is:

{d ' value '}

{t ' value '}

{ts ' value '}

For example, each of the following statements updates the birthday of John Smith in th
EMPLOYEE table. The first statement uses the escape clause syntax. The second stat
 Using SOLID SQL API and ODBC API 2-23

Executing SQL Statements

n in

eters
me-

the
 the
db

C

lls
t the

e
uses the shorthand syntax. The third statement uses the native syntax for a DATE colum
DEC’s Rdb and is not interoperable among DBMS’s.

UPDATE EMPLOYEE

SET BIRTHDAY=--(*vendor(Microsoft),product(ODBC)
d '1967-01-15' *)--

WHERE NAME='Smith, John'

UPDATE EMPLOYEE SET BIRTHDAY={d '1967-01-15'}
WHERE NAME='Smith, John'

UPDATE EMPLOYEE SET BIRTHDAY='15-Jan-1967'
WHERE NAME='Smith, John'

The ODBC escape clauses for date, time, and timestamp literals can be used in param
with a C data type of SQL_C_CHAR. For example, the following statement uses a para
ter to update the birthday of John Smith in the EMPLOYEE table:

UPDATE EMPLOYEE SET BIRTHDAY=? WHERE NAME='Smith, John'
A storage location of type SQL_C_CHAR bound to the parameter might contain any of
following values. The first value uses the escape clause syntax. The second value uses
shorthand syntax. The third value uses the native syntax for a DATE column in DEC’s R
and is not interoperable among DBMS’s.

"--(*vendor(Microsoft),product(ODBC)
d '1967-01-15' *)--"

"{d '1967-01-15'}"

"'15-Jan-1967'"
An application can also send date, time, or timestamp values as parameters using the
structures defined by the C data types SQL_C_DATE, SQL_C_TIME, and
SQL_C_TIMESTAMP.

To determine if a data source supports date, time, or timestamp data, an application ca
SQLGetTypeInfo. If a driver supports date, time, or timestamp data, it must also suppor
escape clauses for date, time, or timestamp literals.

Scalar Functions
Scalar functions — such as string length, absolute value, or current date — can be used on col-
umns of a result set and on columns that restrict rows of a result set. The escape claus
ODBC uses for scalar functions is:

--(*vendor(Microsoft),product(ODBC)
2-24 SOLID Programmer Guide

Executing SQL Statements

e

e
ment

 use
f
st

ls

-
 uses

,
e
fn scalar-function *)--

where scalar-function is one of the functions listed in Appendix F, “Scalar Functions.” Th
shorthand syntax for scalar functions is:

{fn scalar-function }

For example, each of the following statements creates the same result set of uppercas
employee names. The first statement uses the escape clause syntax. The second state
uses the shorthand syntax. The third statement uses the native syntax for SOLID Embedded
Engine and is not interoperable among DBMS’s.

SELECT --(*vendor(Microsoft),product(ODBC)
fn UCASE(NAME) *)-- FROM EMPLOYEE

SELECT {fn UCASE(NAME)} FROM EMPLOYEE
SELECT UCASE(NAME) FROM EMPLOYEE

An application can mix scalar functions that use native syntax and scalar functions that
ODBC syntax. For example, the following statement creates a result set of last names o
employees in the EMPLOYEE table. (Names in the EMPLOYEE table are stored as a la
name, a comma, and a first name.) The statement uses the ODBC scalar function SUB-
STRING and the SQL Server scalar function CHARINDEX and will only execute cor-
rectly on SQL Server.

SELECT {fn SUBSTRING(NAME, 1, CHARINDEX(',', NAME) – 1)}
FROM EMPLOYEE

To determine which scalar functions are supported by a data source, an application cal
SQLGetInfo with the SQL_NUMERIC_FUNCTIONS, SQL_STRING_FUNCTIONS,
SQL_SYSTEM_FUNCTIONS, and SQL_TIMEDATE_FUNCTIONS flags.

Data Type Conversion Function
ODBC defines a special scalar function, CONVERT, that requests that the data source con
vert data from one SQL data type to another SQL data type. The escape clause ODBC
for the CONVERT function is:

--(*vendor(Microsoft),product(ODBC)

fn CONVERT(value_exp , data_type) *)--

where value_exp is a column name, the result of another scalar function, or a literal value
and data_type is a keyword that matches the #define name used by an ODBC SQL data typ
(as defined in Appendix D, “Data Types”). The shorthand syntax for the CONVERT func-
tion is:

{fn CONVERT(value_exp , data_type)}
 Using SOLID SQL API and ODBC API 2-25

Executing SQL Statements

e

ls

and
charac-
er.

ntax

nt
se
 native
t
ny

, an
For example, the following statement creates a result set of the names and ages of all
employees in their twenties. It uses the CONVERT function to convert each employee’s ag
from type SQL_SMALLINT to type SQL_CHAR. Each resulting character string is com-
pared to the pattern “2%” to determine if the employee’s age is in the twenties.

SELECT NAME, AGE FROM EMPLOYEE WHERE
{fn CONVERT(AGE,SQL_CHAR)} LIKE '2%'

To determine if the CONVERT function is supported by a data source, an application cal
SQLGetInfo with the SQL_CONVERT_FUNCTIONS flag. See Appendix F, “Scalar Func-
tions” for more information about the CONVERT function.

LIKE Predicate Escape Characters
In a LIKE predicate, the percent character (%) matches zero or more of any character
the underscore character (_) matches any one character. The percent and underscore
ters can be used as literals in a LIKE predicate by preceding them with an escape charact
The escape clause ODBC uses to define the LIKE predicate escape character is:

--(*vendor(Microsoft),product(ODBC)

escape ' escape-character ' *)--

where escape-character is any character supported by the data source. The shorthand sy
for the LIKE predicate escape character is:

{escape ' escape-character '}

For example, each of the following statements creates the same result set of departme
names that start with the characters “%AAA”. The first statement uses the escape clau
syntax. The second statement uses the shorthand syntax. The third statement uses the
syntax for Ingres and is not interoperable among DBMS’s. Note that the second percen
character in each LIKE predicate is a wild-card character that matches zero or more of a
character.

SELECT NAME FROM DEPT WHERE NAME LIKE '\%AAA%'
--(*vendor(Microsoft),product(ODBC) escape '\'*)--

SELECT NAME FROM DEPT WHERE NAME LIKE '\%AAA%'
{escape '\'}

SELECT NAME FROM DEPT WHERE NAME LIKE '\%AAA%'
ESCAPE '\'

To determine whether LIKE predicate escape characters are supported by a data source
application calls SQLGetInfo with the SQL_LIKE_ESCAPE_CLAUSE information type.
2-26 SOLID Programmer Guide

Executing SQL Statements

s for

s and
 clause
 native

,
rt

DBC
Outer Joins
ODBC supports the ANSI SQL-92 left outer join syntax. The escape clause ODBC use
outer joins is:

--(*vendor(Microsoft),product(ODBC) oj outer-join *)--

where outer-join is:

table-reference LEFT OUTER JOIN { table-reference |

outer-join } ON search-condition

table-reference specifies a table name, and search-condition specifies the join condition
between the table-references. The shorthand syntax for outer joins is:

{oj outer-join }

An outer join request must appear after the FROM keyword and before the WHERE clause
(if one exists). SeeAppendix C, “SQL Grammar” for complete syntax information.

For example, each of the following statements creates the same result set of the name
departments of employees working on project 544. The first statement uses the escape
syntax. The second statement uses the shorthand syntax. The third statement uses the
syntax for Oracle and is not interoperable among DBMS’s.

SELECT EMPLOYEE.NAME, DEPT.DEPTNAME FROM
--(*vendor(Microsoft),product(ODBC) oj EMPLOYEE

LEFT OUTER JOIN DEPT ON
EMPLOYEE.DEPTID=DEPT.DEPTID*)--

WHERE EMPLOYEE.PROJID=544

SELECT EMPLOYEE.NAME, DEPT.DEPTNAME FROM
{oj EMPLOYEE LEFT OUTER JOIN DEPT ON

EMPLOYEE.DEPTID=DEPT.DEPTID}
WHERE EMPLOYEE.PROJID=544

SELECT EMPLOYEE.NAME, DEPT.DEPTNAME FROM EMPLOYEE, DEPT
WHERE (EMPLOYEE.PROJID-544) AND

(EMPLOYEE.DEPTID = DEPT.DEPTID (+))
To determine the level of outer joins a data source supports, an application calls SQLGet-
Info with the SQL_OUTER_JOINS flag. Data sources can support two-table outer joins
partially support multi-table outer joins, fully support multi-table outer joins, or not suppo
outer joins.

Procedures
An application can call a procedure in place of an SQL statement. The escape clause O
uses for calling a procedure is:
 Using SOLID SQL API and ODBC API 2-27

Executing SQL Statements

ters

alue.
he
alue if

all-

se a

 a

-

he

 cre-
t uses
--(*vendor(Microsoft),product(ODBC)

[?=] call procedure-name

[([parameter][, [parameter]]...)] *)--

where procedure-name specifies the name of a procedure stored on the data source and
parameter specifies a procedure parameter. A procedure can have zero or more parame
and can return a value. The shorthand syntax for procedure invocation is:

{ [?=] call procedure-name

[([parameter][, [parameter]]...)] }

For output parameters, parameter must be a parameter marker. For input and input/output
parameters, parameter can be a literal, a parameter marker, or not specified. If parameter is
a literal or is not specified for an input/output parameter, the driver discards the output v
If parameter is not specified for an input or input/output parameter, the procedure uses t
default value of the parameter as the input value; the procedure also uses the default v
parameter is a parameter marker and the pcbValue argument in SQLBindParameter is
SQL_DEFAULT_PARAM. If a procedure call includes parameter markers (including the
“?=” parameter marker for the return value), the application must bind each marker by c
ing SQLBindParameter prior to calling the procedure.

NOTE: For some data sources, parameter cannot be a literal value. For all data sources, it
can be a parameter marker. For maximum interoperability, applications should always u
parameter marker for parameter.

If an application specifies a return value parameter for a procedure that does not return
value, the driver sets the pcbValue buffer specified in SQLBindParameter for the parame-
ter to SQL_NULL_DATA. If the application omits the return value parameter for a proce
dure returns a value, the driver ignores the value returned by the procedure.

If a procedure returns a result set, the application retrieves the data in the result set in t
same manner as it retrieves data from any other result set.

For example, each of the following statements uses the procedure EMPS_IN_PROJ to
ate the same result set of names of employees working on a project. The first statemen
the escape clause syntax. The second statement uses the shorthand syntax.

--(*vendor(Microsoft),product(ODBC)
call EMPS_IN_PROJ(?)*)--

{call EMPS_IN_PROJ(?)}

To determine if a data source supports procedures, an application calls SQLGetInfo with the
SQL_PROCEDURES information type.
2-28 SOLID Programmer Guide

Retrieving Results

or

BC

ore

t it.

-

Additional Extension Functions
ODBC also provides the following functions related to SQL statements. See Chapter 5,
“Function Reference” for more information about these functions.

Retrieving Results
A SELECT statement is used to retrieve data that meets a given set of specifications. F
example, SELECT * FROM EMPLOYEE WHERE EMPNAME = "Jones" is used to
retrieve all columns of all rows in EMPLOYEE where the employee’s name is Jones. OD
extension functions also can retrieve data. For example, SQLColumns retrieves data about
columns in the data source. These sets of data, called result sets, can contain zero or m
rows.

Note that other SQL statements, such as GRANT or REVOKE , do not return result sets.
For these statements, the return code from SQLExecute or SQLExecDirect is usually the
only source of information as to whether the statement was successful. (For INSERT,
UPDATE, and DELETE statements, an application can call SQLRowCount to return the
number of affected rows.)

The steps an application takes to process a result set depends on what is known abou

■ Known result set The application knows the exact form of the SQL statement, and
therefore the result set, at compile time. For example, the query SELECT EMPNO,
EMPNAME FROM EMPLOYEE returns two specific columns.

■ Unknown result set The application does not know the exact form of the SQL state
ment, and therefore the result set, at compile time. For example, the ad hoc query
SELECT * FROM EMPLOYEE returns all currently defined columns in the
EMPLOYEE table. The application may not be able to predict the format of these
results prior to execution.

Function Description

SQLDescribeParam Retrieves information about prepared parameters.

SQLNumParams Retrieves the number of parameters in an SQL statement.

SQLSetStmtOption
SQLSetConnectOption
SQLGetStmtOption

These functions set or retrieve statement options, such as
asynchronous processing, orientation for binding rowsets,
maximum amount of variable length data to return, maxi-
mum number of result set rows to return, and query time-
out value. Note that SQLSetConnectOption sets options
for all statements in a connection.
 Using SOLID SQL API and ODBC API 2-29

Retrieving Results

ent. If
ult set
ca-

er

data.

nc-
 time

mu-

 until

not
Assigning Storage for Results (Binding)
An application can assign storage for results before or after it executes an SQL statem
an application prepares or executes the SQL statement first, it can inquire about the res
before it assigns storage for results. For example, if the result set is unknown, the appli
tion must retrieve the number of columns before it can assign storage for them.

To associate storage for a column of data, an application calls SQLBindCol and passes it the
following information:

■ The data type to which the data is to be converted. For more information, see “Convert-
ing Data from SQL to C Data Types” on page D-19.

■ The address of an output buffer for the data. The application must allocate this buff
and it must be large enough to hold the data in the form to which it is converted.

■ The length of the output buffer. This value is ignored if the returned data has a fixed
width in C, such as an integer, real number, or date structure.

■ The address of a storage buffer in which to return the number of bytes of available

Determining the Characteristics of a Result Set
To determine the characteristics of a result set, an application can:

■ Call SQLNumResultCols to determine how many columns a request returned.

■ Call SQLColAttributes or SQLDescribeCol to describe a column in the result set.

If the result set is unknown, an application can use the information returned by these fu
tions to bind the columns in the result set. An application can call these functions at any
after a statement is prepared or executed. Note that, although SQLRowCount can some-
times return the number of rows in a result set, it is not guaranteed to do so. Few data
sources support this functionality and interoperable applications should not rely on it.

NOTE: For optimal performance, an application should call SQLColAttributes , SQLDe-
scribeCol, and SQLNumResultCols after a statement is executed. In data sources that e
late statement preparation, these functions sometimes execute more slowly before a
statement is executed because the information returned by them is not readily available
after the statement is executed.

Fetching Result Data
To retrieve a row of data from the result set, an application:

1. Calls SQLBindCol to bind the columns of the result set to storage locations if it has
already done so.
2-30 SOLID Programmer Guide

Retrieving Results

nd

e

o
 CRT

, one
t, the

e the

i-
se
2. Calls SQLFetch to move to the next row in the result set and retrieve data for all bou
columns.

The following diagram shows the operations an application uses to retrieve data from th
result set:

Using Cursors
To keep track of its position in the result set, a driver maintains a cursor. The cursor is s
named because it indicates the current position in the result set, just as the cursor on a
screen indicates current position.

Each time an application calls SQLFetch, the driver moves the cursor to the next row and
returns that row. The cursor supported by the core ODBC functions only scrolls forward
row at a time. (To reretrieve a row of data that it has already retrieved from the result se
application must close the cursor by calling SQLFreeStmt with the SQL_CLOSE option,
reexecute the SELECT statement, and fetch rows with SQLFetch until the target row is
retrieved.)

IMPORTANT: Committing or rolling back a transaction, either by calling SQLTransact or
by using the SQL_AUTOCOMMIT connection option, can cause the data source to clos
cursors for all hstmts on an hdbc. For more information, see the
SQL_CURSOR_COMMIT_BEHAVIOR and SQL_CURSOR_ROLLBACK_BEHAVIOR
information types in SQLGetInfo.

ODBC Extensions for Results
ODBC extends the X/Open and SQL Access Group Call Level Interface to provide add
tional functions related to retrieving results. The remainder of this chapter describes the

SELECT statement

SQLNumResultCols
SQLDescribeCol

SQLBindCol

SQLFetch

More Rows?

Finished

Yes No
 Using SOLID SQL API and ODBC API 2-31

Retrieving Results

w. It

l-

 con-

pe

 if

alls

-

steps

re are

 for
functions. To determine if a driver supports a specific function, an application calls
SQLGetFunctions.

Retrieving Data from Unbound Columns
To retrieve data from unbound columns — that is, columns for which storage has not been
assigned with SQLBindCol — an application uses SQLGetData. The application first calls
SQLFetch or SQLExtendedFetch to position the cursor on the next row. It then calls
SQLGetData to retrieve data from specific unbound columns.

An application may retrieve data from both bound and unbound columns in the same ro
calls SQLBindCol to bind as many columns as desired. It calls SQLFetch or SQLExtend-
edFetch to position the cursor on the next row of the result set and retrieve all bound co
umns. It then calls SQLGetData to retrieve data from unbound columns.

If the data type of a column is character, binary, or data source–specific and the column
tains more data than can be retrieved in a single call, an application may call SQLGetData
more than once for that column, as long as the data is being transferred to a buffer of ty
SQL_C_CHAR or SQL_C_BINARY. For example, data of the SQL_LONGVARBINARY
and SQL_LONGVARCHAR types may need to be retrieved in several parts.

For maximum interoperability, an application should only call SQLGetData for columns to
the right of the rightmost bound column and then only in left-to-right order. To determine
a driver can return data with SQLGetData for any column (including unbound columns
before the last bound column and any bound columns) or in any order, an application c
SQLGetInfo with the SQL_GETDATA_EXTENSIONS option.

Assigning Storage for Rowsets (Binding)
In addition to binding individual rows of data, an application can call SQLBindCol to assign
storage for a rowset (one or more rows of data). By default, rowsets are bound in column
wise fashion. They can also be bound in row-wise fashion.

To specify how many rows of data are in a rowset, an application calls SQLSetStmtOption
with the SQL_ROWSET_SIZE option.

Column-Wise Binding
To assign storage for column-wise bound results, an application performs the following
for each column to be bound:

1. Allocates an array of data storage buffers. The array has as many elements as the
rows in the rowset.

2. Allocates an array of storage buffers to hold the number of bytes available to return
each data value. The array has as many elements as there are rows in the rowset.
2-32 SOLID Programmer Guide

Retrieving Results

ent
e

 size

ps:

 data
ata

re rows

es
field,
 type

f
ter-

col-

r.

ith
3. Calls SQLBindCol and specifies the address of the data array, the size of one elem
of the data array, the address of the number-of-bytes array, and the type to which th
data will be converted. When data is retrieved, the driver will use the array element
to determine where to store successive rows of data in the array.

Row-Wise Binding
To assign storage for row-wise bound results, an application performs the following ste

1. Declares a structure that can hold a single row of retrieved data and the associated
lengths. (For each column to be bound, the structure contains one field to contain d
and one field to contain the number of bytes of data available to return.)

2. Allocates an array of these structures. This array has as many elements as there a
in the rowset.

3. Calls SQLBindCol for each column to be bound. In each call, the application specifi
the address of the column’s data field in the first array element, the size of the data
the address of the column’s number-of-bytes field in the first array element, and the
to which the data will be converted.

4. Calls SQLSetStmtOption with the SQL_BIND_TYPE option and specifies the size o
the structure. When the data is retrieved, the driver will use the structure size to de
mine where to store successive rows of data in the array.

Retrieving Rowset Data
Before it retrieves rowset data, an application calls SQLSetStmtOption with the
SQL_ROWSET_SIZE option to specify the number of rows in the rowset. It then binds
umns in the rowset with SQLBindCol. The rowset may be bound in column-wise or row-
wise fashion. For more information, read “Assigning Storage for Rowsets (Binding)” in the
previous section.

To retrieve rowset data, an application calls SQLExtendedFetch. SOLID SQL API does not
support SQLExtendedFetch. The functionality is available through ODBC Driver Manage

For maximum interoperability, an application should not use SQLGetData to retrieve data
from unbound columns in a block (more than one row) of data that has been retrieved w
SQLExtendedFetch. To determine if a driver can return data with SQLGetData from a
block of data, an application calls SQLGetInfo with the SQL_GETDATA_EXTENSIONS
option.
 Using SOLID SQL API and ODBC API 2-33

Retrieving Results

and

te or

e

ing a
ppears
lling

till
ires

ener-

s

he
s

 the
Using Block and Scrollable Cursors
As originally designed, cursors in SQL only scroll forward through a result set, returning
one row at a time. However, interactive applications often require forward and backward
scrolling, absolute or relative positioning within the result set, and the ability to retrieve
update blocks of data, or rowsets.

To retrieve and update rowset data, ODBC provides a block cursor attribute. To allow an
application to scroll forwards or backwards through the result set, or move to an absolu
relative position in the result set, ODBC provides a scrollable cursor attribute. Cursors may
have one or both attributes.

Block Cursors
An application calls SQLSetStmtOption with the SQL_ROWSET_SIZE option to specify
the rowset size. The application can call SQLSetStmtOption to change the rowset size at
any time. Each time the application calls SQLExtendedFetch, the driver returns the next
rowset size rows of data. After the data is returned, the cursor points to the first row in th
rowset. By default, the rowset size is one.

Scrollable Cursors
Applications have different needs in their ability to sense changes in the tables underly
result set. For example, when balancing financial data, an accountant needs data that a
static; it is impossible to balance books when the data is continually changing. When se
concert tickets, a clerk needs up-to-the minute, or dynamic, data on which tickets are s
available. Various cursor models are designed to meet these needs, each of which requ
different sensitivities to changes in the tables underlying the result set.

Static Cursors
At one extreme are static cursors, to which the data in the underlying tables appears to be
static. The membership, order, and values in the result set used by a static cursor are g
ally fixed when the cursor is opened. Rows updated, deleted, or inserted by other users
(including other cursors in the same application) are not detected by the cursor until it i
closed and then reopened; the SQL_STATIC_SENSITIVITY information type returns
whether the cursor can detect rows it has updated, deleted, or inserted.

Static cursors are commonly implemented by taking a snapshot of the data or locking t
result set. Note that in the former case, the cursor diverges from the underlying tables a
other users make changes; in the latter case, other users are prohibited from changing
data.
2-34 SOLID Programmer Guide

Retrieving Results

nging.
pplica-
ugh

a key-
ost
 next

t, thus
lt set,

r the

er

row
f data
oun-

w.

ame
 those

t
is con-
an
Dynamic Cursors
At the other extreme are dynamic cursors, to which the data appears to be dynamic. The
membership, order, and values in the result set used by a dynamic cursor are ever-cha
Rows updated, deleted, or inserted by all users (the cursor, other cursors in the same a
tion, and other applications) are detected by the cursor when data is next fetched. Altho
ideal for many situations, dynamic cursors are difficult to implement.

Keyset-Driven Cursors
Between static and dynamic cursors are keyset-driven cursors, which have some of the
attributes of each. Like static cursors, the membership and ordering of the result set of
set-driven cursor is generally fixed when the cursor is opened. Like dynamic cursors, m
changes to the values in the underlying result set are visible to the cursor when data is
fetched.

When a keyset-driven cursor is opened, the driver saves the keys for the entire result se
fixing the membership and order of the result set. As the cursor scrolls through the resu
the driver uses the keys in this keyset to retrieve the current data values for each row in the
rowset. Because data values are retrieved only when the cursor scrolls to a given row,
updates to that row by other users (including other cursors in the same application) afte
cursor was opened are visible to the cursor.

If the cursor scrolls to a row of data that has been deleted by other users (including oth
cursors in the same application), the row appears as a hole in the result set, since the key is
still in the keyset but the row is no longer in the result set. Updating the key values in a
is considered to be deleting the existing row and inserting a new row; therefore, rows o
for which the key values have been changed also appear as holes. When the driver enc
ters a hole in the result set, it returns a status code of SQL_ROW_DELETED for the ro

Rows of data inserted into the result set by other users (including other cursors in the s
application) after the cursor was opened are not visible to the cursor, since the keys for
rows are not in the keyset.

The SQL_STATIC_SENSITIVITY information type returns whether the cursor can detec
rows it has deleted or inserted. Because updating key values in a keyset-driven cursor
sidered to be deleting the existing row and inserting a new row, keyset-driven cursors c
always detect rows they have updated.

Mixed (Keyset/Dynamic) Cursors
If a result set is large, it may be impractical for the driver to save the keys for the entire
result set. Instead, the application can use a mixed cursor. In a mixed cursor, the keyset is
smaller than the result set, but larger than the rowset.
 Using SOLID SQL API and ODBC API 2-35

Retrieving Results

ses
r
ply

t size of
mple-

t a
result
es row
 the
s

-

 cur-

brary
ents.

he

 A

nsaction
ble and
 1
s are

ets of
n a dif-
Within the boundaries of the keyset, a mixed cursor is keyset-driven, that is, the driver u
keys to retrieve the current data values for each row in the rowset. When a mixed curso
scrolls beyond the boundaries of the keyset, it becomes dynamic, that is, the driver sim
retrieves the next rowset size rows of data. The driver then constructs a new keyset, which
contains the new rowset.

For example, assume a result set has 1000 rows and uses a mixed cursor with a keyse
100 and a rowset size of 10. When the cursor is opened, the driver (depending on the i
mentation) saves keys for the first 100 rows and retrieves data for the first 10 rows. If
another user deletes row 11 and the cursor then scrolls to row 11, the cursor will detec
hole in the result set; the key for row 11 is in the keyset but the data is no longer in the
set. This is the same behavior as a keyset-driven cursor. However, if another user delet
101 and the cursor then scrolls to row 101, the cursor will not detect a hole; the key for
row 101 is not in the keyset. Instead, the cursor will retrieve the data for the row that wa
originally row 102. This is the same behavior as a dynamic cursor.

Specifying the Cursor Type
To specify the cursor type, an application calls SQLSetStmtOption with the
SQL_CURSOR_TYPE option. The application can specify a cursor that only scrolls for
ward, a static cursor, a dynamic cursor, a keyset-driven cursor, or a mixed cursor. If the
application specifies a mixed cursor, it also specifies the size of the keyset used by the
sor.

NOTE: To use the ODBC cursor library, an application calls SQLSetConnectOption with
the SQL_ODBC_CURSORS option before it connects to the data source. The cursor li
supports block scrollable cursors. It also supports positioned update and delete statem

Unless the cursor is a forward-only cursor, an application calls SQLExtendedFetch to scroll
the cursor backwards, forwards, or to an absolute or relative position in the result set. T
application calls SQLSetPos to refresh the row currently pointed to by the cursor.

Specifying Cursor Concurrency
Concurrency is the ability of more than one user to use the same data at the same time.
transaction is serializable if it is performed in a manner in which it appears as if no other
transactions operate on the same data at the same time. For example, assume one tra
doubles data values and another adds 1 to data values. If the transactions are serializa
both attempt to operate on the values 0 and 10 at the same time, the final values will be
and 21 or 2 and 22, depending on which transaction is performed first. If the transaction
not serializable, the final values will be 1 and 21, 2 and 22, 1 and 22, or 2 and 21; the s
values 1 and 22, and 2 and 21, are the result of the transactions acting on each value i
ferent order.
2-36 SOLID Programmer Guide

Retrieving Results

ost
ise

en
s if the
trans-
he

nly,
deter-
alues

 does
ts a
r, an
s this

t or

lls

s the
s are
ory,
rks
Serializability is considered necessary to maintain database integrity. For cursors, it is m
easily implemented at the expense of concurrency by locking the result set. A comprom
between serializability and concurrency is optimistic concurrency control. In a cursor using
optimistic concurrency control, the driver does not lock rows when it retrieves them. Wh
the application requests an update or delete operation, the driver or data source check
row has changed. If the row has not changed, the driver or data source prevents other
actions from changing the row until the operation is complete. If the row has changed, t
transaction containing the update or delete operation fails.

To specify the concurrency used by a cursor, an application calls SQLSetStmtOption with
the SQL_CONCURRENCY option. The application can specify that the cursor is read-o
locks the result set, uses optimistic concurrency control and compares row versions to
mine if a row has changed, or uses optimistic concurrency control and compares data v
to determine if a row has changed. The application calls SQLSetPos to lock the row cur-
rently pointed to by the cursor, regardless of the specified cursor concurrency.

Using Bookmarks
A bookmark is a 32-bit value that an application uses to return to a row. The application
not request that the driver places a bookmark on a row; instead, the application reques
bookmark that it can use to return to a row. For example, if a bookmark is a row numbe
application requests the row number of a row and stores it. Later, the application passe
row number back to the driver and requests that the driver return to the row.

Before opening the cursor, an application must call SQLSetStmtOption with the
SQL_USE_BOOKMARKS option to inform the driver it will use bookmarks. After open-
ing the cursor, the application retrieves bookmarks either from column 0 of the result se
by calling SQLGetStmtOption with the SQL_GET_BOOKMARK option. To retrieve a
bookmark from the result set, the application either binds column 0 and calls SQLExtend-
edFetch or calls SQLGetData; in either case, the fCType argument must be set to
SQL_C_BOOKMARK. To return to the row specified by a bookmark, the application ca
SQLExtendedFetch with a fetch type of SQL_FETCH_BOOKMARK.

If a bookmark requires more than 32 bits, such as when it is a key value, the driver map
bookmarks requested by the application to 32-bit binary values. The 32-bit binary value
then returned to the application. Because this mapping may require considerable mem
applications should only bind column 0 of the result set if they will actually use bookma
for most rows. Otherwise, they should call SQLGetStmtOption with the
SQL_BOOKMARK statement option or call SQLGetData for column 0.

Before an application opens a cursor with which it will use bookmarks, it:

■ Calls SQLSetStmtOption with the SQL_USE_BOOKMARKS option and a value of
SQL_UB_ON.
 Using SOLID SQL API and ODBC API 2-37

Retrieving Results

e

et

cur-

an
To retrieve a bookmark for the current row, an application:

■ Retrieves the value from column 0 of the rowset. The application can either call SQL-
BindCol to bind column 0 before it calls SQLExtendedFetch or call SQLGetData to
retrieve the data after it calls SQLExtendedFetch. In either case, the fCType argument
must be SQL_C_BOOKMARK.

NOTE: To determine whether it can call SQLGetData for a block (more than one row)
of data and whether it can call SQLGetData for a column before the last bound col-
umn, an application calls SQLGetInfo with the SQL_GETDATA_EXTENSIONS infor-
mation type.

– Or –

Calls SQLSetPos with the SQL_POSITION option to position the cursor on the row
and calls SQLGetStmtOption with the SQL_BOOKMARK option to retrieve the
bookmark.

To return to the row specified by a bookmark (or a row a certain number of rows from th
bookmark), an application:

■ Calls SQLExtendedFetch with the irow argument set to the bookmark and the
fFetchType argument set to SQL_FETCH_BOOKMARK. The driver returns the rows
starting with the row identified by the bookmark.

Modifying Result Set Data
ODBC provides two ways to modify data in the result set. Positioned update and delete
statements are similar to such statements in embedded SQL. Calls to SQLSetPos allow an
application to update, delete, or add new data without executing SQL statements.

Executing Positioned Update and Delete Statements
An application can update or delete the row in the result set currently pointed to by the
sor. This is known as a positioned update or delete statement. After executing a SELECT
statement to create a result set, an application calls SQLFetch one or more times to position
the cursor on the row to be updated or deleted. Alternatively, it fetches the rowset with
SQLExtendedFetch and positions the cursor on the desired row by calling SQLSetPos with
the SQL_POSITION option. To update or delete the row, the application then executes
SQL statement with the following syntax on a different hstmt:

UPDATE table-name
SET Column-identifier = { expression | NULL}
[, column-identifier = { expression | NULL}]...
WHERE CURRENT OF cursor-name
2-38 SOLID Programmer Guide

Retrieving Results

e a

 the

uide-

plica-

nded
 state-
ter-

 to

te and
f the

hose
DELETE FROM table-name WHERE CURRENT OF cursor-name

Positioned update and delete statements require cursor names. An application can nam
cursor with SQLSetCursorName. If the application has not named the cursor by the time
the driver executes a SELECT statement, the driver generates a cursor name. To retrieve
cursor name for an hstmt, an application calls SQLGetCursorName.

To execute a positioned update or delete statement, an application must follow these g
lines:

■ The SELECT statement that creates the result set must use a FOR UPDATE clause.

■ The cursor name used in the UPDATE or DELETE statement must be the same as the
cursor name associated with the SELECT statement.

■ The application must use different hstmts for the SELECT statement and the UPDATE
or DELETE statement.

■ The hstmts for the SELECT statement and the UPDATE or DELETE statement must
be on the same connection.

To determine if a data source supports positioned update and delete statements, an ap
tion calls SQLGetInfo with the SQL_POSITIONED_STATEMENTS option. For an exam-
ple of code that performs a positioned update in a rowset, see “SQLSetPos (ODBC 1.0, Level
2)” in Chapter 5, “Function Reference.”

NOTE: In ODBC 1.0, positioned update, positioned delete, and SELECT FOR UPDATE
statements were part of the core SQL grammar; in ODBC 2.0, they are part of the exte
grammar. Applications that use the SQL conformance level to determine whether these
ments are supported also need to check the version number of the driver to correctly in
pret the information. In particular, applications that use these features with ODBC 1.0
drivers need to explicitly check for these capabilities in ODBC 2.0 drivers.

Modifying Data with SQLSetPos
To add, update, and delete rows of data, an application calls SQLSetPos and specifies the
operation, the row number, and how to lock the row. Where new rows of data are added
the result set, and whether they are visible to the cursor is data source–defined.

The row number determines both the number of the row in the rowset to update or dele
the index of the row in the rowset buffers from which to retrieve data to add or update. I
row number is 0, the operation affects all of the rows in the rowset.

SQLSetPos retrieves the data to update or add from the rowset buffers. It only updates t
columns in a row that have been bound with SQLBindCol and do not have a length of
 Using SOLID SQL API and ODBC API 2-39

Retrieving Results

e

w of

a-

a-

SQL_IGNORE. However, it cannot add a new row of data unless all of the columns in th
row are bound, are nullable, or have a default value.

To add a new row of data to the result set, an application:

1. Places the data for each column the rgbValue buffers specified with SQLBindCol. To
avoid overwriting an existing row of data, the application should allocate an extra ro
the rowset buffers to use as an add buffer.

2. Places the length of each column in the pcbValue buffer specified with SQLBindCol;
this only needs to be done for columns with an fCType of SQL_C_CHAR or
SQL_C_BINARY. To use the default value for a column, the application specifies a
length of SQL_IGNORE.

NOTE: To add a new row of data to a result set, one of the following two conditions
must be met:

■ All columns in the underlying tables must be bound
with SQLBindCol.

■ Αll unbound columns and all bound columns for

which the specified length is SQL_IGNORE must accept NULL values or have
default values.

To determine if a row in a result set accepts NULL values, an application calls SQLCo-
lAttributes . To determine if a data source supports non-nullable columns, an applic
tion calls SQLGetInfo with the SQL_NON_NULLABLE flag.

3. Calls SQLSetPos with the fOption argument set to SQL_ADD. The irow argument
determines the row in the rowset buffers from which the data is retrieved. For inform
tion about how an application sends data for data-at-execution columns, see “SQLSet-
Pos (ODBC 1.0, Level 2)” in Chapter 5, “Function Reference.”

After the row is added, the row the cursor points to is unchanged.

NOTE: Columns for long data types, such as SQL_LONGVARCHAR and
SQL_LONGVARBINARY, are generally not bound. However, if an application uses
SQLSetPos to send data for these columns, it must bind them with SQLBindCol.
Unless the driver returns the SQL_GD_BOUND bit for the
SQL_GETDATA_EXTENSIONS information type, the application must unbind them
before calling SQLGetData to retrieve data from them.

To update a row of data, an application:

1. Modifies the data of each column to be updated in the rgbValue buffer specified with
SQLBindCol.
2-40 SOLID Programmer Guide

Function Return Codes

to

g a

ns a
ollow-
2. Places the length of each column to be updated in the pcbValue buffer specified with
SQLBindCol. This only needs to be done for columns with an fCType of
SQL_C_CHAR or SQL_C_BINARY.

3. Sets the value of the pcbValue buffer for each bound column that is not to be updated
SQL_IGNORE.

4. Calls SQLSetPos with the fOption argument set to SQL_UPDATE. The irow argument
specifies the number of the row in the rowset to modify and the index of row in the
rowset buffer from which to retrieve the data. The cursor points to this row after it is
updated.

For information about how an application sends data for data-at-execution columns,
“SQLSetPos (ODBC 1.0, Level 2)” in Chapter 5, “Function Reference.”

To delete a row of data, an application:

■ Calls SQLSetPos with the fOption argument set to SQL_DELETE. The irow argument
specifies the number of the row in the rowset to delete. The cursor points to this row
after it is deleted.

NOTE: The application cannot perform any positioned operations, such as executin
positioned update or delete statement or calling SQLGetData, on a deleted row.

To determine what operations a data source supports for SQLSetPos, an application calls
SQLGetInfo with the SQL_POS_OPERATIONS flag.

The protocol describes:

■ Use of the error text to identify the source of an error.

■ Rules to ensure consistent and useful error information.

■ Responsibility for setting the ODBC SQLSTATE based on the native error.

Function Return Codes
When an application calls an ODBC function, the driver executes the function and retur
predefined code. These return codes indicate success, warning, or failure status. The f
ing table defines the return codes.
 Using SOLID SQL API and ODBC API 2-41

Retrieving Error Messages

e.

ge.
nc-

ur-
The application is responsible for taking the appropriate action based on the return cod

Retrieving Error Messages
If an ODBC function other than SQLError returns SQL_ERROR or
SQL_SUCCESS_WITH_INFO, an application can call SQLError to obtain additional
information. The application may need to call SQLError more than once to retrieve all the
error messages from a function, since a function may return more than one error messa
When the application calls a different function, the error messages from the previous fu
tion are deleted.

Additional error or status information can come from one of two sources:

■ Error or status information from an ODBC function, indicating that a programming
error was detected.

■ Error or status information from the data source, indicating that an error occurred d
ing SQL statement processing.

Return Code Description

SQL_SUCCESS Function completed successfully; no additional infor-
mation is available.

SQL_SUCCESS_WITH_INFO Function completed successfully, possibly with a non-
fatal error. The application can call SQLError to
retrieve additional information.

SQL_NO_DATA_FOUND All rows from the result set have been fetched.

SQL_ERROR Function failed. The application can call SQLError to
retrieve error information.

SQL_INVALID_HANDLE Function failed due to an invalid environment handle,
connection handle, or statement handle. This indicates
a programming error. No additional information is
available from SQLError .

SQL_STILL_EXECUTING A function that was started asynchronously is still exe-
cuting.

SQL_NEED_DATA While processing a statement, the driver determined
that the application needs to send parameter data val-
ues.
2-42 SOLID Programmer Guide

Retrieving Error Messages

im-

m-

ing
onnel.
po-
ort

on-
ta

tself

here-

on-
The information returned by SQLError is in the same format as that provided by SQL-
STATE in the X/Open and SQL Access Group SQL CAE specification (1992). Note that
SQLError never returns error information about itself.

ODBC Error Messages
ODBC defines a layered architecture to connect an application to a data source. At its s
plest, an ODBC connection requires two components: the Driver Manager and a driver.

A more complex connection might include more components: the Driver Manager, a nu
ber of drivers, and a (possibly different) number of DBMS’s. The connection might cross
computing platforms and operating systems and use a variety of networking protocols.

As the complexity of an ODBC connection increases, so does the importance of provid
consistent and complete error messages to the application, its users, and support pers
Error messages must not only explain the error, but also provide the identity of the com
nent in which it occurred. The identity of the component is particularly important to supp
personnel when an application uses ODBC components from more than one vendor.
Because SQLError does not return the identity of the component in which the error
occurred, this information must be embedded in the error text.

Error Text Format
Error messages returned by SQLError come from two sources: data sources and compo-
nents in an ODBC connection. Typically, data sources do not directly support ODBC. C
sequently, if a component in an ODBC connection receives an error message from a da
source, it must identify the data source as the source of the error. It must also identify i
as the component that received the error.

If the source of an error is the component itself, the error message must explain this. T
fore, the error text returned by SQLError has two different formats: one for errors that
occur in a data source and one for errors that occur in other components in an ODBC c
nection.

For errors that do not occur in a data source, the error text must use the format:

[vendor-identifier][ODBC-component-identifier]

component-supplied-text

For errors that occur in a data source, the error text must use the format:

[vendor-identifier][ODBC-component-identifier]

[data-source-identifier] data-source-supplied-text
 Using SOLID SQL API and ODBC API 2-43

Retrieving Error Messages

s.

gen-
cation
e

ted

gener-
e it also
ents
The following table shows the meaning of each element.

Note that the brackets ([]) are included in the error text; they do not indicate optional item

Sample Error Messages
The following are examples of how various components in an ODBC connection might
erate the text of error messages and how various drivers might return them to the appli
with SQLError . Note that these examples do not represent actual implementations of th
error handling protocol. For more information on how an individual driver has implemen
the protocol, see the documentation for that driver.

Single-Tier Driver
A single-tier driver acts both as an ODBC driver and as a data source. It can therefore
ate errors both as a component in an ODBC connection and as a data source. Becaus
is the component that interfaces with the Driver Manager, it formats and returns argum
for SQLError .

For example, if a Microsoft driver for dBASE® could not allocate sufficient memory, it
might return the following arguments for SQLError :

szSQLState = "S1001"
pfNativeError = NULL
szErrorMsg = "[Microsoft][ODBC dBASE Driver]Unable to

allocate sufficient memory."
pcbErrorMsg = 67

Element Meaning

vendor-identifier Identifies the vendor of the component in
which the error occurred or that received the
error directly from the data source.

ODBC-component-identifier Identifies the component in which the error
occurred or that received the error directly
from the data source.

data-source-identifier Identifies the data source. For single-tier driv-
ers, this is typically a file format. For multiple-
tier drivers, this is the DBMS product.

component-supplied-text Generated by the ODBC component.

data-source-supplied-text Generated by the data source.

1 In this case, the driver is acting as both the driver and the data source.
2-44 SOLID Programmer Guide

Retrieving Error Messages

 the

 data
nt
e

on

pli-

r

Because this error was not related to the data source, the driver only added prefixes to
error text for the vendor ([Microsoft]) and the driver ([ODBC dBASE Driver]).

If the driver could not find the file EMPLOYEE.DBF, it might return the following argu-
ments for SQLError :

szSQLState = "S0002"
pfNativeError = NULL
szErrorMsg = "[Microsoft][ODBC dBASE Driver][dBASE]

Invalid file name;file EMPLOYEE.DBF not found."
pcbErrorMsg = 83

Because this error was related to the data source, the driver added the file format of the
source ([dBASE]) as a prefix to the error text. Because the driver was also the compone
that interfaced with the data source, it added prefixes for the vendor ([Microsoft]) and th
driver ([ODBC dBASE Driver]).

Multiple-Tier Driver
A multiple-tier driver sends requests to a DBMS and returns information to the applicati
through the Driver Manager. Because it is the component that interfaces with the Driver
Manager, it formats and returns arguments for SQLError .

For example, if a Microsoft driver for DEC’s Rdb using SQL/Services encountered a du
cate cursor name, it might return the following arguments for SQLError :

szSQLState = "3C000"
pfNativeError = NULL
szErrorMsg = "[Microsoft][ODBC Rdb Driver]

Duplicate cursor name:EMPLOYEE_CURSOR."
pcbErrorMsg = 67

Because the error occurred in the driver, it added prefixes to the error text for the vendo
([Microsoft]) and the driver ([ODBC Rdb Driver]).

If the DBMS could not find the table EMPLOYEE, the driver might format and return the
following arguments for SQLError :

szSQLState = "S0002"
pfNativeError = -1
szErrorMsg = "[Microsoft][ODBC RDB Driver][RDB]

%SQL-F-RELNOTDEF, Table EMPLOYEE is not defined in schema."
pcbErrorMsg = 92
 Using SOLID SQL API and ODBC API 2-45

Retrieving Error Messages

urce
 with

he
ith the

db
t:

 source
ced

ode
mes-

t

passed

Because the error occurred in the data source, the driver added a prefix for the data so
identifier ([Rdb]) to the error text. Because the driver was the component that interfaced
the data source, it added prefixes for its vendor ([Microsoft]) and identifier ([ODBC Rdb
Driver]) to the error text.

Gateways
In a gateway architecture, a driver sends requests to a gateway that supports ODBC. T
gateway sends the requests to a DBMS. Because it is the component that interfaces w
Driver Manager, the driver formats and returns arguments for SQLError .

For example, if DEC based a gateway to Rdb on Microsoft Open Data Services, and R
could not find the table EMPLOYEE, the gateway might generate the following error tex

"[S0002][-1][DEC][ODS Gateway][SOLID]%SQL-F-RELNOTDEF,
Table EMPLOYEE is not defined in schema."

Because the error occurred in the data source, the gateway added a prefix for the data
identifier ([Rdb]) to the error text. Because the gateway was the component that interfa
with the data source, it added prefixes for its vendor ([DEC]) and identifier ([ODS Gate-
way]) to the error text. Note that it also added the SQLSTATE value and the Rdb error c
to the beginning of the error text. This permitted it to preserve the semantics of its own
sage structure and still supply the ODBC error information to the driver.

Because the gateway driver is the component that interfaces with the Driver Manager, i
would use the preceding error text to format and return the following arguments for SQLEr-
ror :

szSQLState = "S0002"
pfNativeError = -1
szErrorMsg = "[DEC][ODS Gateway][RDB]%SQL-F-RELNOTDEF,

Table EMPLOYEE is not defined in schema."
pcbErrorMsg = 81

Driver Manager
The Driver Manager can also generate error messages. For example, if an application
an invalid argument value to SQLDataSources, the Driver Manager might format and return
the following arguments for SQLError :

szSQLState = "S1009"
pfNativeError = NULL
szErrorMsg = "[Microsoft][ODBC DLL]Invalid argument

value: SQLDataSources."
pcbErrorMsg = 60
2-46 SOLID Programmer Guide

Terminating Transactions and Connections

 its

rror.
fy-

nnec-

nnec-

ll

t is

-

such
Because the error occurred in the Driver Manager, it added prefixes to the error text for
vendor ([Microsoft]) and its identifier ([ODBC DLL]).

Processing Error Messages
Applications should provide users with all the error information available through SQLEr-
ror : the ODBC SQLSTATE, the native error code, the error text, and the source of the e
The application may parse the error text to separate the text from the information identi
ing the source of the error. It is the application’s responsibility to take appropriate action
based on the error or provide the user with a choice of actions.

The ODBC interface provides functions that terminate statements, transactions, and co
tions, and free statement (hstmt), connection (hdbc), and environment (henv) handles.

Terminating Transactions and Connections
The ODBC interface provides functions that terminate statements, transactions, and co
tions, and free statement (hstmt), connection (hdbc), and environment (henv) handles.

Terminating Statement Processing
To free resources associated with a statement handle, an application calls SQLFreeStmt.
The SQLFreeStmt function has four options:

■ SQL_CLOSE Closes the cursor, if one exists, and discards pending results. The
application can use the statement handle again later.

■ SQL_DROP Closes the cursor if one exists, discards pending results, and frees a
resources associated with the statement handle.

■ SQL_UNBIND Frees all return buffers bound by SQLBindCol for the statement han-
dle.

■ SQL_RESET_PARAMS Frees all parameter buffers requested by SQLBindParam-
eter for the statement handle.

To cancel a statement that is executing asynchronously, an application:

■ Calls SQLCancel. When and if the statement is actually canceled is driver- and data
source–dependent.

■ Calls the function that was executing the statement asynchronously. If the statemen
still executing, the function returns SQL_STILL_EXECUTING; if it was successfully
canceled, the function returns SQL_ERROR and SQLSTATE S1008 (Operation can
celed); if it completed normal execution, the function returns any valid return code,
as SQL_SUCCESS or SQL_ERROR.
 Using SOLID SQL API and ODBC API 2-47

Constructing an Application

-

wing

dle

ted

vel-
-

ct the

com-
■ Calls SQLError if the function returned SQL_ERROR. If the driver successfully can
celed the function, the SQLSTATE will be S1008 (Operation canceled).

Terminating Transactions
An application calls SQLTransact to commit or roll back the current transaction.

Terminating Connections
To terminate a connection to a driver and data source, an application performs the follo
steps:

1. Calls SQLDisconnect to close the connection. The application can then use the han
to reconnect to the same data source or to a different data source.

2. Calls SQLFreeConnect to free the connection handle and free all resources associa
with the handle.

3. Calls SQLFreeEnv to free the environment handle and free all resources associated
with the handle.

Constructing an Application
This section provides two examples of C-language source code for applications. For de
opers, a summary of development, debugging, installation, and administration tools pro
vided by the ODBC SDK 2.0 is included.

Sample Application Code
The following sections contain two examples that are written in the C programming lan-
guage:

■ An example that uses static SQL functions to create a table, add data to it, and sele
inserted data.

■ An example of interactive, ad-hoc query processing.

These examples can use either ODBC header files or SOLID SQL API header files.

Static SQL Example
The following example constructs SQL statements within the application. The example
ments include equivalent embedded SQL calls for illustrative purposes.

#ifdef SOLIDSQLAPI
#include "CLI0DEFS.H"
2-48 SOLID Programmer Guide

Sample Application Code
#include "CLI0CORE.H"
#include "CLI0EXT1.H"
#else
#include "SQL.H"
#include "SQLEXT.H"
#endif

#include <string.h>

#ifndef NULL
#define NULL 0
#endif

#define MAX_NAME_LEN 50
#define MAX_STMT_LEN 100

int print_err(HDBC hdbc, HSTMT hstmt);

int example1(server, uid, pwd)
UCHAR * server;
UCHAR * uid;
UCHAR * pwd;
{
HENV henv;
HDBC hdbc;
HSTMT hstmt;

SDWORD id;
UCHAR name[MAX_NAME_LEN + 1];
UCHAR create[MAX_STMT_LEN]
UCHAR insert[MAX_STMT_LEN]
UCHAR select[MAX_STMT_LEN]
SDWORD namelen;

RETCODE rc;
/* EXEC SQL CONNECT TO :server USER :uid USING :pwd; */
/* Allocate an environment handle. */
/* Allocate a connection handle. */
/* Connect to a data source. */
/* Allocate a statement handle. */

SQLAllocEnv(&henv);
SQLAllocConnect(henv, &hdbc);
rc = SQLConnect(hdbc, server, SQL_NTS, uid, SQL_NTS,

pwd, SQL_NTS);
 Using SOLID SQL API and ODBC API 2-49

Sample Application Code
if (rc != SQL_SUCCESS && rc != SQL_SUCCESS_WITH_INFO)
return(print_err(hdbc, SQL_NULL_HSTMT));

SQLAllocStmt(hdbc, &hstmt);

/* EXEC SQL CREATE TABLE NAMEID */
/* (ID integer, NAME varchar(50)); */
/* Execute the SQL statement. */

lstrcpy(create, "CREATE TABLE NAMEID (ID INTEGER, NAME
VARCHAR(50))");

rc = SQLExecDirect(hstmt, create, SQL_NTS);
if (rc != SQL_SUCCESS && rc != SQL_SUCCESS_WITH_INFO)

return(print_err(hdbc, hstmt));

/* EXEC SQL COMMIT WORK; */
/* Commit the table creation. */

/* Note that the default transaction mode for drivers */
/* that support SQLSetConnectOption is auto-commit */
/* and SQLTransact has no effect. */

SQLTransact(hdbc, SQL_COMMIT);

/* EXEC SQL INSERT INTO NAMEID VALUES (:id, :name); */
/* Show the use of the SQLPrepare/SQLExecute method: */
/* Prepare the insertion and bind parameters. */
/* Assign parameter values. */
/* Execute the insertion. */
lstrcpy(insert, "INSERT INTO NAMEID VALUES (?, ?)");
if (SQLPrepare(hstmt, insert, SQL_NTS) != SQL_SUCCESS)

return(print_err(hdbc, hstmt));
SQLBindParameter(hstmt, 1, SQL_PARAM_INPUT, SQL_C_SLONG,

SQL_INTEGER, 0, 0, &id, 0, NULL);
SQLBindParameter(hstmt, 2, SQL_PARAM_INPUT, SQL_C_CHAR,

SQL_VARCHAR, MAX_NAME_LEN, 0, name, 0, NULL);
id=500;
lstrcpy(name, "Babbage");
if (SQLExecute(hstmt) != SQL_SUCCESS)

return(print_err(hdbc, hstmt));

/* EXEC SQL COMMIT WORK; */
/* Commit the insertion. */

SQLTransact(hdbc, SQL_COMMIT);
2-50 SOLID Programmer Guide

Sample Application Code
/* EXEC SQL DECLARE c1 CURSOR FOR */
/* SELECT ID, NAME FROM NAMEID; */
/* EXEC SQL OPEN c1; */
/* Show the use of the SQLExecDirect method. */
/* Execute the selection. */
/* Note that the application does not declare a cursor.
*/

lstrcpy(select, "SELECT ID, NAME FROM NAMEID");
if (SQLExecDirect(hstmt, select, SQL_NTS) !=

SQL_SUCCESS)
return(print_err(hdbc, hstmt));

/* EXEC SQL FETCH c1 INTO :id, :name; */
/* Bind the columns of the result set */
/* with SQLBindCol. */
/* Fetch the first row. */

SQLBindCol(hstmt, 1, SQL_C_SLONG, &id, 0, NULL);
SQLBindCol(hstmt, 2, SQL_C_CHAR, name,

(SDWORD)sizeof(name), &namelen);
SQLFetch(hstmt);

/* EXEC SQL COMMIT WORK; */
/* Commit the transaction. */

SQLTransact(hdbc, SQL_COMMIT);

/* EXEC SQL CLOSE c1; */
/* Free the statement handle. */

SQLFreeStmt(hstmt, SQL_DROP);

/* EXEC SQL DISCONNECT; */
/* Disconnect from the data source. */
/* Free the connection handle. */
/* Free the environment handle. */

SQLDisconnect(hdbc);
SQLFreeConnect(hdbc);
SQLFreeEnv(henv);

return(0);
 Using SOLID SQL API and ODBC API 2-51

Sample Application Code

sult
}

Interactive Ad Hoc Query Example
The following example illustrates how an application can determine the nature of the re
set prior to retrieving results.

#ifdef SOLIDSQLAPI
#include "CLI0DEFS.H"
#include "CLI0CORE.H"
#include "CLI0EXT1.H"
#else
#include "SQL.H"
#include "SQLEXT.H"
#endif
#include <string.h>
#include <stdlib.h>

#define MAXCOLS 100
#define max(a,b) (a>b?a:b)

int print_err(HDBC hdbc, HSTMT hstmt);
UDWORD display_size(SWORD coltype, UDWORD collen, UCHAR *colname);

example2(server, uid, pwd, sqlstr)
UCHAR * server;
UCHAR * uid;
UCHAR * pwd;
UCHAR * sqlstr;
{
int i;
HENV henv;
HDBC hdbc;
HSTMT hstmt;
UCHAR errmsg[256];
UCHAR colname[32];
SWORD coltype;
SWORD colnamelen;
SWORD nullable;
UDWORD collen[MAXCOLS];
SWORD scale;
SDWORD outlen[MAXCOLS];
UCHAR * data[MAXCOLS];
SWORD nresultcols;
SDWORD rowcount;
2-52 SOLID Programmer Guide

Sample Application Code
RETCODE rc;

/* Allocate environment and connection handles. */
/* Connect to the data source. */
/* Allocate a statement handle. */
SQLAllocEnv(&henv);
SQLAllocConnect(henv, &hdbc);
rc = SQLConnect(hdbc, server, SQL_NTS, uid, SQL_NTS,

pwd, SQL_NTS);
if (rc != SQL_SUCCESS && rc != SQL_SUCCESS_WITH_INFO)

return(print_err(hdbc, SQL_NULL_HSTMT));
SQLAllocStmt(hdbc, &hstmt);

/* Execute the SQL statement. */
if (SQLExecDirect(hstmt, sqlstr, SQL_NTS) !=

SQL_SUCCESS)
return(print_err(hdbc, hstmt));

/* See what kind of statement it was. If there are */
/* no result columns, the statement is not a SELECT */
/* statement. If the number of affected rows is */
/* greater than 0, the statement was probably an */
/* UPDATE, INSERT, or DELETE statement, so print */
/* the number of affected rows. If the number of */
/* affected rows is 0, the statement is probably a */
/* DDL statement, so print that the operation was */

/* successful and commit it. */

SQLNumResultCols(hstmt, &nresultcols);
if (nresultcols == 0) {

SQLRowCount(hstmt, &rowcount);
if (rowcount > 0) {

printf("%ld rows affected.\n", rowcount);
} else {

printf("Operation successful.\n");
}
SQLTransact(hdbc, SQL_COMMIT);

/* Otherwise, display the column names of the result */
/* set and use the display_size() function to */
/* compute the length needed by each data type. */
/* Next, bind the columns and specify all data will */
/* be converted to char. Finally, fetch and print */
/* each row, printing truncation messages as */
 Using SOLID SQL API and ODBC API 2-53

Sample Application Code
/* necessary. */

} else {
for (i = 0; i < nresultcols; i++) {

SQLDescribeCol(hstmt, i + 1, colname,
(SWORD)sizeof(colname), &colnamelen,
&coltype, &collen[i], &scale,
&nullable);

collen[i] = display_size(coltype, collen[i],
colname);

printf("%*.*s", collen[i], collen[i],
colname);

data[i] = (UCHAR *) malloc(collen[i] + 1);
SQLBindCol(hstmt, i + 1, SQL_C_CHAR,

data[i], collen[i], &outlen[i]);
}

while (TRUE) {

rc = SQLFetch(hstmt);
if (rc == SQL_SUCCESS || rc ==

SQL_SUCCESS_WITH_INFO) {
errmsg[0] = '\0';
for (i = 0; i < nresultcols; i++)

if (outlen[i] == SQL_NULL_DATA)
{
lstrcpy(data[i], "NULL");
}

else if (outlen[i] >= collen[i])
{
sprintf(&errmsg[strlen(errmsg)],

"%d chars truncated, col %d\n",
outlen[i] - collen[i] + 1,
colnum);

}
printf("%*.*s ", collen[i], collen[i],

data[i]);
}
printf("\n%s", errmsg);

} else {
break;

}
}

}
/* Free the data buffers. */
for (i = 0; i < nresultcols; i++) {
2-54 SOLID Programmer Guide

Sample Application Code
free(data[i]);
}
/* Free the statement handle. */
SQLFreeStmt(hstmt, SQL_DROP);
/* Disconnect from the data source. */
SQLDisconnect(hdbc);
/* Free the connection handle. */
SQLFreeConnect(hdbc);
/* Free the environment handle. */
SQLFreeEnv(henv);

return(0);
}
/**/
/* The following function is included for */
/* completeness,but is not relevant for understanding */
/* the function of ODBC. */
/**/
#define MAX_NUM_PRECISION 15

/* Define max length of char string representation of */
/* number as: = max(precision) + leading sign + E + */
/* exp sign + max exp length */
/* = 15 + 1 + 1 + 1 + 2 */
/* = 15 + 5 */

#define MAX_NUM_STRING_SIZE (MAX_NUM_PRECISION + 5)
UDWORD display_size(coltype, collen, colname)
SWORD coltype;
UDWORD collen;
UCHAR * colname;
{
switch (coltype) {

case SQL_CHAR:
case SQL_VARCHAR:

return(max(collen, strlen(colname)));

case SQL_SMALLINT:
return(max(6, strlen(colname)));

case SQL_INTEGER:
return(max(11, strlen(colname)));

case SQL_DECIMAL:
 Using SOLID SQL API and ODBC API 2-55

Installing and Configuring ODBC Software

 test-
reas

mu-

d the

ed
el-
case SQL_NUMERIC:
case SQL_REAL:
case SQL_FLOAT:
case SQL_DOUBLE:

return(max(MAX_NUM_STRING_SIZE,
strlen(colname)));

/* Note that this function only supports the */
/* core data types. */
default:

printf("Unknown datatype, %d\n", coltype);
return(0);

}
}

Testing and Debugging an Application
The ODBC SDK provides the following tools for application development:

■ ODBC Test, an interactive utility that enables you to perform ad hoc and automated
ing on drivers. A sample test DLL (the Quick Test) is included which covers basic a
of ODBC driver conformance.

■ ODBC Spy, a debugging tool with which you can capture data source information, e
late drivers, and emulate applications.

■ Sample applications, including source code and makefiles.

■ A #define, ODBCVER, to specify which version of ODBC you want to compile your
application with. By default, the SQL.H and SQLEXT.H files include all ODBC 2.0
constants and prototypes. To use only the ODBC 1.0 constants and prototypes, ad
following line to your application code before including SQL.H and SQLEXT.H:

#define ODBCVER 0x0100

For additional infomation about the ODBC SDK tools, see the Microsoft ODBC SDK Guide.

Installing and Configuring ODBC Software
Users install ODBC software with a driver-specific setup program (built with the Driver
Setup Toolkit that is shipped with the ODBC SDK) or an application-specific setup pro-
gram. They configure the ODBC environment with the ODBC Administrator (also shipp
with the ODBC SDK) or an application-specific administration program. Application dev
opers must decide whether to redistribute these programs or write their own setup and
administration programs. For more information about the Driver Setup Toolkit and the
ODBC Administrator, see the Microsoft ODBC SDK Guide.
2-56 SOLID Programmer Guide

Installing and Configuring ODBC Software

for-
e
er
rma-

ve

ip
A setup program written by an application developer uses the installer DLL to retrieve in
mation from the ODBC.INF file, which is created by a driver developer and describes th
disks on which the ODBC software is shipped. The setup program also uses the install
DLL to retrieve the target directories for the Driver Manager and the drivers, record info
tion about the installed drivers, and install ODBC software.

Administration programs written by application developers use the installer DLL to retrie
information about the available drivers, to specify default drivers, and to configure data
sources.

Application developers who write their own setup and administration programs must sh
the installer DLL and the ODBC.INF file.
 Using SOLID SQL API and ODBC API 2-57

Installing and Configuring ODBC Software
2-58 SOLID Programmer Guide

3
 of

ole
ts,
ex,

ess
 access

ined.
in the
d other

g stan-
Stored Procedures, Events, and Sequences

SOLID Embedded Engine offers a number of features that make it possible to move parts
the application logic into the database. These features include:

■ stored procedures

■ event alerts

■ sequences

Stored Procedures
Stored procedures are simple programs, or procedures, that are executed in SOLID Embed-
ded Engine. The user can create procedures that contain several SQL statements or wh
transactions, and execute them with single call statement. In addition to SQL statemen
3GL type control structures can be used enabling procedural control. In this way compl
data-bound transactions may be run on the server itself, thus reducing network traffic.

Granting execute rights on a stored procedure automatically invokes the necessary acc
rights to all database objects used in the procedure. Therefore, administering database
rights may be greatly simplified by allowing access to critical data through procedures.

This section explains in detail how to use the SOLID Embedded Engine stored procedures.
In the beginning of this section the general concepts of using the procedures are expla
Later sections go more in-depth and describe the actual syntax of different statements
procedures. The end of this section discusses transaction management, sequences an
advanced stored procedure features.

Basic procedure structure
A stored procedure is a standard SOLID database object that can be manipulated usin
dard DDL statements CREATE and DROP.

In its simplest form a stored procedure definition looks like:
 Stored Procedures, Events, and Sequences 3-1

Stored Procedures

 to be

dure

ords,

roce-

ure.

turn a

 output
"CREATE PROCEDURE procedure_name
parameter_section
BEGIN
declare_section_local_variables
procedure_body
END";

NOTE: As the SQL Editor is not able to parse these statements the whole statement has
enclosed in double quotes.

The following example creates a procedure called TEST:

"CREATE PROCEDURE test
BEGIN
END";

Procedures can be run by issuing a CALL statement followed by the name of the proce
to be invoked:

CALL test;

Naming procedures
Procedure names have to be unique within a database schema.

All the standard naming restrictions considering database objects, like using reserved w
identifier lengths etc., apply to stored procedure names. See Appendix F in the SOLID
Administrator Guide for an overview of reserved words.

Parameter section
A stored procedure communicates with the calling program using parameters. Stored p
dures accept two types of parameters:

■ Input parameters; given as an input to the procedure can be used inside the proced

■ Output parameters; returned values from the procedure. Stored procedures may re
result set of several rows with output parameters as the columns.

The types of parameters must be declared. See Appendix C in the SOLID Administrator
Guide for supported data types. The syntax used in parameter declaration is:

parameter_name parameter_datatype

Input parameters are declared between parentheses directly after the procedure name,
parameters are declared in a special RETURNS section of the procedure definition:
3-2 SOLID Programmer Guide

Stored Procedures

 sup-

de the

r as
 one

tput

e
"CREATE PROCEDURE procedure_name
[(input_param1 datatype ,

 input_param2 datatype , … >)]
[RETURNS

(output_param1 datatype ,
 output_param2 datatype , … >)]

BEGIN

END";

There can be any number of input and output parameters. Input parameters have to be
plied in the same order as they are defined when the procedure is called.

Declaring input parameters in the procedure heading make their values accessible insi
procedure by referring to the parameter name.

The output parameters will appear in the returned result set. The parameters will appea
columns in the result set in the same order as they are defined. A procedure may return
or more rows. Thus, also select statements can be wrapped into database procedures.

The following statement creates a procedure that has two input parameters and two ou
parameters:

"CREATE PROCEDURE PHONEBOOK_SEARCH
(FIRST_NAME VARCHAR, LAST_NAME VARCHAR)
RETURNS (PHONE_NR NUMERIC, CITY VARCHAR)

BEGIN
-- procedure_body
END";

This procedure should be called using two input parameter of data type VARCHAR. Th
procedure returns an output table consisting of 2 columns named phone_nr of type
NUMERIC and CITY of type VARCHAR.

For example:

call phonebook_search ('JOHN','DOE');
Result looks like the following (when the procedure body has been programmed)
PHONE_NR CITY
34335556 NEW YORK
23452266 LOS ANGELES
 Stored Procedures, Events, and Sequences 3-3

Stored Procedures

 con-
e

of the

 with
re

nts,

Declare section
Local variables that are used inside the procedure for temporary storage of column and
trol values are defined in a separate section of the stored procedure directly following th
BEGIN keyword.

The syntax of declaring a variable is:

DECLARE variable_name datatype ;

Note that every declare statement should be ended with a semicolon (;).

The variable name is an alphanumeric string that identifies the variable. The data type
variable can be any valid SQL data type supported. See Appendix C in the SOLID Adminis-
trator Guide for supported data types.

For example:

"CREATE PROCEDURE PHONEBOOK_SEARCH
(FIRST_NAME VARCHAR, LAST_NAME VARCHAR)
RETURNS (PHONE_NR NUMERIC, CITY VARCHAR)

BEGIN
DECLARE i INTEGER;

DECLARE dat DATE;

END";

Note that input and output parameters are treated like local variables within a procedure
the exception that input parameters have a preset value and output parameter values a
returned or can be appended to the returned result set.

Procedure body
The procedure body contains the actual stored procedure program based on assignme
expressions, SQL statements and the likes.

Any type of expression including scalar functions can be used in a procedure body. See
Appendix D in the SOLID Administrator Guide for valid expressions.

Assignments
To assign values to variables either of the following syntax is used:

SET variable_name = expression ;

or
3-4 SOLID Programmer Guide

Stored Procedures

ari-
s

t

itly.
her
variable_name := expression ;

Example:

SET i = i+ 20 ;

i := 100;

Variables and constants are initialized every time a procedure is executed. By default, v
ables are initialized to NULL. Unless a variable has been explicitly initialized, its value i
undefined, as the following example shows:

BEGIN
DECLARE total INTEGER;
...
total := total + 1; -- assigns a null to total
...
Therefore, a variable should never be referenced before it has been assigned a value.

The expression following the assignment operator can be arbitrarily complex, but it mus
yield a data type that is the same as or convertible to the data type of the variable.

When possible, SOLID procedure language can provide conversion of data types implic
This makes it possible to use literals, variables and parameters of one type where anot
type is expected.

Implicit conversion is not possible if:

■ information would be lost in the conversion.

■ a string to be converted to an integer contains non-numeric data

Examples:

DECLARE integer_var INTEGER;
integer_var := 'NR:123';

returns an error.

DECLARE string_var CHAR(3);
string_var := 123.45;
results in value ‘123’ in variable string_var.

DECLARE string_var VARCHAR(2);
string_var := 123.45;

returns an error.
 Stored Procedures, Events, and Sequences 3-5

Stored Procedures

n-

 com-

Expressions

Comparison Operators
Comparison operators compare one expression to another. The result is always TRUE,
FALSE, or NULL. Typically, comparisons are used in conditional control statements and
allow comparisons of arbitrarily complex expressions. The following table gives the mea
ing of each operator:

Note that the != notation cannot be used inside a stored procedure, use the ANSI-SQL
pliant <> instead.

Logical Operators
The logical operators can be used to build more complex queries. The logical operators
AND, OR, and NOT operate according to the tri-state logic illustrated by the truth tables
shown below. AND and OR are binary operators; NOT is a unary operator.

Operator Meaning

 = is equal to

 <> is not equal to

 < is less than

 > is greater than

 <= is less than or equal to

 >= is greater than or equal to

 NOT true false null

 false true null

 AND true false null

 true true false null

 false false false false
3-6 SOLID Programmer Guide

Stored Procedures

. On
s the
E.

ter-

if it
As the truth tables show, AND returns the value TRUE only if both its operands are true
the other hand, OR returns the value TRUE if either of its operands is true. NOT return
opposite value (logical negation) of its operand. For example, NOT TRUE returns FALS

NOT NULL returns NULL because nulls are indeterminate.

When not using parentheses to specify the order of evaluation, operator precedence de
mines the order.

Note that ‘true’ and ‘false’ are not literals accepted by SQL parser but values. Logical
expression value can be interpreted as a numeric variable:

false = 0 or NULL
true = 1 or any other numeric value

Example:

IF expression = TRUE THEN

can be simply written

IF expression THEN

IS NULL Operator
The IS NULL operator returns the Boolean value TRUE if its operand is null, or FALSE
is not null. Comparisons involving nulls always yield NULL. To test whether a value is
NULL, do not use the expression,

 IF variable = NULL THEN ...

because it never evaluates to TRUE.

Instead, use the following statement:

 null null false null

OR true false null

true true true true

false true false null

null true null null
 Stored Procedures, Events, and Sequences 3-7

Stored Procedures

l

tate-
e-

 by

con-
rol

te-
 IF variable IS NULL THEN ...

Note that when using multiple logical operators in Solid stored procedures the individua
logical expressions should be enclosed in parentheses like:

((A >= B) AND (C= 2)) OR (A= 3)

Control structures

IF Statement
Often, it is necessary to take alternative actions depending on circumstances. The IF s
ment executes a sequence of statements conditionally. There are three forms of IF stat
ments: IF-THEN, IF-THEN-ELSE, and IF-THEN-ELSEIF.

IF-THEN
The simplest form of IF statement associates a condition with a statement list enclosed
the keywords THEN and END IF (not ENDIF), as follows:

 IF condition THEN

statement_list ;

END IF

The sequence of statements is executed only if the condition evaluates to TRUE. If the
dition evaluates to FALSE or NULL, the IF statement does nothing. In either case, cont
passes to the next statement. An example follows:

 IF sales > quota THEN
 SET pay = pay + bonus;
 END IF

IF-THEN-ELSE
The second form of IF statement adds the keyword ELSE followed by an alternative sta
ment list, as follows:

IF condition THEN

statement_list1 ;

ELSE

statement_list2 ;

END IF
3-8 SOLID Programmer Guide

Stored Procedures

SE
ing
e or

ted, as

ives.
ns,

i-

u-
inside
The statement list in the ELSE clause is executed only if the condition evaluates to FAL
or NULL. Thus, the ELSE clause ensures that a statement list is executed. In the follow
example, the first or second assignment statement is executed when the condition is tru
false, respectively:

 IF trans_type = 'CR' THEN
 SET balance = balance + credit;
 ELSE
 SET balance = balance - debit;
 END IF

THEN and ELSE clauses can include IF statements. That is, IF statements can be nes
the following example shows:

 IF trans_type = 'CR' THEN
 SET balance = balance + credit ;
 ELSE
 IF new_balance >= minimum_balance THEN
 SET balance = balance - debit ;
 ELSE
 SET balance = minimum_balance;
 END IF
 END IF

IF-THEN-ELSEIF
Occasionally it is necessary to select an action from several mutually exclusive alternat
The third form of IF statement uses the keyword ELSEIF to introduce additional conditio
as follows:

 IF condition1 THEN

statement_list1 ;

 ELSEIF condition2 THEN

statement_list2;

 ELSE

statement_list3 ;

END IF

If the first condition evaluates to FALSE or NULL, the ELSEIF clause tests another cond
tion. An IF statement can have any number of ELSEIF clauses; the final ELSE clause is
optional. Conditions are evaluated one by one from top to bottom. If any condition eval
ates to TRUE, its associated statement list is executed and the rest of the statements (
 Stored Procedures, Events, and Sequences 3-9

Stored Procedures

erthe-
tested.
ontrol

code

logic,
the IF-THEN-ELSEIF) are skipped. If all conditions evaluate to FALSE or NULL, the
sequence in the ELSE clause is executed. Consider the following example:

 IF sales > 50000 THEN
 bonus := 1500;
 ELSEIF sales > 35000 THEN
 bonus := 500;
 ELSE
 bonus := 100;
 END IF

If the value of "sales" is more than 50000, the first and second conditions are true. Nev
less, "bonus" is assigned the proper value of 1500 since the second condition is never
When the first condition evaluates to TRUE, its associated statement is executed and c
passes to the next statement following the IF-THEN-ELSEIF.

When possible, use the ELSEIF clause instead of nested IF statements. That way, the
will be easier to read and understand. Compare the following IF statements:

These statements are logically equivalent, but the first statement obscures the flow of
whereas the second statement reveals it.

IF condition1 THEN IF condition1 THEN

 statement_list1 ; statement_list1 ;

ELSE ELSEIF condition2 THEN

 IF condition2 THEN statement_list2 ;

 statement_list2 ; ELSEIF condition3 THEN

 ELSE statement_list3 ;

 IF condition3 THEN END IF

 statement_list3 ;

 END IF

 END IF

END IF
3-10 SOLID Programmer Guide

Stored Procedures

closed

 con-
t

letes.
es. In

ates

. The

ple-
WHILE-LOOP
The WHILE-LOOP statement associates a condition with a sequence of statements en
by the keywords LOOP and END LOOP, as follows:

WHILE condition LOOP

statement_list ;

END LOOP

Before each iteration of the loop, the condition is evaluated. If the condition evaluates to
TRUE, the statement list is executed, then control resumes at the top of the loop. If the
dition evaluates to FALSE or NULL, the loop is bypassed and control passes to the nex
statement. An example follows:

 WHILE total <= 25000 LOOP
 ...
 total := total + salary;
 END LOOP
The number of iterations depends on the condition and is unknown until the loop comp
Since the condition is tested at the top of the loop, the sequence might execute zero tim
the latter example, if the initial value of "total" is greater than 25000, the condition evalu
to FALSE and the loop is bypassed, altogether

Loops can be nested. When an inner loop is finished control is returned to the next loop
procedure continues from the next statement after end loop.

Leaving Loops
It may be necessary to force the procedure to leave a loop prematurely. This can be im
mented using the LEAVE keyword:

WHILE total < 25000 LOOP
statement_list
total := total + salary;
IF exit_condition THEN

 LEAVE;
END IF

END LOOP
statement_list2

Upon successful evaluation of the exit_condition the loop is left, and the procedure contin-
ues at the statement list 2.
 Stored Procedures, Events, and Sequences 3-11

Stored Procedures

rol

ing

y"
"y" or

" seem
ent
NOTE: Although SOLID Embedded Engine supports version 2.2 onwards of the ANSI-SQL
CASE syntax, the CASE construct cannot be used inside a stored procedure as a cont
structure.

Handling Nulls
Nulls can cause confusing behaviour. To avoid some common errors, observe the follow
rules:

■ comparisons involving nulls always yield NULL

■ applying the logical operator NOT to a null yields NULL

■ in conditional control statements, if the condition evaluates to NULL, its associated
sequence of statements is not executed

In the example below, you might expect the statement list to execute because "x" and "
seem unequal. Remember though that nulls are indeterminate. Whether "x" is equal to
not is unknown. Therefore, the IF condition evaluates to NULL and the statement list is
bypassed.

 x := 5;
 y := NULL;
 ...
 IF x <> y THEN -- evaluates to NULL, not TRUE

statement_list ; -- not executed
 END IF

In the next example, one might expect the statement list to execute because "a" and "b
equal. But, again, this is unknown, so the IF condition evaluates to NULL and the statem
list is bypassed.

 a := NULL;
 b := NULL;
 ...
 IF a = b THEN -- evaluates to NULL, not TRUE

statement_list ; -- not executed
 END IF

NOT Operator
Applying the logical operator NOT to a null yields NULL. Thus, the following two state-
ments are not always equivalent:

 IF x > y THEN IF NOT x > y THEN

 high := x; high := y;
3-12 SOLID Programmer Guide

Stored Procedures

luates

 If

g:

ro-

 adult

D IF
The sequence of statements in the ELSE clause is executed when the IF condition eva
to FALSE or NULL. If either or both "x" and "y" are NULL, the first IF statement assigns
the value of "y" to "high", but the second IF statement assigns the value of "x" to "high".
neither "x" nor y" is NULL, both IF statements assign the corresponding value to "high".

Zero-Length Strings
Zero length strings are treated by SOLID Embedded Engine like they are : a string of zero
length, instead of a null. NULL values should be specifically assigned as in the followin

SET a = NULL;

This also means that checking for NULL values will return FALSE when applied to a ze
length string.

Example
Following is an example of a simple procedure that determines whether a person is an
on the basis of a birthday as input parameter.

Note the usage of {} on scalar functions, and semicolons to end assignments and IF/EN
structures.

"CREATE PROCEDURE grown_up
(birth_date DATE)
RETURNS (description VARCHAR)
BEGIN
DECLARE temp INTEGER;
-- determine the number of years since the day of birth
temp := {fn TIMESTAMPDIFF(SQL_TSI_YEAR,birth_date,now())};
IF temp >= 18 THEN
--over 18 it’s an adult
 description := 'ADULT';
ELSE
-- still a minor
 description := 'MINOR';
END IF
END";

 ELSE ELSE

 high := y; high := x;

 END IF END IF
 Stored Procedures, Events, and Sequences 3-13

Using SQL in a stored procedure

ro-
-sec-

m-
ared

L

sor
ate-

he

hould
uired
Exiting a procedure
A procedure may be exited prematurely by issuing the keyword

RETURN;

at any location. After this keyword control is directly handed to the program calling the p
cedure, returning the values bound to the output parameters as indicated in the returns
tion of the procedure definition.

Returning data
By default a stored procedure returns one row of data. The row is returned when the co
plete procedure has been run or has been forced to exit. This row conforms to the decl
output parameters in the parameter section of the procedure.

Starting from SOLID Embedded Engine 2.2 (formerly SOLID Server) it is also possible to
return result sets from a procedure using the following syntax:

return row;

Every RETURN ROW call adds a new row into the returned result set.

Using SQL in a stored procedure
Using SQL statements inside a stored procedure is somewhat different from issuing SQ
directly from tools like SOLID SQL Editor.

Any SQL statement will have to be executed through an explicit cursor definition. A cur
is a specific allocated part of the server process memory in which track is kept of the st
ment being processed. Memory space is allocated for holding one row of the underlying
statement, together with some status information on the current row (in SELECTS) or t
number of rows affected by the statement (in UPDATES, INSERTS and DELETES).

In this way query results are processed one row at a time. The stored procedure logic s
take care of the actual handling of the rows, and the positioning of the cursor on the req
row(s).

There are five basic steps in handling a cursor:

1. Preparation of the cursor - the definition

2. Executing the cursor - executing the statement

3. Fetching on the cursor (for select procedure calls) - getting the results row by row

4. Closing the cursor after use - still enabling it to re-execute

5. Dropping the cursor from memory - definitely removing it
3-14 SOLID Programmer Guide

Using SQL in a stored procedure

lt set

 cur-

r

s possi-

T or
o
 the
col-
he
1. Preparation of a Cursor
A cursor is defined (prepared) using the following syntax:

EXEC SQL PREPARE cursor_name SQL_statement ;

By preparing a cursor, memory space is allocated to accommodate one row of the resu
of the statement, the statement is parsed and optimized.

A cursor name given for the statement has to be unique within the connection. When a
sor is prepared SOLID Embedded Engine checks that no other cursor of this name is cur-
rently open. If there is one, error number 14504 is returned.

Note that statement cursors can be opened also using the ODBC API. Also these curso
names need to be different from the cursors opened from procedures.

Example:

EXEC SQL PREPARE sel_tables
SELECT table_name
FROM sys_tables
WHERE table_name like ‘SYS%’;

This statement will prepare the cursor named sel_tables, but will not execute the statement
that it contains.

Once a procedure has been successfully prepared it can be executed. An execute bind
ble input and output variables to it and runs the actual statement.

Syntax of the execute statement is:

EXEC SQL EXECUTE cursor_name

 [INTO (var1, var2, …)];

The optional section INTO binds result data of the statement to variables.

Variables listed in parenthesis after the INTO keyword are used when running a SELEC
CALL statement. The resulting columns of the SELECT or CALL statement are bound t
these variables when the statement is executed. The variables are bound starting from
left-most column listed in the statement. Binding of variables continues to the following
umn until all variables in the list of variables have been bound. For example to extend t
sequence for the cursor sel_tables that was prepared earlier we need to run the following
statements:

EXEC SQL PREPARE sel_tables
SELECT table_name
FROM sys_tables
WHERE table_name like ‘SYS%’
 Stored Procedures, Events, and Sequences 3-15

Using SQL in a stored procedure

able

tch-
h-

th

look

EXEC SQL EXECUTE sel_tables INTO (tab);

The statement is now executed and the resulting table names will be returned into vari
tab in the subsequent Fetch statements.

Fetching on the cursor
When a SELECT or CALL statement has been prepared and executed it is ready for fe
ing data from it. Other statements (UPDATE,INSERT,DELETE, DDL) do not require fetc
ing as there will be no result set. Fetching results is done using the fetch syntax:

EXEC SQL FETCH cursor_name ;

This command fetches a single row from the cursor to the variables that were bound wi
INTO keyword when the statement was executed.

To complete the previous example to actually get result rows back, the statements will
like:

EXEC SQL PREPARE sel_tables
SELECT table_name
FROM sys_tables
WHERE table_name like ‘SYS%’

EXEC SQL EXECUTE sel_tables INTO (tab);
EXEC SQL FETCH sel_tables;

After this the variable tab will contain the table name of the first table found conforming to
the WHERE-clause.

Subsequent calls to fetch on the cursor sel_tables will get the next row(s) if the select found
more than one.

To fetch all table names a loop construct may be used:

WHILE expression LOOP
EXEC SQL FETCH sel_tables;

END LOOP

Note that after the completion of the loop the variable tab will contain the last fetched table
name.

4. Closing the cursor
Cursors may be closed by issuing the statement

EXEC SQL CLOSE cursor_name ;
3-16 SOLID Programmer Guide

Using SQL in a stored procedure

en

is
ro-
C-

as

e is
um-
This will not remove the actual cursor definition from memory, it may be re-executed wh
the need arises.

5. Dropping the cursor
Cursors may be dropped from memory, releasing all resources by the statement :

EXEC SQL DROP cursor_name ;

Error Handling

SQLSUCCESS
The return value of the latest EXEC SQL statement executed inside a procedure body
stored into variable SQLSUCCESS. This variable is automatically generated for every p
cedure. If the previous SQL statement was successful, the value 1 is stored into SQLSU
CESS. After a failed SQL statement, a value 0 is stored into SQLSUCCESS.

The value of SQLSUCCESS may be used, for instance, to determine when the cursor h
reached the end of the result set as in the following example:

EXEC SQL FETCH sel_tab;
-- loop as long as last statement in loop is successful
WHILE SQLSUCCESS LOOP

 -- do something with the results like return the row
EXEC SQL FETCH sel_tab;

END LOOP

SQLERRCODE
This variable contains the error code from the last failed SQL statement.

SQLERRSTR
This variable contains the error string fro the last failed SQL statement.

SQLROWCOUNT
After the execution of UPDATE, INSERT and DELETE statements an additional variabl
available to check the result of the statement. Variable SQLROWCOUNT contains the n
ber of rows affected by the last statement.
 Stored Procedures, Events, and Sequences 3-17

Using SQL in a stored procedure

 as
ror
sed:

turn
tion:

tax:

L
re is
nsac-

the

LES
SQLERROR OF cursorname
For error checking of EXEC SQL statements the SQLSUCCESS variable may be used
described under SQLSUCCESS in the beginning of this section. To return the actual er
that caused the statement to fail to the calling application the following syntax may be u

EXEC SQL PREPARE cursornname sql_statement

EXEC SQL EXECUTE cursorname

IF NOT SQLSUCCESS THEN

RETURN SQLERROR OF cursorname ;

END IF

Processing will stop immediately when this statement is executed and the procedure re
code is SQL_ERROR. The actual database error can be returned using SQLError func

Solid Database error 10033: Primary key unique constraint violation

From SOLID Embedded Engine 2.2 (formerly SOLID Server) onward the need to code:

IF NOT SQLSUCCESS THEN…

after every SQL statement in a procedure can be diminished by using the following syn

EXEC SQL WHENEVER SQLERROR [ROLLBACK [WORK],] ABORT;

When this statement is included in a stored procedure all return values of executed SQ
statements are checked for errors. If statement execution returns an error, the procedu
automatically aborted and SQLERROR of the last cursor is returned. Optionally the tra
tion can be rolled back.

The statement should be included before any EXEC SQL statements directly following
DECLARE section of variables.

Below is an example of a complete procedure returning all table names from SYS_TAB
that start with ‘SYS’:

"CREATE PROCEDURE sys_tabs
RETURNS (tab VARCHAR)
BEGIN
-- abort on errors
EXEC SQL WHENEVER SQLERROR ROLLBACK, ABORT;
-- prepare the cursor
EXEC SQL PREPARE sel_tables

SELECT table_name
FROM sys_tables
WHERE table_name like 'SYS%';
3-18 SOLID Programmer Guide

Using SQL in a stored procedure

rkers
 '?'

e

cur-
nifi-

way.
uld
-- execute the cursor
EXEC SQL EXECUTE sel_tables INTO (tab);
-- loop through rows
EXEC SQL FETCH sel_tables;
WHILE sqlsuccess LOOP
 RETURN ROW;
 EXEC SQL FETCH sel_tables;
END LOOP
-- close and drop the used cursors
EXEC SQL CLOSE sel_tables;
EXEC SQL DROP sel_tables;
END";

Parameter markers in cursors
In order to make a cursor more dynamic, an SQL statement can contain parameter ma
that indicate values that are bound to the actual parameter values at execute time. The
symbol is used as a parameter marker.

Syntax example:

EXEC SQL PREPARE sel_tabs

SELECT table_name

FROM sys_tables

WHERE table_name LIKE ?

AND table_schema LIKE ?;

The execution statement is adapted by including a USING keyword to accommodate th
binding of a variable to the parameter marker.

EXEC SQL EXECUTE sel_tabs USING (var1, var2) INTO (tabs);

In this way a single cursor can be used multiple times without having to re-prepare the
sor. As preparing a cursor involves also the parsing and optimizing of the statement, sig
cant performance gains can be achived by using re-usable cursors.

Note that the USING list only accepts variables, data can not be directly passed in this
So if for example an insert into a table should be made, one column value of which sho
always be the same (status = ‘NEW’) then the following syntax would be wrong:

EXEC SQL EXECUTE ins_tab USING (nr, desc, dat, 'NEW');

The correct way would be to define the constant value in the prepare section:

EXEC SQL PREPARE ins_tab
 Stored Procedures, Events, and Sequences 3-19

Using SQL in a stored procedure

here-
an be

er-

eters.
INSERT INTO my_tab (id, descript, in_date, status)

VALUES (?,?,?,'NEW');

EXEC SQL EXECUTE ins_tab USING (nr, desc, dat);

Note that variables can be used multiple times in the using list.

The parameters in a SQL statement have no intrinsic data type or explicit declaration. T
fore, parameter markers can be included in an SQL statement only if their data types c
inferred from another operand in the statement.

For example, in an arithmetic expression such as ? + COLUMN1, the data type of the
parameter can be inferred from the data type of the named column represented by
COLUMN1. A procedure cannot use a parameter marker if the data type cannot be det
mined.

The following table describes how a data type is determined for several types of param

An application cannot place parameter markers in the following locations:

■ As a SQL identifier (name of a table, name of a column etc.)

■ In a SELECT list.

■ As both expressions in a comparison-predicate.

■ As both operands of a binary operator.

■ As both the first and second operands of a BETWEEN operation.

■ As both the first and third operands of a BETWEEN operation.

Location of Parameter Assumed Data Type

One operand of a binary arithmetic or comparison
operator

Same as the other operand

The first operand in a BETWEEN clause Same as the other operand

The second or third operand in a BETWEEN
clause

Same as the first operand

An expression used with IN Same as the first value or the result column of
the subquery

A value used with IN Same as the expression

A pattern value used with LIKE VARCHAR

An update value used with UPDATE Same as the update column
3-20 SOLID Programmer Guide

Calling other procedures

arts

ay be
e pre-
■ As both the expression and the first value of an IN operation.

■ As the operand of a unary + or - operation.

■ As the argument of a set-function-reference.

For more information, see the ANSI SQL-92 specification.

In the following example, a stored procedure will read rows from one table and insert p
of them in another, using multiple cursors:

"CREATE PROCEDURE tabs_in_schema (schema_nm VARCHAR)
RETURNS (nr_of_rows INTEGER)
BEGIN
DECLARE tab_nm VARCHAR;
EXEC SQL PREPAREsel_tab
SELECT table_name
FROM sys_tables
WHERE table_schema = ?;
EXEC SQL PREPARE ins_tab

INSERT INTO my_table (table_name,schema) VALUES (?,?);

nr_of_rows := 0;

EXEC SQL EXECUTE sel_tab USING (schema_nm) INTO (tab_nm);
EXEC SQL FETCH sel_tab;
WHILE SQLSUCCESS LOOP

nr_of_rows := nr_of_rows + 1;
EXEC SQL EXECUTE ins_tab USING(tab_nm, schema_nm);
IF SQLROWCOUNT <> 1 THEN

RETURN SQLERROR OF ins_tab;
END IF
EXEC SQL FETCH sel_tab;

END LOOP
END";

Calling other procedures
As calling a procedure forms a part of the supported SQL syntax, a stored procedure m
called from within another stored procedure. Like all SQL statements a cursor should b
pared and executed like:

EXEC SQL PREPARE cp call myproc(?,?);

EXEC SQL EXECUTE cp USING (var1, var2);
 Stored Procedures, Events, and Sequences 3-21

Calling other procedures

e on

nection

tes.
ntly
res

o

y

ID
If procedure myproc returns one or more values, then subsequently a fetch should be don
the cursor cp to retrieve those values:

EXEC SQL PREPARE cp call myproc(?,?);

EXEC SQL EXECUTE cp USING (var1, var2) INTO (ret_var1,
ret_var2);

EXEC SQL FETCH cp;

Note that if the called procedure uses a return row statement, the calling procedure should
utilize a WHILE LOOP construct to fetch all results.

Recursive calls are possible, but discouraged because cursor names are unique at con
level and infinite recursion may crash the server process.

Positioned updates and deletes
In SOLID Embedded Engine procedures it is possible to use positioned updates and dele
This means that an update or delete will be done to a row where a given cursor is curre
positioned. The positioned updates and deletes can also be used within stored procedu
using the cursor names used within the procedure.

The following syntax is used for positioned updates:

UPDATE table_name

SET column = value

WHERE CURRENT OF cursor_name

and for deletes

DELETE FROM table_name

WHERE CURRENT OF cursor_name

In both cases the cursor_name refers to a statement doing a SELECT on the table that is t
be updated/deleted from.

Positioned cursor update is a semantically suspicious concept in SQL standard that ma
cause peculiarities also with SOLID Embedded Engine. Please note the following restriction
when using positioned updates.

Below is an example written with pseudo code that will cause an endless loop with SOL
Embedded Engine (error handling, binding variables & other important tasks omitted for
brevity and clarity):

"CREATE PROCEDURE ENDLESS_LOOP
BEGIN
3-22 SOLID Programmer Guide

Calling other procedures

n of
. This
 the
e row

y for
ch a
d the

hed
ic may
pdate

uch
 fetch
his

mmit-

ion
nside
EXEC SQL PREPARE MYCURSOR SELECT * FROM TABLE1;
EXEC SQL PREPARE MYCURSOR_UPDATE UPDATE TABLE1

SET COLUMN2 = 'new data';
EXEC SQL EXECUTE MYCURSOR;
EXEC SQL FETCH MYCURSOR;
WHILE SQLSUCCESS LOOP

EXEC SQL EXECUTE MYCURSOR_UPDATE;
EXEC SQL COMMIT WORK;
EXEC SQL FETCH MYCURSOR;

END LOOP
END";

The endless loop is caused by the fact that when the update is committed, a new versio
the row becomes visible in the cursor and it is accessed in the next FETCH statement
happens because the incremented row version number is included in the key value and
cursor finds the changed row as the next greater key value after the current position. Th
gets updated again, the key value is changed and again it will be the next row found.

In the above example, the updated column2 is not assumed to be part of the primary ke
the table, and the row version number was the only index entry changed. However, if su
column value is changed that is part of the index through which the cursor has searche
data, the changed row may jump further forward or backward in the search set.

For these reasons, using positioned update is not recommended in general and searc
update should be used instead whenever possible. However, sometimes the update log
be too complex to be expressed in SQL WHERE clause and in such cases positioned u
can be used as follows:

Positioned cursor update works deterministically in SOLID, when the where clause is s
that the updated row does not match the criteria and therefore does not reappear in the
loop. Constructing such a search criteria may require using additional column only for t
purpose.

Note that other users' changes do not become visible in the open cursor, only those co
ted within the same database session.

Transactions
Stored procedures use transactions like any other interface to the database. A transact
may be committed or rolled back either inside the procedure or outside the procedure. I
the procedure a commit or roll back is done using the following syntax:

EXEC SQL COMMIT WORK;

EXEC SQL ROLLBACK WORK;
 Stored Procedures, Events, and Sequences 3-23

Calling other procedures

:

ide a

ing

ed

 re-

sor

er-
 and
ed

lback

e

ly
These statements end the previous transaction and start a new one.

If a transaction is not committed inside the procedure, it may be ended externally using

■ a SOLID API,

■ another stored procedure or

■ by autocommit, if the connection has AUTOCOMMIT switch set to ON.

Note that when a connection has autocommit activated it does not force autocommit ins
procedure. The commit is done when the procedure exits.

Default cursor management
By default, when a procedure exits, all cursors opened in a procedure are closed. Clos
cursors means that cursors are left in a prepared state and can be re-executed.

After exiting, the procedure is put in the procedure cache. When the procedure is dropp
from the cache, all cursors are finally dropped.

The number of procedures kept in cache is determined by the SOLID.INI file setting :

[SQL]

ProcedureCache = nbr_of_procedures

This means that, as long as the procedure is in the procedure cache, all cursors can be
used as long as they are not dropped. SOLID Embedded Engine itself manages the proce-
dure cache by keeping track of the cursors declared, and notices if the statement a cur
contains has been prepared.

As cursor management, especially in a heavy multi-user environment, can use a consid
able amount of server resources it is good practice to always close cursors immediately
preferably also drop all cursors that are not used anymore. Only the most frequently us
procedures may be left non-dropped to reduce the cursor preparation effort.

Note that transactions are not related to procedures or other statements. Commit or rol
does therefore NOT release any resources in a procedure.

Notes on SQL
■ There is no restriction on the SQL statements used. Any valid SQL statement can b

used inside a stored procedure, including DDL and DML statements

■ Cursors may be declared anywhere in a stored procedure. Cursors that are certain
going to be used are best prepared directly following the declare section.
3-24 SOLID Programmer Guide

Using sequences

sary,
 cur-

nce

at this
ilar
ecut-

ence
 holes in
ction.
 draw-
til the

uence
tion. If
umber

van-
t is spe-
■ Cursors that are used inside control structures, and are therefore not always neces
are best declared at the point where they are activated, to limit the amount of open
sors and hence the memory usage.

■ The cursor name is an undeclared identifier, not a variable; it is used only to refere
the query. You cannot assign values to a cursor name or use it in an expression.

■ Cursors may be re-executed repeatedly without having to re-prepare them. Note th
can have a serious influence on performance; repetitively preparing cursors on sim
statements may decrease the performance by around 40% in comparison to re-ex
ing already prepared cursors!

■ Any SQL statement will have to be preceded by the keywords EXEC SQL.

Using sequences
A sequence object is used to get sequence numbers. The syntax is:

CREATE [DENSE] SEQUENCE sequence_name

Depending on how the sequence is created, there may or may not be holes in the sequ
(the sequence can be sparse or dense). Dense sequences guarantee that there are no
the sequence numbers. The sequence number allocation is bound to the current transa
If the transaction rolls back, also the sequence number allocations are rolled back. The
back of dense sequences is that the sequence is locked out from other transactions un
current transaction ends.

If there is no need for dense sequences, a sparse sequence can be used. A sparse seq
guarantees uniqueness of the returned values, but it is not bound to the current transac
a transaction allocates a sparse sequence number and later rolls back, the sequence n
is simply lost.

A sequence object can be used, for example, to generate primary key numbers. The ad
tage of using a sequence object instead of a separate table is that the sequence objec
cifically fine-tuned for fast execution and requires less overhead than normal update
statements.

Both dense and sparse sequence numbers start from 1.

After creation of the sequence by:

CREATE [DENSE] SEQUENCE sequence_name

the current sequence value can be retrieved by using the following syntax:

EXEC SEQUENCE sequence_name .CURRENT INTO variable ;

New sequence values can be retrieved using the following syntax:
 Stored Procedures, Events, and Sequences 3-25

Using events

 the

low:

rce

roce-
tion
ked
s and

ser-

es are

tate-
EXEC SEQUENCE sequence_name .NEXT INTO variable ;

It is also possible to set the current value of a sequence to a predefined value by using
following syntax:

EXEC SEQUENCE sequence_name SET VALUE USING variable ;

An example of using a stored procedure to retrieve a new sequence number is given be

"CREATE PROCEDURE get_my_seq
RETURNS (val INTEGER)
BEGIN
EXEC SEQUENCE my_sequence.NEXT INTO (val);
END";

Using events
Event alerts are special objects in a SOLID Embedded Engine database. They are used for
sending events from one application to another. The use of event alerts removes resou
consuming database polling from applications.

The system does not automatically generate events, they must be triggered by stored p
dures. Similarly the events can only be received in stored procedures. When an applica
calls a stored procedure that waits for a specific event to happen, the application is bloc
until the event is triggered and received. In multithreaded environments separate thread
connections can be used to access the database during the event standstill.

An event has a name that identifies it and a set of parameters. The name can be any u
specified alphanumeric string. An event object is created with the SQL statement:

CREATE EVENT event_name

 [(parameter_name datatype

 [parameter_name datatype ...])]

The parameter list specifies parameter names and parameter types. The parameter typ
normal SQL types. Events are dropped with the SQL statement:

DROP EVENT event_name

Events are triggered and received inside stored procedures. Special stored procedure s
ments are used to trigger and receive events.

The event is triggered with the stored procedure statement

POST EVENT event_name (parameters)
3-26 SOLID Programmer Guide

Procedure privileges

 the

 the

rs
ilege

 proce-
rants
Event parameters must be local variables or parameters in the stored procedure where
event is triggered. All clients that are waiting for the posted event will receive the event.

To make a procedure wait for an event to happen, the WAIT EVENT construct is used in
stored procedure:

wait_event_statement ::=

WAIT EVENT

[event_specification ...]

END WAIT

event_specification ::=

WHEN event_name (parameters) BEGIN

 statements

END EVENT

Procedure privileges
Stored procedures are owned by the creator, and are part of the creator’s schema. Use
needing to run stored procedures in other schema’s need to be granted EXECUTE priv
on the procedure:

GRANT EXECUTE ON Proc_name TO USER[,ROLE];

All database objects accessed within the granted procedure, even subsequently called
dures, are accessed according to the rights of the owner of the procedure. No special g
are necessary.
 Stored Procedures, Events, and Sequences 3-27

Procedure privileges
3-28 SOLID Programmer Guide

4
ility

ation
-

si-
tan-

rd

Stan-
men-

to a
m-
Using UNICODE in SOLID Embedded
Engine

This chapter describes how to implement the UNICODE standard, providing the capab
to encode characters used in the major languages of the world. Topics in this chapter
include:

■ What is UNICODE?

■ UNICODE and SOLID Embedded Engine

■ Setting up SOLID Embedded Engine for UNICODE data

■ Using UNICODE with SOLID SQL API and ODBC API

■ Using UNICODE with the SOLID JDBC Driver

What is Unicode?
The Unicode Standard is the universal character encoding standard used for represent
of text for computer processing. Unicode provides a consistent way of encoding multilin
gual plain text and brings order to a chaotic state of affairs that has made it difficult to
exchange text files internationally. Computer users who deal with multilingual text — bu
ness people, linguists, researchers, scientists, and others — will find that the Unicode S
dard greatly simplifies their work. Mathematicians and technicians, who regularly use
mathematical symbols and other technical characters, will also find the Unicode Standa
valuable.

Unicode is fully compatible with the International Standard ISO/IEC 10646-1; 1993, and
contains all the same characters and encoding points as ISO/IEC 10646. The Unicode
dard also provides additional information about the characters and their use. Any imple
tation that conforms to Unicode also conforms to ISO/IEC 10646.

Unicode provides a consistent way of encoding multilingual plain text and brings order
chaotic state of affairs that has made it difficult to exchange text files internationally. Co
 Using UNICODE in SOLID Embedded Engine 4-1

What is Unicode?

ien-

chni-

r

he
ers.
acter a

rac-
e an
e
ding

n

ls,
ify-
ters to
ides
bol

cod-
ha-
ftware
TF-16
for

eric
dard
TF-
puter users who deal with multilingual text -- business people, linguists, researchers, sc
tists, and others -- will find that the Unicode Standard greatly simplifies their work.
Mathematicians and technicians, who regularly use mathematical symbols and other te
cal characters, will also find the Unicode Standard valuable.

The design of Unicode is based on the simplicity and consistency of ASCII, but goes fa
beyond ASCII's limited ability to encode only the Latin alphabet. The Unicode Standard
provides the capacity to encode all of the characters used for the written languages of t
world. It uses a 16-bit encoding that provides code points for more than 65,000 charact
To keep character coding simple and efficient, the Unicode Standard assigns each char
unique 16-bit value, and does not use complex modes or escape codes.

While 65,000 characters are sufficient for encoding most of the many thousands of cha
ters used in major languages of the world, the Unicode standard and ISO 10646 provid
extension mechanism called UTF-16 that allows for encoding as many as a million mor
characters, without use of escape codes. This is sufficient for all known character enco
requirements, including full coverage of all historic scripts of the world.

What Characters Does the Unicode Standard Include?
The Unicode Standard defines codes for characters used in the major languages writte
today.

The Unicode Standard also includes punctuation marks, diacritics, mathematical symbo
technical symbols, arrows, dingbats, etc. It provides codes for diacritics, which are mod
ing character marks such as the tilde (~), that are used in conjunction with base charac
encode accented or vocalized letters (ñ, for example). In all, the Unicode Standard prov
codes for nearly 39,000 characters from the world's alphabets, ideograph sets, and sym
collections.

There are about 18,000 unused code values for future expansion in the basic 16-bit en
ing, plus provision for another 917,504 code values through the UTF-16 extension mec
nism. The Unicode Standard also reserves 6,400 code values for private use, which so
and hardware developers can assign internally for their own characters and symbols. U
makes another 131,072 private use code values available, should 6,400 be insufficient
particular applications.

Encoding Forms
Character encoding standards define not only the identity of each character and its num
value, or code position, but also how this value is represented in bits. The Unicode Stan
endorses two forms that correspond to ISO 10646 transformation formats, UTF-8 and U
16.
4-2 SOLID Programmer Guide

Implementing Unicode in SOLID Embedded Engine

turn-
 as
 used
-bit

rmat

ni-
 Uni-
alues
exist-
s the

out

 a for-
Com-
that
l addi-
ain-

3,
oded
.

te)
as a
t
d, Uni-

 in
The ISO/IEC 10646 transformation formats UTF-8 and UTF-16 are essentially ways of
ing the encoding into the actual bits that are used in implementation. The first is known
UTF-16. It assumes 16-bit characters and allows for a certain range of characters to be
as an extension mechanism in order to access an additional million characters using 16
character pairs. The Unicode Standard, Version 2.0, has adopted this transformation fo
as defined in ISO/IEC 10646.

The other transformation format is known as UTF-8. This is a way of transforming all U
code characters into a variable length encoding of bytes. It has the advantages that the
code characters corresponding to the familiar ASCII set end up having the same byte v
as ASCII, and that Unicode characters transformed into UTF-8 can be used with much
ing software without extensive software rewrites. The Unicode Consortium also endorse
use of UTF-8 as a way of implementing the Unicode Standard. Any Unicode character
expressed in the 16-bit UTF-16 form can be converted to the UTF-8 form and back with
loss of information.

Unicode and ISO/IEC 10646
The Unicode Standard is very closely aligned with the international standard ISO/IEC
10646-1; 1993 (also known as the Universal Character Set, or UCS, for short). In 1991
mal convergence of the two standards was negotiated between the Unicode Technical
mittee and JTC1/WC2/WG2, the ISO committee responsible for ISO/IEC 10646. Since
time, close cooperation and formal liaison between the committees has ensured that al
tions to either standard are coordinated and kept in synch, so that the two standards m
tain exactly the same character repertoire and encoding.

Version 2.0 of the Unicode Standard is code-for-code identical to ISO/IEC 10646-1; 199
plus its first seven published amendments. This code-for-code identity is true for all enc
characters in the two standards, including the East Asian (Han) ideographic characters

The international standard ISO/IEC 10646 allows for two forms of use, a two-octet (=by
form known as UCS-2 and a four-octet form known as UCS-4. The Unicode Standard,
profile of ISO/IEC 10646, chooses the two-octet form, which is equivalent to saying tha
characters are represented in 16-bits per character. When extended characters are use
code is equivalent to UTF-16.

Implementing Unicode in SOLID Embedded Engine
This section contains pertinent information required to implement the Unicode standard
SOLID Embedded Engine 3.0. Please note the following implementation guidelines:

■ Unicode Data Types
 Using UNICODE in SOLID Embedded Engine 4-3

Implementing Unicode in SOLID Embedded Engine

t
are
ter

.
that

.

t. If
eed to
SQL data types WCHAR, WVARCHAR and LONG WVARCHAR are used to store
Unicode data in the SOLID Embedded Engine. The “Wide-character” implementation
conforms to ODBC 3.5 specification. The Unicode data types are interoperable with
corresponding character data types (CHAR, VARCHAR and LONG VARCHAR), bu
conversions from Unicode data types to character data types fail, if the characters
beyond ISO Latin 1. All string operations are possible between Unicode and charac
data types with implicit type conversions.

■ Internal Storage Format

The storage format in SOLID Embedded Engine 3.0 for Unicode column data is UCS-2
All character information in the data dictionary are stored as Unicode. This means
to support Unicode you must convert all databases created using SOLID Server (prior to
the release of SOLID Embedded Engine version 3.0) to support Unicode. For details,
please refer to the latest release notes.

The wide character types require more storage space than normal character types
Therefore, use wide characters only where necessary.

■ Ordering

Unicode data columns are ordered based on the binary values of the UCS-2 forma
the binary order is different than what natural language users expect, developers n
provide a separate column to store the correct ordering information.

■ Unicode File Names

SOLID Embedded Engine does not support using Unicode strings in any file names.
4-4 SOLID Programmer Guide

Setting Up SOLID Embedded Engine for Unicode Data

-

de

eed

ould

lica-
ta-

blems
en

d
Setting Up SOLID Embedded Engine for Unicode Data

Creating Columns for Storing Unicode Data
In order to start storing Unicode data in a SOLID Embedded Engine database, tables with
Unicode data columns need to be created first as follows:

CREATE TABLE customer (c_id INTEGER, c_name WVARCHAR,…)

Loading Unicode Data
You can use the data import tool Speedloader from SOLID version 3.0 to import data to Uni
code columns. The import files should contain Unicode data in UTF-8 format.

Alternatively, a separate client application for data loading can be produced using Unico
Client Library or JDBC Driver 3.0.

Using Unicode in Database Entity Names
It is possible to name tables, columns, procedures, etc. with Unicode strings, simply by
enclosing the Unicode names with double quotes in all the SQL statements.

The SOLID tools, like teletype SQL Editor, will handle Unicode strings in UTF-8 format. In
order to enter native Unicode strings, third-party database administration applications n
to be used, or a special application using Unicode Client Library or JDBC Driver 3.0 sh
be written for this purpose.

Note that if there are Unicode strings in the data dictionary of a database, the client app
tions linked with the (old) Latin Client Library cannot generally be used to access the da
base.

Unicode User Names and Passwords
User names and passwords can also be Unicode strings. However, to avoid access pro
from different tools, the original database administrator account information must be giv
as pure ASCII strings.

Converting Old Databases
Old SOLID Embedded Engine (formerly SOLID Server) 2.x databases can be converted to
the new 3.0 format by starting SOLID Embedded Engine 3.0 with option -xconvert. After
conversion, database is closed and SOLID Embedded Engine stops.

NOTE: The database conversion to the 3.0 format is an irrevocable operation. Converte
databases cannot be opened anymore with SOLID Embedded Engine (formerly SOLID
 Using UNICODE in SOLID Embedded Engine 4-5

Setting Up SOLID Embedded Engine for Unicode Data

ken

r-

mat.

gs

s in the

n-
ot be

i-

er-

r

rings,
cters
Server) versions 2.x. It is recommended that before database conversion a backup is ta
and stored in a safe place.

SOLID Data Dictionary , SOLID Export, and SOLID Speedloader
The SOLID Tools from SOLID Embedded Engine version 3.0 use UTF-8 as the external
representation format of Unicode strings.

SOLID Speedloader (solload) accepts Unicode data in control and input files in UTF-8 fo
mat.

SOLID Export (solexp) extracts Unicode data from database to output files in UTF-8 for

SOLID Data Dictionary (soldd) prints table, column, etc. names containing Unicode strin
in UTF-8 format into the SQL DDL file.

The SQL files output by soldd can be used by the teletype SOLID SQL Editor (solsql) to
create the tables, indices, etc. into a new database, also when there are Unicode string
data definition entries.

SOLID Data Dictionary and SOLID Export accept option -8 to allow exporting data dictio-
nary information in 8-bit format for use with SOLID Embedded Engine (formerly SOLID
Server) 2.x tools. The option -8 is needed, if there are scandinavian or other national no
ascii characters in the data dictionary names. If there are Unicode characters that cann
converted to 8-bit format, moving back to using SOLID v.2.x is impossible anyway.

SOLID SQL Editor and Remote Control
Only the teletype versions of these tools, solsql and solcon, will function correctly in Un
code client environments.

The GUI versions of SOLID SQL Editor and Remote Control will not support using Uni-
code data in any way. Using third party administration tools through ODBC or JDBC int
faces is recommended instead in Unicode environments. Alternatively, a special
administration application can be produced using Unicode Client Library or JDBC Drive
3.0.

UNICODE AND SOLID SQL API / ODBC
SOLID SQL API provides now a separate Unicode interface where SQL statements may
contain Unicode strings in UCS-2 format. All database object names can be Unicode st
but they need to be enclosed in double quotes. Date formats containing Unicode chara
are not supported. See ODBC 3.5 documentation for details.
4-6 SOLID Programmer Guide

Setting Up SOLID Embedded Engine for Unicode Data

 not
e data
de
tate-
SQL

als
ary,

ver
ID
rec-

n the

e
Client Libraries
There are two versions of the SQL API library available: SOLID Latin Client Library and
the new SOLID Unicode Client Library.

The SOLID Latin Client Library handles SQL statements as ISO Latin 1 strings. It does
support Unicode strings as table or column names or as SQL literals. However, Unicod
types are recognized and programs using SOLID Latin Client Library can access Unico
data stored in Unicode columns in the database. Unicode values can be used in SQL s
ments, for example, in WHERE clauses, by having parameter markers in the prepared
strings and getting the Unicode data from variables in the execution phase.

If data dictionary names in the database contain Unicode characters, or if Unicode liter
need to be used in the application, it must be linked with the SOLID Unicode Client Libr
which is named:

scw{ooo}{Vv}.{ext}

where {ooo} is the operating system mnemonic, {Vv} is the SOLID version number and
{ext} is the platform-dependent library file extension.

The SOLID Unicode Client Library has been designed to work as a Unicode ODBC Dri
in combination with ODBC Driver Managers 3.x that support Unicode. However, in SOL
Embedded Engine 3.0 Beta release this mode of operation has not been tested, and it is
ommended to link Unicode applications directly with the SOLID Unicode Client Library.

Old Client Versions
Old clients can connect to SOLID Embedded Engine version 3.0. All Unicode data is con-
verted to ISO Latin 1 whenever possible. Thus, provided only ISO-Latin 1 data is used i
database, old clients can access the database engine.

NOTE: To avoid problems in the future, it is recommended that you upgrade your client
applications to use version 3.0 client libraries.

Unicode Variables and Binding
Using string columns containing Unicode data work just like normal character columns.
Note that the length of string buffers is given as the number of bytes required to store th
value.
 Using UNICODE in SOLID Embedded Engine 4-7

Unicode and JDBC

er-
ither

rac-

in

ne.

gine
String Functions
String functions work as expected, also between ISO Latin 1 and Unicode strings. Conv
sions are provided implicitly, when necessary. The result is always of Unicode type, if e
of the operands is Unicode.

The functions UPPER() and LOWER() work on Unicode strings when the contained cha
ters can be mapped to ISO Latin 1 code page.

Translations
The character translations defined in client side solid.ini or by using SQL API function
SQLSetConnectOption with SQL_TRANSLATE_OPTION do not affect the data stored
Unicode columns. Translations remain in effect for character columns.

Unicode and JDBC
Unicode is supported in the SOLID JDBC Driver 3.0.

As Java uses natively Unicode strings, supporting Unicode means primarily that when
accessing Unicode columns in SOLID Embedded Engine, no data type conversions are nec-
essary. Additionally, JDBC ResultSet Class methods getUnicodeStream and setUnicode-
Stream are supported now for handling large Unicode texts stored in the database engi

To convert Java applications to support Unicode, the string columns in the database en
need to be redefined with Unicode data types.
4-8 SOLID Programmer Guide

5
 as a

ed
Function Reference

Function Descriptions
The following pages describe each function in alphabetic order. Each function is defined
C programming language function. Descriptions include the following:

■ Purpose

■ ODBC version

■ Conformance level

■ Syntax

■ Arguments

■ Return values

■ Diagnostics

■ Comments about usage and implementation

■ Code example

■ References to related functions

Error handling is described in the SQLError function description. The text associated with
SQLSTATE values is included to provide a description of the condition, but is not intend
to prescribe specific text.
 Function Reference 5-1

Function Descriptions

:

Arguments
All function arguments use a naming convention of the following form:

[[prefix]...]tag[qualifier][suffix]

Optional elements are enclosed in square brackets ([]). The following prefixes are used

The following tags are used:

Prefix Description

c Count of

h Handle of

i Index of

p Pointer to

rg Range (array) of

Tag Description

b Byte

col Column (of a result set)

dbc Database connection

env Environment

f Flag (enumerated type)

par Parameter (of an SQL statement)

row Row (of a result set)

stmt Statement

sz Character string (array of characters, terminated by zero)

v Value of unspecified type
5-2 SOLID Programmer Guide

Function Descriptions

gs

Prefixes and tags combine to correspond roughly to the ODBC C types listed below. Fla
(f) and byte counts (cb) do not distinguish between SWORD, UWORD, SDWORD, and
UDWORD.

Combined Prefix Tag ODBC C Type(s) Description

cb c b SWORD, SDWORD,
UDWORD

Count of bytes

crow c row SDWORD, UDWORD,
UWORD

Count of rows

f – f SWORD, UWORD Flag

hdbc h dbc HDBC Connection handle

henv h env HENV Environment han-
dle

hstmt h stmt HSTMT Statement handle

hwnd h wnd HWND Window handle

ib i b SWORD Byte index

icol i col UWORD Column index

ipar i par UWORD Parameter index

irow i row SDWORD, UWORD Row index

pcb pc b SWORD FAR *,
SDWORD FAR *,
UDWORD FAR *

Pointer to byte
count

pccol pc col SWORD FAR * Pointer to column
count

pcpar pc par SWORD FAR * Pointer to parame-
ter count

pcrow pc row SDWORD FAR *,
UDWORD FAR *

Pointer to row
count

pf p f SWORD, SDWORD,
UWORD

Pointer to flag

phdbc ph dbc HDBC FAR * Pointer to connec-
tion handle
 Function Reference 5-3

Function Descriptions

 of

ent
Qualifiers are used to distinguish specific variables of the same type. Qualifiers consist
the concatenation of one or more capitalized English words or abbreviations.

ODBC defines one value for the suffix Max, which denotes that the variable represents the
largest value of its type for a given situation.

For example, the argument cbErrorMsgMax contains the largest possible byte count for an
error message; in this case, the argument corresponds to the size in bytes of the argum
szErrorMsg, a character string buffer. The argument pcbErrorMsg is a pointer to the count of
bytes available to return in the argument szErrorMsg, not including the null termination
character.

phenv ph env HENV FAR * Pointer to environ-
ment handle

phstmt ph stmt HSTMT FAR * Pointer to state-
ment handle

pib pi b SWORD FAR * Pointer to byte
index

pirow pi row UDWORD FAR * Pointer to row
index

prgb prg b PTR FAR * Pointer to range
(array) of bytes

pv p v PTR Pointer to value of
unspecified type

rgb rg b PTR Range (array) of
bytes

rgf rg f UWORD FAR * Range (array) of
flags

sz – sz UCHAR FAR * String, zero termi-
nated

v – v UDWORD Value of unspeci-
fied type
5-4 SOLID Programmer Guide

Catalog Functions

or
QL-

 value
and
than
of
le-

 is

m
SOLID SQL API Include Files
The files CLI0CORE.H, CLI0DEFS.H, CLI0ENV.H and CLI0EXT1.H contain function
prototypes for all of the SOLID SQL API functions. They also contain all type definitions
and #define names used by SOLID SQL API.

ODBC Include Files
The files SQL.H and SQLEXT.H contain function prototypes for all of the ODBC func-
tions. They also contain all type definitions and #define names used by ODBC.

Diagnostics
The diagnostics provided with each function list the SQLSTATEs that may be returned f
the function by the Driver Manager or a driver. Drivers can, however, return additional S
STATEs arising out of implementation-specific situations.

The character string value returned for an SQLSTATE consists of a two-character class
followed by a three-character subclass value. A class value of “01” indicates a warning
is accompanied by a return code of SQL_SUCCESS_WITH_INFO. Class values other
“01”, except for the class “IM”, indicate an error and are accompanied by a return code
SQL_ERROR. The class “IM” is specific to warnings and errors that derive from the imp
mentation of ODBC itself. The subclass value “000” in any class is for implementation-
defined conditions within the given class. The assignment of class and subclass values
defined by ANSI SQL-92.

Tables and Views
In ODBC functions, tables and views are interchangeable. The term table is used for both
tables and views, except where view is used explicitly.

Catalog Functions
ODBC supports a set of functions that return information about the data source’s syste
tables or catalog. These are sometimes referred to collectively as the catalog functions. For
more information about catalog functions, read “Retrieving Information About the Data
Source’s Catalog” on page 2-19 .

The catalog functions are:

SQLColumns

SQLPrimaryKeys
 Function Reference 5-5

Search Pattern Arguments

 to that
rcent

ed as
n the
as a lit-
r for a

l
is
at
le

h pat-

at

ape

ent
l
SQLSpecialColumns

SQLStatistics

SQLTables

Search Pattern Arguments
Each catalog function returns information in the form of a result set. The information
returned by a function may be constrained by a search pattern passed as an argument
function. These search patterns can contain the metacharacters underscore (_) and pe
(%) and a driver-defined escape character as follows:

■ The underscore character represents any single character.

■ The percent character represents any sequence of zero or more characters.

■ The escape character permits the underscore and percent metacharacters to be us
literal characters in search patterns. To use a metacharacter as a literal character i
search pattern, precede it with the escape character. To use the escape character
eral character in the search pattern, include it twice. To obtain the escape characte
driver, an application must call SQLGetInfo with the
SQL_SEARCH_PATTERN_ESCAPE option.

■ All other characters represent themselves.

For example, if the search pattern for a table name is “%A%”, the function will return al
tables with names that contain the character “A”. If the search pattern for a table name
“B__” (“B” followed by two underscores), the function will return all tables with names th
are three characters long and start with the character “B”. If the search pattern for a tab
name is “%”, the function will return all tables.

Suppose the search pattern escape character for a driver is a backslash (\). If the searc
tern for a table name is “ABC\%”, the function will return the table named “ABC%.” If the
search pattern for a table name is “ \\%”, the function will return all tables with names th
start with a backslash. Failing to precede a metacharacter used as a literal with an esc
character may return more results than expected. For example, if a table identifier,
“MY_TABLE” was returned as the result of a call to SQLTables and an application wanted
to retrieve a list of columns for “MY_TABLE” using SQLColumns, SQLColumns would
return all of the tables that matched MY_TABLE, such as MY_TABLE, MY1TABLE,
MY2TABLE, and so on, unless the escape character precedes the underscore.

NOTE: A zero-length search pattern matches the empty string. A search pattern argum
that is a null pointer means the search will not be constrained for that argument. (A nul
pointer and a search string of “%” should return the same values.)
5-6 SOLID Programmer Guide

SQLAllocConnect (ODBC 1.0, Core)

nti-

o-

s
e is
SQLAllocConnect (ODBC 1.0, Core)
SQLAllocConnect allocates memory for a connection handle within the environment ide
fied by henv.

Syntax
RETCODE SQLAllocConnect(henv, phdbc)

The SQLAllocConnect function accepts the following arguments.

Returns
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_ERROR, or
SQL_INVALID_HANDLE.

If SQLAllocConnect returns SQL_ERROR, it will set the hdbc referenced by phdbc to
SQL_NULL_HDBC. To obtain additional information, the application can call SQLError
with the specified henv and with hdbc and hstmt set to SQL_NULL_HDBC and
SQL_NULL_HSTMT, respectively.

Diagnostics
When SQLAllocConnect returns SQL_ERROR or SQL_SUCCESS_WITH_INFO, an ass
ciated SQLSTATE value may be obtained by calling SQLError . The following table lists
the SQLSTATE values commonly returned by SQLAllocConnect and explains each one in
the context of this function; the notation “(DM)” precedes the descriptions of SQLSTATE
returned by the Driver Manager. The return code associated with each SQLSTATE valu
SQL_ERROR, unless noted otherwise.

Type Argument Use Description

HENV henv Input Environment handle.

HDBC FAR * phdbc Output Pointer to storage for the con-
nection handle.

SQLSTATE Error Description

01000 General warning Driver-specific informational message. (Function
returns SQL_SUCCESS_WITH_INFO.)
 Function Reference 5-7

SQLAllocConnect (ODBC 1.0, Core)

 con-
n

nfor-
Comments
A connection handle references information such as the valid statement handles on the
nection and whether a transaction is currently open. To request a connection handle, a
application passes the address of an hdbc to SQLAllocConnect. The driver allocates mem-
ory for the connection information and stores the value of the associated handle in the hdbc.
On operating systems that support multiple threads, applications can use the same hdbc on
different threads and drivers must therefore support safe, multithreaded access to this i
mation. The application passes the hdbc value in all subsequent calls that require an hdbc.

The Driver Manager processes the SQLAllocConnect function and calls the driver’s SQLA-
llocConnect function when the application calls SQLConnect, or SQLDriverConnect.
(For more information, see the description of the SQLConnect function.)

If the application calls SQLAllocConnect with a pointer to a valid hdbc, the driver over-
writes the hdbc without regard to its previous contents.

Code Example
See SQLConnect.

Related Functions

S1000 General error An error occurred for which there was no specific
SQLSTATE and for which no implementation-
specific SQLSTATE was defined. The error mes-
sage returned by SQLError in the argument
szErrorMsg describes the error and its cause.

S1001 Memory allocation
failure

(DM) The Driver Manager was unable to allocate
memory for the connection handle.
The driver was unable to allocate memory for the
connection handle.

S1009 Invalid argument
value

(DM) The argument phdbc was a null pointer.

For information about See

Connecting to a data source SQLConnect

Freeing a connection handle SQLFreeConnect
5-8 SOLID Programmer Guide

SQLAllocEnv (ODBC 1.0, Core)

ll

ry

pli-

nd
SQLAllocEnv (ODBC 1.0, Core)
SQLAllocEnv allocates memory for an environment handle and initializes the ODBC ca
level interface for use by an application. An application must call SQLAllocEnv prior to
calling any other ODBC function.

Syntax
RETCODE SQLAllocEnv(phenv)

The SQLAllocEnv function accepts the following argument.

Returns
SQL_SUCCESS or SQL_ERROR.

If SQLAllocEnv returns SQL_ERROR, it will set the henv referenced by phenv to
SQL_NULL_HENV. In this case, the application can assume that the error was a memo
allocation error.

Diagnostics
A driver cannot return SQLSTATE values directly after the call to SQLAllocEnv, since no
valid handle will exist with which to call SQLError .

There are two levels of SQLAllocEnv functions, one within the Driver Manager and one
within each driver. The Driver Manager does not call the driver-level function until the ap
cation calls SQLConnect, or SQLDriverConnect. If an error occurs in the driver-level
SQLAllocEnv function, then the Driver Manager – level SQLConnect, or SQLDriverCon-
nect function returns SQL_ERROR. A subsequent call to SQLError with henv,
SQL_NULL_HDBC, and SQL_NULL_HSTMT returns SQLSTATE IM004 (Driver’s
SQLAllocEnv failed), followed by one of the following errors from the driver:

SQLSTATE S1000 (General error).

A driver-specific SQLSTATE value, ranging from S1000 to S19ZZ. For example, SQL-
STATE S1001 (Memory allocation failure) indicates that the Driver Manager’s call to the
driver-level SQLAllocEnv returned SQL_ERROR, and the Driver Manager’s henv was set to
SQL_NULL_HENV.

For additional information about the flow of function calls between the Driver Manager a
a driver, see the SQLConnect function description.

Type Argument Use Description

HENV FAR * phenv Output Pointer to storage for the envi-
ronment handle.
 Function Reference 5-9

SQLAllocEnv (ODBC 1.0, Core)

 and
e
r-

asses

t
tion
Comments
An environment handle references global information such as valid connection handles
active connection handles. To request an environment handle, an application passes th
address of an henv to SQLAllocEnv. The driver allocates memory for the environment info
mation and stores the value of the associated handle in the henv. On operating systems that
support multiple threads, applications can use the same henv on different threads and drivers
must therefore support safe, multithreaded access to this information. The application p
the henv value in all subsequent calls that require an henv.

There should never be more than one henv allocated at one time and the application should
not call SQLAllocEnv when there is a current valid henv. If the application calls SQLAllo-
cEnv with a pointer to a valid henv, the driver overwrites the henv without regard to its previ-
ous contents.

When the Driver Manager processes the SQLAllocEnv function, it checks the Trace key-
word in the [ODBC] section of the ODBC.INI file or the ODBC subkey in the registry. If i
is set to 1, the Driver Manager enables tracing for all applications for the current applica
on Windows NT and Windows 95/98.

Code Example
See SQLConnect.

Related Functions

For information about See

Allocating a connection handle SQLAllocConnect

Connecting to a data source SQLConnect

Freeing an environment handle SQLFreeEnv
5-10 SOLID Programmer Guide

SQLAllocStmt (ODBC 1.0, Core)

han-

i-

-
ned
SQLAllocStmt (ODBC 1.0, Core)
SQLAllocStmt allocates memory for a statement handle and associates the statement
dle with the connection specified by hdbc.An application must call SQLAllocStmt prior to
submitting SQL statements.

Syntax
RETCODE SQLAllocStmt(hdbc, phstmt)

The SQLAllocStmt function accepts the following arguments.

Returns
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_INVALID_HANDLE, or
SQL_ERROR.

If SQLAllocStmt returns SQL_ERROR, it will set the hstmt referenced by phstmt to
SQL_NULL_HSTMT. The application can then obtain additional information by calling
SQLError with the hdbc and SQL_NULL_HSTMT.

Diagnostics
When SQLAllocStmt returns SQL_ERROR or SQL_SUCCESS_WITH_INFO, an assoc
ated SQLSTATE value may be obtained by calling SQLError . The following table lists the
SQLSTATE values commonly returned by SQLAllocStmt and explains each one in the con
text of this function; the notation “(DM)” precedes the descriptions of SQLSTATEs retur
by the Driver Manager. The return code associated with each SQLSTATE value is
SQL_ERROR, unless noted otherwise.

Type Argument Use Description

HDBC hdbc Input Connection handle.

HSTMT FAR * phstmt Output Pointer to storage for the statement
handle.

SQLSTATE Error Description

01000 General warning Driver-specific informational message. (Func-
tion returns SQL_SUCCESS_WITH_INFO.)
 Function Reference 5-11

SQLAllocStmt (ODBC 1.0, Core)

L-
tus

es the
-

on
Comments
A statement handle references statement information, such as network information, SQ
STATE values and error messages, cursor name, number of result set columns, and sta
information for SQL statement processing.

To request a statement handle, an application connects to a data source and then pass
address of an hstmt to SQLAllocStmt. The driver allocates memory for the statement infor
mation and stores the value of the associated handle in the hstmt. On operating systems that
support multiple threads, applications can use the same hstmt on different threads and driv-
ers must therefore support safe, multithreaded access to this information. The applicati
passes the hstmt value in all subsequent calls that require an hstmt.

If the application calls SQLAllocStmt with a pointer to a valid hstmt, the driver overwrites
the hstmt without regard to its previous contents.

Code Example
See SQLConnect, and SQLSetCursorName.

08003 Connection not open (DM) The connection specified by the hdbc
argument was not open. The connection process
must be completed successfully (and the con-
nection must be open) for the driver to allocate
an hstmt.

IM001 Driver does not support
this function

(DM) The driver associated with the hdbc does
not support the function.

S1000 General error An error occurred for which there was no spe-
cific SQLSTATE and for which no implementa-
tion-specific SQLSTATE was defined. The error
message returned by SQLError in the argument
szErrorMsg describes the error and its cause.

S1001 Memory allocation failure (DM) The Driver Manager was unable to allo-
cate memory for the statement handle.
The driver was unable to allocate memory for
the statement handle.

S1009 Invalid argument value (DM) The argument phstmt was a null pointer.
5-12 SOLID Programmer Guide

SQLAllocStmt (ODBC 1.0, Core)
Related Functions

For information about See

Executing an SQL statement SQLExecDirect

Executing a prepared SQL statement SQLExecute

Freeing a statement handle SQLFreeStmt

Preparing a statement for execution SQLPrepare
 Function Reference 5-13

SQLBindCol (ODBC 1.0, Core)

 by
SQLBindCol (ODBC 1.0, Core)
SQLBindCol assigns the storage and data type for a column in a result set, including:

■ A storage buffer that will receive the contents of a column of data

■ The length of the storage buffer

■ A storage location that will receive the actual length of the column of data returned
the fetch operation

■ Data type conversion

Syntax
RETCODE SQLBindCol(hstmt, icol, fCType, rgbValue, cbValueMax, pcbValue)

The SQLBindCol function accepts the following arguments.

Type Argument Use Description

HSTMT hstmt Input Statement handle.

UWORD icol Input Column number of result data, ordered
sequentially left to right, starting at 1. A col-
umn number of 0 is used to retrieve a book-
mark for the row.
5-14 SOLID Programmer Guide

SQLBindCol (ODBC 1.0, Core)
SWORD fCType Input The C data type of the result data. This must
be one of the following values:
SQL_C_BINARY

SQL_C_BIT

SQL_C_BOOKMARK

SQL_C_CHAR

SQL_C_DATE

SQL_C_DEFAULT

SQL_C_DOUBLE

SQL_C_FLOAT

SQL_C_SLONG

SQL_C_SSHORT

SQL_C_STINYINT

SQL_C_TIME

SQL_C_TIMESTAMP

SQL_C_ULONG

SQL_C_USHORT

SQL_C_UTINYINT

SQL_C_DEFAULT specifies that data be
transferred to its default C data type.

1RWH Drivers must also support the following values of fCType from ODBC 1.0. Applications
must use these values, rather than the ODBC 2.0 values, when calling an ODBC 1.0 driver:
SQL_C_LONG

SQL_C_SHORT,

SQL_C_TINYINT

For more information, see “ODBC 1.0 C Data Types” in Appendix D, “Data Types.”

For information about how data is converted, see “Converting Data from SQL to C Data
Types” in Appendix D, “Data Types.”

PTR rgbValue Input Pointer to storage for the data. If rgbValue is
a null pointer, the driver unbinds the column.
(To unbind all columns, an application calls
SQLFreeStmt with the SQL_UNBIND
option.)
 Function Reference 5-15

SQLBindCol (ODBC 1.0, Core)

ted

f
 the
Returns
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_ERROR, or
SQL_INVALID_HANDLE.

Diagnostics
When SQLBindCol returns SQL_ERROR or SQL_SUCCESS_WITH_INFO, an associa
SQLSTATE value may be obtained by calling SQLError . The following table lists the SQL-
STATE values commonly returned by SQLBindCol and explains each one in the context o
this function; the notation “(DM)” precedes the descriptions of SQLSTATEs returned by

SDWORD cbValueMax Input Maximum length of the rgbValue buffer. For
character data, rgbValue must also include
space for the null-termination byte. For more
information about length, see “Precision,
Scale, Length, and Display Size” in Appen-
dix D, “Data Types.”

SDWORD
FAR *

pcbValue Input SQL_NULL_DATA or the number of bytes
(excluding the null termination byte for char-
acter data) available to return in rgbValue
prior to calling SQLExtendedFetch or
SQLFetch, or SQL_NO_TOTAL if the num-
ber of available bytes cannot be determined.

For character data, if the number of bytes
available to return is SQL_NO_TOTAL or is
greater than or equal to cbValueMax, the data
in rgbValue is truncated to cbValueMax – 1
bytes and is null-terminated by the driver.

For binary data, if the number of bytes avail-
able to return is SQL_NO_TOTAL or is
greater than cbValueMax, the data in rgb-
Value is truncated to cbValueMax bytes.

For all other data types, the value of cbValue-
Max is ignored and the driver assumes the
size of rgbValue is the size of the C data type
specified with fCType.

For more information about the value
returned in pcbValue for each fCType, see
“Converting Data from SQL to C Data
Types” on page D-19.
5-16 SOLID Programmer Guide

SQLBindCol (ODBC 1.0, Core)

R,
Driver Manager. The return code associated with each SQLSTATE value is SQL_ERRO
unless noted otherwise.

SQLSTATE Error Description

01000 General warning Driver-specific informational
message. (Function returns
SQL_SUCCESS_WITH_INFO.)

IM001 Driver does not support this
function

(DM) The driver associated with
the hstmt does not support the
function.

S1000 General error An error occurred for which
there was no specific SQL-
STATE and for which no imple-
mentation-specific SQLSTATE
was defined. The error message
returned by SQLError in the
argument szErrorMsg describes
the error and its cause.

S1001 Memory allocation failure The driver was unable to allo-
cate memory required to support
execution or completion of the
function.

S1002 Invalid column number The value specified for the argu-
ment icol exceeded the maxi-
mum number of columns
supported by the data source.

S1003 Program type out of range (DM) The argument fCType was
not a valid data type or
SQL_C_DEFAULT.

The argument icol was 0 and the
argument fCType was not
SQL_C_BOOKMARK.
 Function Reference 5-17

SQLBindCol (ODBC 1.0, Core)

mn in

’s

e
Comments
The ODBC interface provides two ways to retrieve a column of data:

■ SQLBindCol assigns the storage location for a column of data before the data is
retrieved. When SQLFetch or SQLExtendedFetch is called, the driver places the data
for all bound columns in the assigned locations.

■ SQLGetData (an extended function) assigns a storage location for a column of data
after SQLFetch or SQLExtendedFetch has been called. It also places the data for the
requested column in the assigned location. Because it can retrieve data from a colu
parts, SQLGetData can be used to retrieve long data values.

An application may choose to bind every column with SQLBindCol, to do no binding and
retrieve data only with SQLGetData, or to use a combination of the two. However, unless
the driver provides extended functionality, SQLGetData can only be used to retrieve data
from columns that occur after the last bound column.

An application calls SQLBindCol to pass the pointer to the storage buffer for a column of
data to the driver and to specify how or if the data will be converted. It is the application
responsibility to allocate enough storage for the data. If the buffer will contain variable
length data, the application must allocate as much storage as the maximum length of th

S1010 Function sequence error (DM) An asynchronously exe-
cuting function was called for
the hstmt and was still executing
when this function was called.

(DM) SQLExecute, SQLExec-
Direct, or SQLSetPos was
called for the hstmt and returned
SQL_NEED_DATA. This func-
tion was called before data was
sent for all data-at-execution
parameters or columns.

S1090 Invalid string or buffer length (DM) The value specified for the
argument cbValueMax was less
than 0.

S1C00 Driver not capable The driver does not support the
data type specified in the argu-
ment fCType.

The argument icol was 0 and
the driver does not support book-
marks.
5-18 SOLID Programmer Guide

SQLBindCol (ODBC 1.0, Core)

e

u-

rge

tion

er

ds

 in
m-

ss
ote
d, the
bound column or the data may be truncated. For a list of valid data conversion types, se
“Converting Data from SQL to C Data Types” on page D-19.

At fetch time, the driver processes the data for each bound column according to the arg
ments specified in SQLBindCol. First, it converts the data according to the argument
fCType. Next, it fills the buffer pointed to by rgbValue. Finally, it stores the available num-
ber of bytes in pcbValue; this is the number of bytes available prior to calling SQLFetch or
SQLExtendedFetch.

■ If SQL_MAX_LENGTH has been specified with SQLSetStmtOption and the avail-
able number of bytes is greater than SQL_MAX_LENGTH, the driver stores
SQL_MAX_LENGTH in pcbValue.

■ If the data is truncated because of SQL_MAX_LENGTH, but the user’s buffer was la
enough for SQL_MAX_LENGTH bytes of data, SQL_SUCCESS is returned.

NOTE: The SQL_MAX_LENGTH statement option is intended to reduce network traffic
and may not be supported by all drivers. To guarantee that data is truncated, an applica
should allocate a buffer of the desired size and specify this size in the cbValueMax argument.

■ If the user’s buffer causes the truncation, the driver returns
SQL_SUCCESS_WITH_INFO and SQLSTATE 01004 (Data truncated) for the fetch
function.

■ If the data value for a column is NULL, the driver sets pcbValue to SQL_NULL_DATA.

■ If the number of bytes available to return cannot be determined in advance, the driv
sets pcbValue to SQL_NO_TOTAL.

When an application uses SQLExtendedFetch to retrieve more than one row of data, it
only needs to call SQLBindCol once for each column of the result set (just as when it bin
a column in order to retrieve a single row of data with SQLFetch). The SQLExtended-
Fetch function coordinates the placement of each row of data into subsequent locations
the rowset buffers. For additional information about binding rowset buffers, see the “Co
ments” topic for SQLExtendedFetch.

An application can call SQLBindCol to bind a column to a new storage location, regardle
of whether data has already been fetched. The new binding replaces the old binding. N
that the new binding does not apply to data already fetched; the next time data is fetche
data will be placed in the new storage location.

To unbind a single bound column, an application calls SQLBindCol and specifies a null
pointer for rgbValue; if rgbValue is a null pointer and the column is not bound, SQLBind-
Col returns SQL_SUCCESS. To unbind all bound columns, an application calls SQL-
FreeStmt with the SQL_UNBIND option.
 Function Reference 5-19

SQLBindCol (ODBC 1.0, Core)

t

-

Code Example
In the following example, an application executes a SELECT statement to return a result se
of the employee names, ages, and birthdays, which is sorted by birthday. It then calls SQL-
BindCol to bind the columns of data to local storage locations. Finally, the application
fetches each row of data with SQLFetch and prints each employee’s name, age, and birth
day.

For more code examples, see SQLColumns, SQLExtendedFetch, and SQLSetPos.

#define NAME_LEN 30
#define BDAY_LEN 11

UCHAR szName[NAME_LEN], szBirthday[BDAY_LEN];
SWORD sAge;
SDWORD cbName, cbAge, cbBirthday;

retcode = SQLExecDirect(hstmt,
"SELECT NAME, AGE, BIRTHDAY FROM EMPLOYEE ORDER BY 3, 2, 1",
SQL_NTS);

if (retcode == SQL_SUCCESS) {

/* Bind columns 1, 2, and 3 */

SQLBindCol(hstmt, 1, SQL_C_CHAR, szName, NAME_LEN, &cbName);
SQLBindCol(hstmt, 2, SQL_C_SSHORT, &sAge, 0, &cbAge);
SQLBindCol(hstmt, 3, SQL_C_CHAR, szBirthday, BDAY_LEN, &cbBirthday);

/* Fetch and print each row of data. On */
/* an error, display a message and exit. */

while (TRUE) {
retcode = SQLFetch(hstmt);
if (retcode == SQL_ERROR || retcode == SQL_SUCCESS_WITH_INFO) {

show_error();
}
if (retcode == SQL_SUCCESS || retcode == SQL_SUCCESS_WITH_INFO){

fprintf(out, "%-*s %-2d %*s", NAME_LEN-1, szName,
sAge, BDAY_LEN-1, szBirthday);

} else {
break;

}
}

}

5-20 SOLID Programmer Guide

SQLBindCol (ODBC 1.0, Core)
Related Functions

For information about See

Returning information about a column in a result
set

SQLDescribeCol

Fetching a block of data or scrolling through a
result set

SQLExtendedFetch (extension)

Fetching a row of data SQLFetch

Freeing a statement handle SQLFreeStmt

Fetching part or all of a column of data SQLGetData (extension)

Returning the number of result set columns SQLNumResultCols
 Function Reference 5-21

SQLBindParameter (ODBC 2.0, Level 1)
SQLBindParameter (ODBC 2.0, Level 1)
SQLBindParameter binds a buffer to a parameter marker in an SQL statement.

Note This function replaces the ODBC 1.0 function SQLSetParam. For more information,
see the “Comments” in this section.

Syntax
RETCODE SQLBindParameter(hstmt, ipar, fParamType, fCType, fSqlType, cbColDef,
ibScale, rgbValue, cbValueMax, pcbValue)

The SQLBindParameter function accepts the following arguments.

Type Argument Use Description

HSTMT hstmt Input Statement handle.

UWORD ipar Input Parameter number, ordered sequentially
left to right, starting at 1.

SWORD fParamType Input The type of the parameter. For more
information, see “fParamType Argu-
ment” in “Comments.”

SWORD fCType Input The C data type of the parameter. For
more information, see “fCType Argu-
ment” in “Comments.”

SWORD fSqlType Input The SQL data type of the parameter. For
more information, see “fSqlType Argu-
ment” in “Comments.”

UDWORD cbColDef Input The precision of the column or expres-
sion of the corresponding parameter
marker. For more information, see
“cbColDef Argument” in “Comments.”

SWORD ibScale Input The scale of the column or expression of
the corresponding parameter marker. For
further information concerning scale, see
“Precision, Scale, Length, and Display
Size,” in Appendix D, “Data Types.”

PTR rgbValue Input/
Output

A pointer to a buffer for the parameter’s
data. For more information, see “rgb-
Value Argument” in “Comments.”
5-22 SOLID Programmer Guide

SQLBindParameter (ODBC 2.0, Level 1)

L-
ATE
Returns
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_ERROR, or
SQL_INVALID_HANDLE.

Diagnostics
When SQLBindParameter returns SQL_ERROR or SQL_SUCCESS_WITH_INFO, an
associated SQLSTATE value may be obtained by calling SQLError . The following table
lists the SQLSTATE values commonly returned by SQLBindParameter and explains each
one in the context of this function; the notation “(DM)” precedes the descriptions of SQ
STATEs returned by the Driver Manager. The return code associated with each SQLST
value is SQL_ERROR, unless noted otherwise.

SDWORD cbValueMax Input Maximum length of the rgbValue buffer.
For more information, see “cbValueMax
Argument” in “Comments.”

SDWORD
FAR *

pcbValue Input/
Output

A pointer to a buffer for the parameter’s
length. For more information, see “pcb-
Value Argument” in “Comments.”

SQLSTATE Error Description

01000 General warning Driver-specific informational message.
(Function returns
SQL_SUCCESS_WITH_INFO.)

07006 Restricted data type
attribute violation

The data value identified by the fCType
argument cannot be converted to the data
type identified by the fSqlType argument.

IM001 Driver does not support
this function

(DM) The driver associated with the hstmt
does not support the function.

S1000 General error An error occurred for which there was no
specific SQLSTATE and for which no
implementation-specific SQLSTATE was
defined. The error message returned by
SQLError in the argument szErrorMsg
describes the error and its cause.

S1001 Memory allocation failure The driver was unable to allocate memory
required to support execution or comple-
tion of the function.
 Function Reference 5-23

SQLBindParameter (ODBC 2.0, Level 1)
S1003 Program type out of range (DM) The value specified by the argument
fCType was not a valid data type or
SQL_C_DEFAULT.

S1004 SQL data type out of range (DM) The value specified for the argument
fSqlType was in the block of numbers
reserved for ODBC SQL data type indica-
tors but was not a valid ODBC SQL data
type indicator.

S1009 Invalid argument value (DM) The argument rgbValue was a null
pointer, the argument pcbValue was a null
pointer, and the argument fParamType was
not SQL_PARAM_OUTPUT.

S1010 Function sequence error (DM) An asynchronously executing func-
tion was called for the hstmt and was still
executing when this function was called.

(DM) SQLExecute, SQLExecDirect, or
SQLSetPos was called for the hstmt and
returned SQL_NEED_DATA. This function
was called before data was sent for all data-
at-execution parameters or columns.

S1090 Invalid string or buffer
length

(DM) The value specified for the argument
cbValueMax was less than 0.

S1093 Invalid parameter number (DM) The value specified for the argument
ipar was less than 1.

The value specified for the argument ipar
was greater than the maximum number of
parameters supported by the data source.

S1094 Invalid scale value The value specified for the argument
ibScale was outside the range of values sup-
ported by the data source for a column of
the SQL data type specified by the fSqlType
argument.

S1104 Invalid precision value The value specified for the argument
cbColDef was outside the range of values
supported by the data source for a column
of the SQL data type specified by the fSql-
Type argument.
5-24 SOLID Programmer Guide

SQLBindParameter (ODBC 2.0, Level 1)

te-
m-
Comments
An application calls SQLBindParameter to bind each parameter marker in an SQL state-
ment. Bindings remain in effect until the application calls SQLBindParameter again or
until the application calls SQLFreeStmt with the SQL_DROP or SQL_RESET_PARAMS
option.

For more information concerning parameter data types and parameter markers, see “Parame-
ter Data Types” on page C-2.

fParamType Argument
The fParamType argument specifies the type of the parameter. All parameters in SQL sta
ments that do not call procedures, such as INSERT statements, are input parameters. Para
eters in procedure calls can be input, input/output, or output parameters.

S1105 Invalid parameter type (DM) The value specified for the argument
fParamType was invalid (see “Comments”).

The value specified for the argument
fParamType was SQL_PARAM_OUTPUT
and the parameter did not mark a return
value from a procedure or a procedure
parameter.

The value specified for the argument
fParamType was SQL_PARAM_INPUT
and the parameter marked the return value
from a procedure.

S1C00 Driver not capable The driver or data source does not support
the conversion specified by the combina-
tion of the value specified for the argument
fCType and the driver-specific value speci-
fied for the argument fSqlType.

The value specified for the argument fSql-
Type was a valid ODBC SQL data type
indicator for the version of ODBC sup-
ported by the driver, but was not supported
by the driver or data source.

The value specified for the argument fSql-
Type was in the range of numbers reserved
for driver-specific SQL data type indica-
tors, but was not supported by the driver or
data source.
 Function Reference 5-25

SQLBindParameter (ODBC 2.0, Level 1)

 does
a

a

ts
e-

n a

’s

a

rns
 for an

n

lica-

n out-
The fParamType argument is one of the following values:

■ SQL_PARAM_INPUT. The parameter marks a parameter in an SQL statement that
not call a procedure, such as an INSERT statement, or it marks an input parameter in
procedure; these are collectively known as input parameters. For example, the parame-
ters in INSERT INTO Employee VALUES (?, ?, ?) and {call AddEmp(?, ?, ?)} are
input parameters.

When the statement is executed, the driver sends data for the parameter to the dat
source; the rgbValue buffer must contain a valid input value or the pcbValue buffer must
contain SQL_NULL_DATA, SQL_DATA_AT_EXEC, or the result of the
SQL_LEN_DATA_AT_EXEC macro.

If an application cannot determine the type of a parameter in a procedure call, it se
fParamType to SQL_PARAM_INPUT; if the data source returns a value for the param
ter, the driver discards it.

■ SQL_PARAM_INPUT_OUTPUT. The parameter marks an input/output parameter i
procedure. For example, the parameter in {call GetEmpDept(?)} is an input/output
parameter that accepts an employee’s name and returns the name of the employee
department.

When the statement is executed, the driver sends data for the parameter to the dat
source; the rgbValue buffer must contain a valid input value or the pcbValue buffer must
contain SQL_NULL_DATA, SQL_DATA_AT_EXEC, or the result of the
SQL_LEN_DATA_AT_EXEC macro. After the statement is executed, the driver retu
data for the parameter to the application; if the data source does not return a value
input/output parameter, the driver sets the pcbValue buffer to SQL_NULL_DATA.

NOTE: When an ODBC 1.0 application calls SQLSetParam in an ODBC 2.0 driver,
the Driver Manager converts this to a call to SQLBindParameter in which the fParam-
Type argument is set to SQL_PARAM_INPUT_OUTPUT.

■ SQL_PARAM_OUTPUT. The parameter marks the return value of a procedure or a
output parameter in a procedure; these are collectively known as output parameters. For
example, the parameter in {?=call GetNextEmpID} is an output parameter that returns
the next employee ID.

After the statement is executed, the driver returns data for the parameter to the app
tion, unless the rgbValue and pcbValue arguments are both null pointers, in which case
the driver discards the output value. If the data source does not return a value for a
put parameter, the driver sets the pcbValue buffer to SQL_NULL_DATA.

fCType Argument
The C data type of the parameter. This must be one of the following values:
5-26 SOLID Programmer Guide

SQLBindParameter (ODBC 2.0, Level 1)

data

.0
SQL_C_BINARY

SQL_C_BIT

SQL_C_CHAR

SQL_C_DATE

SQL_C_DEFAULT

SQL_C_DOUBLE

SQL_C_FLOAT

SQL_C_SLONG

SQL_C_SSHORT

SQL_C_STINYINT

SQL_C_TIME

SQL_C_TIMESTAMP

SQL_C_ULONG

SQL_C_USHORT

SQL_C_UTINYINT

SQL_C_DEFAULT specifies that the parameter value be transferred from the default C
type for the SQL data type specified with fSqlType.

For more information, see “Default C Data Types” and “Converting Data from C to SQL
Data Types” and “Converting Data from SQL to C Data Types” in Appendix D, “Data
Types.”

NOTE: Drivers must also support the following values of fCType from ODBC 1.0. Applica-
tions must use these values, instead of the ODBC 2.0 values, when calling an ODBC 1
driver:

SQL_C_LONG
SQL_C_SHORT
SQL_C_TINYINT

For more information, “ODBC 1.0 C Data Types” on page D-9.

fSqlType Argument
This must be one of the following values:

SQL_BIGINT
 Function Reference 5-27

SQLBindParameter (ODBC 2.0, Level 1)

d
.

g to
SQL_BINARY

SQL_BIT

SQL_CHAR

SQL_DATE

SQL_DECIMAL

SQL_DOUBLE

SQL_FLOAT

SQL_INTEGER

SQL_LONGVARBINARY

SQL_LONGVARCHAR

SQL_NUMERIC

SQL_REAL

SQL_SMALLINT

SQL_TIME

SQL_TIMESTAMP

SQL_TINYINT

SQL_VARBINARY

SQL_VARCHAR

or a driver-specific value. Values greater than SQL_TYPE_DRIVER_START are reserve
by ODBC; values less than or equal to SQL_TYPE_DRIVER_START are driver-specific

For information about how data is converted, see “Converting Data from C to SQL Data
Types” and “Converting Data from SQL to C Data Types” in Appendix D, “Data Types.”

cbColDef Argument
The cbColDef argument specifies the precision of the column or expression correspondin
the parameter marker, unless all of the following are true:

■ An ODBC 2.0 application calls SQLBindParameter in an ODBC 1.0 driver or an
ODBC 1.0 application calls SQLSetParam in an ODBC 2.0 driver. (Note that the
Driver Manager converts these calls.)

■ The fSqlType argument is SQL_LONGVARBINARY or SQL_LONGVARCHAR.
5-28 SOLID Programmer Guide

SQLBindParameter (ODBC 2.0, Level 1)

nt

d by

ver
or
r

-

, that

val-
nput/

■ The data for the parameter will be sent with SQLPutData.

■ In this case, the cbColDef argument contains the total number of bytes that will be se
for the parameter. For more information, see “Passing Parameter Values” and
SQL_DATA_AT_EXEC in “pcbValue Argument.”

rgbValue Argument
The rgbValue argument points to a buffer that, when SQLExecute or SQLExecDirect is
called, contains the actual data for the parameter. The data must be in the form specifie
the fCType argument.

If rgbValue points to a character string that contains a literal quote character ('), the dri
ensures that each literal quote is translated into the form required by the data source. F
example, if the data source required that embedded literal quotes be doubled, the drive
would replace each quote character (') with two quote characters (' ').

If pcbValue is the result of the SQL_LEN_DATA_AT_EXEC(length) macro or
SQL_DATA_AT_EXEC, then rgbValue is an application-defined 32-bit value that is associ
ated with the parameter. It is returned to the application through SQLParamData. For
example, rgbValue might be a token such as a parameter number, a pointer to data, or a
pointer to a structure that the application used to bind input parameters. Note, however
if the parameter is an input/output parameter, rgbValue must be a pointer to a buffer where
the output value will be stored. If SQLParamOptions was called to specify multiple values
for the parameter, the application can use the value of the pirow argument in SQLPara-
mOptions in conjunction with the rgbValue. For example, rgbValue might point to an array
of values and the application might use pirow to retrieve the correct value from the array.
For more information, see “Passing Parameter Values.”

If the fParamType argument is SQL_PARAM_INPUT_OUTPUT or
SQL_PARAM_OUTPUT, rgbValue points to a buffer in which the driver returns the output
value. If the procedure returns one or more result sets, the rgbValue buffer is not guaranteed
to be set until all results have been fetched. (If fParamType is SQL_PARAM_OUTPUT and
rgbValue and pcbValue are both null pointers, the driver discards the output value.)

If the application calls SQLParamOptions to specify multiple values for each parameter,
rgbValue points to an array. A single SQL statement processes the entire array of input
ues for an input or input/output parameter and returns an array of output values for an i
output or output parameter.

cbValueMax Argument
For character and binary C data, the cbValueMax argument specifies the length of the rgb-
Value buffer (if it is a single element) or the length of an element in the rgbValue array (if the
application calls SQLParamOptions to specify multiple values for each parameter). If the
 Function Reference 5-29

SQLBindParameter (ODBC 2.0, Level 1)

e-

ual to

rns

tion.

plica-
ed.

ther
all,

ut/
application specifies multiple values, cbValueMax is used to determine the location of val-
ues in the rgbValue array, both on input and on output. For input/output and output param
ters, it is used to determine whether to truncate character and binary C data on output:

■ For character C data, if the number of bytes available to return is greater than or eq
cbValueMax, the data in rgbValue is truncated to cbValueMax – 1 bytes and is null-ter-
minated by the driver.

■ For binary C data, if the number of bytes available to return is greater than cbValueMax,
the data in rgbValue is truncated to cbValueMax bytes.

For all other types of C data, the cbValueMax argument is ignored. The length of the rgb-
Value buffer (if it is a single element) or the length of an element in the rgbValue array (if the
application calls SQLParamOptions to specify multiple values for each parameter) is
assumed to be the length of the C data type.

NOTE: When an ODBC 1.0 application calls SQLSetParam in an ODBC 2.0 driver, the
Driver Manager converts this to a call to SQLBindParameter in which the cbValueMax
argument is always SQL_SETPARAM_VALUE_MAX. Because the Driver Manager retu
an error if an ODBC 2.0 application sets cbValueMax to SQL_SETPARAM_VALUE_MAX,
an ODBC 2.0 driver can use this to determine when it is called by an ODBC 1.0 applica

In SQLSetParam, the way in which an application specifies the length of the rgbValue
buffer so that the driver can return character or binary data and the way in which an ap
tion sends an array of character or binary parameter values to the driver are driver-defin

pcbValue Argument
The pcbValue argument points to a buffer that, when SQLExecute or SQLExecDirect is
called, contains one of the following:

■ The length of the parameter value stored in rgbValue. This is ignored except for charac-
ter or binary C data.

■ SQL_NTS. The parameter value is a null-terminated string.

■ SQL_NULL_DATA. The parameter value is NULL.

■ SQL_DEFAULT_PARAM. A procedure is to use the default value of a parameter, ra
than a value retrieved from the application. This value is valid only in a procedure c
and then only if the fParamType argument is SQL_PARAM_INPUT or
SQL_PARAM_INPUT_OUTPUT. When pcbValue is SQL_DEFAULT_PARAM, the
fCType, fSqlType, cbColDef, ibScale, cbValueMax and rgbValue arguments are ignored
for input parameters and are used only to define the output parameter value for inp
output parameters.

NOTE: This value was introduced in ODBC 2.0.
5-30 SOLID Programmer Guide

SQLBindParameter (ODBC 2.0, Level 1)

-

-
m-

y

r

acter,

e to

ar-
■ The result of the SQL_LEN_DATA_AT_EXEC(length) macro. The data for the parame
ter will be sent with SQLPutData. If the fSqlType argument is
SQL_LONGVARBINARY, SQL_LONGVARCHAR, or a long, data source–specific
data type and the driver returns “Y” for the SQL_NEED_LONG_DATA_LEN informa
tion type in SQLGetInfo, length is the number of bytes of data to be sent for the para
eter; otherwise, length must be a nonnegative value and is ignored. For more
information, see “Passing Parameter Values.”

For example, to specify that 10,000 bytes of data will be sent with SQLPutData for an
SQL_LONGVARCHAR parameter, an application sets pcbValue to
SQL_LEN_DATA_AT_EXEC(10000).

NOTE: This macro was introduced in ODBC 2.0.

■ SQL_DATA_AT_EXEC. The data for the parameter will be sent with SQLPutData.
This value is used by ODBC 2.0 applications when calling ODBC 1.0 drivers and b
ODBC 1.0 applications when calling ODBC 2.0 drivers. For more information, see
“Passing Parameter Values” in the next section.

If pcbValue is a null pointer, the driver assumes that all input parameter values are non-
NULL and that character and binary data are null-terminated. If fParamType is
SQL_PARAM_OUTPUT and rgbValue and pcbValue are both null pointers, the driver dis-
cards the output value.

NOTE: Application developers are strongly discouraged from specifying a null pointer fo
pcbValue when the data type of the parameter is SQL_C_BINARY. For SQL_C_BINARY
data, a driver sends only the data preceding an occurrence of the null-termination char
0x00. To ensure that a driver does not unexpectedly truncate SQL_C_BINARY data, pcb-
Value should contain a pointer to a valid length value.

If the fParamType argument is SQL_PARAM_INPUT_OUTPUT or
SQL_PARAM_OUTPUT, pcbValue points to a buffer in which the driver returns
SQL_NULL_DATA, the number of bytes available to return in rgbValue (excluding the null
termination byte of character data), or SQL_NO_TOTAL if the number of bytes availabl
return cannot be determined. If the procedure returns one or more result sets, the pcbValue
buffer is not guaranteed to be set until all results have been fetched.

If the application calls SQLParamOptions to specify multiple values for each parameter,
pcbValue points to an array of SDWORD values. These can be any of the values listed e
lier in this section and are processed with a single SQL statement.

Passing Parameter Values
An application can pass the value for a parameter either in the rgbValue buffer or with one or
more calls to SQLPutData. Parameters whose data is passed with SQLPutData are known
 Function Reference 5-31

SQLBindParameter (ODBC 2.0, Level 1)

h

ue

a
me-

ill be

as data-at-execution parameters. These are commonly used to send data for
SQL_LONGVARBINARY and SQL_LONGVARCHAR parameters and can be mixed wit
other parameters.

To pass parameter values, an application:

1. Calls SQLBindParameter for each parameter to bind buffers for the parameter’s val
(rgbValue argument) and length (pcbValue argument). For data-at-execution parame-
ters, rgbValue is an application-defined 32-bit value such as a parameter number or
pointer to data. The value will be returned later and can be used to identify the para
ter.

2. Places values for input and input/output parameters in the rgbValue and pcbValue buff-
ers:

■ For normal parameters, the application places the parameter value in the rgbValue
buffer and the length of that value in the pcbValue buffer.

■ For data-at-execution parameters, the application places the result of the
SQL_LEN_DATA_AT_EXEC(length) macro (when calling an ODBC 2.0 driver) or
SQL_DATA_AT_EXEC (when calling an ODBC 1.0 driver) in the pcbValue buffer.

3. Calls SQLExecute or SQLExecDirect to execute the SQL statement.

■ If there are no data-at-execution parameters, the process is complete.

■ If there are any data-at-execution parameters, the function returns
SQL_NEED_DATA.

4. Calls SQLParamData to retrieve the application-defined value specified in the rgb-
Value argument for the first data-at-execution parameter to be processed.

NOTE: Although data-at-execution parameters are similar to data-at-execution col-
umns, the value returned by SQLParamData is different for each.

Data-at-execution parameters are parameters in an SQL statement for which data w
sent with SQLPutData when the statement is executed with SQLExecDirect or
SQLExecute. They are bound with SQLBindParameter. The value returned by SQL-
ParamData is a 32-bit value passed to SQLBindParameter in the rgbValue argument.

Data-at-execution columns are columns in a rowset for which data will be sent with
SQLPutData when a row is updated or added with SQLSetPos. They are bound with
SQLBindCol. The value returned by SQLParamData is the address of the row in the
rgbValue buffer that is being processed.

5. Calls SQLPutData one or more times to send data for the parameter. More than one
call is needed if the data value is larger than the rgbValue buffer specified in SQLPut-
Data; note that multiple calls to SQLPutData for the same parameter are allowed only
5-32 SOLID Programmer Guide

SQLBindParameter (ODBC 2.0, Level 1)

–spe-
or

-

the

At
e

ed

t

8
when sending character C data to a column with a character, binary, or data source
cific data type or when sending binary C data to a column with a character, binary,
data source–specific data type.

6. Calls SQLParamData again to signal that all data has been sent for the parameter.

■ If there are more data-at-execution parameters, SQLParamData returns
SQL_NEED_DATA and the application-defined value for the next data-at-execu
tion parameter to be processed. The application repeats steps 5 and 6.

■ If there are no more data-at-execution parameters, the process is complete. If
statement was successfully executed, SQLParamData returns SQL_SUCCESS or
SQL_SUCCESS_WITH_INFO; if the execution failed, it returns SQL_ERROR.
this point, SQLParamData can return any SQLSTATE that can be returned by th
function used to execute the statement (SQLExecDirect or SQLExecute).

■ Output values for any input/output or output parameters will be available in the rgb-
Value and pcbValue buffers after the application retrieves any result sets generat
by the statement.

After SQLExecute or SQLExecDirect returns SQL_NEED_DATA, and before data is sen
for all data-at-execution parameters, the statement is canceled, or an error occurs in SQL-
ParamData or SQLPutData, the application can only call SQLCancel, SQLGetFunc-
tions, SQLParamData, or SQLPutData with the hstmt or the hdbc associated with the
hstmt. If it calls any other function with the hstmt or the hdbc associated with the hstmt, the
function returns SQL_ERROR and SQLSTATE S1010 (Function sequence error).

If the application calls SQLCancel while the driver still needs data for data-at-execution
parameters, the driver cancels statement execution; the application can then call SQLExe-
cute or SQLExecDirect again. If the application calls SQLParamData or SQLPutData
after canceling the statement, the function returns SQL_ERROR and SQLSTATE S100
(Operation canceled).

Conversion of Calls to and from SQLSetParam
When an ODBC 1.0 application calls SQLSetParam in an ODBC 2.0 driver, the ODBC 2.0
Driver Manager maps the call as follows:
 Function Reference 5-33

SQLBindParameter (ODBC 2.0, Level 1)

the

d to
es to
When an ODBC 2.0 application calls SQLBindParameter in an ODBC 1.0 driver, the
ODBC 2.0 Driver Manager maps the calls as follows:

Code Example
In the following example, an application prepares an SQL statement to insert data into
EMPLOYEE table. The SQL statement contains parameters for the NAME, AGE, and
BIRTHDAY columns. For each parameter in the statement, the application calls SQLBind-
Parameter to specify the ODBC C data type and the SQL data type of the parameter an
bind a buffer to each parameter. For each row of data, the application assigns data valu
each parameter and calls SQLExecute to execute the statement.

For more code examples, see SQLParamOptions, SQLPutData, and SQLSetPos.

#define NAME_LEN 30

UCHAR szName[NAME_LEN];
SWORD sAge;
SDWORD cbName = SQL_NTS, cbAge = 0, cbBirthday = 0;
DATE_STRUCT dsBirthday;

retcode = SQLPrepare(hstmt,
"INSERT INTO EMPLOYEE (NAME, AGE, BIRTHDAY) VALUES (?, ?, ?)",

Call by ODBC 1.0 Application Call to ODBC 2.0 Driver

SQLSetParam(

hstmt, ipar,

fCType, fSqlType, cbColDef, ibScale,

rgbValue,

pcbValue);

SQLBindParameter

(hstmt, ipar,

SQL_PARAM_INPUT_OUTPUT,

fCType, fSqlType, cbColDef, ibScale,

rgbValue,

SQL_SETPARAM_VALUE_MAX,

pcbValue);

Call by ODBC 2.0 Application Call to ODBC 1.0 Driver

SQLBindParameter(

hstmt, ipar, fParamType,

fCType, fSqlType, cbColDef, ibScale,

rgbValue, cbValueMax, pcbValue);

SQLSetParam(

hstmt, ipar,

fCType, fSqlType, cbColDef, ibScale,

rgbValue, pcbValue);
5-34 SOLID Programmer Guide

SQLBindParameter (ODBC 2.0, Level 1)
 SQL_NTS);
if (retcode == SQL_SUCCESS) {

/* Specify data types and buffers. */
/* for Name, Age, Birthday parameter data. */

SQLBindParameter(hstmt, 1, SQL_PARAM_INPUT, SQL_C_CHAR,
 SQL_CHAR, NAME_LEN, 0, szName, 0, &cbName);
SQLBindParameter(hstmt, 2, SQL_PARAM_INPUT, SQL_C_SSHORT,
 SQL_SMALLINT, 0, 0, &sAge, 0, &cbAge);
SQLBindParameter(hstmt, 3, SQL_PARAM_INPUT, SQL_C_DATE,
 SQL_DATE, 0, 0, &dsBirthday, 0, &cbBirthday);
strcpy(szName, "Smith, John D."); /* Specify first row of */
sAge = 40; /* parameter data */
dsBirthday.year = 1952;
dsBirthday.month = 2;
dsBirthday.day = 29;
retcode = SQLExecute(hstmt); /* Execute statement with */
 /* first row */

strcpy(szName, "Jones, Bob K."); /* Specify second row of */
sAge = 52; /* parameter data */
dsBirthday.year = 1940;
dsBirthday.month = 3;
dsBirthday.day = 31;
SQLExecute(hstmt); /* Execute statement with */
 /* second row */

}

 Function Reference 5-35

SQLBindParameter (ODBC 2.0, Level 1)
Related Functions

For information about See

Returning information about a parameter in a
statement

SQLDescribeParam (extension)

Executing an SQL statement SQLExecDirect

Executing a prepared SQL statement SQLExecute

Returning the number of statement parameters SQLNumParams (extension)

Returning the next parameter to send data for SQLParamData (extension)

Specifying multiple parameter values SQLParamOptions (extension)

Sending parameter data at execution time SQLPutData (extension)
5-36 SOLID Programmer Guide

SQLCancel (ODBC 1.0, Core)

d

 the
R,
SQLCancel (ODBC 1.0, Core)
SQLCancel cancels the processing on an hstmt.

Syntax
RETCODE SQLCancel(hstmt)

The SQLCancel function accepts the following argument.

Returns
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_ERROR, or
SQL_INVALID_HANDLE.

Diagnostics
When SQLCancel returns SQL_ERROR or SQL_SUCCESS_WITH_INFO, an associate
SQLSTATE value may be obtained by calling SQLError . The following table lists the SQL-
STATE values commonly returned by SQLCancel and explains each one in the context of
this function; the notation “(DM)” precedes the descriptions of SQLSTATEs returned by
Driver Manager. The return code associated with each SQLSTATE value is SQL_ERRO
unless noted otherwise.

Type Argument Use Description

HSTMT hstmt Input Statement handle.

SQLSTATE Error Description

01000 General warning Driver-specific informational message.
(Function returns
SQL_SUCCESS_WITH_INFO.)

70100 Operation aborted The data source was unable to process
the cancel request.

IM001 Driver does not support this
function

(DM) The driver associated with the
hstmt does not support the function.

S1000 General error An error occurred for which there was no
specific SQLSTATE and for which no
implementation-specific SQLSTATE was
defined. The error message returned by
SQLError in the argument szErrorMsg
describes the error and its cause.
 Function Reference 5-37

SQLCancel (ODBC 1.0, Core)

eter-

rns
ed; it
celed
 func-

ll
Comments
SQLCancel can cancel the following types of processing on an hstmt:

■ A function running asynchronously on the hstmt.

■ A function on an hstmt that needs data.

■ A function running on the hstmt on another thread.

If an application calls SQLCancel when no processing is being done on the hstmt, SQLCa-
ncel has the same effect as SQLFreeStmt with the SQL_CLOSE option; this behavior is
defined only for completeness and applications should call SQLFreeStmt to close cursors.

Canceling Asynchronous Processing
After an application calls a function asynchronously, it calls the function repeatedly to d
mine whether it has finished processing. If the function is still processing, it returns
SQL_STILL_EXECUTING. If the function has finished processing, it returns a different
code.

After any call to the function that returns SQL_STILL_EXECUTING, an application can
call SQLCancel to cancel the function. If the cancel request is successful, the driver retu
SQL_SUCCESS. This message does not indicate that the function was actually cancel
indicates that the cancel request was processed. When or if the function is actually can
is driver- and data source–dependent. The application must continue to call the original
tion until the return code is not SQL_STILL_EXECUTING. If the function was success-
fully canceled, the return code is SQL_ERROR and SQLSTATE S1008 (Operation
canceled). If the function completed its normal processing, the return code is
SQL_SUCCESS or SQL_SUCCESS_WITH_INFO if the function succeeded or
SQL_ERROR and a SQLSTATE other than S1008 (Operation canceled) if the function
failed.

Canceling Functions that Need Data
After SQLExecute or SQLExecDirect returns SQL_NEED_DATA and before data has
been sent for all data-at-execution parameters, an application can call SQLCancel to cancel
the statement execution. After the statement has been canceled, the application can ca
SQLExecute or SQLExecDirect again. For more information, see SQLBindParameter.

S1001 Memory allocation failure The driver was unable to allocate mem-
ory required to support execution or com-
pletion of the function.
5-38 SOLID Programmer Guide

SQLCancel (ODBC 1.0, Core)

at-

chro-

c-

ates
After SQLSetPos returns SQL_NEED_DATA and before data has been sent for all data-
execution columns, an application can call SQLCancel to cancel the operation. After the
operation has been canceled, the application can call SQLSetPos again; canceling does not
affect the cursor state or the current cursor position. For more information, see SQLSetPos.

Canceling Functions in Multithreaded Applications
In a multithreaded application, the application can cancel a function that is running syn
nously on an hstmt. To cancel the function, the application calls SQLCancel with the same
hstmt as that used by the target function, but on a different thread. As in canceling a fun
tion running asynchronously, the return code of the SQLCancel only indicates whether the
driver processed the request successfully. The return code of the original function indic
whether it completed normally or was canceled.

Related Functions

For information about See

Assigning storage for a parameter SQLBindParameter

Executing an SQL statement SQLExecDirect

Executing a prepared SQL statement SQLExecute

Freeing a statement handle SQLFreeStmt

Positioning the cursor in a rowset SQLSetPos (extension)

Returning the next parameter to send data for SQLParamData (extension)

Sending parameter data at execution time SQLPutData (extension)
 Function Reference 5-39

SQLColAttributes (ODBC 1.0, Core)

e
on
e.
SQLColAttributes (ODBC 1.0, Core)
SQLColAttributes returns descriptor information for a column in a result set; it cannot b
used to return information about the bookmark column (column 0). Descriptor informati
is returned as a character string, a 32-bit descriptor-dependent value, or an integer valu

Syntax
RETCODE SQLColAttributes (hstmt, icol, fDescType, rgbDesc, cbDescMax, pcbDesc,
pfDesc)

The SQLColAttributes function accepts the following arguments.

Type Argument Use Description

HSTMT hstmt Input Statement handle.

UWORD icol Input Column number of result data, ordered
sequentially from left to right, starting
at 1. Columns may be described in any
order.

UWORD fDescType Input A valid descriptor type (see “Com-
ments”).

PTR rgbDesc Output Pointer to storage for the descriptor
information. The format of the descrip-
tor information returned depends on the
fDescType.

SWORD cbDescMax Input Maximum length of the rgbDesc buffer.

SWORD FAR * pcbDesc Output Total number of bytes (excluding the null
termination byte for character data)
available to return in rgbDesc.

For character data, if the number of bytes
available to return is greater than or
equal to cbDescMax, the descriptor
information in rgbDesc is truncated to
cbDescMax – 1 bytes and is null-termi-
nated by the driver.

For all other types of data, the value of
cbValueMax is ignored and the driver
assumes the size of rgbValue is 32 bits.
5-40 SOLID Programmer Guide

SQLColAttributes (ODBC 1.0, Core)

L-
ATE
Returns
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_STILL_EXECUTING,
SQL_ERROR, or SQL_INVALID_HANDLE.

Diagnostics
When SQLColAttributes returns either SQL_ERROR or SQL_SUCCESS_WITH_INFO,
an associated SQLSTATE value may be obtained by calling SQLError . The following table
lists the SQLSTATE values commonly returned by SQLColAttributes and explains each
one in the context of this function; the notation “(DM)” precedes the descriptions of SQ
STATEs returned by the Driver Manager. The return code associated with each SQLST
value is SQL_ERROR, unless noted otherwise.

SDWORD FAR * pfDesc Output Pointer to an integer value to contain
descriptor information for numeric
descriptor types, such as
SQL_COLUMN_LENGTH.

SQLSTATE Error Description

01000 General warning Driver-specific informational message.
(Function returns
SQL_SUCCESS_WITH_INFO.)

01004 Data truncated The buffer rgbDesc was not large enough
to return the entire string value, so the
string value was truncated. The argu-
ment pcbDesc contains the length of the
untruncated string value. (Function
returns SQL_SUCCESS_WITH_INFO.)

24000 Invalid cursor state The statement associated with the hstmt
did not return a result set. There were no
columns to describe.

IM001 Driver does not support this
function

(DM) The driver associated with the
hstmt does not support the function.

S1000 General error An error occurred for which there was no
specific SQLSTATE and for which no
implementation-specific SQLSTATE was
defined. The error message returned by
SQLError in the argument szErrorMsg
describes the error and its cause.
 Function Reference 5-41

SQLColAttributes (ODBC 1.0, Core)
S1001 Memory allocation failure The driver was unable to allocate mem-
ory required to support execution or
completion of the function.

S1002 Invalid column number (DM) The value specified for the argu-
ment icol was 0 and the argument fDesc-
Type was not SQL_COLUMN_COUNT.

The value specified for the argument icol
was greater than the number of columns
in the result set and the argument fDesc-
Type was not SQL_COLUMN_COUNT.

S1008 Operation canceled Asynchronous processing was enabled
for the hstmt. The function was called
and before it completed execution, SQL-
Cancel was called on the hstmt. Then the
function was called again on the hstmt.

The function was called and, before it
completed execution, SQLCancel was
called on the hstmt from a different
thread in a multithreaded application.

S1010 Function sequence error (DM) The function was called prior to
calling SQLPrepare or SQLExecDi-
rect for the hstmt.

(DM) An asynchronously executing
function (not this one) was called for the
hstmt and was still executing when this
function was called.

(DM) SQLExecute, SQLExecDirect, or
SQLSetPos was called for the hstmt and
returned SQL_NEED_DATA. This func-
tion was called before data was sent for
all data-at-execution parameters or col-
umns.

S1090 Invalid string or buffer length (DM) The value specified for the argu-
ment cbDescMax was less than 0.

S1091 Descriptor type out of range (DM) The value specified for the argu-
ment fDescType was in the block of num-
bers reserved for ODBC descriptor types
but was not valid for the version of
ODBC supported by the driver (see
“Comments”).
5-42 SOLID Programmer Guide

SQLColAttributes (ODBC 1.0, Core)

d

ced,
cted

val-

le. If
d, the
SQLColAttributes can return any SQLSTATE that can be returned by SQLPrepare or
SQLExecute when called after SQLPrepare and before SQLExecute depending on when
the data source evaluates the SQL statement associated with the hstmt.

Comments
SQLColAttributes returns information either in pfDesc or in rgbDesc. Integer information
is returned in pfDesc as a 32-bit, signed value; all other formats of information are returne
in rgbDesc. When information is returned in pfDesc, the driver ignores rgbDesc, cbDesc-
Max, and pcbDesc. When information is returned in rgbDesc, the driver ignores pfDesc.

The currently defined descriptor types, the version of ODBC in which they were introdu
and the arguments in which information is returned for them are shown below; it is expe
that more descriptor types will be defined to take advantage of different data sources.
Descriptor types from 0 to 999 are reserved by ODBC; driver developers must reserve
ues greater than or equal to SQL_COLUMN_DRIVER_START for driver-specific use.

A driver must return a value for each of the descriptor types defined in the following tab
a descriptor type does not apply to a driver or data source, then, unless otherwise state
driver returns 0 in pcbDesc or an empty string in rgbDesc.

S1C00 Driver not capable The value specified for the argument
fDescType was in the range of numbers
reserved for driver-specific descriptor
types but was not supported by the
driver.

S1T00 Timeout expired The timeout period expired before the
data source returned the requested infor-
mation. The timeout period is set through
SQLSetStmtOption,
SQL_QUERY_TIMEOUT.
 Function Reference 5-43

SQLColAttributes (ODBC 1.0, Core)
fDescType

Info
returned
in Description

SQL_COLUMN_AUTO_INCREMENT
(ODBC 1.0)

pfDesc TRUE if the column is autoincre-
ment.

FALSE if the column is not auto-
increment or is not numeric.

Auto increment is valid for
numeric data type columns only.
An application can insert values
into an autoincrement column, but
cannot update values in the col-
umn.

SQL_COLUMN_CASE_SENSITIVE
(ODBC 1.0)

pfDesc TRUE if the column is treated as
case sensitive for collations and
comparisons.

FALSE if the column is not treated
as case sensitive for collations and
comparisons or is noncharacter.

SQL_COLUMN_COUNT
(ODBC 1.0)

pfDesc Number of columns available in
the result set. The icol argument is
ignored.

SQL_COLUMN_DISPLAY_SIZE
(ODBC 1.0)

pfDesc Maximum number of characters
required to display data from the
column. For more information on
display size, see “Precision, Scale,
Length, and Display Size” in
Appendix D, “Data Types.”

SQL_COLUMN_LABEL
(ODBC 2.0)

rgbDesc The column label or title. For
example, a column named Emp-
Name might be labeled Employee
Name.

If a column does not have a label,
the column name is returned. If
the column is unlabeled and
unnamed, an empty string is
returned.
5-44 SOLID Programmer Guide

SQLColAttributes (ODBC 1.0, Core)
SQL_COLUMN_LENGTH
(ODBC 1.0)

pfDesc The length in bytes of data trans-
ferred on an SQLGetData or
SQLFetch operation if
SQL_C_DEFAULT is specified.
For numeric data, this size may be
different than the size of the data
stored on the data source. For
more length information, see “Pre-
cision, Scale, Length, and Display
Size” in Appendix D, “Data
Types.”

SQL_COLUMN_MONEY
(ODBC 1.0)

pfDesc TRUE if the column is money data
type.

FALSE if the column is not money
data type.

SQL_COLUMN_NAME
(ODBC 1.0)

rgbDesc The column name.

If the column is unnamed, an
empty string is returned.

SQL_COLUMN_NULLABLE
(ODBC 1.0)

pfDesc SQL_NO_NULLS if the column
does not accept NULL values.

SQL_NULLABLE if the column
accepts NULL values.

SQL_NULLABLE_UNKNOWN
if it is not known if the column
accepts NULL values.

SQL_COLUMN_OWNER_NAME
(ODBC 2.0)

rgbDesc The owner of the table that con-
tains the column. The returned
value is implementation-defined if
the column is an expression or if
the column is part of a view. If the
data source does not support own-
ers or the owner name cannot be
determined, an empty string is
returned.

SQL_COLUMN_PRECISION
(ODBC 1.0)

pfDesc The precision of the column on the
data source. For more information
on precision, see “Precision,
Scale, Length, and Display
Size” on page D-14.”
 Function Reference 5-45

SQLColAttributes (ODBC 1.0, Core)
SQL_COLUMN_QUALIFIER_NAME
(ODBC 2.0)

rgbDesc The qualifier of the table that con-
tains the column. The returned
value is implementation-defined if
the column is an expression or if
the column is part of a view. If the
data source does not support quali-
fiers or the qualifier name cannot
be determined, an empty string is
returned.

SQL_COLUMN_SCALE
(ODBC 1.0)

pfDesc The scale of the column on the
data source. For more information
on scale, see “Precision, Scale,
Length, and Display Size” in
Appendix D, “Data Types.”

SQL_COLUMN_SEARCHABLE
(ODBC 1.0)

pfDesc SQL_UNSEARCHABLE if the
column cannot be used in a
WHERE clause.

SQL_LIKE_ONLY if the column
can be used in a WHERE clause
only with the LIKE predicate.

SQL_ALL_EXCEPT_LIKE if the
column can be used in a WHERE
clause with all comparison opera-
tors except LIKE .

SQL_SEARCHABLE if the col-
umn can be used in a WHERE
clause with any comparison opera-
tor.

Columns of type
SQL_LONGVARCHAR and
SQL_LONGVARBINARY usu-
ally return SQL_LIKE_ONLY.

SQL_COLUMN_TABLE_NAME
(ODBC 2.0)

rgbDesc The name of the table that con-
tains the column. The returned
value is implementation-defined if
the column is an expression or if
the column is part of a view.

If the table name cannot be deter-
mined, an empty string is returned.
5-46 SOLID Programmer Guide

SQLColAttributes (ODBC 1.0, Core)
SQL_COLUMN_TYPE
(ODBC 1.0)

pfDesc SQL data type. This can be an
ODBC SQL data type or a driver-
specific SQL data type. For a list
of valid ODBC SQL data types,
see “Precision, Scale, Length,
and Display Size” on page D-
14. For information about driver-
specific SQL data types, see the
driver’s documentation.

SQL_COLUMN_TYPE_NAME
(ODBC 1.0)

rgbDesc Data source–dependent data type
name; for example, “CHAR”,
“VARCHAR”, “MONEY”,
“LONG VARBINARY”, or
“CHAR () FOR BIT DATA”.

If the type is unknown, an empty
string is returned.

SQL_COLUMN_UNSIGNED
(ODBC 1.0)

pfDesc TRUE if the column is unsigned
(or not numeric).

FALSE if the column is signed.

SQL_COLUMN_UPDATABLE
(ODBC 1.0)

pfDesc Column is described by the values
for the defined constants:

SQL_ATTR_READONLY

SQL_ATTR_WRITE

SQL_ATTR_READWRITE_UNK
NOWN

SQL_COLUMN_UPDATABLE
describes the updatability of the
column in the result set. Whether a
column is updatable can be based
on the data type, user privileges,
and the definition of the result set
itself. If it is unclear whether a
column is updatable,
SQL_ATTR_READWRITE_UNK
NOWN should be returned.
 Function Reference 5-47

SQLColAttributes (ODBC 1.0, Core)

d
This function is an extensible alternative to SQLDescribeCol. SQLDescribeCol returns a
fixed set of descriptor information based on ANSI-89 SQL. SQLColAttributes allows
access to the more extensive set of descriptor information available in ANSI SQL-92 an
DBMS vendor extensions.

Related Functions

For information about See

Assigning storage for a column in a result set SQLBindCol

Canceling statement processing SQLCancel

Returning information about a column in a result set SQLDescribeCol

Fetching a block of data or scrolling through a result setSQLExtendedFetch (extension)

Fetching a row of data SQLFetch
5-48 SOLID Programmer Guide

SQLColumns (ODBC 1.0, Level 1)

s
SQLColumns (ODBC 1.0, Level 1)
SQLColumns returns the list of column names in specified tables. The driver returns thi
information as a result set on the specified hstmt.

Syntax
RETCODE SQLColumns(hstmt, szTableQualifier, cbTableQualifier, szTableOwner,
cbTableOwner, szTableName, cbTableName, szColumnName, cbColumnName)

The SQLColumns function accepts the following arguments:

Returns
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_STILL_EXECUTING,
SQL_ERROR, or SQL_INVALID_HANDLE.

Type Argument Use Description

HSTMT hstmt Input Statement handle.

UCHAR FAR * szTableQualifier Input Qualifier name. If a driver supports
qualifiers for some tables but not for
others, such as when the driver retrieves
data from different DBMSs, an empty
string ("") denotes those tables that do
not have qualifiers.

SWORD cbTableQualifier Input Length of szTableQualifier.

UCHAR FAR * szTableOwner Input String search pattern for owner names.
If a driver supports owners for some
tables but not for others, such as when
the driver retrieves data from different
DBMSs, an empty string ("") denotes
those tables that do not have owners.

SWORD cbTableOwner Input Length of szTableOwner.

UCHAR FAR * szTableName Input String search pattern for table names.

SWORD cbTableName Input Length of szTableName.

UCHAR FAR * szColumnName Input String search pattern for column names.

SWORD cbColumnName Input Length of szColumnName.
 Function Reference 5-49

SQLColumns (ODBC 1.0, Level 1)

ned
Diagnostics
When SQLColumns returns SQL_ERROR or SQL_SUCCESS_WITH_INFO, an associ-
ated SQLSTATE value may be obtained by calling SQLError . The following table lists the
SQLSTATE values commonly returned by SQLColumns and explains each one in the con-
text of this function; the notation “(DM)” precedes the descriptions of SQLSTATEs retur
by the Driver Manager. The return code associated with each SQLSTATE value is
SQL_ERROR, unless noted otherwise.

SQLSTATE Error Description

01000 General warning Driver-specific informational message.
(Function returns
SQL_SUCCESS_WITH_INFO.)

08S01 Communication link fail-
ure

The communication link between the driver
and the data source to which the driver was
connected failed before the function com-
pleted processing.

24000 Invalid cursor state (DM) A cursor was open on the hstmt and
SQLFetch or SQLExtendedFetch had been
called.

A cursor was open on the hstmt but
SQLFetch or SQLExtendedFetch had not
been called.

IM001 Driver does not support
this function

(DM) The driver associated with the hstmt
does not support the function.

S1000 General error An error occurred for which there was no
specific SQLSTATE and for which no imple-
mentation-specific SQLSTATE was defined.
The error message returned by SQLError in
the argument szErrorMsg describes the error
and its cause.

S1001 Memory allocation failureThe driver was unable to allocate memory
required to support execution or completion
of the function.
5-50 SOLID Programmer Guide

SQLColumns (ODBC 1.0, Level 1)
S1008 Operation canceled Asynchronous processing was enabled for
the hstmt. The function was called and before
it completed execution, SQLCancel was
called on the hstmt. Then the function was
called again on the hstmt.

The function was called and, before it com-
pleted execution, SQLCancel was called on
the hstmt from a different thread in a multi-
threaded application.

S1010 Function sequence error(DM) An asynchronously executing function
(not this one) was called for the hstmt and
was still executing when this function was
called.

(DM) SQLExecute, SQLExecDirect, or
SQLSetPos was called for the hstmt and
returned SQL_NEED_DATA. This function
was called before data was sent for all data-
at-execution parameters or columns.

S1090 Invalid string or buffer
length

(DM) The value of one of the name length
arguments was less than 0, but not equal to
SQL_NTS.

The value of one of the name length argu-
ments exceeded the maximum length value
for the corresponding qualifier or name. The
maximum length of each qualifier or name
may be obtained by calling SQLGetInfo
with the fInfoType values (see “Comments”).

S1C00 Driver not capable A table qualifier was specified and the driver
or data source does not support qualifiers.

A table owner was specified and the driver or
data source does not support owners.
 Function Reference 5-51

SQLColumns (ODBC 1.0, Level 1)

col-
ctions

of

R,
t
Comments
This function is typically used before statement execution to retrieve information about
umns for a table or tables from the data source’s catalog. Note by contrast, that the fun
SQLColAttributes and SQLDescribeCol describe the columns in a result set and that the
function SQLNumResultCols returns the number of columns in a result set.

Note SQLColumns might not return all columns. For example, a driver might not return
information about pseudo-columns. Applications can use any valid column, regardless
whether it is returned by SQLColumns.

SQLColumns returns the results as a standard result set, ordered by TABLE_QUALIFIE
TABLE_OWNER, and TABLE_NAME. The following table lists the columns in the resul
set. Additional columns beyond column 12 (REMARKS) can be defined by the driver.

A string search pattern was specified for the
table owner, table name, or column name and
the data source does not support search pat-
terns for one or more of those arguments.
The combination of the current settings of
the SQL_CONCURRENCY and
SQL_CURSOR_TYPE statement options
was not supported by the driver or data
source.

S1T00 Timeout expired The timeout period expired before the data
source returned the result set. The timeout
period is set through SQLSetStmtOption,
SQL_QUERY_TIMEOUT.
5-52 SOLID Programmer Guide

SQLColumns (ODBC 1.0, Level 1)

s
,
The lengths of VARCHAR columns shown in the table are maximums; the actual length
depend on the data source. To determine the actual lengths of the TABLE_QUALIFIER
TABLE_OWNER, TABLE_NAME, and COLUMN_NAME columns, an application can
call SQLGetInfo with the SQL_MAX_QUALIFIER_NAME_LEN,
SQL_MAX_OWNER_NAME_LEN, SQL_MAX_TABLE_NAME_LEN, and
SQL_MAX_COLUMN_NAME_LEN options.

Column Name Data Type Comments

TABLE_QUALIFIER Varchar(128) Table qualifier identifier; NULL if not applicable
to the data source. If a driver supports qualifiers
for some tables but not for others, such as when
the driver retrieves data from different DBMSs, it
returns an empty string ("") for those tables that
do not have qualifiers.

TABLE_OWNER Varchar(128) Table owner identifier; NULL if not applicable to
the data source. If a driver supports owners for
some tables but not for others, such as when the
driver retrieves data from different DBMSs, it
returns an empty string ("") for those tables that
do not have owners.

TABLE_NAME Varchar(128)
not NULL

Table identifier.

COLUMN_NAME Varchar(128)
not NULL

Column identifier.

DATA_TYPE Smallint not
NULL

SQL data type. This can be an ODBC SQL data
type or a driver-specific SQL data type. For a list

of valid ODBC SQL data types, “SQL Data
Types” on page D-2. For information about
driver-specific SQL data types, see the driver’s
documentation.

TYPE_NAME Varchar(128)
not NULL

Data source–dependent data type name; for
example, “CHAR”, “VARCHAR”, “MONEY”,
“LONG VARBINARY”, or “CHAR () FOR BIT
DATA”.
 Function Reference 5-53

SQLColumns (ODBC 1.0, Level 1)
PRECISION Integer The precision of the column on the data source.
For precision information, see “Precision,
Scale, Length, and Display Size” on page
D-14.

LENGTH Integer The length in bytes of data transferred on an
SQLGetData or SQLFetch operation if
SQL_C_DEFAULT is specified. For numeric
data, this size may be different than the size of
the data stored on the data source. This value is
the same as the PRECISION column for charac-
ter or binary data. For more information about
length, see “Precision, Scale, Length, and Dis-
play Size” in Appendix D, “Data Types.”

SCALE Smallint The scale of the column on the data source. For
more scale information, see “Precision, Scale,
Length, and Display Size” on page D-14.
NULL is returned for data types where scale is
not applicable.

RADIX Smallint For numeric data types, either 10 or 2. If it is 10,
the values in PRECISION and SCALE give the
number of decimal digits allowed for the col-
umn. For example, a DECIMAL(12,5) column
would return a RADIX of 10, a PRECISION of
12, and a SCALE of 5; A FLOAT column could
return a RADIX of 10, a PRECISION of 15 and a
SCALE of NULL.

If it is 2, the values in PRECISION and SCALE
give the number of bits allowed in the column.
For example, a FLOAT column could return a
RADIX of 2, a PRECISION of 53, and a SCALE
of NULL.

NULL is returned for data types where radix is
not applicable.

NULLABLE Smallint not
NULL

SQL_NO_NULLS if the column does not accept
NULL values.
SQL_NULLABLE if the column accepts NULL
values.

SQL_NULLABLE_UNKNOWN if it is not
known if the column accepts NULL values.

REMARKS Varchar(254) A description of the column.
5-54 SOLID Programmer Guide

SQLColumns (ODBC 1.0, Level 1)

or
n this

urned
in
e
The szTableOwner, szTableName, and szColumnName arguments accept search patterns. F
more information about valid search patterns, see “Search Pattern Arguments” earlier i
chapter.

Code Example
In the following example, an application declares storage locations for the result set ret
by SQLColumns. It calls SQLColumns to return a result set that describes each column
the EMPLOYEE table. It then calls SQLBindCol to bind the columns in the result set to th
storage locations. Finally, the application fetches each row of data with SQLFetch and pro-
cesses it.

#define STR_LEN 128+1
#define REM_LEN 254+1

/* Declare storage locations for result set data */

UCHAR szQualifier[STR_LEN], szOwner[STR_LEN];
UCHAR szTableName[STR_LEN], szColName[STR_LEN];
UCHAR szTypeName[STR_LEN], szRemarks[REM_LEN];
SDWORD Precision, Length;
SWORD DataType, Scale, Radix, Nullable;

/* Declare storage locations for bytes available to return */

SDWORD cbQualifier, cbOwner, cbTableName, cbColName;
SDWORD cbTypeName, cbRemarks, cbDataType, cbPrecision;
SDWORD cbLength, cbScale, cbRadix, cbNullable;

retcode = SQLColumns(hstmt,
 NULL, 0, /* All qualifiers */
 NULL, 0, /* All owners */
 "EMPLOYEE", SQL_NTS, /* EMPLOYEE table */
 NULL, 0); /* All columns */

if (retcode == SQL_SUCCESS) {

/* Bind columns in result set to storage locations */

SQLBindCol(hstmt, 1, SQL_C_CHAR, szQualifier, STR_LEN,&cbQualifier);
SQLBindCol(hstmt, 2, SQL_C_CHAR, szOwner, STR_LEN, &cbOwner);
SQLBindCol(hstmt, 3, SQL_C_CHAR, szTableName, STR_LEN,&cbTableName);
SQLBindCol(hstmt, 4, SQL_C_CHAR, szColName, STR_LEN, &cbColName);
SQLBindCol(hstmt, 5, SQL_C_SSHORT, &DataType, 0, &cbDataType);
SQLBindCol(hstmt, 6, SQL_C_CHAR, szTypeName, STR_LEN, &cbTypeName);
 Function Reference 5-55

SQLColumns (ODBC 1.0, Level 1)
SQLBindCol(hstmt, 7, SQL_C_SLONG, &Precision, 0, &cbPrecision);
SQLBindCol(hstmt, 8, SQL_C_SLONG, &Length, 0, &cbLength);
SQLBindCol(hstmt, 9, SQL_C_SSHORT, &Scale, 0, &cbScale);
SQLBindCol(hstmt, 10, SQL_C_SSHORT, &Radix, 0, &cbRadix);
SQLBindCol(hstmt, 11, SQL_C_SSHORT, &Nullable, 0, &cbNullable);
SQLBindCol(hstmt, 12, SQL_C_CHAR, szRemarks, REM_LEN, &cbRemarks);

while(TRUE) {
retcode = SQLFetch(hstmt);
if (retcode == SQL_ERROR || retcode == SQL_SUCCESS_WITH_INFO) {

show_error();
}
if (retcode == SQL_SUCCESS || retcode == SQL_SUCCESS_WITH_INFO){

...; /* Process fetched data */
} else {

break;
}

}
}

Related Functions

For information about See

Assigning storage for a column in a result set SQLBindCol

Canceling statement processing SQLCancel

Returning privileges for a column or columns SQLColumnPrivileges (extension)

Fetching a block of data or scrolling through a
result set

SQLExtendedFetch (extension)

Fetching a row of data SQLFetch

Returning table statistics and indexes SQLStatistics (extension)

Returning a list of tables in a data source SQLTables (extension)
5-56 SOLID Programmer Guide

SQLConnect (ODBC 1.0, Core)

tion
sac-

ted

 the
R,
SQLConnect (ODBC 1.0, Core)
SQLConnect loads a driver and establishes a connection to a data source. The connec
handle references storage of all information about the connection, including status, tran
tion state, and error information.

Syntax
RETCODE SQLConnect(hdbc, szDSN, cbDSN, szUID, cbUID, szAuthStr, cbAuthStr)

The SQLConnect function accepts the following arguments.

Returns
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_ERROR, or
SQL_INVALID_HANDLE.

Diagnostics
When SQLConnect returns SQL_ERROR or SQL_SUCCESS_WITH_INFO, an associa
SQLSTATE value may be obtained by calling SQLError . The following table lists the SQL-
STATE values commonly returned by SQLConnect and explains each one in the context of
this function; the notation “(DM)” precedes the descriptions of SQLSTATEs returned by
Driver Manager. The return code associated with each SQLSTATE value is SQL_ERRO
unless noted otherwise.

Type Argument Use Description

HDBC hdbc Input Connection handle.

UCHAR FAR * szDSN Input Data source name.

SWORD cbDSN Input Length of szDSN.

UCHAR FAR * szUID Input User identifier.

SWORD cbUID Input Length of szUID.

UCHAR FAR * szAuthStr Input Authentication string (typically the pass-
word).

SWORD cbAuthStr Input Length of szAuthStr.

SQLSTATE Error Description
 Function Reference 5-57

SQLConnect (ODBC 1.0, Core)
01000 General warning Driver-specific informational message. (Func-
tion returns SQL_SUCCESS_WITH_INFO.)

08001 Unable to connect to
data source

The driver was unable to establish a connection
with the data source.

08002 Connection in use (DM) The specified hdbc had already been used
to establish a connection with a data source and
the connection was still open.

08004 Data source rejected
establishment of con-
nection

The data source rejected the establishment of
the connection for implementation-defined rea-
sons.

08S01 Communication link
failure

The communication link between the driver and
the data source to which the driver was attempt-
ing to connect failed before the function com-
pleted processing.

28000 Invalid authorization
specification

The value specified for the argument szUID or
the value specified for the argument szAuthStr
violated restrictions defined by the data source.

IM001 Driver does not sup-
port this function

(DM) The driver specified by the data source
name does not support the function.

IM002 Data source not found
and no default driver
specified

(DM) The data source name specified in the
argument szDSN was not found in the
ODBC.INI file or registry, nor was there a
default driver specification.

(DM) The ODBC.INI file could not be found.

IM003 Specified driver could
not be loaded

(DM) The driver listed in the data source speci-
fication in the ODBC.INI file or registry was
not found or could not be loaded for some other
reason.

IM004 Driver’s SQLAllo-
cEnv failed

(DM) During SQLConnect, the Driver Man-
ager called the driver’s SQLAllocEnv function
and the driver returned an error.

IM005 Driver’s SQLAllocCo-
nnect failed

(DM) During SQLConnect, the Driver Man-
ager called the driver’s SQLAllocConnect
function and the driver returned an error.
5-58 SOLID Programmer Guide

SQLConnect (ODBC 1.0, Core)
IM006 Driver’s
SQLSetConnect-
Option failed

(DM) During SQLConnect, the Driver Man-
ager called the driver’s SQLSetConnectOp-
tion function and the driver returned an error.
(Function returns
SQL_SUCCESS_WITH_INFO).

IM009 Unable to load transla-
tion DLL

The driver was unable to load the translation
DLL that was specified for the data source.

S1000 General error An error occurred for which there was no spe-
cific SQLSTATE and for which no implementa-
tion-specific SQLSTATE was defined. The error
message returned by SQLError in the argu-
ment szErrorMsg describes the error and its
cause.

S1001 Memory allocation
failure

(DM) The Driver Manager was unable to allo-
cate memory required to support execution or
completion of the function.

The driver was unable to allocate memory
required to support execution or completion of
the function.

S1090 Invalid string or buffer
length

(DM) The value specified for argument cbDSN
was less than 0, but not equal to SQL_NTS.

(DM) The value specified for argument cbDSN
exceeded the maximum length for a data source
name.

(DM) The value specified for argument cbUID
was less than 0, but not equal to SQL_NTS.

(DM) The value specified for argument cbAuth-
Str was less than 0, but not equal to SQL_NTS.

S1T00 Timeout expired The timeout period expired before the connec-
tion to the data source completed. The timeout
period is set through SQLSetConnectOption,
SQL_LOGIN_TIMEOUT.
 Function Reference 5-59

SQLConnect (ODBC 1.0, Core)

 calls
pec-

ction

er
ot,
olves
he

.

ppli-
ation

-

Comments
The Driver Manager does not load a driver until the application calls a function (SQLCon-
nect, SQLDriverConnect) to connect to the driver. Until that point, the Driver Manager
works with its own handles and manages connection information. When the application
a connection function, the Driver Manager checks if a driver is currently loaded for the s
ified hdbc:

■ If a driver is not loaded, the Driver Manager loads the driver and calls SQLAllocEnv,
SQLAllocConnect, SQLSetConnectOption (if the application specified any connec-
tion options), and the connection function in the driver. The Driver Manager returns
SQLSTATE IM006 (Driver’s SQLSetConnectOption failed) and
SQL_SUCCESS_WITH_INFO for the connection function if the driver returned an
error for SQLSetConnectOption.

■ If the specified driver is already loaded on the hdbc, the Driver Manager only calls the
connection function in the driver. In this case, the driver must ensure that all conne
options for the hdbc maintain their current settings.

■ If a different driver is loaded, the Driver Manager calls SQLFreeConnect and SQL-
FreeEnv in the loaded driver and then unloads that driver. It then performs the same
operations as when a driver is not loaded.

The driver then allocates handles and initializes itself.

NOTE: To resolve the addresses of the ODBC functions exported by the driver, the Driv
Manager checks if the driver exports a dummy function with the ordinal 199. If it does n
the Driver Manager resolves the addresses by name. If it does, the Driver Manager res
the addresses of the ODBC functions by ordinal, which is faster. The ordinal values of t
ODBC functions must match the values of the fFunction argument in SQLGetFunctions; all
other exported functions (such as WEP) must have ordinal values outside the range 1–199

When the application calls SQLDisconnect, the Driver Manager calls SQLDisconnect in
the driver. However, it does not unload the driver. This keeps the driver in memory for a
cations that repeatedly connect to and disconnect from a data source. When the applic
calls SQLFreeConnect, the Driver Manager calls SQLFreeConnect and SQLFreeEnv in
the driver and then unloads the driver.

An ODBC application can establish more than one connection.

Driver Manager Guidelines
The contents of szDSN affect how the Driver Manager and a driver work together to estab
lish a connection to a data source.
5-60 SOLID Programmer Guide

SQLConnect (ODBC 1.0, Core)

ond-
ed

he

urce

e,

y

. It
esame
 source
■ If szDSN contains a valid data source name, the Driver Manager locates the corresp
ing data source specification in the ODBC.INI file or registry and loads the associat
driver DLL. The Driver Manager passes each SQLConnect argument to the driver.

■ If the data source name cannot be found or szDSN is a null pointer, the Driver Manager
locates the default data source specification and loads the associated driver DLL. T
Driver Manager passes each SQLConnect argument to the driver.

■ If the data source name cannot be found or szDSN is a null pointer, and the default data
source specification does not exist, the Driver Manager returns SQL_ERROR with
SQLSTATE IM002 (Data source name not found and no default driver specified).

After being loaded by the Driver Manager, a driver can locate its corresponding data so
specification in the ODBC.INI file or registry and use driver-specific information from the
specification to complete its set of required connection information.

If a default translation DLL is specified in the ODBC.INI file or registry for the data sourc
the driver loads it. A different translation DLL can be loaded by calling SQLSetConnec-
tOption with the SQL_TRANSLATE_DLL option. A translation option can be specified b
calling SQLSetConnectOption with the SQL_TRANSLATE_OPTION option.

If a driver supports SQLConnect, the driver keyword section of the ODBC.INF file for the
driver must contain the ConnectFunctions keyword with the first character set to “Y”.

Code Example
In the following example, an application allocates environment and connection handles
then connects to the EmpData data source with the user ID JohnS and the password S
and processes data. When it has finished processing data, it disconnects from the data
and frees the handles.

HENV henv;
HDBC hdbc;
HSTMT hstmt;
RETCODE retcode;

retcode = SQLAllocEnv(&henv); /* Environment handle */
if (retcode == SQL_SUCCESS) {

retcode = SQLAllocConnect(henv, &hdbc); /* Connection handle */
if (retcode == SQL_SUCCESS) {

/* Set login timeout to 5 seconds. */

SQLSetConnectOption(hdbc, SQL_LOGIN_TIMEOUT, 5);

/* Connect to data source */
 Function Reference 5-61

SQLConnect (ODBC 1.0, Core)
retcode = SQLConnect(hdbc, "EmpData", SQL_NTS,
 "JohnS", SQL_NTS,
 "Sesame", SQL_NTS);

if (retcode == SQL_SUCCESS || retcode == SQL_SUCCESS_WITH_INFO){

/* Process data after successful connection */

retcode = SQLAllocStmt(hdbc, &hstmt); /* Statement handle */
if (retcode == SQL_SUCCESS) {
...;
...;
...;
SQLFreeStmt(hstmt, SQL_DROP);
}
SQLDisconnect(hdbc);

}
SQLFreeConnect(hdbc);

}
SQLFreeEnv(henv);

}

Related Functions

For information about See

Allocating a connection handle SQLAllocConnect

Allocating a statement handle SQLAllocStmt

Disconnecting from a data source SQLDisconnect

Connecting to a data source using a connection
string or dialog box

SQLDriverConnect (extension)

Returning the setting of a connection option SQLGetConnectOption (extension)

Setting a connection option SQLSetConnectOption (extension)
5-62 SOLID Programmer Guide

SQLDataSources (ODBC 1.0, Level 2)
SQLDataSources (ODBC 1.0, Level 2)
SQLDataSources lists data source names. This function is implemented solely by the
Driver Manager.

NOTE: This function is not implemented in SOLID SQL API, but it is available through
ODBC Driver Manager.

Syntax
RETCODE SQLDataSources(henv, fDirection, szDSN, cbDSNMax, pcbDSN, szDescrip-
tion, cbDescriptionMax, pcbDescription)

The SQLDataSources function accepts the following arguments:

Type Argument Use Description

HENV henv Input Environment handle.

UWORD fDirection Input Determines whether the Driver
Manager fetches the next data
source name in the list
(SQL_FETCH_NEXT) or whether
the search starts from the beginning
of the list (SQL_FETCH_FIRST).

UCHAR FAR * szDSN Output Pointer to storage for the data
source name.

SWORD cbDSNMax Input Maximum length of the szDSN
buffer; this does not need to be
longer than
SQL_MAX_DSN_LENGTH + 1.

SWORD FAR * pcbDSN Output Total number of bytes (excluding
the null termination byte) available
to return in szDSN. If the number of
bytes available to return is greater
than or equal to cbDSNMax, the
data source name in szDSN is trun-
cated to cbDSNMax – 1 bytes.

UCHAR FAR * szDescription Output Pointer to storage for the description
of the driver associated with the data
source. For example, dBASE or
SQL Server.
 Function Reference 5-63

SQLDataSources (ODBC 1.0, Level 2)

n

ATE
Returns
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_NO_DATA_FOUND,
SQL_ERROR, or SQL_INVALID_HANDLE.

Diagnostics
When SQLDataSources returns either SQL_ERROR or SQL_SUCCESS_WITH_INFO, a
associated SQLSTATE value may be obtained by calling SQLError . The following table
lists the SQLSTATE values commonly returned by SQLDataSources and explains each one
in the context of this function; the notation “(DM)” precedes the descriptions of SQL-
STATEs returned by the Driver Manager. The return code associated with each SQLST
value is SQL_ERROR, unless noted otherwise.

SWORD cbDescriptionMax Input Maximum length of the szDescrip-
tion buffer; this should be at least
255 bytes.

SWORD FAR * pcbDescription Output Total number of bytes (excluding
the null termination byte) available
to return in szDescription. If the
number of bytes available to return
is greater than or equal to cbDe-
scriptionMax, the driver description
in szDescription is truncated to
cbDescriptionMax – 1 bytes.

SQLSTATE Error Description

01000 General warning (DM) Driver Manager–specific informational
message. (Function returns
SQL_SUCCESS_WITH_INFO.)

01004 Data truncated (DM) The buffer szDSN was not large enough to
return the entire data source name, so the name
was truncated. The argument pcbDSN contains
the length of the entire data source name. (Func-
tion returns SQL_SUCCESS_WITH_INFO.)

(DM) The buffer szDescription was not large
enough to return the entire driver description, so
the description was truncated. The argument pcb-
Description contains the length of the untrun-
cated data source description. (Function returns
SQL_SUCCESS_WITH_INFO.)
5-64 SOLID Programmer Guide

SQLDataSources (ODBC 1.0, Level 2)

en

.

Comments
Because SQLDataSources is implemented in the Driver Manager, it is supported for all
drivers regardless of a particular driver’s conformance level.

An application can call SQLDataSources multiple times to retrieve all data source names.
The Driver Manager retrieves this information from the ODBC.INI file or the registry. Wh
there are no more data source names, the Driver Manager returns
SQL_NO_DATA_FOUND. If SQLDataSources is called with SQL_FETCH_NEXT imme-
diately after it returns SQL_NO_DATA_FOUND, it will return the first data source name

If SQL_FETCH_NEXT is passed to SQLDataSources the very first time it is called, it will
return the first data source name.

The driver determines how data source names are mapped to actual data sources.

Related Functions

S1000 General error (DM) An error occurred for which there was no
specific SQLSTATE and for which no implemen-
tation-specific SQLSTATE was defined. The
error message returned by SQLError in the
argument szErrorMsg describes the error and its
cause.

S1001 Memory allocation
failure

(DM) The Driver Manager was unable to allo-
cate memory required to support execution or
completion of the function.

S1090 Invalid string or buffer
length

(DM) The value specified for argument cbDSN-
Max was less than 0.

(DM) The value specified for argument cbDe-
scriptionMax was less than 0.

S1103 Direction option out of
range

(DM) The value specified for the argument fDi-
rection was not equal to SQL_FETCH_FIRST or
SQL_FETCH_NEXT.

For information about See

Connecting to a data source SQLConnect

Connecting to a data source using a connection string
or dialog box

SQLDriverConnect (extension)

Returning driver descriptions and attributes SQLDrivers (extension)
 Function Reference 5-65

SQLDescribeCol (ODBC 1.0, Core)

nd
out
SQLDescribeCol (ODBC 1.0, Core)
SQLDescribeCol returns the result descriptor — column name, type, precision, scale, a
nullability — for one column in the result set; it cannot be used to return information ab
the bookmark column (column 0).

Syntax
RETCODE SQLDescribeCol(hstmt, icol, szColName, cbColNameMax, pcbColName,
pfSqlType, pcbColDef, pibScale, pfNullable)

The SQLDescribeCol function accepts the following arguments.

Type Argument Use Description

HSTMT hstmt Input Statement handle.

UWORD icol Input Column number of result data,
ordered sequentially left to right,
starting at 1.

UCHAR FAR * szColName Output Pointer to storage for the column
name. If the column is unnamed or
the column name cannot be deter-
mined, the driver returns an empty
string.

SWORD cbColNameMax Input Maximum length of the szColName
buffer.

SWORD FAR * pcbColName Output Total number of bytes (excluding
the null termination byte) available
to return in szColName. If the num-
ber of bytes available to return is
greater than or equal to cbColName-
Max, the column name in szCol-
Name is truncated to
cbColNameMax – 1 bytes.
5-66 SOLID Programmer Guide

SQLDescribeCol (ODBC 1.0, Core)
SWORD FAR * pfSqlType Output The SQL data type of the column.
This must be one of the following
values:

SQL_BIGINT

SQL_BINARY

SQL_BIT

SQL_CHAR

SQL_DATE

SQL_DECIMAL

SQL_DOUBLE

SQL_FLOAT

SQL_INTEGER

SQL_LONGVARBINARY

SQL_LONGVARCHAR

SQL_NUMERIC

SQL_REAL

SQL_SMALLINT

SQL_TIME

SQL_TIMESTAMP

SQL_TINYINT

SQL_VARBINARY

SQL_VARCHAR

or a driver-specific SQL data type.
If the data type cannot be deter-
mined, the driver returns 0.

For more information, see “SQL
Data Types” on page D-2. For
information about driver-specific
SQL data types, see the driver’s
documentation.
 Function Reference 5-67

SQLDescribeCol (ODBC 1.0, Core)

n

ATE
Returns
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_STILL_EXECUTING,
SQL_ERROR, or SQL_INVALID_HANDLE.

Diagnostics
When SQLDescribeCol returns either SQL_ERROR or SQL_SUCCESS_WITH_INFO, a
associated SQLSTATE value may be obtained by calling SQLError . The following table
lists the SQLSTATE values commonly returned by SQLDescribeCol and explains each one
in the context of this function; the notation “(DM)” precedes the descriptions of SQL-
STATEs returned by the Driver Manager. The return code associated with each SQLST
value is SQL_ERROR, unless noted otherwise.

UDWORD FAR * pcbColDef Output The precision of the column on the
data source. If the precision cannot
be determined, the driver returns 0.
For more information on precision,

see “Precision, Scale, Length,
and Display Size” on page D-14.

SWORD FAR * pibScale Output The scale of the column on the data
source. If the scale cannot be deter-
mined or is not applicable, the driver
returns 0. For more information on

scale, see “Precision, Scale,
Length, and Display Size” on
page D-14.

SWORD FAR * pfNullable Output Indicates whether the column allows
NULL values. One of the following
values:
SQL_NO_NULLS: The column
does not allow NULL values.

SQL_NULLABLE: The column
allows NULL values.

SQL_NULLABLE_UNKNOWN:
The driver cannot determine if the
column allows NULL values.
5-68 SOLID Programmer Guide

SQLDescribeCol (ODBC 1.0, Core)
SQLSTATE Error Description

01000 General warning Driver-specific informational message. (Func-
tion returns SQL_SUCCESS_WITH_INFO.)

01004 Data truncated The buffer szColName was not large enough to
return the entire column name, so the column
name was truncated. The argument pcbCol-
Name contains the length of the untruncated
column name. (Function returns
SQL_SUCCESS_WITH_INFO.)

24000 Invalid cursor state The statement associated with the hstmt did not
return a result set. There were no columns to
describe.

IM001 Driver does not sup-
port this function

(DM) The driver associated with the hstmt does
not support the function.

S1000 General error An error occurred for which there was no spe-
cific SQLSTATE and for which no implementa-
tion-specific SQLSTATE was defined. The error
message returned by SQLError in the argu-
ment szErrorMsg describes the error and its
cause.

S1001 Memory allocation
failure

The driver was unable to allocate memory
required to support execution or completion of
the function.

S1002 Invalid column number (DM) The value specified for the argument icol
was 0.

The value specified for the argument icol was
greater than the number of columns in the result
set.

S1008 Operation canceled Asynchronous processing was enabled for the
hstmt. The function was called and before it
completed execution, SQLCancel was called
on the hstmt. Then the function was called again
on the hstmt.

The function was called and, before it com-
pleted execution, SQLCancel was called on the
hstmt from a different thread in a multithreaded
application.
 Function Reference 5-69

SQLDescribeCol (ODBC 1.0, Core)

e
SQLDescribeCol can return any SQLSTATE that can be returned by SQLPrepare or
SQLExecute when called after SQLPrepare and before SQLExecute depending on when
the data source evaluates the SQL statement associated with the hstmt.

Comments
An application typically calls SQLDescribeCol after a call to SQLPrepare and before or
after the associated call to SQLExecute. An application can also call SQLDescribeCol after
a call to SQLExecDirect.

SQLDescribeCol retrieves the column name, type, and length generated by a SELECT
statement. If the column is an expression, szColName is either an empty string or a driver-
defined name.

NOTE: ODBC supports SQL_NULLABLE_UNKNOWN as an extension, even though th
X/Open and SQL Access Group Call Level Interface specification does not specify the
option for SQLDescribeCol.

S1010 Function sequence
error

(DM) The function was called prior to calling
SQLPrepare or SQLExecDirect for the hstmt.
(DM) An asynchronously executing function
(not this one) was called for the hstmt and was
still executing when this function was called.

(DM) SQLExecute, SQLExecDirect, or
SQLSetPos was called for the hstmt and
returned SQL_NEED_DATA. This function
was called before data was sent for all data-at-
execution parameters or columns.

S1090 Invalid string or buffer
length

(DM) The value specified for argument cbCol-
NameMax was less than 0.

S1T00 Timeout expired The timeout period expired before the data
source returned the result set. The timeout
period is set through SQLSetStmtOption,
SQL_QUERY_TIMEOUT.
5-70 SOLID Programmer Guide

SQLDescribeCol (ODBC 1.0, Core)
Related Functions

For information about See

Assigning storage for a column in a result set SQLBindCol

Canceling statement processing SQLCancel

Returning information about a column in a result
set

SQLColAttributes

Fetching a row of data SQLFetch

Returning the number of result set columns SQLNumResultCols

Preparing a statement for execution SQLPrepare
 Function Reference 5-71

SQLDescribeParam (ODBC 1.0, Level 2)

-

SQLDescribeParam (ODBC 1.0, Level 2)
SQLDescribeParam returns the description of a parameter marker associated with a pre
pared SQL statement.

Syntax
RETCODE SQLDescribeParam(hstmt, ipar, pfSqlType, pcbColDef, pibScale, pfNullable)

The SQLDescribeParam function accepts the following arguments:

Type Argument Use Description

HSTMT hstmt Input Statement handle.

UWORD ipar Input Parameter marker number ordered sequentially
left to right, starting at 1.

SWORD
FAR *

pfSqlType Output The SQL data type of the parameter. This must
be one of the following values:
SQL_BIGINT

SQL_BINARY

SQL_BIT

SQL_CHAR

SQL_DATE

SQL_DECIMAL

SQL_DOUBLE

SQL_FLOAT

SQL_INTEGER

SQL_LONGVARBINARY

SQL_LONGVARCHAR

SQL_NUMERIC

SQL_REAL

SQL_SMALLINT

SQL_TIME

SQL_TIMESTAMP

SQL_TINYINT

SQL_VARBINARY

SQL_VARCHAR
5-72 SOLID Programmer Guide

SQLDescribeParam (ODBC 1.0, Level 2)

L-
Returns
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_STILL_EXECUTING,
SQL_ERROR, or SQL_INVALID_HANDLE.

Diagnostics
When SQLDescribeParam returns SQL_ERROR or SQL_SUCCESS_WITH_INFO, an
associated SQLSTATE value may be obtained by calling SQLError . The following table
lists the SQLSTATE values commonly returned by SQLDescribeParam and explains each
one in the context of this function; the notation “(DM)” precedes the descriptions of SQ

SWORD
FAR *
(con’d)

or a driver-specific SQL data type.

For more information, see “SQL Data Types”
on page D-2. For information about driver-
specific SQL data types, see the driver’s docu-
mentation.

UDWORD
FAR *

pcbColDef Output The precision of the column or expression of the
corresponding parameter marker as defined by
the data source. For further information con-

cerning precision, see “Precision, Scale,
Length, and Display Size” on page D-14.

SWORD
FAR *

pibScale Output The scale of the column or expression of the
corresponding parameter as defined by the data
source. For more information on scale, see

“Precision, Scale, Length, and Display
Size” on page D-14

SWORD
FAR *

pfNullable Output Indicates whether the parameter allows NULL
values. One of the following:
SQL_NO_NULLS: The parameter does not
allow NULL values (this is the default value).

SQL_NULLABLE: The parameter allows
NULL values.

SQL_NULLABLE_UNKNOWN: The driver
cannot determine if the parameter allows
NULL values.
 Function Reference 5-73

SQLDescribeParam (ODBC 1.0, Level 2)

ATE
STATEs returned by the Driver Manager. The return code associated with each SQLST
value is SQL_ERROR, unless noted otherwise.

SQLSTATE Error Description

01000 General warning Driver-specific informational message. (Func-
tion returns SQL_SUCCESS_WITH_INFO.)

IM001 Driver does not sup-
port this function

(DM) The driver associated with the hstmt does
not support the function.

S1000 General error An error occurred for which there was no spe-
cific SQLSTATE and for which no implementa-
tion-specific SQLSTATE was defined. The error
message returned by SQLError in the argument
szErrorMsg describes the error and its cause.

S1001 Memory allocation
error

The driver was unable to allocate memory
required to support execution or completion of
the function.

S1008 Operation canceled Asynchronous processing was enabled for the
hstmt. The function was called and before it com-
pleted execution, SQLCancel was called on the
hstmt. Then the function was called again on the
hstmt.

The function was called and, before it completed
execution, SQLCancel was called on the hstmt
from a different thread in a multithreaded appli-
cation.

S1010 Function sequence
error

(DM) The function was called prior to calling
SQLPrepare or SQLExecDirect for the hstmt.

(DM) An asynchronously executing function (not
this one) was called for the hstmt and was still
executing when this function was called.

(DM) SQLExecute, SQLExecDirect, or
SQLSetPos was called for the hstmt and returned
SQL_NEED_DATA. This function was called
before data was sent for all data-at-execution
parameters or columns.
5-74 SOLID Programmer Guide

SQLDescribeParam (ODBC 1.0, Level 2)

state-

ter
are
Comments
Parameter markers are numbered from left to right in the order they appear in the SQL
ment.

SQLDescribeParam does not return the type (input, input/output, or output) of a parame
in an SQL statement. Except in calls to procedures, all parameters in SQL statements
input parameters.

Related Functions

S1093 Invalid parameter
number

(DM) The value specified for the argument ipar
was 0.

The value specified for the argument ipar was
greater than the number of parameters in the
associated SQL statement.

S1T00 Timeout expired The timeout period expired before the data
source returned the result set. The timeout period
is set through SQLSetStmtOption,
SQL_QUERY_TIMEOUT.

For information about See

Canceling statement processing SQLCancel

Executing a prepared SQL statement SQLExecute

Preparing a statement for execution SQLPrepare

Assigning storage for a parameter SQLBindParameter
 Function Reference 5-75

SQLDisconnect (ODBC 1.0, Core)

i-

e is
SQLDisconnect (ODBC 1.0, Core)
SQLDisconnect closes the connection associated with a specific connection handle.

Syntax
RETCODE SQLDisconnect(hdbc)

The SQLDisconnect function accepts the following argument.

Returns
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_ERROR, or
SQL_INVALID_HANDLE.

Diagnostics
When SQLDisconnect returns SQL_ERROR or SQL_SUCCESS_WITH_INFO, an assoc
ated SQLSTATE value may be obtained by calling SQLError . The following table lists the
SQLSTATE values commonly returned by SQLDisconnect and explains each one in the
context of this function; the notation “(DM)” precedes the descriptions of SQLSTATEs
returned by the Driver Manager. The return code associated with each SQLSTATE valu
SQL_ERROR, unless noted otherwise.

Type Argument Use Description

HDBC hdbc Input Connection handle.

SQLSTATE Error Description

01000 General warning Driver-specific informational message.
(Function returns
SQL_SUCCESS_WITH_INFO.)

01002 Disconnect error An error occurred during the disconnect.
However, the disconnect succeeded. (Func-
tion returns
SQL_SUCCESS_WITH_INFO.)

08003 Connection not open (DM) The connection specified in the argu-
ment hdbc was not open.

25000 Invalid transaction state There was a transaction in process on the
connection specified by the argument hdbc.
The transaction remains active.

IM001 Driver does not support
this function

(DM) The driver associated with the hdbc
does not support the function.
5-76 SOLID Programmer Guide

SQLDisconnect (ODBC 1.0, Core)

te),
 trans-

.
Comments
If an application calls SQLDisconnect while there is an incomplete transaction associated
with the connection handle, the driver returns SQLSTATE 25000 (Invalid transaction sta
indicating that the transaction is unchanged and the connection is open. An incomplete
action is one that has not been committed or rolled back with SQLTransact.

If an application calls SQLDisconnect before it has freed all hstmts associated with the con-
nection, the driver frees those hstmts after it successfully disconnects from the data source
However, if one or more of the hstmts associated with the connection are still executing
asynchronously, SQLDisconnect will return SQL_ERROR with a SQLSTATE value of
S1010 (Function sequence error).

Code Example
See SQLConnect.

S1000 General error An error occurred for which there was no
specific SQLSTATE and for which no
implementation-specific SQLSTATE was
defined. The error message returned by
SQLError in the argument szErrorMsg
describes the error and its cause.

S1001 Memory allocation failure The driver was unable to allocate memory
required to support execution or comple-
tion of the function.

S1010 Function sequence error (DM) An asynchronously executing func-
tion was called for an hstmt associated with
the hdbc and was still executing when
SQLDisconnect was called.

(DM) SQLExecute, SQLExecDirect, or
SQLSetPos was called for an hstmt associ-
ated with the hdbc and returned
SQL_NEED_DATA. This function was
called before data was sent for all data-at-
execution parameters or columns.
 Function Reference 5-77

SQLDisconnect (ODBC 1.0, Core)
Related Functions

For information about See

Allocating a connection handle SQLAllocConnect

Connecting to a data source SQLConnect

Connecting to a data source using a connection
string or dialog box

SQLDriverConnect (extension)

Freeing a connection handle SQLFreeConnect

Executing a commit or rollback operation SQLTransact
5-78 SOLID Programmer Guide

SQLDriverConnect (ODBC 1.0, Level 1)

 the

e, one
ta

; in
on

egis-
user
SQLDriverConnect (ODBC 1.0, Level 1)
SQLDriverConnect is an alternative to SQLConnect. It supports data sources that require
more connection information than the three arguments in SQLConnect; dialog boxes to
prompt the user for all connection information; and data sources that are not defined in
ODBC.INI file or registry.

SQLDriverConnect provides the following connection options:

■ Establish a connection using a connection string that contains the data source nam
or more user IDs, one or more passwords, and other information required by the da
source.

■ Establish a connection using a partial connection string or no additional information
this case, the Driver Manager and the driver can each prompt the user for connecti
information.

■ Establish a connection to a data source that is not defined in the ODBC.INI file or r
try. If the application supplies a partial connection string, the driver can prompt the
for connection information.

Once a connection is established, SQLDriverConnect returns the completed connection
string. The application can use this string for subsequent connection requests.

Syntax
RETCODE SQLDriverConnect(hdbc, hwnd, szConnStrIn, cbConnStrIn, szConnStrOut,
cbConnStrOutMax, pcbConnStrOut, fDriverCompletion)

The SQLDriverConnect function accepts the following arguments:

Type Argument Use Description

HDBC hdbc Input Connection handle.

HWND hwnd Input Window handle. The application can
pass the handle of the parent window,
if applicable, or a null pointer if either
the window handle is not applicable or
if SQLDriverConnect will not
present any dialog boxes.

UCHAR FAR * szConnStrIn Input A full connection string (see the syn-
tax in “Comments”), a partial connec-
tion string, or an empty string.

SWORD cbConnStrIn Input Length of szConnStrIn.
 Function Reference 5-79

SQLDriverConnect (ODBC 1.0, Level 1)

,

-

Returns
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_NO_DATA_FOUND,
SQL_ERROR, or SQL_INVALID_HANDLE.

Diagnostics
When SQLDriverConnect returns either SQL_ERROR or SQL_SUCCESS_WITH_INFO
an associated SQLSTATE value may be obtained by calling SQLError . The following table
lists the SQLSTATE values commonly returned by SQLDriverConnect and explains each
one in the context of this function; the notation “(DM)” precedes the descriptions of SQL

UCHAR FAR * szConnStrOut Output Pointer to storage for the completed
connection string. Upon successful
connection to the target data source,
this buffer contains the completed con-
nection string. Applications should
allocate at least 255 bytes for this
buffer.

SWORD cbConnStrOutMax Input Maximum length of the szConnStrOut
buffer.

SWORD FAR * pcbConnStrOut Output Pointer to the total number of bytes
(excluding the null termination byte)
available to return in szConnStrOut. If
the number of bytes available to return
is greater than or equal to
cbConnStrOutMax, the completed
connection string in szConnStrOut is
truncated to cbConnStrOutMax – 1
bytes.

UWORD fDriverCompletion Input Flag which indicates whether Driver
Manager or driver must prompt for
more connection information:

SQL_DRIVER_PROMPT,

SQL_DRIVER_COMPLETE,
SQL_DRIVER_COMPLETE_REQUI
RED, or
SQL_DRIVER_NOPROMPT.

(See “Comments,” for additional
information.)
5-80 SOLID Programmer Guide

SQLDriverConnect (ODBC 1.0, Level 1)

ATE
STATEs returned by the Driver Manager. The return code associated with each SQLST
value is SQL_ERROR, unless noted otherwise.

SQLSTATE Error Description

01000 General warning Driver-specific informational message. (Func-
tion returns SQL_SUCCESS_WITH_INFO.)

01004 Data truncated The buffer szConnStrOut was not large enough to
return the entire connection string, so the connec-
tion string was truncated. The argument pcb-
ConnStrOut contains the length of the
untruncated connection string. (Function returns
SQL_SUCCESS_WITH_INFO.)

01S00 Invalid connection
string attribute

An invalid attribute keyword was specified in the
connection string (szConnStrIn) but the driver
was able to connect to the data source anyway.
(Function returns
SQL_SUCCESS_WITH_INFO.)

08001 Unable to connect to
data source

The driver was unable to establish a connection
with the data source.

08002 Connection in use (DM) The specified hdbc had already been used
to establish a connection with a data source and
the connection was still open.

08004 Data source rejected
establishment of con-
nection

The data source rejected the establishment of the
connection for implementation-defined reasons.

08S01 Communication link
failure

The communication link between the driver and
the data source to which the driver was attempt-
ing to connect failed before the function com-
pleted processing.

28000 Invalid authorization
specification

Either the user identifier or the authorization
string or both as specified in the connection
string (szConnStrIn) violated restrictions defined
by the data source.

IM001 Driver does not sup-
port this function

(DM) The driver corresponding to the specified
data source name does not support the function.
 Function Reference 5-81

SQLDriverConnect (ODBC 1.0, Level 1)
IM002 Data source not found
and no default driver
specified

(DM) The data source name specified in the con-
nection string (szConnStrIn) was not found in the
ODBC.INI file or registry and there was no
default driver specification.

(DM) The ODBC.INI file could not be found.

IM003 Specified driver could
not be loaded

(DM) The driver listed in the data source specifi-
cation in the ODBC.INI file or registry, or speci-
fied by the DRIVER keyword, was not found or
could not be loaded for some other reason.

IM004 Driver’s SQLAllo-
cEnv failed

(DM) During SQLDriverConnect, the Driver
Manager called the driver’s SQLAllocEnv func-
tion and the driver returned an error.

IM005 Driver’s SQLAllocCo-
nnect failed

(DM) During SQLDriverConnect, the Driver
Manager called the driver’s SQLAllocConnect
function and the driver returned an error.

IM006 Driver’s
SQLSetConnect-
Option failed

(DM) During SQLDriverConnect, the Driver
Manager called the driver’s SQLSetConnectOp-
tion function and the driver returned an error.

IM007 No data source or
driver specified; dia-
log prohibited

No data source name or driver was specified in
the connection string and fDriverCompletion was
SQL_DRIVER_NOPROMPT.

IM008 Dialog failed (DM) The Driver Manager attempted to display
the SQL Data Sources dialog box and failed.

The driver attempted to display its login dialog
box and failed.

IM009 Unable to load transla-
tion DLL

The driver was unable to load the translation
DLL that was specified for the data source or for
the connection.

IM010 Data source name too
long

(DM) The attribute value for the DSN keyword
was longer than SQL_MAX_DSN_LENGTH
characters.

IM011 Driver name too long (DM) The attribute value for the DRIVER key-
word was longer than 255 characters.

IM012 DRIVER keyword
syntax error

(DM) The keyword-value pair for the DRIVER
keyword contained a syntax error.
5-82 SOLID Programmer Guide

SQLDriverConnect (ODBC 1.0, Level 1)
Comments

Connection Strings
A connection string has the following syntax:

connection-string ::= empty-string[;] | attribute[;] |
attribute; connection-string
empty-string ::=
attribute ::= attribute-keyword=attribute-value | DRIVER={attribute-value}

(The braces ({}) are literal; the application must specify them.)

attribute-keyword ::= DSN | UID | PWD |
driver-defined-attribute-keyword

S1000 General error An error occurred for which there was no spe-
cific SQLSTATE and for which no implementa-
tion-specific SQLSTATE was defined. The error
message returned by SQLError in the argument
szErrorMsg describes the error and its cause.

S1001 Memory allocation
failure

The Driver Manager was unable to allocate mem-
ory required to support execution or completion
of the function.

The driver was unable to allocate memory
required to support execution or completion of
the function.

S1090 Invalid string or buffer
length

(DM) The value specified for argument
cbConnStrIn was less than 0 and was not equal to
SQL_NTS.

(DM) The value specified for argument
cbConnStrOutMax was less than 0.

S1110 Invalid driver comple-
tion

(DM) The value specified for the argument fDriv-
erCompletion was not equal to
SQL_DRIVER_PROMPT,
SQL_DRIVER_COMPLETE,
SQL_DRIVER_COMPLETE_REQUIRED or
SQL_DRIVER_NOPROMPT.

S1T00 Timeout expired The timeout period expired before the connec-
tion to the data source completed. The timeout
period is set through SQLSetConnectOption,
SQL_LOGIN_TIMEOUT.
 Function Reference 5-83

SQLDriverConnect (ODBC 1.0, Level 1)

f
itial-

 can-

e
r
the
r
e

ted
attribute-value ::= character-string
driver-defined-attribute-keyword ::= identifier

where character-string has zero or more characters; identifier has one or more characters;
attribute-keyword is case insensitive; attribute-value may be case sensitive; and the value o
the DSN keyword does not consist solely of blanks. Because of connection string and in
ization file grammar, keywords and attribute values that contain the characters []{}(),;?*=!@
should be avoided. Because of the registry grammar, keywords and data source names
not contain the backslash (\) character.

Note The DRIVER keyword was introduced in ODBC 2.0 and is not supported by ODBC
1.0 drivers.

The connection string may include any number of driver-defined keywords. Because th
DRIVER keyword does not use information from the ODBC.INI file or registry, the drive
must define enough keywords so that a driver can connect to a data source using only
information in the connection string. (For more information, see “Driver Guidelines,” late
in this section.) The driver defines which keywords are required in order to connect to th
data source.

If any keywords are repeated in the connection string, the driver uses the value associa
with the first occurrence of the keyword. If the DSN and DRIVER keywords are included in
the same connection string, the Driver Manager and the driver use whichever keyword
appears first. The following table describes the attribute values of the DSN, DRIVER , UID ,
and PWD keywords.

Driver Manager Guidelines
The Driver Manager constructs a connection string to pass to the driver in the szConnStrIn
argument of the driver’s SQLDriverConnect function. Note that the Driver Manager does
not modify the szConnStrIn argument passed to it by the application.

Keyword Attribute value description

DSN Name of a data source as returned by SQLDataSources or the
data sources dialog box of SQLDriverConnect.

DRIVER Description of the driver as returned by the SQLDrivers function.

UID A user ID.

PWD The password corresponding to the user ID, or an empty string if
there is no password for the user ID (PWD=;).
5-84 SOLID Programmer Guide

SQLDriverConnect (ODBC 1.0, Level 1)

n

x. It
x and
d by

-

he

ci-

river
er; for
om-

rce
e

an-

he

try.
If the connection string specified by the application contains the DSN keyword or does not
contain either the DSN or DRIVER keywords, the action of the Driver Manager is based o
the value of the fDriverCompletion argument:

■ SQL_DRIVER_PROMPT: The Driver Manager displays the Data Sources dialog bo
constructs a connection string from the data source name returned by the dialog bo
any other keywords passed to it by the application. If the data source name returne
the dialog box is empty, the Driver Manager specifies the keyword-value pair
DSN=Default.

■ SQL_DRIVER_COMPLETE or SQL_DRIVER_COMPLETE_REQUIRED: If the con
nection string specified by the application includes the DSN keyword, the Driver Man-
ager copies the connection string specified by the application. Otherwise, it takes t
same actions as it does when fDriverCompletion is SQL_DRIVER_PROMPT.

■ SQL_DRIVER_NOPROMPT: The Driver Manager copies the connection string spe
fied by the application.

If the connection string specified by the application contains the DRIVER keyword, the
Driver Manager copies the connection string specified by the application.

Using the connection string it has constructed, the Driver Manager determines which d
to use, loads that driver, and passes the connection string it has constructed to the driv
more information about the interaction of the Driver Manager and the driver, see the “C
ments” section in SQLConnect. If the connection string contains the DSN keyword or does
not contain either the DSN or the DRIVER keyword, the Driver Manager determines which
driver to use as follows:

1. If the connection string contains the DSN keyword, the Driver Manager retrieves the
driver associated with the data source from the ODBC.INI file or registry.

2. If the connection string does not contain the DSN keyword or the data source is not
found, the Driver Manager retrieves the driver associated with the Default data sou
from the ODBC.INI file or registry. However, the Driver Manager does not change th
value of the DSN keyword in the connection string.

3. If the data source is not found and the Default data source is not found, the Driver M
ager returns SQL_ERROR with SQLSTATE IM002 (Data source not found and no
default driver specified).

Driver Guidelines
The driver checks if the connection string passed to it by the Driver Manager contains t
DSN or DRIVER keyword. If the connection string contains the DRIVER keyword, the
driver cannot retrieve information about the data source from the ODBC.INI file or regis
If the connection string contains the DSN keyword or does not contain either the DSN or the
 Function Reference 5-85

SQLDriverConnect (ODBC 1.0, Level 1)

nt
file
n in

e
ser
nec-

er

-
er

the

tion
DRIVER keyword, the driver can retrieve information about the data source from the
ODBC.INI file or registry as follows:

1. If the connection string contains the DSN keyword, the driver retrieves the information
for the specified data source.

2. If the connection string does not contain the DSN keyword or the specified data source
is not found, the driver retrieves the information for the Default data source.

The driver uses any information it retrieves from the ODBC.INI file or registry to augme
the information passed to it in the connection string. If the information in the ODBC.INI
or registry duplicates information in the connection string, the driver uses the informatio
the connection string.

Based on the value of fDriverCompletion, the driver prompts the user for connection infor-
mation, such as the user ID and password, and connects to the data source:

■ SQL_DRIVER_PROMPT: The driver displays a dialog box, using the values from th
connection string and ODBC.INI file or registry (if any) as initial values. When the u
exits the dialog box, the driver connects to the data source. It also constructs a con
tion string from the value of the DSN or DRIVER keyword in szConnStrIn and the
information returned from the dialog box. It places this connection string in the buff
referenced by szConnStrOut.

■ SQL_DRIVER_COMPLETE or SQL_DRIVER_COMPLETE_REQUIRED: If the con
nection string contains enough information, and that information is correct, the driv
connects to the data source and copies szConnStrIn to szConnStrOut. If any informa-
tion is missing or incorrect, the driver takes the same actions as it does when fDriver-
Completion is SQL_DRIVER_PROMPT, except that if fDriverCompletion is
SQL_DRIVER_COMPLETE_REQUIRED, the driver disables the controls for any
information not required to connect to the data source.

■ SQL_DRIVER_NOPROMPT: If the connection string contains enough information,
driver connects to the data source and copies szConnStrIn to szConnStrOut. Otherwise,
the driver returns SQL_ERROR for SQLDriverConnect.

On successful connection to the data source, the driver also sets pcbConnStrOut to the length
of szConnStrOut.

If the user cancels a dialog box presented by the Driver Manager or the driver, SQLDriver-
Connect returns SQL_NO_DATA_FOUND.

For information about how the Driver Manager and the driver interact during the connec
process, see SQLConnect.
5-86 SOLID Programmer Guide

SQLDriverConnect (ODBC 1.0, Level 1)

to the
or

lt.

e,

y
If a driver supports SQLDriverConnect, the driver keyword section of the ODBC.INF file
for the driver must contain the ConnectFunctions keyword with the second character set to
“Y”.

Connection Options
The SQL_LOGIN_TIMEOUT connection option, set using SQLSetConnectOption,
defines the number of seconds to wait for a login request to complete before returning
application. If the user is prompted to complete the connection string, a waiting period f
each login request begins after the user has dismissed each dialog box.

The driver opens the connection in SQL_MODE_READ_WRITE access mode by defau
To set the access mode to SQL_MODE_READ_ONLY, the application must call SQLSet-
ConnectOption with the SQL_ACCESS_MODE option prior to calling SQLDriverCon-
nect.

If a default translation DLL is specified in the ODBC.INI file or registry for the data sourc
the driver loads it. A different translation DLL can be loaded by calling SQLSetConnec-
tOption with the SQL_TRANSLATE_DLL option. A translation option can be specified b
calling SQLSetConnectOption with the SQL_TRANSLATE_OPTION option.

Related Functions

For information about See

Allocating a connection handle SQLAllocConnect

Connecting to a data source SQLConnect

Disconnecting from a data source SQLDisconnect

Returning driver descriptions and attributes SQLDrivers (extension)

Freeing a connection handle SQLFreeConnect

Setting a connection option SQLSetConnectOption (extension)
 Function Reference 5-87

SQLDrivers (ODBC 2.0, Level 2)

-

SQLDrivers (ODBC 2.0, Level 2)
SQLDrivers lists driver descriptions and driver attribute keywords. This function is imple
mented solely by the Driver Manager.

NOTE: This function is not implemented in SOLID SQL API, but it is available through
ODBC Driver Manager.

Syntax
RETCODE SQLDrivers(henv, fDirection, szDriverDesc, cbDriverDescMax, pcbDriver-
Desc, szDriverAttributes, cbDrvrAttrMax, pcbDrvrAttr)

The SQLDrivers function accepts the following arguments:

Type Argument Use Description

HENV henv Input Environment handle.

UWORD fDirection Input Determines whether the Driver
Manager fetches the next driver
description in the list
(SQL_FETCH_NEXT) or whether
the search starts from the beginning
of the list (SQL_FETCH_FIRST).

UCHAR FAR * szDriverDesc Output Pointer to storage for the driver
description.

SWORD cbDriverDescMax Input Maximum length of the szDriver-
Desc buffer.

SWORD FAR * pcbDriverDesc Output Total number of bytes (excluding
the null termination byte) available
to return in szDriverDesc. If the
number of bytes available to return
is greater than or equal to cbDriver-
DescMax, the driver description in
szDriverDesc is truncated to
cbDriverDescMax – 1 bytes.

UCHAR FAR * szDriverAttributes Output Pointer to storage for the list of
driver attribute value pairs (see
“Comments”).
5-88 SOLID Programmer Guide

SQLDrivers (ODBC 2.0, Level 2)

so-

e is
Returns
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_NO_DATA_FOUND,
SQL_ERROR, or SQL_INVALID_HANDLE.

Diagnostics
When SQLDrivers returns either SQL_ERROR or SQL_SUCCESS_WITH_INFO, an as
ciated SQLSTATE value may be obtained by calling SQLError . The following table lists
the SQLSTATE values commonly returned by SQLDrivers and explains each one in the
context of this function; the notation “(DM)” precedes the descriptions of SQLSTATEs
returned by the Driver Manager. The return code associated with each SQLSTATE valu
SQL_ERROR, unless noted otherwise.

SWORD cbDrvrAttrMax Input Maximum length of the szDriverAt-
tributes buffer.

SWORD FAR * pcbDrvrAttr Output Total number of bytes (excluding
the null termination byte) available
to return in szDriverAttributes. If
the number of bytes available to
return is greater than or equal to
cbDrvrAttrMax, the list of attribute
value pairs in szDriverAttributes is
truncated to cbDrvrAttrMax – 1
bytes.

SQLSTATE Error Description

01000 General warning (DM) Driver Manager–specific informational
message. (Function returns
SQL_SUCCESS_WITH_INFO.)

01004 Data truncated (DM) The buffer szDriverDesc was not large
enough to return the entire driver description, so
the description was truncated. The argument
pcbDriverDesc contains the length of the entire
driver description. (Function returns
SQL_SUCCESS_WITH_INFO.)
 Function Reference 5-89

SQLDrivers (ODBC 2.0, Level 2)

h a

he

.

Comments
SQLDrivers returns the driver description in the szDriverDesc argument. It returns addi-
tional information about the driver in the szDriverAttributes argument as a list of keyword-
value pairs. Each pair is terminated with a null byte, and the entire list is terminated wit
null byte (that is, two null bytes mark the end of the list). For example, a dBASE driver
might return the following list of attributes (“\0” represents a null byte):

FileUsage=1\0FileExtns=*.dbf\0\0

If szDriverAttributes is not large enough to hold the entire list, the list is truncated, SQLD-
rivers returns SQLSTATE 01004 (Data truncated), and the length of the list (excluding t
final null termination byte) is returned in pcbDrvrAttr.

Driver attribute keywords are added from the ODBC.INF file when the driver is installed

(DM) The buffer szDriverAttributes was not
large enough to return the entire list of attribute
value pairs, so the list was truncated. The argu-
ment pcbDrvrAttr contains the length of the
untruncated list of attribute value pairs. (Func-
tion returns SQL_SUCCESS_WITH_INFO.)

S1000 General error (DM) An error occurred for which there was no
specific SQLSTATE and for which no imple-
mentation-specific SQLSTATE was defined.
The error message returned by SQLError in the
argument szErrorMsg describes the error and its
cause.

S1001 Memory allocation
failure

(DM) The Driver Manager was unable to allo-
cate memory required to support execution or
completion of the function.

S1090 Invalid string or buffer
length

(DM) The value specified for argument
cbDriverDescMax was less than 0.
(DM) The value specified for argument
cbDrvrAttrMax was less than 0 or equal to 1.

S1103 Direction option out of
range

(DM) The value specified for the argument fDi-
rection was not equal to SQL_FETCH_FIRST
or SQL_FETCH_NEXT.
5-90 SOLID Programmer Guide

SQLDrivers (ODBC 2.0, Level 2)

An application can call SQLDrivers multiple times to retrieve all driver descriptions. The
Driver Manager retrieves this information from the ODBCINST.INI file or the registry.
When there are no more driver descriptions, SQLDrivers returns
SQL_NO_DATA_FOUND. If SQLDrivers is called with SQL_FETCH_NEXT immedi-
ately after it returns SQL_NO_DATA_FOUND, it returns the first driver description.

If SQL_FETCH_NEXT is passed to SQLDrivers the very first time it is called, SQLDriv-
ers returns the first data source name.

Because SQLDrivers is implemented in the Driver Manager, it is supported for all drivers
regardless of a particular driver’s conformance level.

Related Functions

For information about See

Connecting to a data source SQLConnect

Returning data source names SQLDataSources (extension)

Connecting to a data source using a connection
string or dialog box

SQLDriverConnect (extension)
 Function Reference 5-91

SQLError (ODBC 1.0, Core)
SQLError (ODBC 1.0, Core)
SQLError returns error or status information.

Syntax
RETCODE SQLError (henv, hdbc, hstmt, szSqlState, pfNativeError, szErrorMsg, cbEr-
rorMsgMax, pcbErrorMsg)

The SQLError function accepts the following arguments.

Type Argument Use Description

HENV henv Input Environment handle or
SQL_NULL_HENV.

HDBC hdbc Input Connection handle or
SQL_NULL_HDBC.

HSTMT hstmt Input Statement handle or
SQL_NULL_HSTMT.

UCHAR FAR * szSqlState Output SQLSTATE as null-terminated
string. For a list of SQLSTATEs, see
Appendix A, “ODBC Error Codes.”

SDWORD FAR * pfNativeError Output Native error code (specific to the
data source).

UCHAR FAR * szErrorMsg Output Pointer to storage for the error mes-
sage text.

SWORD cbErrorMsgMax Input Maximum length of the szErrorMsg
buffer. This must be less than or
equal to SQL_MAX_MESSAGE_

LENGTH – 1.
5-92 SOLID Programmer Guide

SQLError (ODBC 1.0, Core)

t

are

s
t

ull

-

st
Returns
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_NO_DATA_FOUND,
SQL_ERROR, or SQL_INVALID_HANDLE.

Diagnostics
SQLError does not post error values for itself. SQLError returns
SQL_NO_DATA_FOUND when it is unable to retrieve any error information, (in which
case szSqlState equals 00000). If SQLError cannot access error values for any reason tha
would normally return SQL_ERROR, SQLError returns SQL_ERROR but does not post
any error values. If the buffer for the error message is too short, SQLError returns
SQL_SUCCESS_WITH_INFO but, again, does not return a SQLSTATE value for SQLEr-
ror .

To determine that a truncation occurred in the error message, an application can comp
cbErrorMsgMax to the actual length of the message text written to pcbErrorMsg.

Comments
An application typically calls SQLError when a previous call to an ODBC function return
SQL_ERROR or SQL_SUCCESS_WITH_INFO. However, any ODBC function can pos
zero or more errors each time it is called, so an application can call SQLError after any
ODBC function call.

SQLError retrieves an error from the data structure associated with the rightmost non-n
handle argument. An application requests error information as follows:

■ To retrieve errors associated with an environment, the application passes the corre
sponding henv and includes SQL_NULL_HDBC and SQL_NULL_HSTMT in hdbc
and hstmt, respectively. The driver returns the error status of the ODBC function mo
recently called with the same henv.

SWORD FAR * pcbErrorMsg Output Pointer to the total number of bytes
(excluding the null termination byte)
available to return in szErrorMsg. If
the number of bytes available to
return is greater than or equal to
cbErrorMsgMax, the error message
text in szErrorMsg is truncated to
cbErrorMsgMax

– 1 bytes.
 Function Reference 5-93

SQLError (ODBC 1.0, Core)

nd-
s

ding

ntly

m

-
st

ted

hen

all to
■ To retrieve errors associated with a connection, the application passes the correspo
ing hdbc plus an hstmt equal to SQL_NULL_HSTMT. In such a case, the driver ignore
the henv argument. The driver returns the error status of the ODBC function most
recently called with the hdbc.

■ To retrieve errors associated with a statement, an application passes the correspon
hstmt. If the call to SQLError contains a valid hstmt, the driver ignores the hdbc and
henv arguments. The driver returns the error status of the ODBC function most rece
called with the hstmt.

■ To retrieve multiple errors for a function call, an application calls SQLError multiple
times. For each error, the driver returns SQL_SUCCESS and removes that error fro
the list of available errors.

When there is no additional information for the rightmost non-null handle, SQLError
returns SQL_NO_DATA_FOUND. In this case, szSqlState equals 00000 (Success), pfNa-
tiveError is undefined, pcbErrorMsg equals 0, and szErrorMsg contains a single null termi-
nation byte (unless cbErrorMsgMax equals 0).

The Driver Manager stores error information in its henv, hdbc, and hstmt structures. Simi-
larly, the driver stores error information in its henv, hdbc, and hstmt structures. When the
application calls SQLError , the Driver Manager checks if there are any errors in its struc
ture for the specified handle. If there are errors for the specified handle, it returns the fir
error; if there are no errors, it calls SQLError in the driver.

The Driver Manager can store up to 64 errors with an henv and its associated hdbcs and hst-
mts. When this limit is reached, the Driver Manager discards any subsequent errors pos
on the Driver Manager’s henv, hdbcs, or hstmts. The number of errors that a driver can store
is driver-dependent.

An error is removed from the structure associated with a handle when SQLError is called
for that handle and returns that error. All errors stored for a given handle are removed w
that handle is used in a subsequent function call. For example, errors on an hstmt that were
returned by SQLExecDirect are removed when SQLExecDirect or SQLTables is called
with that hstmt. The errors stored on a given handle are not removed as the result of a c
a function using an associated handle of a different type.

See Appendix A, “Error Codes” for more information on error codes.

Related Functions
None.
5-94 SOLID Programmer Guide

SQLExecDirect (ODBC 1.0, Core)

eter
 way

ATE
SQLExecDirect (ODBC 1.0, Core)
SQLExecDirect executes a preparable statement, using the current values of the param
marker variables if any parameters exist in the statement. SQLExecDirect is the fastest
to submit an SQL statement for one-time execution.

Syntax
RETCODE SQLExecDirect(hstmt, szSqlStr, cbSqlStr)

The SQLExecDirect function uses the following arguments.

Returns
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_NEED_DATA,
SQL_STILL_EXECUTING, SQL_ERROR, or SQL_INVALID_HANDLE.

Diagnostics
When SQLExecDirect returns either SQL_ERROR or SQL_SUCCESS_WITH_INFO, an
associated SQLSTATE value may be obtained by calling SQLError . The following table
lists the SQLSTATE values commonly returned by SQLExecDirect and explains each one
in the context of this function; the notation “(DM)” precedes the descriptions of SQL-
STATEs returned by the Driver Manager. The return code associated with each SQLST
value is SQL_ERROR, unless noted otherwise.

Type Argument Use Description

HSTMT hstmt Input Statement handle.

UCHAR FAR * szSqlStr Input SQL statement to be executed.

SDWORD cbSqlStr Input Length of szSqlStr.

SQLSTATE Error Description

01000 General warning Driver-specific informational message. (Function
returns SQL_SUCCESS_WITH_INFO.)
 Function Reference 5-95

SQLExecDirect (ODBC 1.0, Core)
01004 Data truncated The argument szSqlStr contained an SQL statement
that contained a character or binary parameter or lit-
eral and the value exceeded the maximum length of
the associated table column.

The argument szSqlStr contained an SQL statement
that contained a numeric parameter or literal and the
fractional part of the value was truncated.

The argument szSqlStr contained an SQL statement
that contained a date or time parameter or literal and
a timestamp value was truncated.

01006 Privilege not
revoked

The argument szSqlStr contained a REVOKE state-
ment and the user did not have the specified privi-
lege. (Function returns
SQL_SUCCESS_WITH_INFO.)

01S03 No rows updated or
deleted

The argument szSqlStr contained a positioned
update or delete statement and no rows were
updated or deleted. (Function returns
SQL_SUCCESS_WITH_INFO.)

01S04 More than one row
updated or deleted

The argument szSqlStr contained a positioned
update or delete statement and more than one row
was updated or deleted. (Function returns
SQL_SUCCESS_WITH_INFO.)

07001 Wrong number of
parameters

The number of parameters specified in SQLBind-
Parameter was less than the number of parameters
in the SQL statement contained in the argument
szSqlStr.

08S01 Communication link
failure

The communication link between the driver and the
data source to which the driver was connected failed
before the function completed processing.

21S01 Insert value list does
not match column
list

The argument szSqlStr contained an INSERT state-
ment and the number of values to be inserted did not
match the degree of the derived table.

21S02 Degree of derived
table does not match
column list

The argument szSqlStr contained a CREATE
VIEW statement and the number of names speci-
fied is not the same degree as the derived table
defined by the query specification.
5-96 SOLID Programmer Guide

SQLExecDirect (ODBC 1.0, Core)
22003 Numeric value out
of range

The argument szSqlStr contained an SQL statement
which contained a numeric parameter or literal and
the value caused the whole (as opposed to frac-
tional) part of the number to be truncated when
assigned to the associated table column.

22005 Error in assignment The argument szSqlStr contained an SQL statement
that contained a parameter or literal and the value
was incompatible with the data type of the associ-
ated table column.

22008 Datetime field over-
flow

The argument szSqlStr contained an SQL statement
that contained a date, time, or timestamp parameter
or literal and the value was, respectively, an invalid
date, time, or timestamp.

22012 Division by zero The argument szSqlStr contained an SQL statement
which contained an arithmetic expression which
caused division by zero.

23000 Integrity constraint
violation

The argument szSqlStr contained an SQL statement
which contained a parameter or literal. The parame-
ter value was NULL for a column defined as NOT
NULL in the associated table column, a duplicate
value was supplied for a column constrained to con-
tain only unique values, or some other integrity con-
straint was violated.

24000 Invalid cursor state (DM) A cursor was open on the hstmt and
SQLFetch or SQLExtendedFetch had been called.

A cursor was open on the hstmt but SQLFetch or
SQLExtendedFetch had not been called.

The argument szSqlStr contained a positioned
update or delete statement and the cursor was posi-
tioned before the start of the result set or after the
end of the result set.

34000 Invalid cursor name The argument szSqlStr contained a positioned
update or delete statement and the cursor refer-
enced by the statement being executed was not
open.

37000 Syntax error or
access violation

The argument szSqlStr contained an SQL statement
that was not preparable or contained a syntax error.
 Function Reference 5-97

SQLExecDirect (ODBC 1.0, Core)
40001 Serialization failure The transaction to which the SQL statement con-
tained in the argument szSqlStr belonged was termi-
nated to prevent deadlock.

42000 Syntax error or
access violation

The user did not have permission to execute the
SQL statement contained in the argument szSqlStr.

IM001 Driver does not sup-
port this function

(DM) The driver associated with the hstmt does not
support the function.

S0001 Base table or view
already exists

The argument szSqlStr contained a CREATE
TABLE or CREATE VIEW statement and the
table name or view name specified already exists.

S0002 Table or view not
found

The argument szSqlStr contained a DROP TABLE
or a DROP VIEW statement and the specified table
name or view name did not exist.

The argument szSqlStr contained an ALTER
TABLE statement and the specified table name did
not exist.

The argument szSqlStr contained a CREATE
VIEW statement and a table name or view name
defined by the query specification did not exist.

The argument szSqlStr contained a CREATE
INDEX statement and the specified table name did
not exist.

The argument szSqlStr contained a GRANT or
REVOKE statement and the specified table name
or view name did not exist.

The argument szSqlStr contained a SELECT state-
ment and a specified table name or view name did
not exist.

The argument szSqlStr contained a DELETE ,
INSERT, or UPDATE statement and the specified
table name did not exist.

The argument szSqlStr contained a CREATE
TABLE statement and a table specified in a con-
straint (referencing a table other than the one being
created) did not exist.

S0011 Index already existsThe argument szSqlStr contained a CREATE
INDEX statement and the specified index name
already existed.
5-98 SOLID Programmer Guide

SQLExecDirect (ODBC 1.0, Core)
S0012 Index not found The argument szSqlStr contained a DROP INDEX
statement and the specified index name did not
exist.

S0021 Column already
exists

The argument szSqlStr contained an ALTER
TABLE statement and the column specified in the
ADD clause is not unique or identifies an existing
column in the base table.

S0022 Column not found The argument szSqlStr contained a CREATE
INDEX statement and one or more of the column
names specified in the column list did not exist.

The argument szSqlStr contained a GRANT or
REVOKE statement and a specified column name
did not exist.

The argument szSqlStr contained a SELECT,
DELETE , INSERT, or UPDATE statement and a
specified column name did not exist.

The argument szSqlStr contained a CREATE
TABLE statement and a column specified in a con-
straint (referencing a table other than the one being
created) did not exist.

S1000 General error An error occurred for which there was no specific
SQLSTATE and for which no implementation-spe-
cific SQLSTATE was defined. The error message
returned by SQLError in the argument szEr-
rorMsg describes the error and its cause.

S1001 Memory allocation
failure

The driver was unable to allocate memory required
to support execution or completion of the function.

S1008 Operation canceledAsynchronous processing was enabled for the hstmt.
The function was called and before it completed
execution, SQLCancel was called on the hstmt.
Then the function was called again on the hstmt.

The function was called and, before it completed
execution, SQLCancel was called on the hstmt
from a different thread in a multithreaded applica-
tion.

S1009 Invalid argument
value

(DM) The argument szSqlStr was a null pointer.
 Function Reference 5-99

SQLExecDirect (ODBC 1.0, Core)

mits it
Comments
The application calls SQLExecDirect to send an SQL statement to the data source. The
driver modifies the statement to use the form of SQL used by the data source, then sub

S1010 Function sequence
error

(DM) An asynchronously executing function (not
this one) was called for the hstmt and was still exe-
cuting when this function was called.

(DM) SQLExecute, SQLExecDirect, or SQLSet-
Pos was called for the hstmt and returned
SQL_NEED_DATA. This function was called
before data was sent for all data-at-execution param-
eters or columns.

S1090 Invalid string or
buffer length

(DM) The argument cbSqlStr was less than or equal
to 0, but not equal to SQL_NTS.

A parameter value, set with SQLBindParameter,
was a null pointer and the parameter length value
was not 0, SQL_NULL_DATA,
SQL_DATA_AT_EXEC, or less than or equal to
SQL_LEN_DATA_AT_EXEC_OFFSET.

A parameter value, set with SQLBindParameter,
was not a null pointer and the parameter length
value was less than 0, but was not SQL_NTS,
SQL_NULL_DATA, SQL_DATA_AT_EXEC, or
less than or equal to
SQL_LEN_DATA_AT_EXEC_OFFSET.

S1109 Invalid cursor posi-
tion

The argument szSqlStr contained a positioned
update or delete statement and the cursor was posi-
tioned (by SQLSetPos or SQLExtendedFetch) on
a row for which the value in the rgfRowStatus array
in SQLExtendedFetch was
SQL_ROW_DELETED or SQL_ROW_ERROR.

S1C00 Driver not capable The combination of the current settings of the
SQL_CONCURRENCY and
SQL_CURSOR_TYPE statement options was not
supported by the driver or data source.

S1T00 Timeout expired The timeout period expired before the data source
returned the result set. The timeout period is set
through SQLSetStmtOption,
SQL_QUERY_TIMEOUT.
5-100 SOLID Programmer Guide

SQLExecDirect (ODBC 1.0, Core)

DBC-
m-

tate-

d a
ds the

 call

TA.
to the data source. In particular, the driver modifies the escape clauses used to define O
specific SQL. For a description of SQL statement grammar, see Appendix C, “SQL Gra
mar.”

The application can include one or more parameter markers in the SQL statement. To
include a parameter marker, the application embeds a question mark (?) into the SQL s
ment at the appropriate position.

If the SQL statement is a SELECT statement, and if the application called SQLSetCursor-
Name to associate a cursor with an hstmt, then the driver uses the specified cursor. Other-
wise, the driver generates a cursor name.

If the data source is in manual-commit mode (requiring explicit transaction initiation), an
transaction has not already been initiated, the driver initiates a transaction before it sen
SQL statement.

If an application uses SQLExecDirect to submit a COMMIT or ROLLBACK statement, it
will not be interoperable between DBMS products. To commit or roll back a transaction,
SQLTransact.

If SQLExecDirect encounters a data-at-execution parameter, it returns SQL_NEED_DA
The application sends the data using SQLParamData and SQLPutData. See SQLBindPa-
rameter, SQLParamOptions, SQLParamData, and SQLPutData for more information.

Code Example
See SQLBindCol, SQLExtendedFetch, and SQLGetData.

Related Functions

For information about See

Assigning storage for a column in a result set SQLBindCol

Canceling statement processing SQLCancel

Executing a prepared SQL statement SQLExecute

Fetching a block of data or scrolling through a
result set

SQLExtendedFetch (extension)

Fetching a row of data SQLFetch

Returning a cursor name SQLGetCursorName

Fetching part or all of a column of data SQLGetData (extension)

Returning the next parameter to send data for SQLParamData (extension)
 Function Reference 5-101

SQLExecDirect (ODBC 1.0, Core)
Preparing a statement for execution SQLPrepare

Sending parameter data at execution time SQLPutData (extension)

Setting a cursor name SQLSetCursorName

Setting a statement option SQLSetStmtOption (extension)

Executing a commit or rollback operation SQLTransact
5-102 SOLID Programmer Guide

SQLExecute (ODBC 1.0, Core)

s
e is
SQLExecute (ODBC 1.0, Core)
SQLExecute executes a prepared statement, using the current values of the parameter
marker variables if any parameter markers exist in the statement.

Syntax
RETCODE SQLExecute(hstmt)

The SQLExecute statement accepts the following argument.

Returns
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_NEED_DATA,
SQL_STILL_EXECUTING, SQL_ERROR, or SQL_INVALID_HANDLE.

Diagnostics
When SQLExecute returns either SQL_ERROR or SQL_SUCCESS_WITH_INFO, an
associated SQLSTATE value may be obtained by calling SQLError . The following table
lists the SQLSTATE values commonly returned by SQLExecute and explains each one in
the context of this function; the notation “(DM)” precedes the descriptions of SQLSTATE
returned by the Driver Manager. The return code associated with each SQLSTATE valu
SQL_ERROR, unless noted otherwise.

Type Argument Use Description

HSTMT hstmt Input Statement handle.

SQLSTATE Error Description

01000 General warning Driver-specific informational message. (Function
returns SQL_SUCCESS_WITH_INFO.)

01004 Data truncated The prepared statement associated with the hstmt
contained a character or binary parameter or literal
and the value exceeded the maximum length of the
associated table column.

The prepared statement associated with the hstmt
contained a numeric parameter or literal and the
fractional part of the value was truncated.

The prepared statement associated with the hstmt
contained a date or time parameter or literal and a
timestamp value was truncated.
 Function Reference 5-103

SQLExecute (ODBC 1.0, Core)
01006 Privilege not revoked The prepared statement associated with the hstmt
was REVOKE and the user did not have the speci-
fied privilege. (Function returns
SQL_SUCCESS_WITH_INFO.)

01S03 No rows updated or
deleted

The prepared statement associated with the hstmt
was a positioned update or delete statement and no
rows were updated or deleted. (Function returns
SQL_SUCCESS_WITH_INFO.)

01S04 More than one row
updated or deleted

The prepared statement associated with the hstmt
was a positioned update or delete statement and
more than one row was updated or deleted. (Func-
tion returns SQL_SUCCESS_WITH_INFO.)

07001 Wrong number of
parameters

The number of parameters specified in SQLBind-
Parameter was less than the number of parameters
in the prepared statement associated with the hstmt.

08S01 Communication link
failure

The communication link between the driver and the
data source to which the driver was connected failed
before the function completed processing.

22003 Numeric value out of
range

The prepared statement associated with the hstmt
contained a numeric parameter and the parameter
value caused the whole (as opposed to fractional)
part of the number to be truncated when assigned to
the associated table column.

22005 Error in assignment The prepared statement associated with the hstmt
contained a parameter and the value was incompati-
ble with the data type of the associated table col-
umn.

22008 Datetime field over-
flow

The prepared statement associated with the hstmt
contained a date, time, or timestamp parameter or
literal and the value was, respectively, an invalid
date, time, or timestamp.

22012 Division by zero The prepared statement associated with the hstmt
contained an arithmetic expression which caused
division by zero.
5-104 SOLID Programmer Guide

SQLExecute (ODBC 1.0, Core)
23000 Integrity constraint
violation

The prepared statement associated with the hstmt
contained a parameter. The parameter value was
NULL for a column defined as NOT NULL in the
associated table column, a duplicate value was sup-
plied for a column constrained to contain only
unique values, or some other integrity constraint
was violated.

24000 Invalid cursor state (DM) A cursor was open on the hstmt and
SQLFetch or SQLExtendedFetch had been called.

A cursor was open on the hstmt but SQLFetch or
SQLExtendedFetch had not been called.

The prepared statement associated with the hstmt
contained a positioned update or delete statement
and the cursor was positioned before the start of the
result set or after the end of the result set.

40001 Serialization failure The transaction to which the prepared statement
associated with the hstmt belonged was terminated
to prevent deadlock.

42000 Syntax error or access
violation

The user did not have permission to execute the pre-
pared statement associated with the hstmt.

IM001 Driver does not sup-
port this function

(DM) The driver associated with the hstmt does not
support the function.

S1000 General error An error occurred for which there was no specific
SQLSTATE and for which no implementation-spe-
cific SQLSTATE was defined. The error message
returned by SQLError in the argument szEr-
rorMsg describes the error and its cause.

S1001 Memory allocation
failure

The driver was unable to allocate memory required
to support execution or completion of the function.

S1008 Operation canceled Asynchronous processing was enabled for the hstmt.
The function was called and before it completed
execution, SQLCancel was called on the hstmt.
Then the function was called again on the hstmt.

The function was called and, before it completed
execution, SQLCancel was called on the hstmt
from a different thread in a multithreaded applica-
tion.
 Function Reference 5-105

SQLExecute (ODBC 1.0, Core)
S1010 Function sequence
error

(DM) An asynchronously executing function (not
this one) was called for the hstmt and was still exe-
cuting when this function was called.

(DM) SQLExecute, SQLExecDirect, or SQLSet-
Pos was called for the hstmt and returned
SQL_NEED_DATA. This function was called
before data was sent for all data-at-execution param-
eters or columns.

(DM) The hstmt was not prepared. Either the hstmt
was not in an executed state, or a cursor was open
on the hstmt and SQLFetch or SQLExtended-
Fetch had been called.

The hstmt was not prepared. It was in an executed
state and either no result set was associated with the
hstmt or SQLFetch or SQLExtendedFetch had not
been called.

S1090 Invalid string or
buffer length

A parameter value, set with SQLBindParameter,
was a null pointer and the parameter length value
was not 0, SQL_NULL_DATA,
SQL_DATA_AT_EXEC, or less than or equal to
SQL_LEN_DATA_AT_EXEC_OFFSET.

A parameter value, set with SQLBindParameter,
was not a null pointer and the parameter length
value was less than 0, but was not SQL_NTS,
SQL_NULL_DATA, or SQL_DATA_AT_EXEC, or
less than or equal to
SQL_LEN_DATA_AT_EXEC_OFFSET.

S1109 Invalid cursor posi-
tion

The prepared statement was a positioned update or
delete statement and the cursor was positioned (by
SQLSetPos or SQLExtendedFetch) on a row for
which the value in the rgfRowStatus array in
SQLExtendedFetch was SQL_ROW_DELETED
or SQL_ROW_ERROR.

S1C00 Driver not capable The combination of the current settings of the
SQL_CONCURRENCY and
SQL_CURSOR_TYPE statement options was not
supported by the driver or data source.
5-106 SOLID Programmer Guide

SQLExecute (ODBC 1.0, Core)

d a
ds the

t or

.
SQLExecute can return any SQLSTATE that can be returned by SQLPrepare based on
when the data source evaluates the SQL statement associated with the hstmt.

Comments
SQLExecute executes a statement prepared by SQLPrepare. Once the application pro-
cesses or discards the results from a call to SQLExecute, the application can call SQLExe-
cute again with new parameter values.

To execute a SELECT statement more than once, the application must call SQLFreeStmt
with the SQL_CLOSE parameter before reissuing the SELECT statement.

If the data source is in manual-commit mode (requiring explicit transaction initiation), an
transaction has not already been initiated, the driver initiates a transaction before it sen
SQL statement.

If an application uses SQLPrepare to prepare and SQLExecute to submit a COMMIT or
ROLLBACK statement, it will not be interoperable between DBMS products. To commi
roll back a transaction, call SQLTransact.

If SQLExecute encounters a data-at-execution parameter, it returns SQL_NEED_DATA
The application sends the data using SQLParamData and SQLPutData. See SQLBindPa-
rameter, SQLParamData, and SQLPutData for more information.

Code Example
See SQLBindParameter, SQLPutData, and SQLSetPos.

Related Functions

S1T00 Timeout expired The timeout period expired before the data source
returned the result set. The timeout period is set
through SQLSetStmtOption,
SQL_QUERY_TIMEOUT.

For information about See

Assigning storage for a column in a result set SQLBindCol

Canceling statement processing SQLCancel

Executing an SQL statement SQLExecDirect

Fetching a block of data or scrolling through a
result set

SQLExtendedFetch (extension)
 Function Reference 5-107

SQLExecute (ODBC 1.0, Core)
Fetching a row of data SQLFetch

Freeing a statement handle SQLFreeStmt

Returning a cursor name SQLGetCursorName

Fetching part or all of a column of data SQLGetData (extension)

Returning the next parameter to send data for SQLParamData (extension)

Preparing a statement for execution SQLPrepare

Sending parameter data at execution time SQLPutData (extension)

Setting a cursor name SQLSetCursorName

Setting a statement option SQLSetStmtOption (extension)

Executing a commit or rollback operation SQLTransact
5-108 SOLID Programmer Guide

SQLExtendedFetch (ODBC 1.0, Level 2)

ol-

ble
SQLExtendedFetch (ODBC 1.0, Level 2)
SQLExtendedFetch extends the functionality of SQLFetch in the following ways:

■ It returns rowset data (one or more rows), in the form of an array, for each bound c
umn.

■ It scrolls through the result set according to the setting of a scroll-type argument.

SQLExtendedFetch works in conjunction with SQLSetStmtOption.

To fetch one row of data at a time in a forward direction, an application should call
SQLFetch.

For more information about scrolling through result sets, read “Using Block and Scrolla
Cursors” in Chapter 2, “Retrieving Results.”

NOTE: This function is not implement in SOLID SQL API, but it is available through ODBC
Cursor Library.

Syntax
RETCODE SQLExtendedFetch(hstmt, fFetchType, irow, pcrow, rgfRowStatus)

The SQLExtendedFetch function accepts the following arguments:

Returns
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_NO_DATA_FOUND,
SQL_STILL_EXECUTING, SQL_ERROR, or SQL_INVALID_HANDLE.

Type Argument Use Description

HSTMT hstmt Input Statement handle.

UWORD fFetchType Input Type of fetch. For more information, see the
“Comments” section.

SDWORD irow Input Number of the row to fetch. For more infor-
mation, see the “Comments” section.

UDWORD
FAR *

pcrow Output Number of rows actually fetched.

UWORD FAR
*

rgfRowStatus Output An array of status values. For more informa-
tion, see the “Comments” section.
 Function Reference 5-109

SQLExtendedFetch (ODBC 1.0, Level 2)

,

L-
ATE
Diagnostics
When SQLExtendedFetch returns either SQL_ERROR or SQL_SUCCESS_WITH_INFO
an associated SQLSTATE value may be obtained by calling SQLError . The following table
lists the SQLSTATE values commonly returned by SQLExtendedFetch and explains each
one in the context of this function; the notation “(DM)” precedes the descriptions of SQ
STATEs returned by the Driver Manager. The return code associated with each SQLST
value is SQL_ERROR, unless noted otherwise.

SQLSTATE Error Description

01000 General warning Driver-specific informational message.
(Function returns
SQL_SUCCESS_WITH_INFO.)

01004 Data truncated The data returned for one or more columns
was truncated. String values are right trun-
cated. For numeric values, the fractional part
of number was truncated. (Function returns
SQL_SUCCESS_WITH_INFO.)

01S01 Error in row An error occurred while fetching one or more
rows. (Function returns
SQL_SUCCESS_WITH_INFO.)

07006 Restricted data type
attribute violation

A data value could not be converted to the C
data type specified by fCType in SQLBind-
Col.

08S01 Communication link
failure

The communication link between the driver
and the data source to which the driver was
connected failed before the function com-
pleted processing.

22003 Numeric value out of
range

Returning the numeric value (as numeric or
string) for one or more columns would have
caused the whole (as opposed to fractional)
part of the number to be truncated.

Returning the binary value for one or more
columns would have caused a loss of binary
significance.

See Appendix D, “Data Types” for more
information.

22012 Division by zero A value from an arithmetic expression was
returned which resulted in division by zero.
5-110 SOLID Programmer Guide

SQLExtendedFetch (ODBC 1.0, Level 2)
24000 Invalid cursor state The hstmt was in an executed state but no
result set was associated with the hstmt.

40001 Serialization failure The transaction in which the fetch was exe-
cuted was terminated to prevent deadlock.

IM001 Driver does not support
this function

(DM) The driver associated with the hdbc
does not support the function.

S1000 General error An error occurred for which there was no
specific SQLSTATE and for which no imple-
mentation-specific SQLSTATE was defined.
The error message returned by SQLError in
the argument szErrorMsg describes the error
and its cause.

S1001 Memory allocation fail-
ure

The driver was unable to allocate memory
required to support execution or completion
of the function.

S1002 Invalid column number A column number specified in the binding
for one or more columns was greater than the
number of columns in the result set.

Column 0 was bound with SQLBindCol and
the SQL_USE_BOOKMARKS statement
option was set to SQL_UB_OFF.

S1008 Operation canceled Asynchronous processing was enabled for
the hstmt. The function was called and before
it completed execution, SQLCancel was
called on the hstmt. Then the function was
called again on the hstmt.

The function was called and, before it com-
pleted execution, SQLCancel was called on
the hstmt from a different thread in a multi-
threaded application.
 Function Reference 5-111

SQLExtendedFetch (ODBC 1.0, Level 2)
S1010 Function sequence error (DM) The specified hstmt was not in an exe-
cuted state. The function was called without
first calling SQLExecDirect, SQLExecute,
or a catalog function..

(DM) An asynchronously executing function
(not this one) was called for the hstmt and
was still executing when this function was
called.

(DM) SQLExecute, SQLExecDirect, or
SQLSetPos was called for the hstmt and
returned SQL_NEED_DATA. This function
was called before data was sent for all data-
at-execution parameters or columns.

(DM) SQLExtendedFetch was called for an
hstmt after SQLFetch was called and before
SQLFreeStmt was called with the
SQL_CLOSE option.

S1106 Fetch type out of range (DM) The value specified for the argument
fFetchType was invalid (see “Comments”).

The value of the SQL_CURSOR_TYPE
statement option was
SQL_CURSOR_FORWARD_ONLY and the
value of argument fFetchType was not
SQL_FETCH_NEXT.

S1107 Row value out of range The value specified with the
SQL_CURSOR_TYPE statement option was
SQL_CURSOR_KEYSET_DRIVEN, but the
value specified with the
SQL_KEYSET_SIZE statement option was
greater than 0 and less than the value speci-
fied with the SQL_ROWSET_SIZE state-
ment option.

S1111 Invalid bookmark value The argument fFetchType was
SQL_FETCH_BOOKMARK and the book-
mark specified in the irow argument was not
valid.
5-112 SOLID Programmer Guide

SQLExtendedFetch (ODBC 1.0, Level 2)

col-

re are
al-
ata

ion,
Comments
SQLExtendedFetch returns one rowset of data to the application. An application cannot
mix calls to SQLExtendedFetch and SQLFetch for the same cursor.

An application specifies the number of rows in the rowset by calling SQLSetStmtOption
with the SQL_ROWSET_SIZE statement option.

Binding

If any columns in the result set have been bound with SQLBindCol, the driver converts the
data for the bound columns as necessary and stores it in the locations bound to those
umns. The result set can be bound in a column-wise (the default) or row-wise fashion.

Column-Wise Binding
To bind a result set in column-wise fashion, an application specifies
SQL_BIND_BY_COLUMN for the SQL_BIND_TYPE statement option. (This is the
default value.) For each column to be bound, the application:

1. Allocates an array of data storage buffers. The array has as many elements as the
rows in the rowset, plus an additional element if the application will search for key v
ues or append new rows of data. Each buffer’s size is the maximum size of the C d
that can be returned for the column. For example, when the C data type is
SQL_C_DEFAULT, each buffer’s size is the column length. When the C data type is
SQL_C_CHAR, each buffer’s size is the display size of the data. For more informat

S1C00 Driver not capable Driver or data source does not support the
specified fetch type.

The driver or data source does not support
the conversion specified by the combination
of the fCType in SQLBindCol and the SQL
data type of the corresponding column. This
error only applies when the SQL data type of
the column was mapped to a driver-specific
SQL data type.

The argument fFetchType was
SQL_FETCH_RESUME and the driver sup-
ports ODBC 2.0.

S1T00 Timeout expired The timeout period expired before the data
source returned the result set. The timeout
period is set through SQLSetStmtOption,
SQL_QUERY_TIMEOUT.
 Function Reference 5-113

SQLExtendedFetch (ODBC 1.0, Level 2)

owset.

rray.

on:

 row

 the
all-

 of

 data
ne
e

re rows
 or
see “Converting Data from SQL to C Data Types” on page D-19 and “Precision, Scale,
Length, and Display Size” on page D-14.

2. Allocates an array of SDWORDs to hold the number of bytes available to return for
each row in the column. The array has as many elements as there are rows in the r

3. Calls SQLBindCol:

■ The rgbValue argument specifies the address of the data storage array.

■ The cbValueMax argument specifies the size of each buffer in the data storage a

■ The pcbValue argument specifies the address of the number-of-bytes array.

When the application calls SQLExtendedFetch, the driver retrieves the data and the num-
ber of bytes available to return and stores them in the buffers allocated by the applicati

■ For each bound column, the driver stores the data in the rgbValue buffer bound to the
column. It stores the first row of data at the start of the buffer and each subsequent
of data at an offset of cbValueMax bytes from the data for the previous row.

■ For each bound column, the driver stores the number of bytes available to return in
pcbValue buffer bound to the column. This is the number of bytes available prior to c
ing SQLExtendedFetch. (If the number of bytes available to return cannot be deter-
mined in advance, the driver sets pcbValue to SQL_NO_TOTAL. If the data for the
column is NULL, the driver sets pcbValue to SQL_NULL_DATA.) It stores the number
of bytes available to return for the first row at the start of the buffer and the number
bytes available to return for each subsequent row at an offset of sizeof(SDWORD) from
the value for the previous row.

Row-Wise Binding
To bind a result set in row-wise fashion, an application:

1. Declares a structure that can hold a single row of retrieved data and the associated
lengths. For each bound column, the structure contains one field for the data and o
SDWORD field for the number of bytes available to return. The data field’s size is th
maximum size of the C data that can be returned for the column.

2. Calls SQLSetStmtOption with fOption set to SQL_BIND_TYPE and vParam set to the
size of the structure.

3. Allocates an array of these structures. The array has as many elements as there a
in the rowset, plus an additional element if the application will search for key values
append new rows of data.

4. Calls SQLBindCol for each column to be bound:
5-114 SOLID Programmer Guide

SQLExtendedFetch (ODBC 1.0, Level 2)

st

ield

n:

ied by

r the

r sets

calls

uests
■ The rgbValue argument specifies the address of the column’s data field in the fir
array element.

■ The cbValueMax argument specifies the size of the column’s data field.

■ The pcbValue argument specifies the address of the column’s number-of-bytes f
in the first array element.

When the application calls SQLExtendedFetch, the driver retrieves the data and the num-
ber of bytes available to return and stores them in the buffers allocated by the applicatio

■ For each bound column, the driver stores the first row of data at the address specif
rgbValue for the column and each subsequent row of data at an offset of vParam bytes
from the data for the previous row.

■ For each bound column, the driver stores the number of bytes available to return fo
first row at the address specified by pcbValue and the number of bytes available to
return for each subsequent row at an offset of vParam bytes from the value for the previ-
ous row. This is the number of bytes available prior to calling SQLExtendedFetch. (If
the number of bytes available to return cannot be determined in advance, the drive
pcbValue to SQL_NO_TOTAL. If the data for the column is NULL, the driver sets pcb-
Value to SQL_NULL_DATA.)

Positioning the Cursor
The following operations require a cursor position:

■ Positioned update and delete statements.

■ Calls to SQLGetData.

■ Calls to SQLSetPos with the SQL_DELETE, SQL_REFRESH, and SQL_UPDATE
options.

An application can specify a cursor position when it calls SQLSetPos. Before it executes a
positioned update or delete statement or calls SQLGetData, the application must position
the cursor by calling SQLExtendedFetch to retrieve a rowset; the cursor points to the first
row in the rowset. To position the cursor to a different row in the rowset, the application
SQLSetPos.

The following table shows the rowset and return code returned when the application req
different rowsets.
 Function Reference 5-115

SQLExtendedFetch (ODBC 1.0, Level 2)

 table
For example, suppose a result set has 100 rows and the rowset size is 5. The following
shows the rowset and return code returned by SQLExtendedFetch for different values of
irow when the fetch type is SQL_FETCH_RELATIVE:

Requested
Rowset Return Code

Cursor
Position Returned Rowset

Before start of
result set

SQL_NO_DATA_FOUND Before start
of result set

None. The contents of the
rowset buffers are unde-
fined.

Overlaps start of
result set

SQL_SUCCESS Row 1 of
rowset

First rowset in result set.

Within result set SQL_SUCCESS Row 1 of
rowset

Requested rowset.

Overlaps end of
result set

SQL_SUCCESS Row 1 of
rowset

For rows in the rowset
that overlap the result set,
data is returned.

For rows in the rowset
outside the result set, the
contents of the rgbValue
and pcbValue buffers are
undefined and the
rgfRowStatus array con-
tains
SQL_ROW_NOROW.

After end of
result set

SQL_NO_DATA_FOUND After end of
result set

None. The contents of the
rowset buffers are unde-
fined.

Current Rowset irow Return Code New Rowset

1 to 5 –5 SQL_NO_DATA_FOUND None.

1 to 5 –3 SQL_SUCCESS 1 to 5

96 to 100 5 SQL_NO_DATA_FOUND None.

96 to 100 3 SQL_SUCCESS 99 and 100. For rows 3, 4,
and 5 in the rowset, the
rgfRowStatusArray is set
to SQL_ROW_NOROW.
5-116 SOLID Programmer Guide

SQLExtendedFetch (ODBC 1.0, Level 2)

rt

if

t
s of

ror

main-
that
wed

rror

L-

return

r
ows

t size
ment
Before SQLExtendedFetch is called the first time, the cursor is positioned before the sta
of the result set.

For the purpose of moving the cursor, deleted rows (that is, rows with an entry in the
rgfRowStatus array of SQL_ROW_DELETED) are treated no differently than other rows.
For example, calling SQLExtendedFetch with fFetchType set to
SQL_FETCH_ABSOLUTE and irow set to 15 returns the rowset starting at row 15, even
the rgfRowStatus array for row 15 is SQL_ROW_DELETED.

Processing Errors
If an error occurs that pertains to the entire rowset, such as SQLSTATE S1T00 (Timeou
expired), the driver returns SQL_ERROR and the appropriate SQLSTATE. The content
the rowset buffers are undefined and the cursor position is unchanged.

If an error occurs that pertains to a single row, the driver:

■ Sets the element in the rgfRowStatus array for the row to SQL_ROW_ERROR.

■ Posts SQLSTATE 01S01 (Error in row) in the error queue.

■ Posts zero or more additional SQLSTATEs for the error after SQLSTATE 01S01 (Er
in row) in the error queue.

After it has processed the error or warning, the driver continues the operation for the re
ing rows in the rowset and returns SQL_SUCCESS_WITH_INFO. Thus, for each error
pertains to a single row, the error queue contains SQLSTATE 01S01 (Error in row) follo
by zero or more additional SQLSTATEs.

After it has processed the error, the driver fetches the remaining rows in the rowset and
returns SQL_SUCCESS_WITH_INFO. Thus, for each row that returned an error, the e
queue contains SQLSTATE 01S01 (Error in row) followed by zero or more additional SQ
STATEs.

If the rowset contains rows that have already been fetched, the driver is not required to
SQLSTATEs for errors that occurred when the rows were first fetched. It is, however,
required to return SQLSTATE 01S01 (Error in row) for each row in which an error origi-
nally occurred and to return SQL_SUCCESS_WITH_INFO. For example, a static curso
that maintains a cache might cache row status information (so it can determine which r
contain errors) but might not cache the SQLSTATE associated with those errors.

Error rows do not affect relative cursor movements. For example, suppose the result se
is 100 and the rowset size is 10. If the current rowset is rows 11 through 20 and the ele
in the rgfRowStatus array for row 11 is SQL_ROW_ERROR, calling SQLExtendedFetch
with the SQL_FETCH_NEXT fetch type still returns rows 21 through 30.
 Function Reference 5-117

SQLExtendedFetch (ODBC 1.0, Level 2)

s
ns
ith

l-

n-
.0
If the driver returns any warnings, such as SQLSTATE 01004 (Data truncated), it return
warnings that apply to the entire rowset or to unknown rows in the rowset before it retur
error information applying to specific rows. It returns warnings for specific rows along w
any other error information about those rows.

fFetchType Argument
The fFetchType argument specifies how to move through the result set. It is one of the fo
lowing values:

SQL_FETCH_NEXT

SQL_FETCH_FIRST

SQL_FETCH_LAST

SQL_FETCH_PRIOR

SQL_FETCH_ABSOLUTE

SQL_FETCH_RELATIVE

SQL_FETCH_BOOKMARK

If the value of the SQL_CURSOR_TYPE statement option is
SQL_CURSOR_FORWARD_ONLY, the fFetchType argument must be
SQL_FETCH_NEXT.

NOTE: In ODBC 1.0, SQLExtendedFetch supported the SQL_FETCH_RESUME fetch
type. In ODBC 2.0, SQL_FETCH_RESUME is obsolete and the Driver Manager returns
SQLSTATE S1C00 (Driver not capable) if an application specifies it for an ODBC 2.0
driver.

The SQL_FETCH_BOOKMARK fetch type was introduced in ODBC 2.0; the Driver Ma
ager returns SQLSTATE S1106 (Fetch type out of range) if it is specified for an ODBC 1
driver.

Moving by Row Position
SQLExtendedFetch supports the following values of the fFetchType argument to move rela-
tive to the current rowset:
5-118 SOLID Programmer Guide

SQLExtendedFetch (ODBC 1.0, Level 2)

It supports the following values of the fFetchType argument to move to an absolute position
in the result set:

fFetchType Argument Action

SQL_FETCH_NEXT The driver returns the next rowset. If the cursor is posi-
tioned before the start of the result set, this is equivalent
to SQL_FETCH_FIRST.

SQL_FETCH_PRIOR The driver returns the prior rowset. If the cursor is posi-
tioned after the end of the result set, this is equivalent to
SQL_FETCH_LAST.

SQL_FETCH_RELATIVE The driver returns the rowset irow rows from the start of
the current rowset. If irow equals 0, the driver refreshes
the current rowset. If the cursor is positioned before the
start of the result set and irow is greater than 0 or if the
cursor is positioned after the end of the result set and
irow is less than 0, this is equivalent to
SQL_FETCH_ABSOLUTE.

fFetchType Argument Action

SQL_FETCH_FIRST The driver returns the first rowset in the result set.

SQL_FETCH_LAST The driver returns the last complete rowset in the result
set.

SQL_FETCH_ABSOLUTE If irow is greater than 0, the driver returns the rowset
starting at row irow.

If irow equals 0, the driver returns
SQL_NO_DATA_FOUND and the cursor is positioned
before the start of the result set.

If irow is less than 0, the driver returns the rowset start-
ing at row n+irow+1, where n is the number of rows in
the result set. For example, if irow is –1, the driver
returns the rowset starting at the last row in the result
set. If the result set size is 10 and irow is –10, the driver
returns the rowset starting at the first row in the result
set.
 Function Reference 5-119

SQLExtendedFetch (ODBC 1.0, Level 2)

e

ok-

n
t, it

when
inary
ping
set if

 For
y-
 newly
Positioning to a Bookmark
When an application calls SQLExtendedFetch with the SQL_FETCH_BOOKMARK fetch
type, the driver retrieves the rowset starting with the row specified by the bookmark in th
irow argument.

To inform the driver that it will use bookmarks, the application calls SQLSetStmtOption
with the SQL_USE_BOOKMARKS option before opening the cursor. To retrieve the bo
mark for a row, the application either positions the cursor on the row and calls SQLGetStm-
tOption with the SQL_GET_BOOKMARK option, or retrieves the bookmark from colum
0 of the result set. If the application retrieves a bookmark from column 0 of the result se
must set fCType in SQLBindCol or SQLGetData to SQL_C_BOOKMARK. The applica-
tion stores the bookmarks for those rows in each rowset to which it will return later.

Bookmarks are 32-bit binary values; if a bookmark requires more than 32 bits, such as
it is a key value, the driver maps the bookmarks requested by the application to 32-bit b
values. The 32-bit binary values are then returned to the application. Because this map
may require considerable memory, applications should only bind column 0 of the result
they will actually use bookmarks for most rows. Otherwise, applications should call
SQLGetStmtOption with the SQL_GET_BOOKMARK statement option or call SQLGet-
Data for column 0.

irow Argument
For the SQL_FETCH_ABSOLUTE fetch type, SQLExtendedFetch returns the rowset start-
ing at the row number specified by the irow argument.

For the SQL_FETCH_RELATIVE fetch type, SQLExtendedFetch returns the rowset start-
ing irow rows from the first row in the current rowset.

For the SQL_FETCH_BOOKMARK fetch type, the irow argument specifies the bookmark
that marks the first row in the requested rowset.

The irow argument is ignored for the SQL_FETCH_NEXT, SQL_FETCH_PRIOR,
SQL_FETCH_FIRST, and SQL_FETCH_LAST, fetch types.

rgfRowStatus Argument
In the rgfRowStatus array, SQLExtendedFetch returns any changes in status to each row
since it was last retrieved from the data source. Rows may be unchanged
(SQL_ROW_SUCCESS), updated (SQL_ROW_UPDATED), deleted
(SQL_ROW_DELETED), added (SQL_ROW_ADDED), or were unretrievable due to an
error (SQL_ROW_ERROR). For static cursors, this information is available for all rows.
keyset, mixed, and dynamic cursors, this information is only available for rows in the ke
set; the driver does not save data outside the keyset and therefore cannot compare the
retrieved data to anything.
5-120 SOLID Programmer Guide

SQLExtendedFetch (ODBC 1.0, Level 2)

 detect

e
num-

ta is

e

nd
ere is

um-
NOTE: Some drivers cannot detect changes to data. To determine whether a driver can
changes to refetched rows, an application calls SQLGetInfo with the
SQL_ROW_UPDATES option.

The number of elements must equal the number of rows in the rowset (as defined by th
SQL_ROWSET_SIZE statement option). If the number of rows fetched is less than the
ber of elements in the status array, the driver sets remaining status elements to
SQL_ROW_NOROW.

When an application calls SQLSetPos with fOption set to SQL_DELETE or
SQL_UPDATE, SQLSetPos changes the rgfRowStatus array for the changed row to
SQL_ROW_DELETED or SQL_ROW_UPDATED.

NOTE: For keyset, mixed, and dynamic cursors, if a key value is updated, the row of da
considered to have been deleted and a new row added.

Code Example
The following two examples show how an application could use column-wise or row-wis
binding to bind storage locations to the same result set.

For more code examples, see SQLSetPos.

Column-Wise Binding
In the following example, an application declares storage locations for column-wise bou
data and the returned numbers of bytes. Because column-wise binding is the default, th
no need, as in the row-wise binding example, to request column-wise binding with SQLSet-
StmtOption. However, the application does call SQLSetStmtOption to specify the number
of rows in the rowset.

The application then executes a SELECT statement to return a result set of the employee
names and birthdays, which is sorted by birthday. It calls SQLBindCol to bind the columns
of data, passing the addresses of storage locations for both the data and the returned n
bers of bytes. Finally, the application fetches the rowset data with SQLExtendedFetch and
prints each employee’s name and birthday.

#define ROWS 100
#define NAME_LEN 30
#define BDAY_LEN 11

UCHAR szName[ROWS][NAME_LEN], szBirthday[ROWS][BDAY_LEN];
SWORD sAge[ROWS];
SDWORD cbName[ROWS], cbAge[ROWS], cbBirthday[ROWS];

UDWORD crow, irow;
 Function Reference 5-121

SQLExtendedFetch (ODBC 1.0, Level 2)
UWORD rgfRowStatus[ROWS];

SQLSetStmtOption(hstmt, SQL_CONCURRENCY, SQL_CONCUR_READ_ONLY);
SQLSetStmtOption(hstmt, SQL_CURSOR_TYPE, SQL_CURSOR_KEYSET_DRIVEN);
SQLSetStmtOption(hstmt, SQL_ROWSET_SIZE, ROWS);
retcode = SQLExecDirect(hstmt,

"SELECT NAME, AGE, BIRTHDAY FROM EMPLOYEE ORDER BY 3, 2, 1",

 SQL_NTS);

if (retcode == SQL_SUCCESS) {
SQLBindCol(hstmt, 1, SQL_C_CHAR, szName, NAME_LEN, cbName);
SQLBindCol(hstmt, 2, SQL_C_SSHORT, sAge, 0, cbAge);
SQLBindCol(hstmt, 3, SQL_C_CHAR, szBirthday, BDAY_LEN,

 cbBirthday);

/* Fetch the rowset data and print each row. */
/* On an error, display a message and exit. */

while (TRUE) {
retcode = SQLExtendedFetch(hstmt, SQL_FETCH_NEXT, 1, &crow,

 rgfRowStatus);
if (retcode == SQL_ERROR || retcode == SQL_SUCCESS_WITH_INFO) {

show_error();
}
if (retcode == SQL_SUCCESS || retcode == SQL_SUCCESS_WITH_INFO){

for (irow = 0; irow < crow; irow++) {
if (rgfRowStatus[irow] != SQL_ROW_DELETED &&

rgfRowStatus[irow] != SQL_ROW_ERROR)
fprintf(out, "%-*s %-2d %*s",

 NAME_LEN-1, szName[irow], sAge[irow],

 BDAY_LEN-1, szBirthday[irow]);
}

} else {
break;

}
}

}

5-122 SOLID Programmer Guide

SQLExtendedFetch (ODBC 1.0, Level 2)

ize to

um-
Row-Wise Binding
In the following example, an application declares an array of structures to hold row-wise
bound data and the returned numbers of bytes. Using SQLSetStmtOption, it requests row-
wise binding and passes the size of the structure to the driver. The driver will use this s
find successive storage locations in the array of structures. Using SQLSetStmtOption, it
specifies the size of the rowset.

The application then executes a SELECT statement to return a result set of the employee
names and birthdays, which is sorted by birthday. It calls SQLBindCol to bind the columns
of data, passing the addresses of storage locations for both the data and the returned n
bers of bytes. Finally, the application fetches the rowset data with SQLExtendedFetch and
prints each employee’s name and birthday.

#define ROWS 100
#define NAME_LEN 30
#define BDAY_LEN 11

typedef struct {

UCHAR szName[NAME_LEN];

SDWORD cbName;

SWORD sAge;

SDWORD cbAge;

UCHAR szBirthday[BDAY_LEN];

SDWORD cbBirthday;

} EmpTable;

EmpTable rget[ROWS];
UDWORD crow, irow;
UWORD rgfRowStatus[ROWS];

SQLSetStmtOption(hstmt, SQL_BIND_TYPE, sizeof(EmpTable));
SQLSetStmtOption(hstmt, SQL_CONCURRENCY, SQL_CONCUR_READ_ONLY);
SQLSetStmtOption(hstmt, SQL_CURSOR_TYPE, SQL_CURSOR_KEYSET_DRIVEN);
SQLSetStmtOption(hstmt, SQL_ROWSET_SIZE, ROWS);
retcode = SQLExecDirect(hstmt,

"SELECT NAME, AGE, BIRTHDAY FROM EMPLOYEE ORDER BY 3, 2, 1",
 Function Reference 5-123

SQLExtendedFetch (ODBC 1.0, Level 2)
 SQL_NTS);

if (retcode == SQL_SUCCESS) {
SQLBindCol(hstmt, 1, SQL_C_CHAR, rget[0].szName, NAME_LEN,

 &rget[0].cbName);
SQLBindCol(hstmt, 2, SQL_C_SSHORT, &rget[0].sAge, 0,

 &rget[0].cbAge);
SQLBindCol(hstmt, 3, SQL_C_CHAR, rget[0].szBirthday, BDAY_LEN,

 &rget[0].cbBirthday);
/* Fetch the rowset data and print each row. */
/* On an error, display a message and exit. */

while (TRUE) {
retcode = SQLExtendedFetch(hstmt, SQL_FETCH_NEXT, 1, &crow,

 rgfRowStatus);
if (retcode == SQL_ERROR || retcode == SQL_SUCCESS_WITH_INFO) {

show_error();
}
if (retcode == SQL_SUCCESS || retcode == SQL_SUCCESS_WITH_INFO){

for (irow = 0; irow < crow; irow++) {
if (rgfRowStatus[irow] != SQL_ROW_DELETED &&

rgfRowStatus[irow] != SQL_ROW_ERROR)
fprintf(out, "%-*s %-2d %*s",

 NAME_LEN-1, rget[irow].szName, rget[irow].sAge,

 BDAY_LEN-1, rget[irow].szBirthday);
}

} else {
break;

}
}

}

5-124 SOLID Programmer Guide

SQLExtendedFetch (ODBC 1.0, Level 2)
Related Functions

For information about See

Assigning storage for a column in a result set SQLBindCol

Canceling statement processing SQLCancel

Returning information about a column in a result
set

SQLDescribeCol

Executing an SQL statement SQLExecDirect

Executing a prepared SQL statement SQLExecute

Returning the number of result set columns SQLNumResultCols

Positioning the cursor in a rowset SQLSetPos (extension)

Setting a statement option SQLSetStmtOption (extension)
 Function Reference 5-125

SQLFetch (ODBC 1.0, Core)

s

ci-

by
SQLFetch (ODBC 1.0, Core)
SQLFetch fetches a row of data from a result set. The driver returns data for all column
that were bound to storage locations with SQLBindCol.

Syntax
RETCODE SQLFetch(hstmt)

The SQLFetch function accepts the following argument.

Returns
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_NO_DATA_FOUND,
SQL_STILL_EXECUTING, SQL_ERROR, or SQL_INVALID_HANDLE.

Diagnostics
When SQLFetch returns either SQL_ERROR or SQL_SUCCESS_WITH_INFO, an asso
ated SQLSTATE value may be obtained by calling SQLError . The following table lists the
SQLSTATE values commonly returned by SQLFetch and explains each one in the context
of this function; the notation “(DM)” precedes the descriptions of SQLSTATEs returned
the Driver Manager. The return code associated with each SQLSTATE value is
SQL_ERROR, unless noted otherwise.

Type Argument Use Description

HSTMT hstmt Input Statement handle.

SQLSTATE Error Description

01000 General warning Driver-specific informational message.
(Function returns
SQL_SUCCESS_WITH_INFO.)

01004 Data truncated The data returned for one or more columns
was truncated. String values are right trun-
cated. For numeric values, the fractional
part of number was truncated. (Function
returns SQL_SUCCESS_WITH_INFO.)

07006 Restricted data type
attribute violation

The data value could not be converted to the
data type specified by fCType in SQLBind-
Col.
5-126 SOLID Programmer Guide

SQLFetch (ODBC 1.0, Core)
08S01 Communication link fail-
ure

The communication link between the driver
and the data source to which the driver was
connected failed before the function com-
pleted processing.

22002 Indicator value required
but not supplied

NULL data was fetched into a column
whose pcbValue as set by SQLBindCol was
a null pointer.

22003 Numeric value out of
range

Returning the numeric value (as numeric or
string) for one or more columns would have
caused the whole (as opposed to fractional)
part of the number to be truncated.

Returning the binary value for one or more
columns would have caused a loss of binary
significance.

For more information, see “Converting Data
from SQL to C Data Types” in Appendix D,
“Data Types.”

22012 Division by zero A value from an arithmetic expression was
returned which resulted in division by zero.

24000 Invalid cursor state The hstmt was in an executed state but no
result set was associated with the hstmt.

40001 Serialization failure The transaction in which the fetch was exe-
cuted was terminated to prevent deadlock.

IM001 Driver does not support
this function

(DM) The driver associated with the hstmt
does not support the function.

S1000 General error An error occurred for which there was no
specific SQLSTATE and for which no
implementation-specific SQLSTATE was
defined. The error message returned by
SQLError in the argument szErrorMsg
describes the error and its cause.

S1001 Memory allocation fail-
ure

The driver was unable to allocate memory
required to support execution or completion
of the function.
 Function Reference 5-127

SQLFetch (ODBC 1.0, Core)
S1002 Invalid column number A column number specified in the binding
for one or more columns was greater than
the number of columns in the result set.

A column number specified in the binding
for a column was 0; SQLFetch cannot be
used to retrieve bookmarks.

S1008 Operation canceled Asynchronous processing was enabled for
the hstmt. The function was called and
before it completed execution, SQLCancel
was called on the hstmt. Then the function
was called again on the hstmt.

The function was called and, before it com-
pleted execution, SQLCancel was called on
the hstmt from a different thread in a multi-
threaded application.

S1010 Function sequence error (DM) The specified hstmt was not in an exe-
cuted state. The function was called with-
out first calling SQLExecDirect,
SQLExecute, or a catalog function..

(DM) An asynchronously executing func-
tion (not this one) was called for the hstmt
and was still executing when this function
was called.

(DM) SQLExecute, SQLExecDirect, or
SQLSetPos was called for the hstmt and
returned SQL_NEED_DATA. This function
was called before data was sent for all data-
at-execution parameters or columns.

(DM) SQLExtendedFetch was called for
an hstmt after SQLFetch was called and
before SQLFreeStmt was called with the
SQL_CLOSE option.

S1C00 Driver not capable The driver or data source does not support
the conversion specified by the combina-
tion of the fCType in SQLBindCol and the
SQL data type of the corresponding col-
umn. This error only applies when the SQL
data type of the column was mapped to a
driver-specific SQL data type.
5-128 SOLID Programmer Guide

SQLFetch (ODBC 1.0, Core)

 is

lls to

d col-
 fetch

ing
ce,

-

af-
 appli-

Comments
SQLFetch positions the cursor on the next row of the result set. Before SQLFetch is called
the first time, the cursor is positioned before the start of the result set. When the cursor
positioned on the last row of the result set, SQLFetch returns SQL_NO_DATA_FOUND
and the cursor is positioned after the end of the result set. An application cannot mix ca
SQLExtendedFetch and SQLFetch for the same cursor.

If the application called SQLBindCol to bind columns, SQLFetch stores data into the loca-
tions specified by the calls to SQLBindCol. If the application does not call SQLBindCol to
bind any columns, SQLFetch doesn’t return any data; it just moves the cursor to the next
row. An application can call SQLGetData to retrieve data that is not bound to a storage
location.

The driver manages cursors during the fetch operation and places each value of a boun
umn into the associated storage. The driver follows these guidelines when performing a
operation:

■ SQLFetch accesses column data in left-to-right order.

■ After each fetch, pcbValue (specified in SQLBindCol) contains the number of bytes
available to return for the column. This is the number of bytes available prior to call
SQLFetch. If the number of bytes available to return cannot be determined in advan
the driver sets pcbValue to SQL_NO_TOTAL. (If SQL_MAX_LENGTH has been spec
ified with SQLSetStmtOption and the number of bytes available to return is greater
than SQL_MAX_LENGTH, pcbValue contains SQL_MAX_LENGTH.)

NOTE: The SQL_MAX_LENGTH statement option is intended to reduce network tr
fic and may not be supported by all drivers. To guarantee that data is truncated, an
cation should allocate a buffer of the desired size and specify this size in the
cbValueMax argument.

■ If rgbValue is not large enough to hold the entire result, the driver stores part of the
value and returns SQL_SUCCESS_WITH_INFO. A subsequent call to SQLError indi-
cates that a truncation occurred. The application can compare pcbValue to cbValueMax
(specified in SQLBindCol) to determine which column or columns were truncated. If
pcbValue is greater than or equal to cbValueMax, then truncation occurred.

■ If the data value for the column is NULL, the driver stores SQL_NULL_DATA in pcb-
Value.

S1T00 Timeout expired The timeout period expired before the data
source returned the result set. The timeout
period is set through SQLSetStmtOption,
SQL_QUERY_TIMEOUT.
 Function Reference 5-129

SQLFetch (ODBC 1.0, Core)
SQLFetch is valid only after a call that returns a result set.

For information about conversions allowed by SQLBindCol and SQLGetData, see “Con-
verting Data from SQL to C Data Types” in Appendix D, “Data Types.”

Code Example
See SQLBindCol, SQLColumns, and SQLGetData.

Related Functions

For information about See

Assigning storage for a column in a result set SQLBindCol

Canceling statement processing SQLCancel

Returning information about a column in a result
set

SQLDescribeCol

Executing an SQL statement SQLExecDirect

Executing a prepared SQL statement SQLExecute

Fetching a block of data or scrolling through a
result set

SQLExtendedFetch (extension)

Freeing a statement handle SQLFreeStmt

Fetching part or all of a column of data SQLGetData (extension)

Returning the number of result set columns SQLNumResultCols

Preparing a statement for execution SQLPrepare
5-130 SOLID Programmer Guide

SQLFetchPrev (SOLID Extension)

-

SQLFetchPrev (SOLID Extension)
SQLFetchPrev fetches a row of data from a result set. The driver returns data for all col
umns that were bound to storage locations with SQLBindCol.

Syntax
RETCODE SQLFetchPrev(hstmt)

The SQLFetchPrev function accepts the following argument.

Returns
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_NO_DATA_FOUND,
SQL_ERROR, or SQL_INVALID_HANDLE.

Diagnostics
When SQLFetchPrev returns either SQL_ERROR or SQL_SUCCESS_WITH_INFO, an
associated SQLSTATE value may be obtained by calling SQLError . The following table
lists the SQLSTATE values commonly returned by SQLFetchPrev and explains each one in
the context of this function. The return code associated with each SQLSTATE value is
SQL_ERROR, unless noted otherwise.

Type Argument Use Description

HSTMT hstmt Input Statement handle.

SQLSTATE Error Description

01000 General warning Driver-specific informational message.
(Function returns
SQL_SUCCESS_WITH_INFO.)

01004 Data truncated The data returned for one or more columns
was truncated. String values are right trun-
cated. For numeric values, the fractional
part of number was truncated. (Function
returns SQL_SUCCESS_WITH_INFO.)

07006 Restricted data type
attribute violation

The data value could not be converted to the
data type specified by fCType in SQLBind-
Col.
 Function Reference 5-131

SQLFetchPrev (SOLID Extension)
08S01 Communication link fail-
ure

The communication link between the driver
and the data source to which the driver was
connected failed before the function com-
pleted processing.

22002 Indicator value required
but not supplied

NULL data was fetched into a column
whose pcbValue as set by SQLBindCol was
a null pointer.

22003 Numeric value out of
range

Returning the numeric value (as numeric or
string) for one or more columns would have
caused the whole (as opposed to fractional)
part of the number to be truncated.

Returning the binary value for one or more
columns would have caused a loss of binary
significance.

For more information, see “Converting Data
from SQL to C Data Types” in Appendix D,
“Data Types.”

22012 Division by zero A value from an arithmetic expression was
returned which resulted in division by zero.

24000 Invalid cursor state The hstmt was in an executed state but no
result set was associated with the hstmt.

40001 Serialization failure The transaction in which the fetch was exe-
cuted was terminated to prevent deadlock.

S1000 General error An error occurred for which there was no
specific SQLSTATE and for which no
implementation-specific SQLSTATE was
defined. The error message returned by
SQLError in the argument szErrorMsg
describes the error and its cause.

S1001 Memory allocation fail-
ure

The driver was unable to allocate memory
required to support execution or completion
of the function.

S1002 Invalid column number A column number specified in the binding
for one or more columns was greater than
the number of columns in the result set.

A column number specified in the binding
for a column was 0; SQLFetch cannot be
used to retrieve bookmarks.
5-132 SOLID Programmer Guide

SQLFetchPrev (SOLID Extension)

ult
Comments
SQLFetchPrev positions the cursor on the previous row of the result set. SQLFetchPrev
returns SQL_NO_DATA_FOUND and the cursor is positioned before the start of the res
set if SQLFetchPrev is called before SQLFetch has been called. When the cursor is posi-
tioned on the first row of the result set, SQLFetchPrev returns the data of the first row

S1008 Operation canceled Asynchronous processing was enabled for
the hstmt. The function was called and
before it completed execution, SQLCancel
was called on the hstmt. Then the function
was called again on the hstmt.

The function was called and, before it com-
pleted execution, SQLCancel was called on
the hstmt from a different thread in a multi-
threaded application.

S1010 Function sequence error The specified hstmt was not in an executed
state. The function was called without first
calling SQLExecDirect, SQLExecute, or a
catalog function..

An asynchronously executing function (not
this one) was called for the hstmt and was
still executing when this function was
called.

SQLExecute, SQLExecDirect, or
SQLSetPos was called for the hstmt and
returned SQL_NEED_DATA. This function
was called before data was sent for all data-
at-execution parameters or columns.

S1C00 Driver not capable The driver or data source does not support
the conversion specified by the combina-
tion of the fCType in SQLBindCol and the
SQL data type of the corresponding col-
umn. This error only applies when the SQL
data type of the column was mapped to a
driver-specific SQL data type.

S1T00 Timeout expired The timeout period expired before the data
source returned the result set. The timeout
period is set through SQLSetStmtOption,
SQL_QUERY_TIMEOUT.
 Function Reference 5-133

SQLFetchPrev (SOLID Extension)

to

d col-
 fetch

ing

again. An application cannot mix calls to SQLExtendedFetch and SQLFetchPrev for the
same cursor.

If the application called SQLBindCol to bind columns, SQLFetchPrev stores data into the
locations specified by the calls to SQLBindCol. If the application does not call SQLBind-
Col to bind any columns, SQLFetchPrev doesn’t return any data; it just moves the cursor
the next row. An application can call SQLGetData to retrieve data that is not bound to a
storage location.

The driver manages cursors during the fetch operation and places each value of a boun
umn into the associated storage. The driver follows these guidelines when performing a
operation:

■ SQLFetchPrev accesses column data in left-to-right order.

■ After each fetch, pcbValue (specified in SQLBindCol) contains the number of bytes
available to return for the column. This is the number of bytes available prior to call
SQLFetchPrev. If the number of bytes available to return cannot be determined in
advance, the driver sets pcbValue to SQL_NO_TOTAL.

■ If rgbValue is not large enough to hold the entire result, the driver stores part of the
value and returns SQL_SUCCESS_WITH_INFO. A subsequent call to SQLError indi-
cates that a truncation occurred. The application can compare pcbValue to cbValueMax
(specified in SQLBindCol) to determine which column or columns were truncated. If
pcbValue is greater than or equal to cbValueMax, then truncation occurred.

■ If the data value for the column is NULL, the driver stores SQL_NULL_DATA in pcb-
Value.

SQLFetchPrev is valid only after a call that returns a result set.

For information about conversions allowed by SQLBindCol and SQLGetData, see “Con-
verting Data from SQL to C Data Types” in Appendix D, “Data Types.”

Code Example
See SQLBindCol, SQLColumns, and SQLGetData.

Related Functions

For information about See

Assigning storage for a column in a result set SQLBindCol

Canceling statement processing SQLCancel
5-134 SOLID Programmer Guide

SQLFetchPrev (SOLID Extension)
Returning information about a column in a result
set

SQLDescribeCol

Executing an SQL statement SQLExecDirect

Executing a prepared SQL statement SQLExecute

Fetching a row of data SQLFetch

Freeing a statement handle SQLFreeStmt

Fetching part or all of a column of data SQLGetData (extension)

Returning the number of result set columns SQLNumResultCols

Preparing a statement for execution SQLPrepare
 Function Reference 5-135

SQLFreeConnect (ODBC 1.0, Core)

e

o-

s
e is
SQLFreeConnect (ODBC 1.0, Core)
SQLFreeConnect releases a connection handle and frees all memory associated with th
handle.

Syntax
RETCODE SQLFreeConnect(hdbc)

The SQLFreeConnect function accepts the following argument.

Returns
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_ERROR, or
SQL_INVALID_HANDLE.

Diagnostics
When SQLFreeConnect returns SQL_ERROR or SQL_SUCCESS_WITH_INFO, an ass
ciated SQLSTATE value may be obtained by calling SQLError . The following table lists
the SQLSTATE values commonly returned by SQLFreeConnect and explains each one in
the context of this function; the notation “(DM)” precedes the descriptions of SQLSTATE
returned by the Driver Manager. The return code associated with each SQLSTATE valu
SQL_ERROR, unless noted otherwise.

Type Argument Use Description

HDBC hdbc Input Connection handle.

SQLSTATE Error Description

01000 General warning Driver-specific informational message.
(Function returns
SQL_SUCCESS_WITH_INFO.)

08S01 Communication link fail-
ure

The communication link between the driver
and the data source to which the driver was
connected failed before the function com-
pleted processing.
5-136 SOLID Programmer Guide

SQLFreeConnect (ODBC 1.0, Core)
Comments
Prior to calling SQLFreeConnect, an application must call SQLDisconnect for the hdbc.
Otherwise, SQLFreeConnect returns SQL_ERROR and the hdbc remains valid. Note that
SQLDisconnect automatically drops any hstmts open on the hdbc.

Code Example
See SQLConnect.

Related Functions

S1000 General error An error occurred for which there was no spe-
cific SQLSTATE and for which no implemen-
tation-specific SQLSTATE was defined. The
error message returned by SQLError in the
argument szErrorMsg describes the error and
its cause.

S1010 Function sequence error (DM) The function was called prior to calling
SQLDisconnect for the hdbc.

For information about See

Allocating a statement handle SQLAllocConnect

Connecting to a data source SQLConnect

Disconnecting from a data source SQLDisconnect

Connecting to a data source using a connection
string or dialog box

SQLDriverConnect (extension)

Freeing an environment handle SQLFreeEnv

Freeing a statement handle SQLFreeStmt
 Function Reference 5-137

SQLFreeEnv (ODBC 1.0, Core)

e

ned
SQLFreeEnv (ODBC 1.0, Core)
SQLFreeEnv frees the environment handle and releases all memory associated with th
environment handle.

Syntax
RETCODE SQLFreeEnv(henv)

The SQLFreeEnv function accepts the following argument.

Returns
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_ERROR, or
SQL_INVALID_HANDLE.

Diagnostics
When SQLFreeEnv returns SQL_ERROR or SQL_SUCCESS_WITH_INFO, an associ-
ated SQLSTATE value may be obtained by calling SQLError . The following table lists the
SQLSTATE values commonly returned by SQLFreeEnv and explains each one in the con-
text of this function; the notation “(DM)” precedes the descriptions of SQLSTATEs retur
by the Driver Manager. The return code associated with each SQLSTATE value is
SQL_ERROR, unless noted otherwise.

Type Argument Use Description

HENV henv Input Environment handle.

SQLSTATE Error Description

01000 General warning Driver-specific informational message. (Func-
tion returns SQL_SUCCESS_WITH_INFO.)

S1000 General error An error occurred for which there was no spe-
cific SQLSTATE and for which no implementa-
tion-specific SQLSTATE was defined. The error
message returned by SQLError in the argument
szErrorMsg describes the error and its cause.
5-138 SOLID Programmer Guide

SQLFreeEnv (ODBC 1.0, Core)

 the
g-
Comments
Prior to calling SQLFreeEnv, an application must call SQLFreeConnect for any hdbc allo-
cated under the henv. Otherwise, SQLFreeEnv returns SQL_ERROR and the henv and any
active hdbc remains valid.

When the Driver Manager processes the SQLFreeEnv function, it checks the TraceAu-
toStop keyword in the [ODBC] section of the ODBC.INI file or the ODBC subkey of the
registry. If it is set to 1, the Driver Manager disables tracing for all applications and sets
Trace keyword in the [ODBC] section of the ODBC.INI file or the ODBC subkey of the re
istry to 0.

Code Example
See SQLConnect.

Related Functions

S1010 Function sequence
error

(DM) There was at least one hdbc in an allo-
cated or connected state. Call SQLDisconnect
and SQLFreeConnect for each hdbc before
calling SQLFreeEnv.

For information about See

Allocating an environment handle SQLAllocEnv

Freeing a connection handle SQLFreeConnect
 Function Reference 5-139

SQLFreeStmt (ODBC 1.0, Core)

so-
SQLFreeStmt (ODBC 1.0, Core)
SQLFreeStmt stops processing associated with a specific hstmt, closes any open cursors
associated with the hstmt, discards pending results, and, optionally, frees all resources as
ciated with the statement handle.

Syntax
RETCODE SQLFreeStmt(hstmt, fOption)

The SQLFreeStmt function accepts the following arguments.

Returns
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_ERROR, or
SQL_INVALID_HANDLE.

Diagnostics
When SQLFreeStmt returns SQL_ERROR or SQL_SUCCESS_WITH_INFO, an associ-
ated SQLSTATE value may be obtained by calling SQLError . The following table lists the

Type Argument Use Description

HSTMT hstmt Input Statement handle

UWORD fOption Input One of the following options:

SQL_ CLOSE: Close the cursor associated
with hstmt (if one was defined) and discard
all pending results. The application can
reopen this cursor later by executing a
SELECT statement again with the same or
different parameter values. If no cursor is
open, this option has no effect for the appli-
cation.

SQL_DROP: Release the hstmt, free all
resources associated with it, close the cursor
(if one is open), and discard all pending rows.
This option terminates all access to the hstmt.
The hstmt must be reallocated to be reused.

SQL_UNBIND: Release all column buffers
bound by SQLBindCol for the given hstmt.

SQL_RESET_PARAMS: Release all param-
eter buffers set by SQLBindParameter for
the given hstmt.
5-140 SOLID Programmer Guide

SQLFreeStmt (ODBC 1.0, Core)

ned

SQLSTATE values commonly returned by SQLFreeStmt and explains each one in the con-
text of this function; the notation “(DM)” precedes the descriptions of SQLSTATEs retur
by the Driver Manager. The return code associated with each SQLSTATE value is
SQL_ERROR, unless noted otherwise.

SQLSTATE Error Description

01000 General warning Driver-specific informational message. (Func-
tion returns SQL_SUCCESS_WITH_INFO.)

IM001 Driver does not sup-
port this function

(DM) The driver associated with the hstmt does
not support the function.

S1000 General error An error occurred for which there was no spe-
cific SQLSTATE and for which no implementa-
tion-specific SQLSTATE was defined. The error
message returned by SQLError in the argu-
ment szErrorMsg describes the error and its
cause.

S1001 Memory allocation
failure

The driver was unable to allocate memory
required to support execution or completion of
the function.

S1010 Function sequence
error

(DM) An asynchronously executing function
was called for the hstmt and was still executing
when this function was called.

(DM) SQLExecute, SQLExecDirect, or
SQLSetPos was called for the hstmt and
returned SQL_NEED_DATA. This function was
called before data was sent for all data-at-exe-
cution parameters or columns.

S1092 Option type out of
range

(DM) The value specified for the argument fOp-
tion was not:

SQL_CLOSE

SQL_DROP

SQL_UNBIND

SQL_RESET_PARAMS
 Function Reference 5-141

SQLFreeStmt (ODBC 1.0, Core)
Comments
An application can call SQLFreeStmt to terminate processing of a SELECT statement with
or without canceling the statement handle.

The SQL_DROP option frees all resources that were allocated by the SQLAllocStmt func-
tion.

Code Example
See SQLConnect.

Related Functions

For information about See

Allocating a statement handle SQLAllocStmt

Canceling statement processing SQLCancel

Setting a cursor name SQLSetCursorName
5-142 SOLID Programmer Guide

SQLGetConnectOption (ODBC 1.0, Level 1)

n

f
L-
SQLGetConnectOption (ODBC 1.0, Level 1)
SQLGetConnectOption returns the current setting of a connection option.

Syntax
RETCODE SQLGetConnectOption(hdbc, fOption, pvParam)

The SQLGetConnectOption function accepts the following arguments:

Returns
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_NO_DATA_FOUND,
SQL_ERROR, or SQL_INVALID_HANDLE.

Diagnostics
When SQLGetConnectOption returns SQL_ERROR or SQL_SUCCESS_WITH_INFO, a
associated SQLSTATE value may be obtained by calling SQLError . The following table
lists the SQLSTATE values commonly returned by SQLGetConnectOption and explains
each one in the context of this function; the notation “(DM)” precedes the descriptions o
SQLSTATEs returned by the Driver Manager. The return code associated with each SQ
STATE value is SQL_ERROR, unless noted otherwise.

Type Argument Use Description

HDBC hdbc Input Connection handle.

UWORD fOption Input Option to retrieve.

PTR pvParam Output Value associated with fOption. Depend-
ing on the value of fOption, a 32-bit
integer value or a pointer to a null-ter-
minated character string will be
returned in pvParam.

SQLSTATE Error Description

01000 General warning Driver-specific informational message. (Func-
tion returns SQL_SUCCESS_WITH_INFO.)

08003 Connection not open (DM) An fOption value was specified that
required an open connection.
 Function Reference 5-143

SQLGetConnectOption (ODBC 1.0, Level 1)

e

o call-
Comments
For a list of options, see SQLSetConnectOption. Note that if fOption specifies an option
that returns a string, pvParam must be a pointer to storage for the string. The maximum
length of the string will be SQL_MAX_OPTION_STRING_LENGTH bytes (excluding th
null termination byte).

Depending on the option, an application does not need to establish a connection prior t
ing SQLGetConnectOption. However, if SQLGetConnectOption is called and the speci-
fied option does not have a default and has not been set by a prior call to
SQLSetConnectOption, SQLGetConnnectOption will return SQL_NO_DATA_FOUND.

While an application can set statement options using SQLSetConnectOption, an applica-
tion cannot use SQLGetConnectOption to retrieve statement option values; it must call
SQLGetStmtOption to retrieve the setting of statement options.

IM001 Driver does not support
this function

(DM) The driver corresponding to the hdbc
does not support the function.

S1000 General error An error occurred for which there was no spe-
cific SQLSTATE and for which no implemen-
tation-specific SQLSTATE was defined. The
error message returned by SQLError in the
argument szErrorMsg describes the error and
its cause.

S1001 Memory allocation failure The driver was unable to allocate memory
required to support execution or completion of
the function.

S1092 Option type out of range (DM) The value specified for the argument
fOption was in the block of numbers reserved
for ODBC connection and statement options,
but was not valid for the version of ODBC
supported by the driver.

S1C00 Driver not capable The value specified for the argument fOption
was a valid ODBC connection option for the
version of ODBC supported by the driver, but
was not supported by the driver.

The value specified for the argument fOption
was in the block of numbers reserved for
driver-specific connection and statement
options, but was not supported by the driver.
5-144 SOLID Programmer Guide

SQLGetConnectOption (ODBC 1.0, Level 1)
Related Functions

For information about See

Returning the setting of a statement option SQLGetStmtOption (extension)

Setting a connection option SQLSetConnectOption (extension)

Setting a statement option SQLSetStmtOption (extension)
 Function Reference 5-145

SQLGetCursorName (ODBC 1.0, Core)

lling

rwise.
SQLGetCursorName (ODBC 1.0, Core)
SQLGetCursorName returns the cursor name associated with a specified hstmt.

Syntax
RETCODE SQLGetCursorName(hstmt, szCursor, cbCursorMax, pcbCursor)

The SQLGetCursorName function accepts the following arguments.

Returns
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_ERROR, or
SQL_INVALID_HANDLE.

Diagnostics
When SQLGetCursorName returns either SQL_ERROR or
SQL_SUCCESS_WITH_INFO, an associated SQLSTATE value may be obtained by ca
SQLError . The following table lists the SQLSTATE values commonly returned by
SQLGetCursorName and explains each one in the context of this function; the notation
“(DM)” precedes the descriptions of SQLSTATEs returned by the Driver Manager. The
return code associated with each SQLSTATE value is SQL_ERROR, unless noted othe

Type Argument Use Description

HSTMT hstmt Input Statement handle.

UCHAR FAR * szCursor Output Pointer to storage for the cursor name.

SWORD cbCursorMax Input Length of szCursor.

SWORD FAR * pcbCursor Output Total number of bytes (excluding the
null termination byte) available to
return in szCursor. If the number of
bytes available to return is greater than
or equal to cbCursorMax, the cursor
name in szCursor is truncated to
cbCursorMax – 1 bytes.

SQLSTATE Error Description

01000 General warning Driver-specific informational message.
(Function returns
SQL_SUCCESS_WITH_INFO.)
5-146 SOLID Programmer Guide

SQLGetCursorName (ODBC 1.0, Core)

lete
Comments
The only ODBC SQL statements that use a cursor name are positioned update and de
(for example, UPDATE table-name ...WHERE CURRENT OF cursor-name). If the appli-
cation does not call SQLSetCursorName to define a cursor name, on execution of a

01004 Data truncated The buffer szCursor was not large
enough to return the entire cursor name,
so the cursor name was truncated. The
argument pcbCursor contains the
length of the untruncated cursor name.
(Function returns
SQL_SUCCESS_WITH_INFO.)

IM001 Driver does not support
this function

(DM) The driver associated with the
hstmt does not support the function.

S1000 General error An error occurred for which there was
no specific SQLSTATE and for which
no implementation-specific SQL-
STATE was defined. The error message
returned by SQLError in the argument
szErrorMsg describes the error and its
cause.

S1001 Memory allocation failure The driver was unable to allocate mem-
ory required to support execution or
completion of the function.

S1010 Function sequence error (DM) An asynchronously executing
function was called for the hstmt and
was still executing when this function
was called.

(DM) SQLExecute, SQLExecDirect,
or SQLSetPos was called for the hstmt
and returned SQL_NEED_DATA. This
function was called before data was
sent for all data-at-execution parame-
ters or columns.

S1015 No cursor name available (DM) There was no open cursor on the
hstmt and no cursor name had been set
with SQLSetCursorName.

S1090 Invalid string or buffer
length

(DM) The value specified in the argu-
ment cbCursorMax was less than 0.
 Function Reference 5-147

SQLGetCursorName (ODBC 1.0, Core)

 and

 cre-
SELECT statement the driver generates a name that begins with the letters SQL_CUR
does not exceed 18 characters in length.

SQLGetCursorName returns the name of a cursor regardless of whether the name was
ated explicitly or implicitly.

A cursor name that is set either explicitly or implicitly remains set until the hstmt with which
it is associated is dropped, using SQLFreeStmt with the SQL_DROP option.

Related Functions

For information about See

Executing an SQL statement SQLExecDirect

Executing a prepared SQL statement SQLExecute

Preparing a statement for execution SQLPrepare

Setting a cursor name SQLSetCursorName

Setting cursor scrolling options SQLSetScrollOptions (extension)
5-148 SOLID Programmer Guide

SQLGetData (ODBC 1.0, Level 1)

pli-

with a
SQLGetData (ODBC 1.0, Level 1)
SQLGetData returns result data for a single unbound column in the current row. The ap
cation must call SQLFetch, or SQLExtendedFetch and (optionally) SQLSetPos to posi-
tion the cursor on a row of data before it calls SQLGetData. It is possible to use
SQLBindCol for some columns and use SQLGetData for others within the same row. This
function can be used to retrieve character or binary data values in parts from a column
character, binary, or data source–specific data type (for example, data from
SQL_LONGVARBINARY or SQL_LONGVARCHAR columns).

Syntax
RETCODE SQLGetData(hstmt, icol, fCType, rgbValue, cbValueMax, pcbValue)

The SQLGetData function accepts the following arguments:

Type Argument Use Description

HSTMT hstmt Input Statement handle.

UWORD icol Input Column number of result data, ordered sequen-
tially left to right, starting at 1. A column num-
ber of 0 is used to retrieve a bookmark for the
row; bookmarks are not supported by ODBC 1.0
drivers or SQLFetch.
 Function Reference 5-149

SQLGetData (ODBC 1.0, Level 1)
SWORD fCType Input The C data type of the result data. This must be
one of the following values:

SQL_C_BINARY

SQL_C_BIT

SQL_C_BOOKMARK

SQL_C_CHAR

SQL_C_DATE

SQL_C_DEFAULT

SQL_C_DOUBLE

SQL_C_FLOAT

SQL_C_SLONG

SQL_C_SSHORT

SQL_C_STINYINT

SQL_C_TIME

SQL_C_TIMESTAMP

SQL_C_ULONG

SQL_C_USHORT

SQL_C_UTINYINT

SQL_C_DEFAULT specifies that data be con-
verted to its default C data type.

1RWH Drivers must also support the following
values of fCType from ODBC 1.0. Applications
must use these values, rather than the ODBC
2.0 values, when calling an ODBC 1.0 driver:

SQL_C_LONG

SQL_C_SHORT

SQL_C_TINYINT

For information about how data is converted,
see “Converting Data from SQL to C Data
Types” on page D-19.

PTR rgbValue Output Pointer to storage for the data.
5-150 SOLID Programmer Guide

SQLGetData (ODBC 1.0, Level 1)
Returns
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_NO_DATA_FOUND,
SQL_STILL_EXECUTING, SQL_ERROR, or SQL_INVALID_HANDLE.

Diagnostics
When SQLGetData returns either SQL_ERROR or SQL_SUCCESS_WITH_INFO, an
associated SQLSTATE value may be obtained by calling SQLError . The following table

SDWORD cbValueMax Input Maximum length of the rgbValue buffer. For
character data, rgbValue must also include space
for the null-termination byte.

For character and binary C data, cbValueMax
determines the amount of data that can be
received in a single call to SQLGetData. For
all other types of C data, cbValueMax is
ignored; the driver assumes that the size of rgb-
Value is the size of the C data type specified
with fCType and returns the entire data value.
For more information about length, see “Preci-
sion, Scale, Length, and Display Size” on
page D-14.

SDWORD
FAR *

pcbValue Output SQL_NULL_DATA, the total number of bytes
(excluding the null termination byte for charac-
ter data) available to return in rgbValue prior to
the current call to SQLGetData, or
SQL_NO_TOTAL if the number of available
bytes cannot be determined.

For character data, if pcbValue is
SQL_NO_TOTAL or is greater than or equal to
cbValueMax, the data in rgbValue is truncated to
cbValueMax – 1 bytes and is null-terminated by
the driver.

For binary data, if pcbValue is
SQL_NO_TOTAL or is greater than cbValue-
Max, the data in rgbValue is truncated to cbVal-
ueMax bytes.

For all other data types, the value of cbValue-
Max is ignored and the driver assumes the size
of rgbValue is the size of the C data type speci-
fied with fCType.
 Function Reference 5-151

SQLGetData (ODBC 1.0, Level 1)

s
e is
lists the SQLSTATE values commonly returned by SQLGetData and explains each one in
the context of this function; the notation “(DM)” precedes the descriptions of SQLSTATE
returned by the Driver Manager. The return code associated with each SQLSTATE valu
SQL_ERROR, unless noted otherwise.

SQLSTATE Error Description

01000 General warning Driver-specific informational message. (Func-
tion returns SQL_SUCCESS_WITH_INFO.)

01004 Data truncated All of the data for the specified column, icol,
could not be retrieved in a single call to the func-
tion. The argument pcbValue contains the length
of the data remaining in the specified column
prior to the current call to SQLGetData. (Func-
tion returns SQL_SUCCESS_WITH_INFO.) For
more information on using multiple calls to
SQLGetData for a single column, see “Com-
ments.”

07006 Restricted data type
attribute violation

The data value cannot be converted to the C data
type specified by the argument fCType.

08S01 Communication link
failure

The communication link between the driver and
the data source to which the driver was con-
nected failed before the function completed pro-
cessing.

22002 Indicator variable
required but not sup-
plied

NULL data is retrieved and pcbValue is a null
pointer.

22003 Numeric value out of
range

Returning the numeric value (as numeric or
string) for the column would have caused the
whole (as opposed to fractional) part of the num-
ber to be truncated.

Returning the binary value for the column would
have caused a loss of binary significance.

See Appendix D, “Data Types”for more informa-
tion.

22005 Error in assignment The data for the column was incompatible with
the data type into which it was to be converted.
See Appendix D, “Data Types”for more informa-
tion.
5-152 SOLID Programmer Guide

SQLGetData (ODBC 1.0, Level 1)
22008 Datetime field over-
flow

The data for the column was not a valid date,
time, or timestamp value. See Appendix D, “Data
Types”for more information.

24000 Invalid cursor state (DM) The hstmt was in an executed state but no
result set was associated with the hstmt.

(DM) A cursor was open on the hstmt but
SQLFetch or SQLExtendedFetch had not been
called.

A cursor was open on the hstmt and SQLFetch
or SQLExtendedFetch had been called, but the
cursor was positioned before the start of the
result set or after the end of the result set.

IM001 Driver does not sup-
port this function

(DM) The driver corresponding to the hstmt does
not support the function.

S1000 General error An error occurred for which there was no spe-
cific SQLSTATE and for which no implementa-
tion-specific SQLSTATE was defined. The error
message returned by SQLError in the argument
szErrorMsg describes the error and its cause.

S1001 Memory allocation
failure

The driver was unable to allocate memory
required to support execution or completion of
the function.

S1002 Invalid column number The value specified for the argument icol was 0
and the driver was an ODBC 1.0 driver.
The value specified for the argument icol was 0
and SQLFetch was used to fetch the data.

The value specified for the argument icol was 0
and the SQL_USE_BOOKMARKS statement
option was set to SQL_UB_OFF.

The specified column was greater than the num-
ber of result columns.

The specified column was bound through a call
to SQLBindCol. This description does not apply
to drivers that return the SQL_GD_BOUND bit-
mask for the SQL_GETDATA_EXTENSIONS
option in SQLGetInfo.
 Function Reference 5-153

SQLGetData (ODBC 1.0, Level 1)
The specified column was at or before the last
bound column specified through SQLBindCol.
This description does not apply to drivers that
return the SQL_GD_ANY_COLUMN bitmask
for the SQL_GETDATA_EXTENSIONS option
in SQLGetInfo.

The application has already called SQLGetData
for the current row. The column specified in the
current call was before the column specified in
the preceding call. This description does not
apply to drivers that return the
SQL_GD_ANY_ORDER bitmask for the
SQL_GETDATA_EXTENSIONS option in
SQLGetInfo.

S1003 Program type out of
range

(DM) The argument fCType was not a valid data
type or SQL_C_DEFAULT.
The argument icol was 0 and the argument
fCType was not SQL_C_BOOKMARK.

S1008 Operation canceled Asynchronous processing was enabled for the
hstmt. The function was called and before it com-
pleted execution, SQLCancel was called on the
hstmt. Then the function was called again on the
hstmt.
The function was called and, before it completed
execution, SQLCancel was called on the hstmt
from a different thread in a multithreaded appli-
cation.

S1009 Invalid argument value (DM) The argument rgbValue was a null pointer.
5-154 SOLID Programmer Guide

SQLGetData (ODBC 1.0, Level 1)
S1010 Function sequence
error

(DM) The specified hstmt was not in an executed
state. The function was called without first calling
SQLExecDirect, SQLExecute, or a catalog
function.
(DM) An asynchronously executing function
(not this one) was called for the hstmt and was
still executing when this function was called.

(DM) SQLExecute, SQLExecDirect, or
SQLSetPos was called for the hstmt and
returned SQL_NEED_DATA. This function was
called before data was sent for all data-at-execu-
tion parameters or columns.

S1090 Invalid string or buffer
length

(DM) The value specified for argument cbValue-
Max was less than 0.

S1109 Invalid cursor positionThe cursor was positioned (by SQLSetPos or
SQLExtendedFetch) on a row for which the
value in the rgfRowStatus array in SQLExtend-
edFetch was SQL_ROW_DELETED or
SQL_ROW_ERROR.
 Function Reference 5-155

SQLGetData (ODBC 1.0, Level 1)

to
s
e in
ter-
Comments
With each call, the driver sets pcbValue to the number of bytes that were available in the
result column prior to the current call to SQLGetData. (If SQL_MAX_LENGTH has been
set with SQLSetStmtOption, and the total number of bytes available on the first call is
greater than SQL_MAX_LENGTH, the available number of bytes is set to
SQL_MAX_LENGTH. Note that the SQL_MAX_LENGTH statement option is intended
reduce network traffic and may not be supported by all drivers. To guarantee that data i
truncated, an application should allocate a buffer of the desired size and specify this siz
the cbValueMax argument.) If the total number of bytes in the result column cannot be de
mined in advance, the driver sets pcbValue to SQL_NO_TOTAL. If the data value for the
column is NULL, the driver stores SQL_NULL_DATA in pcbValue.

S1C00 Driver not capable The driver or data source does not support use of
SQLGetData with multiple rows in SQLEx-
tendedFetch. This description does not apply to
drivers that return the SQL_GD_BLOCK bitmask
for the SQL_GETDATA_EXTENSIONS option
in SQLGetInfo.
The driver or data source does not support the
conversion specified by the combination of the
fCType argument and the SQL data type of the
corresponding column. This error only applies
when the SQL data type of the column was
mapped to a driver-specific SQL data type.

The argument icol was 0 and the driver does not
support bookmarks.

The driver only supports ODBC 1.0 and the
argument fCType was one of the following:

SQL_C_STINYINT

SQL_C_UTINYINT

SQL_C_SSHORT

SQL_C_USHORT

SQL_C_SLONG

SQL_C_ULONG

S1T00 Timeout expired The timeout period expired before the data source
returned the result set. The timeout period is set
through SQLSetStmtOption,
SQL_QUERY_TIMEOUT.
5-156 SOLID Programmer Guide

SQLGetData (ODBC 1.0, Level 1)

nver-
to C

se-

ng to

n
ific
ta

e

row

rder

s in
s

rn

 calls

t
ch row

 bytes
SQLGetData can convert data to a different data type. The result and success of the co
sion is determined by the rules for assignment specified in “Converting Data from SQL
Data Types” in Appendix D, “Data Types.”

If more than one call to SQLGetData is required to retrieve data from a single column with
a character, binary, or data source–specific data type, the driver returns
SQL_SUCCESS_WITH_INFO. A subsequent call to SQLError returns SQLSTATE 01004
(Data truncated). The application can then use the same column number to retrieve sub
quent parts of the data until SQLGetData returns SQL_SUCCESS, indicating that all data
for the column has been retrieved. SQLGetData will return SQL_NO_DATA_FOUND
when it is called for a column after all of the data has been retrieved and before data is
retrieved for a subsequent column. The application can ignore excess data by proceedi
the next result column.

Note An application can use SQLGetData to retrieve data from a column in parts only whe
retrieving character C data from a column with a character,binary, or data source–spec
data type or when retrieving binary C data from a column with a character, binary, or da
source–specific data type. If SQLGetData is called more than one time in a row for a col-
umn under any other conditions, it returns SQL_NO_DATA_FOUND for all calls after th
first.

For maximum interoperability, applications should call SQLGetData only for unbound col-
umns with numbers greater than the number of the last bound column. Within a single
of data, the column number in each call to SQLGetData should be greater than or equal to
the column number in the previous call (that is, data should be retrieved in increasing o
of column number). As extended functionality, drivers can return data through SQLGet-
Data from bound columns, from columns before the last bound column, or from column
any order. To determine whether a driver supports these extensions, an application call
SQLGetInfo with the SQL_GETDATA_EXTENSIONS option.

Furthermore, applications that use SQLExtendedFetch to retrieve data should call
SQLGetData only when the rowset size is 1. As extended functionality, drivers can retu
data through SQLGetData when the rowset size is greater than 1. The application calls
SQLSetPos to position the cursor on a row and calls SQLGetData to retrieve data from an
unbound column. To determine whether a driver supports this extension, an application
SQLGetInfo with the SQL_GETDATA_EXTENSIONS option.

Code Example
In the following example, an application executes a SELECT statement to return a result se
of the employee names, ages, and birthdays sorted by birthday, age, and name. For ea
of data, it calls SQLFetch to position the cursor to the next row. It calls SQLGetData to
retrieve the fetched data; the storage locations for the data and the returned number of
 Function Reference 5-157

SQLGetData (ODBC 1.0, Level 1)

are specified in the call to SQLGetData. Finally, it prints each employee’s name, age, and
birthday.

#define NAME_LEN 30
#define BDAY_LEN 11

UCHAR szName[NAME_LEN], szBirthday[BDAY_LEN];
SWORD sAge;
SDWORD cbName, cbAge, cbBirthday;

retcode = SQLExecDirect(hstmt,

 "SELECT NAME, AGE, BIRTHDAY FROM EMPLOYEE ORDER BY 3, 2, 1",

 SQL_NTS);

if (retcode == SQL_SUCCESS) {
while (TRUE) {

retcode = SQLFetch(hstmt);
if (retcode == SQL_ERROR || retcode == SQL_SUCCESS_WITH_INFO) {

show_error();
}
if (retcode == SQL_SUCCESS || retcode == SQL_SUCCESS_WITH_INFO){

/* Get data for columns 1, 2, and 3 */
/* Print the row of data */

SQLGetData(hstmt, 1, SQL_C_CHAR, szName, NAME_LEN, &cbName);
SQLGetData(hstmt, 2, SQL_C_SSHORT, &sAge, 0, &cbAge);
SQLGetData(hstmt, 3, SQL_C_CHAR, szBirthday, BDAY_LEN,

 &cbBirthday);

fprintf(out, "%-*s %-2d %*s", NAME_LEN-1, szName, sAge,

 BDAY_LEN-1, szBirthday);
} else {

break;
}

}
}

5-158 SOLID Programmer Guide

SQLGetData (ODBC 1.0, Level 1)
Related Functions

For information about See

Assigning storage for a column in a result set SQLBindCol

Canceling statement processing SQLCancel

Executing an SQL statement SQLExecDirect

Executing a prepared SQL statement SQLExecute

Fetching a block of data or scrolling through a
result set

SQLExtendedFetch (extension)

Fetching a row of data SQLFetch

Sending parameter data at execution time SQLPutData (extension)
 Function Reference 5-159

SQLGetFunctions (ODBC 1.0, Level 1)

d in
SQLGetFunctions (ODBC 1.0, Level 1)
SQLGetFunctions returns information about whether a driver supports a specific ODBC
function. This function is implemented in the Driver Manager; it can also be implemente
drivers. If a driver implements SQLGetFunctions, the Driver Manager calls the function in
the driver. Otherwise, it executes the function itself.

Syntax
RETCODE SQLGetFunctions(hdbc, fFunction, pfExists)

The SQLGetFunctions function accepts the following arguments:

Type Argument Use Description

HDBC hdbc Input Connection handle.

UWORD fFunction Input SQL_API_ALL_FUNCTIONS or a #define
value that identifies the ODBC function of
interest. For a list of #define values that
identify ODBC functions, see the tables in
“Comments.”
5-160 SOLID Programmer Guide

SQLGetFunctions (ODBC 1.0, Level 1)

o-

s
e is
Returns
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_ERROR, or
SQL_INVALID_HANDLE.

Diagnostics
When SQLGetFunctions returns SQL_ERROR or SQL_SUCCESS_WITH_INFO, an ass
ciated SQLSTATE value may be obtained by calling SQLError . The following table lists
the SQLSTATE values commonly returned by SQLGetFunctions and explains each one in
the context of this function; the notation “(DM)” precedes the descriptions of SQLSTATE
returned by the Driver Manager. The return code associated with each SQLSTATE valu
SQL_ERROR, unless noted otherwise.

UWORD FAR
*

pfExists Output If fFunction is
SQL_API_ALL_FUNCTIONS, pfExists
points to a UWORD array with 100 ele-
ments. The array is indexed by #define val-
ues used by fFunction to identify each
ODBC function; some elements of the array
are unused and reserved for future use. An
element is TRUE if it identifies an ODBC
function supported by the driver. It is
FALSE if it identifies an ODBC function not
supported by the driver or does not identify
an ODBC function.

1RWH The fFunction value
SQL_API_ALL_FUNCTIONS was added
in ODBC 2.0.

If fFunction identifies a single ODBC func-
tion, pfExists points to single UWORD.
pfExists is TRUE if the specified function
is supported by the driver; otherwise, it is
FALSE.

SQLSTATE Error Description
 Function Reference 5-161

SQLGetFunctions (ODBC 1.0, Level 1)

r
Comments
SQLGetFunctions always returns that SQLGetFunctions, SQLDataSources, and SQLD-
rivers are supported. It does this because these functions are implemented in the Drive
Manager.

The following table lists valid values for fFunction for ODBC core functions.

01000 General warning Driver-specific informational message. (Func-
tion returns SQL_SUCCESS_WITH_INFO.)

S1000 General error An error occurred for which there was no spe-
cific SQLSTATE and for which no implemen-
tation-specific SQLSTATE was defined. The
error message returned by SQLError in the
argument szErrorMsg describes the error and
its cause.

S1001 Memory allocation
failure

The driver was unable to allocate memory
required to support execution or completion of
the function.

S1010 Function sequence
error

(DM) SQLGetFunctions was called before
SQLConnect, or SQLDriverConnect.

S1095 Function type out of
range

(DM) An invalid fFunction value was speci-
fied.

SQL_API_SQLALLOCCONNECT SQL_API_SQLFETCH

SQL_API_SQLALLOCSTMT SQL_API_SQLFREEENV

SQL_API_SQLBINDCOL SQL_API_SQLFREESTMT

SQL_API_SQLCANCEL SQL_API_SQLGETCURSORNAME

SQL_API_SQLCOLATTRIBUTES SQL_API_SQLNUMRESULTCOLS

SQL_API_SQLCONNECT SQL_API_SQLPREPARE

SQL_API_SQLDESCRIBECOL SQL_API_SQLROWCOUNT

SQL_API_SQLDISCONNECT SQL_API_SQLSETCURSORNAME

SQL_API_SQLERROR SQL_API_SQLSETPARAM

SQL_API_SQLEXECDIRECT SQL_API_SQLTRANSACT
5-162 SOLID Programmer Guide

SQLGetFunctions (ODBC 1.0, Level 1)

alls
NOTE: For ODBC 1.0 drivers, SQLGetFunctions returns TRUE in pfExists if fFunction is
SQL_API_SQLBINDPARAMETER or SQL_API_SQLSETPARAM and the driver sup-
ports SQLSetParam. For ODBC 2.0 drivers, SQLGetFunctions returns TRUE in pfExists
if fFunction is SQL_API_SQLSETPARAM or SQL_API_SQLBINDPARAMETER and the
driver supports SQLBindParameter.

The following table lists valid values for fFunction for ODBC extension level 1 functions.

The following table lists valid values for fFunction for ODBC extension level 2 functions.

Code Example
The following two examples show how an application uses SQLGetFunctions to determine
if a driver supports SQLTables, SQLColumns, and SQLStatistics. If the driver does not
support these functions, the application disconnects from the driver. The first example c
SQLGetFunctions once for each function.

UWORD TablesExists, ColumnsExists, StatisticsExists;

SQLGetFunctions(hdbc, SQL_API_SQLTABLES, &TablesExists);
SQLGetFunctions(hdbc, SQL_API_SQLCOLUMNS, &ColumnsExists);
SQLGetFunctions(hdbc, SQL_API_SQLSTATISTICS, &StatisticsExists);

SQL_API_SQLEXECUTE

SQL_API_SQLBINDPARAMETER SQL_API_SQLGETTYPEINFO

SQL_API_SQLDRIVERCONNECT SQL_API_SQLPUTDATA

SQL_API_SQLGETCONNECTOPTION SQL_API_SQLSETCONNECTOPTION

SQL_API_SQLGETDATA SQL_API_SQLSETSTMTOPTION

SQL_API_SQLGETFUNCTIONS SQL_API_SQLSPECIALCOLUMNS

SQL_API_SQLGETINFO SQL_API_SQLSTATISTICS

SQL_API_SQLGETSTMTOPTION SQL_API_SQLTABLES

SQL_API_SQLDATASOURCES SQL_API_SQLNUMPARAMS

SQL_API_SQLDESCRIBEPARAM SQL_API_SQLPRIMARYKEYS

SQL_API_SQLDRIVERS SQL_API_SQLSETPOS

SQL_API_SQLEXTENDEDFETCH SQL_API_SQLSETSCROLLOPTIONS
 Function Reference 5-163

SQLGetFunctions (ODBC 1.0, Level 1)
if (TablesExists && ColumnsExists && StatisticsExists) {

/* Continue with application */

}

SQLDisconnect(hdbc);

The second example calls SQLGetFunctions a single time and passes it an array in
which SQLGetFunctions returns information about all ODBC functions.
UWORD fExists[100];

SQLGetFunctions(hdbc, SQL_API_ALL_FUNCTIONS, fExists);

if (fExists[SQL_API_SQLTABLES] &&

 fExists[SQL_API_SQLCOLUMNS] &&

 fExists[SQL_API_SQLSTATISTICS]) {

/* Continue with application */

}

SQLDisconnect(hdbc);

Related Functions

For information about See

Returning the setting of a connection option SQLGetConnectOption (extension)

Returning information about a driver or data
source

SQLGetInfo (extension)

Returning the setting of a statement option SQLGetStmtOption (extension)
5-164 SOLID Programmer Guide

SQLGetInfo (ODBC 1.0, Level 1)

th an
SQLGetInfo (ODBC 1.0, Level 1)
SQLGetInfo returns general information about the driver and data source associated wi
hdbc.

Syntax
RETCODE SQLGetInfo(hdbc, fInfoType, rgbInfoValue, cbInfoValueMax, pcbInfoValue)

The SQLGetInfo function accepts the following arguments.

Type Argument Use Description

HDBC hdbc Input Connection handle.

UWORD fInfoType Input Type of information. fInfoType must be
a value representing the type of interest
(see “Comments”).

PTR rgbInfoValue Output Pointer to storage for the information.
Depending on the fInfoType requested,
the information returned will be one of
the following: a null-terminated charac-
ter string, a 16-bit integer value, a 32-
bit flag, or a 32-bit binary value.

SWORD cbInfoValueMax Input Maximum length of the rgbInfoValue
buffer.

SWORD
FAR *

pcbInfoValue Output The total number of bytes (excluding
the null termination byte for character
data) available to return in rgbInfoV-
alue.

For character data, if the number of
bytes available to return is greater than
or equal to cbInfoValueMax, the infor-
mation in rgbInfoValue is truncated to
cbInfoValueMax – 1 bytes and is null-
terminated by the driver.

For all other types of data, the value of
cbValueMax is ignored and the driver
assumes the size of rgbValue is 32 bits.
 Function Reference 5-165

SQLGetInfo (ODBC 1.0, Level 1)

so-

e is
Returns
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_ERROR, or
SQL_INVALID_HANDLE.

Diagnostics
When SQLGetInfo returns either SQL_ERROR or SQL_SUCCESS_WITH_INFO, an as
ciated SQLSTATE value may be obtained by calling SQLError . The following table lists
the SQLSTATE values commonly returned by SQLGetInfo and explains each one in the
context of this function; the notation “(DM)” precedes the descriptions of SQLSTATEs
returned by the Driver Manager. The return code associated with each SQLSTATE valu
SQL_ERROR, unless noted otherwise.

SQLSTATE Error Description

01000 General warning Driver-specific informational message.
(Function returns
SQL_SUCCESS_WITH_INFO.)

01004 Data truncated The buffer rgbInfoValue was not large
enough to return all of the requested infor-
mation, so the information was truncated.
The argument pcbInfoValue contains the
length of the requested information in its
untruncated form. (Function returns
SQL_SUCCESS_WITH_INFO.)

08003 Connection not open (DM) The type of information requested in
fInfoType requires an open connection. Of
the information types reserved by ODBC,
only SQL_ODBC_VER can be returned
without an open connection.

22003 Numeric value out of
range

Returning the requested information would
have caused a loss of numeric or binary sig-
nificance.

IM001 Driver does not support
this function

(DM) The driver corresponding to the hdbc
does not support the function.

S1000 General error An error occurred for which there was no
specific SQLSTATE and for which no
implementation-specific SQLSTATE was
defined. The error message returned by
SQLError in the argument szErrorMsg
describes the error and its cause.
5-166 SOLID Programmer Guide

SQLGetInfo (ODBC 1.0, Level 1)

e

Comments
The currently defined information types are shown below; it is expected that more will b
defined to take advantage of different data sources. Information types from 0 to 999 are
reserved by ODBC; driver developers must reserve values greater than or equal to
SQL_INFO_DRIVER_START for driver-specific use.

The format of the information returned in rgbInfoValue depends on the fInfoType requested.
SQLGetInfo will return information in one of five different formats:

■ A null-terminated character string,

■ A 16-bit integer value,

■ A 32-bit bitmask,

■ A 32-bit integer value,

■ Or a 32-bit binary value.

S1001 Memory allocation fail-
ure

The driver was unable to allocate memory
required to support execution or comple-
tion of the function.

S1009 Invalid argument value (DM) The fInfoType was
SQL_DRIVER_HSTMT, and the value
pointed to by rgbInfoValue was not a valid
statement handle.

S1090 Invalid string or buffer
length

(DM) The value specified for argument
cbInfoValueMax was less than 0.

S1096 Information type out of
range

(DM) The value specified for the argument
fOption was in the block of numbers
reserved for ODBC information types, but
was not valid for the version of ODBC sup-
ported by the driver.

S1C00 Driver not capable The value specified for the argument fOp-
tion was in the range of numbers reserved
for driver-specific information types, but
was not supported by the driver.

S1T00 Timeout expired The timeout period expired before the data
source returned the requested information.
The timeout period is set through SQLSet-
StmtOption, SQL_QUERY_TIMEOUT.
 Function Reference 5-167

SQLGetInfo (ODBC 1.0, Level 1)

The

 by
ver

not
The format of each of the following information types is noted in the type’s description.
application must cast the value returned in rgbInfoValue accordingly. For an example of how
an application could retrieve data from a 32-bit bitmask, see “Code Example.”

A driver must return a value for each of the information types defined in the following
tables. If an information type does not apply to the driver or data source, then the driver
returns one of the following values:

For example, if a data source does not support procedures, SQLGetInfo returns the follow-
ing values for the values of fInfoType that are related to procedures:

SQLGetInfo returns SQLSTATE S1096 (Invalid argument value) for values of fInfoType
that are in the range of information types reserved for use by ODBC but are not defined
the version of ODBC supported by the driver. To determine what version of ODBC a dri
conforms to, an application calls SQLGetInfo with the SQL_DRIVER_ODBC_VER infor-
mation type. SQLGetInfo returns SQLSTATE S1C00 (Driver not capable) for values of fIn-
foType that are in the range of information types reserved for driver-specific use but are
supported by the driver.

NOTE: Application developers should be aware that ODBC 1.0 drivers might return
SQL_ERROR and SQLSTATE S1C00 (Driver not capable) for values of fInfoType that were
defined in ODBC 1.0 but do not apply to the driver or the data source.

Information Types
This section lists the information types supported by SQLGetInfo. Information types are
grouped categorically and listed alphabetically.

Format of rgbInfoValue Returned value

Character string (“Y” or “N”) “N”

Character string (not “Y” or “N”) Empty string

16-bit integer 0

32-bit bitmask or 32-bit binary value 0L

fInfoType Returned value

SQL_PROCEDURES “N”

SQL_ACCESSIBLE_PROCEDURES “N”

SQL_MAX_PROCEDURE_NAME_LEN 0

SQL_PROCEDURE_TERM Empty string
5-168 SOLID Programmer Guide

SQLGetInfo (ODBC 1.0, Level 1)

Driver Information
The following values of fInfoType return information about the ODBC driver, such as the
number of active statements, the data source name, and the API conformance levels.

SQL_ACTIVE_CONNECTIONS

SQL_ACTIVE_STATEMENTS

SQL_DATA_SOURCE_NAME

SQL_DRIVER_HDBC

SQL_DRIVER_HENV

SQL_DRIVER_HLIB

SQL_DRIVER_HSTMT

SQL_DRIVER_NAME

SQL_DRIVER_ODBC_VER

SQL_DRIVER_VER

SQL_FETCH_DIRECTION

SQL_FILE_USAGE

SQL_GETDATA_EXTENSIONS

SQL_LOCK_TYPES

SQL_ODBC_API_CONFORMANCE

SQL_ODBC_SAG_CLI_CONFORMANCE

SQL_ODBC_VER

SQL_POS_OPERATIONS

SQL_ROW_UPDATES

SQL_SEARCH_PATTERN_ESCAPE

SQL_SERVER_NAME

DBMS Product Information
The following values of fInfoType return information about the DBMS product, such as the
DBMS name and version.

SQL_DATABASE_NAME
 Function Reference 5-169

SQLGetInfo (ODBC 1.0, Level 1)

r
SQL_DBMS_NAME

SQL_DBMS_VER

Data Source Information

The following values of fInfoType return information about the data source, such as curso
characteristics and transaction capabilities.

SQL_ACCESSIBLE_PROCEDURES

SQL_ACCESSIBLE_TABLES

SQL_BOOKMARK_PERSISTENCE

SQL_CONCAT_NULL_BEHAVIOR

SQL_CURSOR_COMMIT_BEHAVIOR

SQL_CURSOR_ROLLBACK_BEHAVIOR

SQL_DATA_SOURCE_READ_ONLY

SQL_DEFAULT_TXN_ISOLATION

SQL_MULT_RESULT_SETS

SQL_MULTIPLE_ACTIVE_TXN

SQL_NEED_LONG_DATA_LEN

SQL_NULL_COLLATION

SQL_OWNER_TERM

SQL_PROCEDURE_TERM

SQL_QUALIFIER_TERM

SQL_SCROLL_CONCURRENCY

SQL_SCROLL_OPTIONS

SQL_STATIC_SENSITIVITY

SQL_TABLE_TERM

SQL_TXN_CAPABLE

SQL_TXN_ISOLATION_OPTION

SQL_USER_NAME
5-170 SOLID Programmer Guide

SQLGetInfo (ODBC 1.0, Level 1)

by
 SQL

m-

pes
Supported SQL
The following values of fInfoType return information about the SQL statements supported
the data source. These information types do not exhaustively describe the entire ODBC
grammar. Instead, they describe those parts of the grammar for which data sources co
monly offer different levels of support.

Applications should determine the general level of supported grammar from the
SQL_ODBC_SQL_CONFORMANCE information type and use the other information ty
to determine variations from the stated conformance level.

SQL_ALTER_TABLE

SQL_COLUMN_ALIAS

SQL_CORRELATION_NAME

SQL_EXPRESSIONS_IN_ORDERBY

SQL_GROUP_BY

SQL_IDENTIFIER_CASE

SQL_IDENTIFIER_QUOTE_CHAR

SQL_KEYWORDS

SQL_LIKE_ESCAPE_CLAUSE

SQL_NON_NULLABLE_COLUMNS

SQL_ODBC_SQL_CONFORMANCE

SQL_ODBC_SQL_OPT_IEF

SQL_ORDER_BY_COLUMNS_IN_SELECT

SQL_OUTER_JOINS

SQL_OWNER_USAGE

SQL_POSITIONED_STATEMENTS

SQL_PROCEDURES

SQL_QUALIFIER_LOCATION

SQL_QUALIFIER_NAME_SEPARATOR

SQL_QUALIFIER_USAGE

SQL_QUOTED_IDENTIFIER_CASE
 Function Reference 5-171

SQLGetInfo (ODBC 1.0, Level 1)

xi-
r or
SQL_SPECIAL_CHARACTERS

SQL_SUBQUERIES

SQL_UNION

SQL Limits

The following values of fInfoType return information about the limits applied to identifiers
and clauses in SQL statements, such as the maximum lengths of identifiers and the ma
mum number of columns in a select list. Limitations may be imposed by either the drive
the data source.

SQL_MAX_BINARY_LITERAL_LEN

SQL_MAX_CHAR_LITERAL_LEN

SQL_MAX_COLUMN_NAME_LEN

SQL_MAX_COLUMNS_IN_GROUP_BY

SQL_MAX_COLUMNS_IN_ORDER_BY

SQL_MAX_COLUMNS_IN_INDEX

SQL_MAX_COLUMNS_IN_SELECT

SQL_MAX_COLUMNS_IN_TABLE

SQL_MAX_CURSOR_NAME_LEN

SQL_MAX_INDEX_SIZE

SQL_MAX_OWNER_NAME_LEN

SQL_MAX_PROCEDURE_NAME_LEN

SQL_MAX_QUALIFIER_NAME_LEN

SQL_MAX_ROW_SIZE

SQL_MAX_ROW_SIZE_INCLUDES_LONG

SQL_MAX_STATEMENT_LEN

SQL_MAX_TABLE_NAME_LEN

SQL_MAX_TABLES_IN_SELECT

SQL_MAX_USER_NAME_LEN

Scalar Function Information
5-172 SOLID Programmer Guide

SQLGetInfo (ODBC 1.0, Level 1)

by
The following values of fInfoType return information about the scalar functions supported
the data source and the driver. For more information about scalar functions. See Appendix F,
“Scalar Functions” for more information about scalar functions.

SQL_CONVERT_FUNCTIONS

SQL_NUMERIC_FUNCTIONS

SQL_STRING_FUNCTIONS

SQL_SYSTEM_FUNCTIONS

SQL_TIMEDATE_ADD_INTERVALS

SQL_TIMEDATE_DIFF_INTERVALS

SQL_TIMEDATE_FUNCTIONS

Conversion Information
The following values of fInfoType return a list of the SQL data types to which the data
source can convert the specified SQL data type with the CONVERT scalar function.

SQL_CONVERT_BIGINT

SQL_CONVERT_BINARY

SQL_CONVERT_BIT

SQL_CONVERT_CHAR

SQL_CONVERT_DATE

SQL_CONVERT_DECIMAL

SQL_CONVERT_DOUBLE

SQL_CONVERT_FLOAT

SQL_CONVERT_INTEGER

SQL_CONVERT_LONGVARBINARY

SQL_CONVERT_LONGVARCHAR

SQL_CONVERT_NUMERIC

SQL_CONVERT_REAL

SQL_CONVERT_SMALLINT

SQL_CONVERT_TIME
 Function Reference 5-173

SQLGetInfo (ODBC 1.0, Level 1)
SQL_CONVERT_TIMESTAMP

SQL_CONVERT_TINYINT

SQL_CONVERT_VARBINARY

SQL_CONVERT_VARCHAR

Information Type Descriptions
The following table alphabetically lists each information type, the version of ODBC in
which it was introduced, and its description.

InfoType Returns

SQL_ACCESSIBLE_TABLES
(ODBC 1.0)

A character string: “Y” if the user is guaranteed
SELECT privileges to all tables returned by SQLTa-
bles, “N” if there may be tables returned that the user
cannot access.

SQL_ACTIVE_
CONNECTIONS
(ODBC 1.0)

A 16-bit integer value specifying the maximum number
of active hdbcs that the driver can support. This value
can reflect a limitation imposed by either the driver or
the data source. If there is no specified limit or the limit
is unknown, this value is set to zero.

SQL_ACTIVE_STATEMENTS
(ODBC 1.0)

A 16-bit integer value specifying the maximum number
of active hstmts that the driver can support for an hdbc.
This value can reflect a limitation imposed by either the
driver or the data source. If there is no specified limit or
the limit is unknown, this value is set to zero.

SQL_ALTER_TABLE
(ODBC 2.0)

A 32-bit bitmask enumerating the clauses in the
ALTER TABLE statement supported by the data
source.

The following bitmask is used to determine which
clauses are supported:

SQL_AT_ADD_COLUMN
SQL_AT_DROP_COLUMN
5-174 SOLID Programmer Guide

SQLGetInfo (ODBC 1.0, Level 1)
SQL_BOOKMARK_
PERSISTENCE
(ODBC 2.0)

A 32-bit bitmask enumerating the operations through
which bookmarks persist.

The following bitmasks are used in conjunction with the
flag to determine through which options bookmarks per-
sist:

SQL_BP_CLOSE = Bookmarks are valid after an appli-
cation calls SQLFreeStmt with the SQL_CLOSE
option to close the cursor associated with an hstmt.

SQL_BP_DELETE = The bookmark for a row is valid
after that row has been deleted.

SQL_BP_DROP = Bookmarks are valid after an hstmt
an application calls SQLFreeStmt with the SQL_DROP
option to drop an hstmt.

SQL_BP_SCROLL = Bookmarks are valid after any
scrolling operation (call to SQLExtendedFetch).
Because all bookmarks must remain valid after SQLEx-
tendedFetch is called, this value can be used by appli-
cations to determine whether bookmarks are supported.

SQL_BP_TRANSACTION = Bookmarks are valid after
an application commits or rolls back a transaction.

SQL_BP_UPDATE = The bookmark for a row is valid
after any column in that row has been updated, includ-
ing key columns.

SQL_BP_OTHER_HSTMT = A bookmark associated
with one hstmt can be used with another hstmt.

SQL_COLUMN_ALIAS
(ODBC 2.0)

A character string: “Y” if the data source supports col-
umn aliases; otherwise, “N”.

SQL_CONCAT_NULL_
BEHAVIOR
(ODBC 1.0)

A 16-bit integer value indicating how the data source
handles the concatenation of NULL valued character
data type columns with non-NULL valued character
data type columns:

SQL_CB_NULL = Result is NULL valued.

SQL_CB_NON_NULL = Result is concatenation of
non-NULL valued column or columns.
 Function Reference 5-175

SQLGetInfo (ODBC 1.0, Level 1)
SQL_CONVERT_BIGINT

SQL_CONVERT_BINARY

SQL_CONVERT_BIT

SQL_CONVERT_CHAR

SQL_CONVERT_DATE

SQL_CONVERT_DECIMAL

SQL_CONVERT_DOUBLE

SQL_CONVERT_FLOAT

SQL_CONVERT_INTEGER

SQL_CONVERT_

LONGVARBINARY

SQL_CONVERT_

LONGVARCHAR

SQL_CONVERT_NUMERIC

SQL_CONVERT_REAL

SQL_CONVERT_SMALLINT

SQL_CONVERT_TIME

SQL_CONVERT_

TIMESTAMP

SQL_CONVERT_TINYINT

SQL_CONVERT_

VARBINARY

SQL_CONVERT_VARCHAR

(ODBC 1.0)

A 32-bit bitmask. The bitmask indicates the conver-
sions supported by the data source with the CONVERT
scalar function for data of the type named in the fInfo-
Type. If the bitmask equals zero, the data source does
not support any conversions for data of the named type,
including conversion to the same data type.

For example, to find out if a data source supports the
conversion of SQL_INTEGER data to the
SQL_BIGINT data type, an application calls SQLGet-
Info with the fInfoType of SQL_CONVERT_INTEGER.
The application ANDs the returned bitmask with
SQL_CVT_BIGINT. If the resulting value is nonzero,
the conversion is supported.

The following bitmasks are used to determine which
conversions are supported:

SQL_CVT_BIGINT

SQL_CVT_BINARY

SQL_CVT_BIT

SQL_CVT_CHAR

SQL_CVT_DATE

SQL_CVT_DECIMAL

SQL_CVT_DOUBLE

SQL_CVT_FLOAT

SQL_CVT_INTEGER

SQL_CVT_LONGVARBINARY

SQL_CVT_LONGVARCHAR

SQL_CVT_NUMERIC

SQL_CVT_REAL

SQL_CVT_SMALLINT

SQL_CVT_TIME

SQL_CVT_TIMESTAMP

SQL_CVT_TINYINT

SQL_CVT_VARBINARY

SQL_CVT_VARCHAR
5-176 SOLID Programmer Guide

SQLGetInfo (ODBC 1.0, Level 1)
SQL_CONVERT_
FUNCTIONS
(ODBC 1.0)

A 32-bit bitmask enumerating the scalar conversion
functions supported by the driver and associated data
source.

The following bitmask is used to determine which con-
version functions are supported:

SQL_FN_CVT_CONVERT

SQL_CORRELATION_NAME
(ODBC 1.0)

A 16-bit integer indicating if table correlation names are
supported:

SQL_CN_NONE = Correlation names are not sup-
ported.

SQL_CN_DIFFERENT = Correlation names are sup-
ported, but must differ from the names of the tables they
represent.

SQL_CN_ANY = Correlation names are supported and
can be any valid user-defined name.

SQL_CURSOR_COMMIT_
BEHAVIOR
(ODBC 1.0)

A 16-bit integer value indicating how a COMMIT oper-
ation affects cursors and prepared statements in the data
source:

SQL_CB_DELETE = Close cursors and delete pre-
pared statements. To use the cursor again, the applica-
tion must reprepare and reexecute the hstmt.

SQL_CB_CLOSE = Close cursors. For prepared state-
ments, the application can call SQLExecute on the
hstmt without calling SQLPrepare again.

SQL_CB_PRESERVE = Preserve cursors in the same
position as before the COMMIT operation. The appli-
cation can continue to fetch data or it can close the cur-
sor and reexecute the hstmt without repreparing it.
 Function Reference 5-177

SQLGetInfo (ODBC 1.0, Level 1)
SQL_CURSOR_ROLLBACK_
BEHAVIOR
(ODBC 1.0)

A 16-bit integer value indicating how a ROLLBACK
operation affects cursors and prepared statements in the
data source:

SQL_CB_DELETE = Close cursors and delete pre-
pared statements. To use the cursor again, the applica-
tion must reprepare and reexecute the hstmt.

SQL_CB_CLOSE = Close cursors. For prepared state-
ments, the application can call SQLExecute on the
hstmt without calling SQLPrepare again.

SQL_CB_PRESERVE = Preserve cursors in the same
position as before the ROLLBACK operation. The
application can continue to fetch data or it can close the
cursor and reexecute the hstmt without repreparing it.

SQL_DATA_SOURCE_NAME
(ODBC 1.0)

A character string with the data source name used dur-
ing connection. If the application called SQLConnect,
this is the value of the szDSN argument. If the applica-
tion called SQLDriverConnect, this is the value of the
DSN keyword in the connection string passed to the
driver. If the connection string did not contain the DSN
keyword (such as when it contains the DRIVER key-
word), this is an empty string.

SQL_DATA_SOURCE_
READ_ONLY
(ODBC 1.0)

A character string. “Y” if the data source is set to READ
ONLY mode, “N” if it is otherwise.

This characteristic pertains only to the data source itself,
it is not a characteristic of the driver that enables access
to the data source.

SQL_DATABASE_NAME
(ODBC 1.0)

A character string with the name of the current database
in use, if the data source defines a named object called
“database.”

1RWH In ODBC 2.0, this value of fInfoType has been
replaced by the SQL_CURRENT_QUALIFIER connec-
tion option. ODBC 2.0 drivers should continue to sup-
port the SQL_DATABASE_NAME information type,
and ODBC 2.0 applications should only use it with
ODBC 1.0 drivers.

SQL_DBMS_NAME
(ODBC 1.0)

A character string with the name of the DBMS product
accessed by the driver.
5-178 SOLID Programmer Guide

SQLGetInfo (ODBC 1.0, Level 1)
SQL_DBMS_VER
(ODBC 1.0)

A character string indicating the version of the DBMS
product accessed by the driver. The version is of the
form ##.##.####, where the first two digits are the major
version, the next two digits are the minor version, and
the last four digits are the release version. The driver
must render the DBMS product version in this form, but
can also append the DBMS product-specific version as
well. For example, “03.00.0034 SOLID 3.0”

SQL_DEFAULT_TXN_
ISOLATION
(ODBC 1.0)

A 32-bit integer that indicates the default transaction
isolation level supported by the driver or data source, or
zero if the data source does not support transactions.
The following terms are used to define transaction isola-
tion levels:

Dirty Read Transaction 1 changes a row. Transaction
2 reads the changed row before transaction 1 commits
the change. If transaction 1 rolls back the change, trans-
action 2 will have read a row that is considered to have
never existed.

Nonrepeatable Read Transaction 1 reads a row.
Transaction 2 updates or deletes that row and commits
this change. If transaction 1 attempts to reread the row,
it will receive different row values or discover that the
row has been deleted.

Phantom Transaction 1 reads a set of rows that sat-
isfy some search criteria. Transaction 2 inserts a row
that matches the search criteria. If transaction 1 reexe-
cutes the statement that read the rows, it receives a dif-
ferent set of rows.

If the data source supports transactions, the driver
returns one of the following bitmasks:

SQL_TXN_READ_UNCOMMITTED = Dirty reads,
nonrepeatable reads, and phantoms are possible.

SQL_TXN_READ_COMMITTED = Dirty reads are
not possible. Nonrepeatable reads and phantoms are
possible.

SQL_TXN_REPEATABLE_READ = Dirty reads and
nonrepeatable reads are not possible. Phantoms are pos-
sible.
 Function Reference 5-179

SQLGetInfo (ODBC 1.0, Level 1)
SQL_DEFAULT_TXN_
ISOLATION
(ODBC 1.0)

SQL_TXN_SERIALIZABLE = Transactions are serial-
izable. Dirty reads, nonrepeatable reads, and phantoms
are not possible.

SQL_TXN_VERSIONING = Transactions are serializ-
able, but higher concurrency is possible than with
SQL_TXN_SERIALIZABLE. Dirty reads are not possi-
ble. Typically, SQL_TXN_SERIALIZABLE is imple-
mented by using locking protocols that reduce
concurrency and SQL_TXN_VERSIONING is imple-
mented by using a non-locking protocol such as record
versioning.

SQL_DRIVER_HDBC
SQL_DRIVER_HENV
(ODBC 1.0)

A 32-bit value, the driver’s environment handle or con-
nection handle, determined by the argument hdbc.

These information types are implemented by the Driver
Manager alone.

SQL_DRIVER_HLIB
(ODBC 2.0)

A 32-bit value, the library handle returned to the Driver
Manager when it loaded the driver DLL. The handle is
only valid for the hdbc specified in the call to SQLGet-
Info .

This information type is implemented by the Driver
Manager alone.

SQL_DRIVER_HSTMT
(ODBC 1.0)

A 32-bit value, the driver’s statement handle determined
by the Driver Manager statement handle, which must be
passed on input in rgbInfoValue from the application.
Note that in this case, rgbInfoValue is both an input and
an output argument. The input hstmt passed in rgbInfoV-
alue must have been an hstmt allocated on the argument
hdbc.

This information type is implemented by the Driver
Manager alone.

SQL_DRIVER_NAME
(ODBC 1.0)

A character string with the filename of the driver used to
access the data source.
5-180 SOLID Programmer Guide

SQLGetInfo (ODBC 1.0, Level 1)
SQL_DRIVER_ODBC_VER
(ODBC 2.0)

A character string with the version of ODBC that the
driver supports. The version is of the form ##.##, where
the first two digits are the major version and the next
two digits are the minor version. SQL_SPEC_MAJOR
and SQL_SPEC_MINOR define the major and minor
version numbers. For the version of ODBC described in
this manual, these are 2 and 0, and the driver should
return “02.00”.

If a driver supports SQLGetInfo but does not support
this value of the fInfoType argument, the Driver Man-
ager returns “01.00”.

SQL_DRIVER_VER
(ODBC 1.0)

A character string with the version of the driver and,
optionally a description of the driver. At a minimum, the
version is of the form ##.##.####, where the first two
digits are the major version, the next two digits are the
minor version, and the last four digits are the release
version.

SQL_EXPRESSIONS_IN_
ORDERBY
(ODBC 1.0)

A character string: “Y” if the data source supports
expressions in the ORDER BY list; “N” if it does not.

SQL_FETCH_DIRECTION
(ODBC 1.0)

The information type was intro-
duced in ODBC 1.0; each bit-
mask is labeled with the version
in which it was introduced.

A 32-bit bitmask enumerating the supported fetch direc-
tion options.

The following bitmasks are used in conjunction with the
flag to determine which options are supported:

SQL_FD_FETCH_NEXT (ODBC 1.0)

SQL_FD_FETCH_FIRST (ODBC 1.0)

SQL_FD_FETCH_LAST (ODBC 1.0)

SQL_FD_FETCH_PRIOR (ODBC 1.0)

SQL_FD_FETCH_ABSOLUTE (ODBC 1.0)

SQL_FD_FETCH_RELATIVE (ODBC 1.0)

SQL_FD_FETCH_RESUME (ODBC 1.0)

SQL_FD_FETCH_BOOKMARK (ODBC 2.0)
 Function Reference 5-181

SQLGetInfo (ODBC 1.0, Level 1)
SQL_FILE_USAGE
(ODBC 2.0)

A 16-bit integer value indicating how a single-tier driver
directly treats files in a data source:

SQL_FILE_NOT_SUPPORTED = The driver is not a
single-tier driver.

SQL_FILE_TABLE = A single-tier driver treats files in
a data source as tables.

SQL_FILE_QUALIFIER = A single-tier driver treats
files in a data source as a qualifier.

An application might use this to determine how users
will select data.

SQL_GETDATA_
EXTENSIONS
(ODBC 2.0)

A 32-bit bitmask enumerating extensions to SQLGet-
Data.

The following bitmasks are used in conjunction with the
flag to determine what common extensions the driver
supports for SQLGetData:

SQL_GD_ANY_COLUMN = SQLGetData can be
called for any unbound column, including those before
the last bound column. Note that the columns must be
called in order of ascending column number unless
SQL_GD_ANY_ORDER is also returned.

SQL_GD_ANY_ORDER = SQLGetData can be called
for unbound columns in any order. Note that SQLGet-
Data can only be called for columns after the last bound
column unless SQL_GD_ANY_COLUMN is also
returned.

SQL_GD_BLOCK = SQLGetData can be called for an
unbound column in any row in a block (more than one
row) of data after positioning to that row with SQLSet-
Pos.

SQL_GD_BOUND = SQLGetData can be called for
bound columns as well as unbound columns. A driver
cannot return this value unless it also returns
SQL_GD_ANY_COLUMN.

SQLGetData is only required to return data from
unbound columns that occur after the last bound col-
umn, are called in order of increasing column number,
and are not in a row in a block of rows.
5-182 SOLID Programmer Guide

SQLGetInfo (ODBC 1.0, Level 1)
SQL_GROUP_BY
(ODBC 2.0)

A 16-bit integer value specifying the relationship
between the columns in the GROUP BY clause and the
non-aggregated columns in the select list:

SQL_GB_NOT_SUPPORTED = GROUP BY clauses
are not supported.

SQL_GB_GROUP_BY_EQUALS_SELECT = The
GROUP BY clause must contain all non-aggregated
columns in the select list. It cannot contain any other
columns. For example, SELECT DEPT, MAX(SAL-
ARY) FROM EMPLOYEE GROUP BY DEPT .

SQL_GB_GROUP_BY_CONTAINS_SELECT = The
GROUP BY clause must contain all non-aggregated
columns in the select list. It can contain columns that are
not in the select list. For example, SELECT DEPT,
MAX(SALARY) FROM EMPLOYEE GROUP BY
DEPT, AGE.

SQL_GB_NO_RELATION = The columns in the
GROUP BY clause and the select list are not related.
The meaning of non-grouped, non-aggregated columns
in the select list is data source–dependent. For example,
SELECT DEPT, SALARY FROM EMPLOYEE
GROUP BY DEPT, AGE.

SQL_IDENTIFIER_CASE
(ODBC 1.0)

A 16-bit integer value as follows:

SQL_IC_UPPER = Identifiers in SQL are case insensi-
tive and are stored in upper case in system catalog.

SQL_IC_LOWER = Identifiers in SQL are case insensi-
tive and are stored in lower case in system catalog.

SQL_IC_SENSITIVE = Identifiers in SQL are case sen-
sitive and are stored in mixed case in system catalog.

SQL_IC_MIXED = Identifiers in SQL are case insensi-
tive and are stored in mixed case in system catalog.

SQL_IDENTIFIER_QUOTE_
CHAR

(ODBC 1.0)

The character string used as the starting and ending
delimiter of a quoted (delimited) identifiers in SQL
statements. (Identifiers passed as arguments to ODBC
functions do not need to be quoted.) If the data source
does not support quoted identifiers, a blank is returned.
 Function Reference 5-183

SQLGetInfo (ODBC 1.0, Level 1)
SQL_KEYWORDS
(ODBC 2.0)

A character string containing a comma-separated list of
all data source–specific keywords. This list does not
contain keywords specific to ODBC or keywords used
by both the data source and ODBC.

For a list of ODBC keywords, see “List of Reserved
Keywords” in Appendix C, “SQL Grammar.” The
#define value SQL_ODBC_KEYWORDS contains a
comma-separated list of ODBC keywords.

SQL_LIKE_ESCAPE_CLAUSE
(ODBC 2.0)

A character string: “Y” if the data source supports an
escape character for the percent character (%) and
underscore character (_) in a LIKE predicate and the
driver supports the ODBC syntax for defining a LIKE
predicate escape character; “N” otherwise.

SQL_LOCK_TYPES
(ODBC 2.0)

A 32-bit bitmask enumerating the supported lock types
for the fLock argument in SQLSetPos.

The following bitmasks are used in conjunction with the
flag to determine which lock types are supported:

SQL_LCK_NO_CHANGE

SQL_LCK_EXCLUSIVE

SQL_LCK_UNLOCK

SQL_MAX_BINARY_
LITERAL_LEN
(ODBC 2.0)

A 32-bit integer value specifying the maximum length
(number of hexadecimal characters, excluding the lit-
eral prefix and suffix returned by SQLGetTypeInfo) of
a binary literal in an SQL statement. For example, the
binary literal 0xFFAA has a length of 4. If there is no
maximum length or the length is unknown, this value is
set to zero.

SQL_MAX_CHAR_LITERAL_
LEN
(ODBC 2.0)

A 32-bit integer value specifying the maximum length
(number of characters, excluding the literal prefix and
suffix returned by SQLGetTypeInfo) of a character lit-
eral in an SQL statement. If there is no maximum length
or the length is unknown, this value is set to zero.

SQL_MAX_COLUMN_
NAME_LEN
(ODBC 1.0)

A 16-bit integer value specifying the maximum length
of a column name in the data source. If there is no maxi-
mum length or the length is unknown, this value is set to
zero.
5-184 SOLID Programmer Guide

SQLGetInfo (ODBC 1.0, Level 1)
SQL_MAX_COLUMNS_IN_
GROUP_BY
(ODBC 2.0)

A 16-bit integer value specifying the maximum number
of columns allowed in a GROUP BY clause. If there is
no specified limit or the limit is unknown, this value is
set to zero.

SQL_MAX_COLUMNS_IN_
INDEX
(ODBC 2.0)

A 16-bit integer value specifying the maximum number
of columns allowed in an index. If there is no specified
limit or the limit is unknown, this value is set to zero.

SQL_MAX_COLUMNS_IN_
ORDER_BY
(ODBC 2.0)

A 16-bit integer value specifying the maximum number
of columns allowed in an ORDER BY clause. If there is
no specified limit or the limit is unknown, this value is
set to zero.

SQL_MAX_COLUMNS_IN_
SELECT
(ODBC 2.0)

A 16-bit integer value specifying the maximum number
of columns allowed in a select list. If there is no speci-
fied limit or the limit is unknown, this value is set to
zero.

SQL_MAX_COLUMNS_IN_
TABLE
(ODBC 2.0)

A 16-bit integer value specifying the maximum number
of columns allowed in a table. If there is no specified
limit or the limit is unknown, this value is set to zero.

SQL_MAX_CURSOR_NAME_
LEN
(ODBC 1.0)

A 16-bit integer value specifying the maximum length
of a cursor name in the data source. If there is no maxi-
mum length or the length is unknown, this value is set to
zero.

SQL_MAX_INDEX_SIZE
(ODBC 2.0)

A 32-bit integer value specifying the maximum number
of bytes allowed in the combined fields of an index. If
there is no specified limit or the limit is unknown, this
value is set to zero.

SQL_MAX_OWNER_NAME_
LEN
(ODBC 1.0)

A 16-bit integer value specifying the maximum length
of an owner name in the data source. If there is no maxi-
mum length or the length is unknown, this value is set to
zero.

SQL_MAX_PROCEDURE_
NAME_LEN
(ODBC 1.0)

A 16-bit integer value specifying the maximum length
of a procedure name in the data source. If there is no
maximum length or the length is unknown, this value is
set to zero.

SQL_MAX_QUALIFIER_
NAME_LEN
(ODBC 1.0)

A 16-bit integer value specifying the maximum length
of a qualifier name in the data source. If there is no max-
imum length or the length is unknown, this value is set
to zero.
 Function Reference 5-185

SQLGetInfo (ODBC 1.0, Level 1)
SQL_MAX_ROW_SIZE
(ODBC 2.0)

A 32-bit integer value specifying the maximum length
of a single row in a table. If there is no specified limit or
the limit is unknown, this value is set to zero.

SQL_MAX_ROW_SIZE_
INCLUDES_
LONG
(ODBC 2.0)

A character string: “Y” if the maximum row size
returned for the SQL_MAX_ROW_SIZE information
type includes the length of all SQL_LONGVARCHAR
and SQL_LONGVARBINARY columns in the row; “N”
otherwise.

SQL_MAX_STATEMENT_
LEN
(ODBC 2.0)

A 32-bit integer value specifying the maximum length
(number of characters, including white space) of an
SQL statement. If there is no maximum length or the
length is unknown, this value is set to zero.

SQL_MAX_TABLE_NAME_
LEN
(ODBC 1.0)

A 16-bit integer value specifying the maximum length
of a table name in the data source. If there is no maxi-
mum length or the length is unknown, this value is set to
zero.

SQL_MAX_TABLES_IN_
SELECT
(ODBC 2.0)

A 16-bit integer value specifying the maximum number
of tables allowed in the FROM clause of a SELECT
statement. If there is no specified limit or the limit is
unknown, this value is set to zero.

SQL_MAX_USER_NAME_
LEN
(ODBC 2.0)

A 16-bit integer value specifying the maximum length
of a user name in the data source. If there is no maxi-
mum length or the length is unknown, this value is set to
zero.

SQL_MULT_RESULT_SETS
(ODBC 1.0)

A character string: “Y” if the data source supports mul-
tiple result sets, “N” if it does not.

SQL_MULTIPLE_ACTIVE_
TXN
(ODBC 1.0)

A character string: “Y” if active transactions on multi-
ple connections are allowed, “N” if only one connection
at a time can have an active transaction.

SQL_NEED_LONG_DATA_
LEN
(ODBC 2.0)

A character string: “Y” if the data source needs the
length of a long data value (the data type is
SQL_LONGVARCHAR, SQL_LONGVARBINARY, or
a long, data source–specific data type) before that value
is sent to the data source, “N” if it does not. For more
information, see SQLBindParameter and SQLSetPos.
5-186 SOLID Programmer Guide

SQLGetInfo (ODBC 1.0, Level 1)
SQL_NON_NULLABLE_
COLUMNS
(ODBC 1.0)

A 16-bit integer specifying whether the data source sup-
ports non-nullable columns:

SQL_NNC_NULL = All columns must be nullable.

SQL_NNC_NON_NULL = Columns may be non-nul-
lable (the data source supports the NOT NULL column
constraint in CREATE TABLE statements).

SQL_NULL_COLLATION
(ODBC 2.0)

A 16-bit integer value specifying where NULLs are
sorted in a list:

SQL_NC_END = NULLs are sorted at the end of the
list, regardless of the sort order.

SQL_NC_HIGH = NULLs are sorted at the high end of
the list.

SQL_NC_LOW = NULLs are sorted at the low end of
the list.

SQL_NC_START = NULLs are sorted at the start of the
list, regardless of the sort order.
 Function Reference 5-187

SQLGetInfo (ODBC 1.0, Level 1)
SQL_NUMERIC_
FUNCTIONS
(ODBC 1.0)

The information type was intro-
duced in ODBC 1.0; each bit-
mask is labeled with the version
in which it was introduced.

A 32-bit bitmask enumerating the scalar numeric func-
tions supported by the driver and associated data source.

The following bitmasks are used to determine which
numeric functions are supported:

SQL_FN_NUM_ABS (ODBC 1.0)

SQL_FN_NUM_ACOS (ODBC 1.0)

SQL_FN_NUM_ASIN (ODBC 1.0)

SQL_FN_NUM_ATAN (ODBC 1.0)

SQL_FN_NUM_ATAN2 (ODBC 1.0)

SQL_FN_NUM_CEILING (ODBC 1.0)

SQL_FN_NUM_COS (ODBC 1.0)

SQL_FN_NUM_COT (ODBC 1.0)

SQL_FN_NUM_DEGREES (ODBC 2.0)

SQL_FN_NUM_EXP (ODBC 1.0)

SQL_FN_NUM_FLOOR (ODBC 1.0)

SQL_FN_NUM_LOG (ODBC 1.0)

SQL_FN_NUM_LOG10 (ODBC 2.0)

SQL_FN_NUM_MOD (ODBC 1.0)

SQL_FN_NUM_PI (ODBC 1.0)

SQL_FN_NUM_POWER (ODBC 2.0)

SQL_FN_NUM_RADIANS (ODBC 2.0)

SQL_FN_NUM_RAND (ODBC 1.0)

SQL_FN_NUM_ROUND (ODBC 2.0)

SQL_FN_NUM_SIGN (ODBC 1.0)

SQL_FN_NUM_SIN (ODBC 1.0)

SQL_FN_NUM_SQRT (ODBC 1.0)

SQL_FN_NUM_TAN (ODBC 1.0)

SQL_FN_NUM_TRUNCATE (ODBC 2.0)
5-188 SOLID Programmer Guide

SQLGetInfo (ODBC 1.0, Level 1)
SQL_ODBC_API_
CONFORMANCE
(ODBC 1.0)

A 16-bit integer value indicating the level of ODBC
conformance:

SQL_OAC_NONE = None

SQL_OAC_LEVEL1 = Level 1 supported

SQL_OAC_LEVEL2 = Level 2 supported

(For a list of functions and conformance levels, see the
“Function Summary” in this chapter)

SQL_ODBC_SAG_CLI_
CONFORMANCE
(ODBC 1.0)

A 16-bit integer value indicating compliance to the
functions of the SAG specification:

SQL_OSCC_NOT_COMPLIANT = Not SAG-compli-
ant; one or more core functions are not supported

SQL_OSCC_COMPLIANT = SAG-compliant

SQL_ODBC_SQL_
CONFORMANCE
(ODBC 1.0)

A 16-bit integer value indicating SQL grammar sup-
ported by the driver:

SQL_OSC_MINIMUM = Minimum grammar sup-
ported

SQL_OSC_CORE = Core grammar supported

SQL_OSC_EXTENDED = Extended grammar sup-
ported

SQL_ODBC_SQL_OPT_IEF
(ODBC 1.0)

A character string: “Y” if the data source supports the
optional Integrity Enhancement Facility; “N” if it does
not.

SQL_ODBC_VER
(ODBC 1.0)

A character string with the version of ODBC to which
the Driver Manager conforms. The version is of the
form ##.##, where the first two digits are the major ver-
sion and the next two digits are the minor version. This
is implemented solely in the Driver Manager.

SQL_ORDER_BY_
COLUMNS_IN_SELECT
(ODBC 2.0)

A character string: “Y” if the columns in the ORDER
BY clause must be in the select list; otherwise, “N”.
 Function Reference 5-189

SQLGetInfo (ODBC 1.0, Level 1)
SQL_OUTER_JOINS
(ODBC 1.0)

The information type was intro-
duced in ODBC 1.0; each return
value is labeled with the version
in which it was introduced.

A character string:

“N” = No. The data source does not support outer joins.
(ODBC 1.0)

“Y” = Yes. The data source supports two-table outer
joins, and the driver supports the ODBC outer join syn-
tax except for nested outer joins. However, columns on
the left side of the comparison operator in the ON clause
must come from the left-hand table in the outer join, and
columns on the right side of the comparison operator
must come from the right-hand table. (ODBC 1.0)

“P” = Partial. The data source partially supports nested
outer joins, and the driver supports the ODBC outer join
syntax. However, columns on the left side of the com-
parison operator in the ON clause must come from the
left-hand table in the outer join and columns on the right
side of the comparison operator must come from the
right-hand table. Also, the right-hand table of an outer
join cannot be included in an inner join. (ODBC 2.0)

“F” = Full. The data source fully supports nested outer
joins, and the driver supports the ODBC outer join syn-
tax. (ODBC 2.0)

SQL_OWNER_TERM
(ODBC 1.0)

A character string with the data source vendor’s name
for an owner; for example, “owner”, “Authorization ID”,
or “Schema”.
5-190 SOLID Programmer Guide

SQLGetInfo (ODBC 1.0, Level 1)
SQL_OWNER_USAGE
(ODBC 2.0)

A 32-bit bitmask enumerating the statements in which
owners can be used:

SQL_OU_DML_STATEMENTS = Owners are sup-
ported in all Data Manipulation Language statements:
SELECT, INSERT, UPDATE, DELETE , and, if sup-
ported, SELECT FOR UPDATE and positioned update
and delete statements.

SQL_OU_PROCEDURE_INVOCATION = Owners are
supported in the ODBC procedure invocation statement.

SQL_OU_TABLE_DEFINITION = Owners are sup-
ported in all table definition statements: CREATE
TABLE , CREATE VIEW , ALTER TABLE , DROP
TABLE , and DROP VIEW.

SQL_OU_INDEX_DEFINITION = Owners are sup-
ported in all index definition statements: CREATE
INDEX and DROP INDEX.

SQL_OU_PRIVILEGE_DEFINITION = Owners are
supported in all privilege definition statements: GRANT
and REVOKE .

SQL_POS_OPERATIONS
(ODBC 2.0)

A 32-bit bitmask enumerating the supported operations
in SQLSetPos.

The following bitmasks are used to in conjunction with
the flag to determine which options are supported:

SQL_POS_POSITION

SQL_POS_REFRESH

SQL_POS_UPDATE

SQL_POS_DELETE

SQL_POS_ADD

SQL_POSITIONED_
STATEMENTS
(ODBC 2.0)

A 32-bit bitmask enumerating the supported positioned
SQL statements.

The following bitmasks are used to determine which
statements are supported:

SQL_PS_POSITIONED_DELETE

SQL_PS_POSITIONED_UPDATE

SQL_PS_SELECT_FOR_UPDATE
 Function Reference 5-191

SQLGetInfo (ODBC 1.0, Level 1)
SQL_PROCEDURE_TERM
(ODBC 1.0)

A character string with the data source vendor’s name
for a procedure; for example, “database procedure”,
“stored procedure”, or “procedure”.

SQL_PROCEDURES
(ODBC 1.0)

A character string: “Y” if the data source supports pro-
cedures and the driver supports the ODBC procedure
invocation syntax; “N” otherwise.

SQL_QUALIFIER_LOCATION
(ODBC 2.0)

A 16-bit integer value indicating the position of the
qualifier in a qualified table name:

SQL_QL_START

SQL_QL_END

SQL_QUALIFIER_NAME_
SEPARATOR
(ODBC 1.0)

A character string: the character or characters that the
data source defines as the separator between a qualifier
name and the qualified name element that follows it.

SQL_QUALIFIER_TERM
(ODBC 1.0)

A character string with the data source vendor’s name
for a qualifier; for example, “database” or “directory”.

SQL_QUALIFIER_USAGE
(ODBC 2.0)

A 32-bit bitmask enumerating the statements in which
qualifiers can be used.

The following bitmasks are used to determine where
qualifiers can be used:

SQL_QU_DML_STATEMENTS = Qualifiers are sup-
ported in all Data Manipulation Language statements:
SELECT, INSERT, UPDATE, DELETE , and, if sup-
ported, SELECT FOR UPDATE and positioned update
and delete statements.

SQL_QU_PROCEDURE_INVOCATION = Qualifiers
are supported in the ODBC procedure invocation state-
ment.

SQL_QU_TABLE_DEFINITION = Qualifiers are sup-
ported in all table definition statements: CREATE
TABLE , CREATE VIEW , ALTER TABLE , DROP
TABLE , and DROP VIEW.

SQL_QU_INDEX_DEFINITION = Qualifiers are sup-
ported in all index definition statements: CREATE
INDEX and DROP INDEX.

SQL_QU_PRIVILEGE_DEFINITION = Qualifiers are
supported in all privilege definition statements: GRANT
and REVOKE .
5-192 SOLID Programmer Guide

SQLGetInfo (ODBC 1.0, Level 1)
SQL_QUOTED_
IDENTIFIER_CASE
(ODBC 2.0)

A 16-bit integer value as follows:

SQL_IC_UPPER = Quoted identifiers in SQL are case
insensitive and are stored in upper case in system cata-
log.

SQL_IC_LOWER = Quoted identifiers in SQL are case
insensitive and are stored in lower case in system cata-
log.

SQL_IC_SENSITIVE = Quoted identifiers in SQL are
case sensitive and are stored in mixed case in system
catalog.

SQL_IC_MIXED = Quoted identifiers in SQL are case
insensitive and are stored in mixed case in system cata-
log.

SQL_ROW_UPDATES
(ODBC 1.0)

A character string: “Y” if a keyset-driven or mixed cur-
sor maintains row versions or values for all fetched rows
and therefore can detect any changes made to a row by
any user since the row was last fetched; otherwise, “N”.

SQL_SCROLL_
CONCURRENCY
(ODBC 1.0)

A 32-bit bitmask enumerating the concurrency control
options supported for scrollable cursors.

The following bitmasks are used to determine which
options are supported:

SQL_SCCO_READ_ONLY = Cursor is read only. No
updates are allowed.

SQL_SCCO_LOCK = Cursor uses the lowest level of
locking sufficient to ensure that the row can be updated.

SQL_SCCO_OPT_ROWVER = Cursor uses optimistic
concurrency control, comparing row versions .

SQL_SCCO_OPT_VALUES = Cursor uses optimistic
concurrency control, comparing values.

For information about cursor concurrency, see “Speci-
fying Cursor Concurrency” on page 2-36. ”
 Function Reference 5-193

SQLGetInfo (ODBC 1.0, Level 1)
SQL_SCROLL_OPTIONS
(ODBC 1.0)

The information type was intro-
duced in ODBC 1.0; each bit-
mask is labeled with the version
in which it was introduced.

A 32-bit bitmask enumerating the scroll options sup-
ported for scrollable cursors.

The following bitmasks are used to determine which
options are supported:

SQL_SO_FORWARD_ONLY = The cursor only scrolls
forward. (ODBC 1.0)

SQL_SO_STATIC = The data in the result set is static.
(ODBC 2.0)

SQL_SO_KEYSET_DRIVEN = The driver saves and
uses the keys for every row in the result set. (ODBC 1.0)

SQL_SO_DYNAMIC = The driver keeps the keys for
every row in the rowset (the keyset size is the same as
the rowset size). (ODBC 1.0)

SQL_SO_MIXED = The driver keeps the keys for every
row in the keyset, and the keyset size is greater than the
rowset size. The cursor is keyset-driven inside the key-
set and dynamic outside the keyset. (ODBC 1.0)

For information about scrollable cursors, see “Using
Block and Scrollable Cursors” on page 2-34.”

SQL_SEARCH_PATTERN_
ESCAPE
(ODBC 1.0)

A character string specifying what the driver supports as
an escape character that permits the use of the pattern
match metacharacters underscore (_) and percent (%) as
valid characters in search patterns. This escape charac-
ter applies only for those catalog function arguments
that support search strings. If this string is empty, the
driver does not support a search-pattern escape charac-
ter.

This fInfoType is limited to catalog functions. For a
description of the use of the escape character in search
pattern strings, see “Search Pattern Arguments” earlier
in this chapter.

SQL_SERVER_NAME
(ODBC 1.0)

A character string with the actual data source–specific
server name; useful when a data source name is used
during SQLConnect, and SQLDriverConnect.

SQL_SPECIAL_
CHARACTERS
(ODBC 2.0)

A character string containing all special characters (that
is, all characters except a through z, A through Z, 0
through 9, and underscore) that can be used in an object
name, such as a table, column, or index name, on the
data source. For example, “#$^”.
5-194 SOLID Programmer Guide

SQLGetInfo (ODBC 1.0, Level 1)
SQL_STATIC_SENSITIVITY
(ODBC 2.0)

A 32-bit bitmask enumerating whether changes made by
an application to a static or keyset-driven cursor through
SQLSetPos or positioned update or delete statements
can be detected by that application:

SQL_SS_ADDITIONS = Added rows are visible to the
cursor; the cursor can scroll to these rows. Where these
rows are added to the cursor is driver-dependent.

SQL_SS_DELETIONS = Deleted rows are no longer
available to the cursor and do not leave a “hole” in the
result set; after the cursor scrolls from a deleted row, it
cannot return to that row.

SQL_SS_UPDATES = Updates to rows are visible to
the cursor; if the cursor scrolls from and returns to an
updated row, the data returned by the cursor is the
updated data, not the original data. Because updating
key values in a keyset-driven cursor is considered to be
deleting the existing row and adding a new row, this
value is always returned for keyset-driven cursors.

Whether an application can detect changes made to the
result set by other users, including other cursors in the
same application, depends on the cursor type. For more
information, see “Using Block and Scrollable Cur-
sors” on page 2-34.
 Function Reference 5-195

SQLGetInfo (ODBC 1.0, Level 1)
SQL_STRING_FUNCTIONS(O
DBC 1.0)

The information type was intro-
duced in ODBC 1.0; each bit-
mask is labeled with the version
in which it was introduced.

A 32-bit bitmask enumerating the scalar string func-
tions supported by the driver and associated data source.

The following bitmasks are used to determine which
string functions are supported:

SQL_FN_STR_ASCII (ODBC 1.0)

SQL_FN_STR_CHAR (ODBC 1.0)

SQL_FN_STR_CONCAT (ODBC 1.0)

SQL_FN_STR_DIFFERENCE (ODBC 2.0)

SQL_FN_STR_INSERT (ODBC 1.0)

SQL_FN_STR_LCASE (ODBC 1.0)

SQL_FN_STR_LEFT (ODBC 1.0)

SQL_FN_STR_LENGTH (ODBC 1.0)

SQL_FN_STR_LOCATE (ODBC 1.0)

SQL_FN_STR_LOCATE_2 (ODBC 2.0)

SQL_FN_STR_LTRIM (ODBC 1.0)

SQL_FN_STR_REPEAT (ODBC 1.0)

SQL_FN_STR_REPLACE (ODBC 1.0)

SQL_FN_STR_RIGHT (ODBC 1.0)

SQL_FN_STR_RTRIM (ODBC 1.0)

SQL_FN_STR_SOUNDEX (ODBC 2.0)

SQL_FN_STR_SPACE (ODBC 2.0)

SQL_FN_STR_SUBSTRING (ODBC 1.0)

SQL_FN_STR_UCASE (ODBC 1.0)

If an application can call the LOCATE scalar function
with the string_exp1, string_exp2, and start arguments,
the driver returns the SQL_FN_STR_LOCATE bit-
mask. If an application can call the LOCATE scalar
function with only the string_exp1 and string_exp2
arguments, the driver returns the
SQL_FN_STR_LOCATE_2 bitmask. Drivers that fully
support the LOCATE scalar function return both bit-
masks.
5-196 SOLID Programmer Guide

SQLGetInfo (ODBC 1.0, Level 1)
SQL_SUBQUERIES
(ODBC 2.0)

A 32-bit bitmask enumerating the predicates that sup-
port subqueries:

SQL_SQ_CORRELATED_SUBQUERIES

SQL_SQ_COMPARISON

SQL_SQ_EXISTS

SQL_SQ_IN

SQL_SQ_QUANTIFIED

The SQL_SQ_CORRELATED_SUBQUERIES bit-
mask indicates that all predicates that support subque-
ries support correlated subqueries.

SQL_SYSTEM_FUNCTIONS
(ODBC 1.0)

A 32-bit bitmask enumerating the scalar system func-
tions supported by the driver and associated data source.

The following bitmasks are used to determine which
system functions are supported:

SQL_FN_SYS_DBNAME

SQL_FN_SYS_IFNULL

SQL_FN_SYS_USERNAME

SQL_TABLE_TERM
(ODBC 1.0)

A character string with the data source vendor’s name
for a table; for example, “table” or “file”.

SQL_TIMEDATE_ADD_
INTERVALS
(ODBC 2.0)

A 32-bit bitmask enumerating the timestamp intervals
supported by the driver and associated data source for
the TIMESTAMPADD scalar function.

The following bitmasks are used to determine which
intervals are supported:

SQL_FN_TSI_FRAC_SECOND

SQL_FN_TSI_SECOND

SQL_FN_TSI_MINUTE

SQL_FN_TSI_HOUR

SQL_FN_TSI_DAY

SQL_FN_TSI_WEEK

SQL_FN_TSI_MONTH

SQL_FN_TSI_QUARTER

SQL_FN_TSI_YEAR
 Function Reference 5-197

SQLGetInfo (ODBC 1.0, Level 1)
SQL_TIMEDATE_DIFF_
INTERVALS
(ODBC 2.0)

A 32-bit bitmask enumerating the timestamp intervals
supported by the driver and associated data source for
the TIMESTAMPDIFF scalar function.

The following bitmasks are used to determine which
intervals are supported:

SQL_FN_TSI_FRAC_SECOND

SQL_FN_TSI_SECOND

SQL_FN_TSI_MINUTE

SQL_FN_TSI_HOUR

SQL_FN_TSI_DAY

SQL_FN_TSI_WEEK

SQL_FN_TSI_MONTH

SQL_FN_TSI_QUARTER

SQL_FN_TSI_YEAR
5-198 SOLID Programmer Guide

SQLGetInfo (ODBC 1.0, Level 1)
SQL_TIMEDATE_
FUNCTIONS
(ODBC 1.0)

The information type was intro-
duced in ODBC 1.0; each bit-
mask is labeled with the version
in which it was introduced.

A 32-bit bitmask enumerating the scalar date and time
functions supported by the driver and associated data
source.

The following bitmasks are used to determine which
date and time functions are supported:

SQL_FN_TD_CURDATE (ODBC 1.0)

SQL_FN_TD_CURTIME (ODBC 1.0)

SQL_FN_TD_DAYNAME (ODBC 2.0)

SQL_FN_TD_DAYOFMONTH (ODBC 1.0)

SQL_FN_TD_DAYOFWEEK (ODBC 1.0)

SQL_FN_TD_DAYOFYEAR (ODBC 1.0)

SQL_FN_TD_HOUR (ODBC 1.0)

SQL_FN_TD_MINUTE (ODBC 1.0)

SQL_FN_TD_MONTH (ODBC 1.0)

SQL_FN_TD_MONTHNAME (ODBC 2.0)

SQL_FN_TD_NOW (ODBC 1.0)

SQL_FN_TD_QUARTER (ODBC 1.0)

SQL_FN_TD_SECOND (ODBC 1.0)

SQL_FN_TD_TIMESTAMPADD (ODBC 2.0)

SQL_FN_TD_TIMESTAMPDIFF (ODBC 2.0)

SQL_FN_TD_WEEK (ODBC 1.0)

SQL_FN_TD_YEAR (ODBC 1.0)
 Function Reference 5-199

SQLGetInfo (ODBC 1.0, Level 1)
SQL_TXN_CAPABLE
(ODBC 1.0)

The information type was intro-
duced in ODBC 1.0; each return
value is labeled with the version
in which it was introduced

A 16-bit integer value describing the transaction sup-
port in the driver or data source:

SQL_TC_NONE = Transactions not supported. (ODBC
1.0)

SQL_TC_DML = Transactions can only contain Data
Manipulation Language (DML) statements (SELECT,
INSERT, UPDATE, DELETE). Data Definition Lan-
guage (DDL) statements encountered in a transaction
cause an error. (ODBC 1.0)

SQL_TC_DDL_COMMIT = Transactions can only con-
tain DML statements. DDL statements (CREATE
TABLE , DROP INDEX , an so on) encountered in a
transaction cause the transaction to be committed.
(ODBC 2.0)

SQL_TC_DDL_IGNORE = Transactions can only con-
tain DML statements. DDL statements encountered in a
transaction are ignored. (ODBC 2.0)

SQL_TC_ALL = Transactions can contain DDL state-
ments and DML statements in any order. (ODBC 1.0)

SQL_TXN_ISOLATION_
OPTION
(ODBC 1.0)

A 32-bit bitmask enumerating the transaction isolation
levels available from the driver or data source. The fol-
lowing bitmasks are used in conjunction with the flag to
determine which options are supported:

SQL_TXN_READ_UNCOMMITTED

SQL_TXN_READ_COMMITTED

SQL_TXN_REPEATABLE_READ

SQL_TXN_SERIALIZABLE

SQL_TXN_VERSIONING

For descriptions of these isolation levels, see the
description of SQL_DEFAULT_TXN_ISOLATION.
5-200 SOLID Programmer Guide

SQLGetInfo (ODBC 1.0, Level 1)

n is

-

Code Example
SQLGetInfo returns lists of supported options as a 32-bit bitmask in rgbInfoValue. The bit-
mask for each option is used in conjunction with the flag to determine whether the optio
supported.

For example, an application could use the following code to determine whether the SUB
STRING scalar function is supported by the driver associated with the hdbc:

UDWORD fFuncs;

SQLGetInfo(hdbc,

 SQL_STRING_FUNCTIONS,

 (PTR)&fFuncs,

 sizeof(fFuncs),

 NULL);

if (fFuncs & SQL_FN_STR_SUBSTRING) /* SUBSTRING supported */

...;

else /* SUBSTRING not supported */

...;

SQL_UNION
(ODBC 2.0)

A 32-bit bitmask enumerating the support for the
UNION clause:

SQL_U_UNION = The data source supports the
UNION clause.

SQL_U_UNION_ALL = The data source supports the
ALL keyword in the UNION clause. (SQLGetInfo
returns both SQL_U_UNION and
SQL_U_UNION_ALL in this case.)

SQL_USER_NAME
(ODBC 1.0)

A character string with the name used in a particular
database, which can be different than login name.
 Function Reference 5-201

SQLGetInfo (ODBC 1.0, Level 1)
Related Functions

For information about See

Returning the setting of a connection option SQLGetConnectOption (extension)

Determining if a driver supports a function SQLGetFunctions (extension)

Returning the setting of a statement option SQLGetStmtOption (extension)

Returning information about a data source’s data
types

SQLGetTypeInfo (extension)
5-202 SOLID Programmer Guide

SQLGetStmtOption (ODBC 1.0, Level 1)

L-
ATE
SQLGetStmtOption (ODBC 1.0, Level 1)

SQLGetStmtOption returns the current setting of a statement option.

Syntax
RETCODE SQLGetStmtOption(hstmt, fOption, pvParam)

The SQLGetStmtOption function accepts the following arguments:

Returns
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_ERROR, or
SQL_INVALID_HANDLE.

Diagnostics
When SQLGetStmtOption returns SQL_ERROR or SQL_SUCCESS_WITH_INFO, an
associated SQLSTATE value may be obtained by calling SQLError . The following table
lists the SQLSTATE values commonly returned by SQLGetStmtOption and explains each
one in the context of this function; the notation “(DM)” precedes the descriptions of SQ
STATEs returned by the Driver Manager. The return code associated with each SQLST
value is SQL_ERROR, unless noted otherwise.

Type Argument Use Description

HSTMT hstmt Input Statement handle.

UWORD fOption Input Option to retrieve.

PTR pvParam Output Value associated with fOption. Depending
on the value of fOption, a 32-bit integer
value or a pointer to a null-terminated char-
acter string will be returned in pvParam.

SQLSTATE Error Description

01000 General warning Driver-specific informational message.
(Function returns
SQL_SUCCESS_WITH_INFO.)
 Function Reference 5-203

SQLGetStmtOption (ODBC 1.0, Level 1)
24000 Invalid cursor state The argument fOption was
SQL_ROW_NUMBER or
SQL_GET_BOOKMARK and the cursor
was not open, or the cursor was positioned
before the start of the result set or after the
end of the result set.

IM001 Driver does not support
this function

(DM) The driver corresponding to the hstmt
does not support the function.

S1000 General error An error occurred for which there was no
specific SQLSTATE and for which no
implementation-specific SQLSTATE was
defined. The error message returned by
SQLError in the argument szErrorMsg
describes the error and its cause.

S1001 Memory allocation fail-
ure

The driver was unable to allocate memory
required to support execution or comple-
tion of the function.

S1010 Function sequence error (DM) An asynchronously executing func-
tion was called for the hstmt and was still
executing when this function was called.

(DM) SQLExecute, SQLExecDirect, or
SQLSetPos was called for the hstmt and
returned SQL_NEED_DATA. This function
was called before data was sent for all data-
at-execution parameters or columns.

S1011 Operation invalid at this
time

The fOption argument was
SQL_GET_BOOKMARK and the value of
the SQL_USE_BOOKMARKS statement
option was SQL_UB_OFF.

S1092 Option type out of range (DM) The value specified for the argument
fOption was in the block of numbers
reserved for ODBC connection and state-
ment options, but was not valid for the ver-
sion of ODBC supported by the driver.
5-204 SOLID Programmer Guide

SQLGetStmtOption (ODBC 1.0, Level 1)

ed,
 a

-

Comments
The following table lists statement options for which corresponding values can be return
but not set. The table also lists the version of ODBC in which they were introduced. For
list of options that can be set and retrieved, see SQLSetStmtOption. If fOption specifies an
option that returns a string, pvParam must be a pointer to storage for the string. The maxi-
mum length of the string will be SQL_MAX_OPTION_STRING_LENGTH bytes (exclud
ing the null termination byte).

S1109 Invalid cursor position The fOption argument was
SQL_GET_BOOKMARK or
SQL_ROW_NUMBER and the value in the
rgfRowStatus array in SQLExtendedFetch
for the current row was
SQL_ROW_DELETED or
SQL_ROW_ERROR.

S1C00 Driver not capable The value specified for the argument fOp-
tion was a valid ODBC statement option for
the version of ODBC supported by the
driver, but was not supported by the driver.

The value specified for the argument fOp-
tion was in the block of numbers reserved
for driver-specific connection and state-
ment options, but was not supported by the
driver.

fOption pvParam contents

SQL_GET_BOOKMARK
(ODBC 2.0)

A 32-bit integer value that is the bookmark for the current
row. Before using this option, an application must set the
SQL_USE_BOOKMARKS statement option to
SQL_UB_ON, create a result set, and call SQLExtended-
Fetch.

To return to the rowset starting with the row marked by this
bookmark, an application calls SQLExtendedFetch with the
SQL_FETCH_BOOKMARK fetch type and irow set to this
value.

Bookmarks are also returned as column 0 of the result set.
 Function Reference 5-205

SQLGetStmtOption (ODBC 1.0, Level 1)
Related Functions

SQL_ROW_NUMBER
(ODBC 2.0)

A 32-bit integer value that specifies the number of the current
row in the entire result set. If the number of the current row
cannot be determined or there is no current row, the driver
returns 0.

For information about See

Returning the setting of a connection option SQLGetConnectOption (extension)

Setting a connection option SQLSetConnectOption (extension)

Setting a statement option SQLSetStmtOption (extension)
5-206 SOLID Programmer Guide

SQLGetTypeInfo (ODBC 1.0, Level 1)

e

n

SQLGetTypeInfo (ODBC 1.0, Level 1)
SQLGetTypeInfo returns information about data types supported by the data source. Th
driver returns the information in the form of an SQL result set.

Important applications must use the type names returned in the TYPE_NAME column i
ALTER TABLE and CREATE TABLE statements; they must not use the sample type
names listed in Appendix C, “SQL Grammar”. SQLGetTypeInfo may return more than one
row with the same value in the DATA_TYPE column.

Syntax
RETCODE SQLGetTypeInfo(hstmt, fSqlType)

The SQLGetTypeInfo function accepts the following arguments:

Type Argument Use Description

HSTMT hstmt Input Statement handle for the result set.
 Function Reference 5-207

SQLGetTypeInfo (ODBC 1.0, Level 1)
Returns
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_STILL_EXECUTING,
SQL_ERROR, or SQL_INVALID_HANDLE.

SWORD fSqlType Input The SQL data type. This must be one of the fol-
lowing values:

SQL_BIGINT

SQL_BINARY

SQL_BIT

SQL_CHAR

SQL_DATE

SQL_DECIMAL

SQL_DOUBLE

SQL_FLOAT

SQL_INTEGER

SQL_LONGVARBINARY

SQL_LONGVARCHAR

SQL_NUMERIC

SQL_REAL

SQL_SMALLINT

SQL_TIME

SQL_TIMESTAMP

SQL_TINYINT

SQL_VARBINARY

SQL_VARCHAR

or a driver-specific SQL data type.
SQL_ALL_TYPES specifies that information
about all data types should be returned.

For information about ODBC SQL data types,
see “SQL Data Types” on page D-2. For
information about driver-specific SQL data
types, see the driver’s documentation.
5-208 SOLID Programmer Guide

SQLGetTypeInfo (ODBC 1.0, Level 1)

o-

s
e is
Diagnostics
When SQLGetTypeInfo returns SQL_ERROR or SQL_SUCCESS_WITH_INFO, an ass
ciated SQLSTATE value may be obtained by calling SQLError . The following table lists
the SQLSTATE values commonly returned by SQLGetTypeInfo and explains each one in
the context of this function; the notation “(DM)” precedes the descriptions of SQLSTATE
returned by the Driver Manager. The return code associated with each SQLSTATE valu
SQL_ERROR, unless noted otherwise.

SQLSTATE Error Description

01000 General warning Driver specific informational message.
(Function returns
SQL_SUCCESS_WITH_INFO.)

08S01 Communication link failure The communication link between the
driver and the data source to which the
driver was connected failed before the
function completed processing.

24000 Invalid cursor state (DM) A cursor was open on the hstmt
and SQLFetch or SQLExtendedFetch
had not been called.

A result set was open on the hstmt but
SQLFetch or SQLExtendedFetch had
not been called.

IM001 Driver does not support this
function

(DM) The driver corresponding to the
hstmt does not support the function.

S1000 General error An error occurred for which there was no
specific SQLSTATE and for which no
implementation-specific SQLSTATE was
defined. The error message returned by
SQLError in the argument szErrorMsg
describes the error and its cause.

S1001 Memory allocation failure The driver was unable to allocate mem-
ory required to support execution or
completion of the function.

S1004 SQL data type out of range (DM) The value specified for the argu-
ment fSqlType was in the block of num-
bers reserved for ODBC SQL data type
indicators but was not a valid ODBC
SQL data type indicator.
 Function Reference 5-209

SQLGetTypeInfo (ODBC 1.0, Level 1)

nd

Comments
SQLGetTypeInfo returns the results as a standard result set, ordered by DATA_TYPE a
TYPE_NAME. The following table lists the columns in the result set.

NOTE: SQLGetTypeInfo might not return all data types. For example, a driver might not
return user-defined data types. Applications can use any valid data type, regardless of

S1008 Operation canceled Asynchronous processing was enabled
for the hstmt, then the function was
called and before it completed execu-
tion, SQLCancel was called on the
hstmt. Then the function was called again
on the hstmt.

The function was called and, before it
completed execution, SQLCancel was
called on the hstmt from a different
thread in a multithreaded application.

S1010 Function sequence error (DM) An asynchronously executing
function (not this one) was called for the
hstmt and was still executing when this
function was called.

(DM) SQLExecute, SQLExecDirect, or
SQLSetPos was called for the hstmt and
returned SQL_NEED_DATA. This func-
tion was called before data was sent for
all data-at-execution parameters or col-
umns.

S1C00 Driver not capable The value specified for the argument
fSqlType was in the range of numbers
reserved for driver-specific SQL data
type indicators, but was not supported by
the driver or data source.

The combination of the current settings
of the SQL_CONCURRENCY and
SQL_CURSOR_TYPE statement
options was not supported by the driver
or data source.

S1T00 Timeout expired The timeout period expired before the
data source returned the result set. The
timeout period is set through SQLSetSt-
mtOption , SQL_QUERY_TIMEOUT.
5-210 SOLID Programmer Guide

SQLGetTypeInfo (ODBC 1.0, Level 1)

s
whether it is returned by SQLGetTypeInfo.

The lengths of VARCHAR columns shown in the table are maximums; the actual length
depend on the data source.

Column Name Data Type Comments

TYPE_NAME Varchar(128)
not NULL

Data source–dependent data type name; for
example, “CHAR”, “VARCHAR”,
“MONEY”, “LONG VARBINARY”, or
“CHAR () FOR BIT DATA”. Applica-
tions must use this name in CREATE
TABLE and ALTER TABLE statements.

DATA_TYPE Smallint
not NULL

SQL data type. This can be an ODBC SQL
data type or a driver-specific SQL data
type. For a list of valid ODBC SQL data
types, see “SQL Data Types” on page
D-2. For information about driver-specific
SQL data types, see the driver’s documen-
tation.

PRECISION Integer The maximum precision of the data type
on the data source. NULL is returned for
data types where precision is not applica-
ble. For more information on precision, see
“Precision, Scale, Length, and Dis-
play Size” on page D-14.

LITERAL_PREFIX Varchar(128) Character or characters used to prefix a lit-
eral; for example, a single quote (') for
character data types or 0x for binary data
types; NULL is returned for data types
where a literal prefix is not applicable.

LITERAL_SUFFIX Varchar(128) Character or characters used to terminate a
literal; for example, a single quote (') for
character data types; NULL is returned for
data types where a literal suffix is not
applicable.
 Function Reference 5-211

SQLGetTypeInfo (ODBC 1.0, Level 1)
CREATE_PARAMS Varchar(128) Parameters for a data type definition. For
example, CREATE_PARAMS for DECI-
MAL would be “precision,scale”;
CREATE_PARAMS for VARCHAR would
equal “max length”; NULL is returned if
there are no parameters for the data type
definition, for example INTEGER.

The driver supplies the
CREATE_PARAMS text in the language
of the country where it is used.

NULLABLE Smallint
not NULL

Whether the data type accepts a NULL
value:

SQL_NO_NULLS if the data type does not
accept NULL values.

SQL_NULLABLE if the data type accepts
NULL values.

SQL_NULLABLE_UNKNOWN if it is
not known if the column accepts NULL
values.

CASE_SENSITIVE Smallint
not NULL

Whether a character data type is case sensi-
tive in collations and comparisons:

TRUE if the data type is a character data
type and is case sensitive.

FALSE if the data type is not a character
data type or is not case sensitive.

SEARCHABLE Smallint
not NULL

How the data type is used in a WHERE
clause:

SQL_UNSEARCHABLE if the data type
cannot be used in a WHERE clause.

SQL_LIKE_ONLY if the data type can be
used in a WHERE clause only with the
LIKE predicate.

SQL_ALL_EXCEPT_LIKE if the data
type can be used in a WHERE clause with
all comparison operators except LIKE .

SQL_SEARCHABLE if the data type can
be used in a WHERE clause with any
comparison operator.
5-212 SOLID Programmer Guide

SQLGetTypeInfo (ODBC 1.0, Level 1)
UNSIGNED_ATTRIBUTE Smallint Whether the data type is unsigned:

TRUE if the data type is unsigned.

FALSE if the data type is signed.

NULL is returned if the attribute is not
applicable to the data type or the data type
is not numeric.

MONEY Smallint
not NULL

Whether the data type is a money data
type:

TRUE if it is a money data type.

FALSE if it is not.

AUTO_INCREMENT Smallint Whether the data type is autoincrementing:

TRUE if the data type is autoincrementing.

FALSE if the data type is not autoincre-
menting.

NULL is returned if the attribute is not
applicable to the data type or the data type
is not numeric.

An application can insert values into a col-
umn having this attribute, but cannot
update the values in the column.

LOCAL_TYPE_NAME

Varchar(128) Localized version of the data
source–dependent name of the data type.
NULL is returned if a localized name is
not supported by the data source. This
name is intended for display only, such as
in dialog boxes.

MINIMUM_SCALE

Smallint The minimum scale of the data type on the
data source. If a data type has a fixed scale,
the MINIMUM_SCALE and
MAXIMUM_SCALE columns both con-
tain this value. For example, an
SQL_TIMESTAMP column might have a
fixed scale for fractional seconds. NULL is
returned where scale is not applicable. For
more information, see “Precision, Scale,
Length, and Display Size” in Appendix D,
“Data Types.”
 Function Reference 5-213

SQLGetTypeInfo (ODBC 1.0, Level 1)

n
NOTE: The MINIMUM_SCALE and MAXIMUM_SCALE columns were added in ODBC
2.0. ODBC 1.0 drivers may return different, driver-specific columns with the same colum
numbers.

Attribute information can apply to data types or to specific columns in a result set. SQLGet-
TypeInfo returns information about attributes associated with data types; SQLColAt-
tributes returns information about attributes associated with columns in a result set.

Related Functions

MAXIMUM_SCALE Smallint The maximum scale of the data type on the
data source. NULL is returned where scale
is not applicable. If the maximum scale is
not defined separately on the data source,
but is instead defined to be the same as the
maximum precision, this column contains
the same value as the PRECISION col-
umn. For more information, see “Preci-
sion, Scale, Length, and Display Size” in
Appendix D, “Data Types.”

For information about See

Assigning storage for a column in a result set SQLBindCol

Canceling statement processing SQLCancel

Returning information about a column in a result

set

SQLColAttributes

Fetching a block of data or scrolling through a

result set

SQLExtendedFetch (extension)

Fetching a row of data SQLFetch

Returning information about a driver or data

source

SQLGetInfo (extension)
5-214 SOLID Programmer Guide

SQLNumParams (ODBC 1.0, Level 2)

o-

s
e is
SQLNumParams (ODBC 1.0, Level 2)
SQLNumParams returns the number of parameters in an SQL statement.

Syntax
RETCODE SQLNumParams(hstmt, pcpar)

The SQLNumParams function accepts the following arguments.

Returns
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_STILL_EXECUTING,
SQL_ERROR, or SQL_INVALID_HANDLE.

Diagnostics
When SQLNumParams returns SQL_ERROR or SQL_SUCCESS_WITH_INFO, an ass
ciated SQLSTATE value may be obtained by calling SQLError . The following table lists
the SQLSTATE values commonly returned by SQLNumParams and explains each one in
the context of this function; the notation “(DM)” precedes the descriptions of SQLSTATE
returned by the Driver Manager. The return code associated with each SQLSTATE valu
SQL_ERROR, unless noted otherwise.

Type Argument Use Description

HSTMT hstmt Input Statement handle.

SWORD FAR * pcpar Output Number of parameters in the state-
ment.

SQLSTATE Error Description

01000 General warning Driver-specific informational message.
(Function returns
SQL_SUCCESS_WITH_INFO.)

IM001 Driver does not sup-
port this function

(DM) The driver associated with the hstmt
does not support the function.

S1000 General error An error occurred for which there was no
specific SQLSTATE and for which no imple-
mentation-specific SQLSTATE was defined.
The error message returned by SQLError in
the argument szErrorMsg describes the error
and its cause.
 Function Reference 5-215

SQLNumParams (ODBC 1.0, Level 2)
Comments
SQLNumParams can only be called after SQLPrepare has been called.

If the statement associated with hstmt does not contain parameters, SQLNumParams sets
pcpar to 0.

Related Functions

S1001 Memory allocation
failure

The driver was unable to allocate memory
required to support execution or completion
of the function.

S1008 Operation canceled Asynchronous processing was enabled for
the hstmt. The function was called and before
it completed execution, SQLCancel was
called on the hstmt. Then the function was
called again on the hstmt.

The function was called and, before it com-
pleted execution, SQLCancel was called on
the hstmt from a different thread in a multi-
threaded application.

S1010 Function sequence
error

(DM) The function was called prior to call-
ing SQLPrepare or SQLExecDirect for the
hstmt.

(DM) An asynchronously executing function
(not this one) was called for the hstmt and
was still executing when this function was
called.

(DM) SQLExecute, SQLExecDirect, or
SQLSetPos was called for the hstmt and
returned SQL_NEED_DATA. This function
was called before data was sent for all data-
at-execution parameters or columns.

S1T00 Timeout expired The timeout period expired before the data
source returned the result set. The timeout
period is set through SQLSetStmtOption,
SQL_QUERY_TIMEOUT.

For information about See

Returning information about a parameter in a
statement

SQLDescribeParam (extension)
5-216 SOLID Programmer Guide

SQLNumParams (ODBC 1.0, Level 2)
Assigning storage for a parameter SQLBindParameter
 Function Reference 5-217

SQLNumResultCols (ODBC 1.0, Core)

-
ATE
SQLNumResultCols (ODBC 1.0, Core)
SQLNumResultCols returns the number of columns in a result set.

Syntax
RETCODE SQLNumResultCols(hstmt, pccol)

The SQLNumResultCols function accepts the following arguments.

Returns
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_STILL_EXECUTING,
SQL_ERROR, or SQL_INVALID_HANDLE.

Diagnostics
When SQLNumResultCols returns SQL_ERROR or SQL_SUCCESS_WITH_INFO, an
associated SQLSTATE value may be obtained by calling SQLError . The following table
lists the SQLSTATE values commonly returned by SQLNumResultCols and explains each
one in the context of this function; the notation “(DM)” precedes the descriptions of SQL
STATEs returned by the Driver Manager. The return code associated with each SQLST
value is SQL_ERROR, unless noted otherwise.

Type Argument Use Description

HSTMT hstmt Input Statement handle.

SWORD FAR * pccol Output Number of columns in the result set.

SQLSTATE Error Description

01000 General warning Driver-specific informational message.
(Function returns
SQL_SUCCESS_WITH_INFO.)

IM001 Driver does not support this
function

(DM) The driver associated with the hstmt
does not support the function.

S1000 General error An error occurred for which there was no
specific SQLSTATE and for which no
implementation-specific SQLSTATE was
defined. The error message returned by
SQLError in the argument szErrorMsg
describes the error and its cause.
5-218 SOLID Programmer Guide

SQLNumResultCols (ODBC 1.0, Core)
SQLNumResultCols can return any SQLSTATE that can be returned by SQLPrepare or
SQLExecute when called after SQLPrepare and before SQLExecute depending on when
the data source evaluates the SQL statement associated with the hstmt.

Comments
SQLNumResultCols can be called successfully only when the hstmt is in the prepared, exe-
cuted, or positioned state.

If the statement associated with hstmt does not return columns, SQLNumResultCols sets
pccol to 0.

S1001 Memory allocation failure The driver was unable to allocate memory
required to support execution or comple-
tion of the function.

S1008 Operation canceled Asynchronous processing was enabled for
the hstmt. The function was called and
before it completed execution, SQLCan-
cel was called on the hstmt. Then the func-
tion was called again on the hstmt.

The function was called and, before it
completed execution, SQLCancel was
called on the hstmt from a different thread
in a multithreaded application.

S1010 Function sequence error (DM) The function was called prior to
calling SQLPrepare or SQLExecDirect
for the hstmt.

(DM) An asynchronously executing func-
tion (not this one) was called for the hstmt
and was still executing when this function
was called.

(DM) SQLExecute, SQLExecDirect, or
SQLSetPos was called for the hstmt and
returned SQL_NEED_DATA. This func-
tion was called before data was sent for all
data-at-execution parameters or columns.

S1T00 Timeout expired The timeout period expired before the data
source returned the result set. The timeout
period is set through SQLSetStmtOp-
tion, SQL_QUERY_TIMEOUT.
 Function Reference 5-219

SQLNumResultCols (ODBC 1.0, Core)
Related Functions

For information about See

Assigning storage for a column in a result set SQLBindCol

Canceling statement processing SQLCancel

Returning information about a column in a result
set

SQLColAttributes

Returning information about a column in a result
set

SQLDescribeCol

Fetching a block of data or scrolling through a
result set

SQLExtendedFetch (extension)

Fetching a row of data SQLFetch

Fetching part or all of a column of data SQLGetData (extension)

Setting cursor scrolling options SQLSetScrollOptions (extension)
5-220 SOLID Programmer Guide

SQLParamData (ODBC 1.0, Level 1)

ci-

e is
SQLParamData (ODBC 1.0, Level 1)
SQLParamData is used in conjunction with SQLPutData to supply parameter data at
statement execution time.

Syntax
RETCODE SQLParamData(hstmt, prgbValue)

The SQLParamData function accepts the following arguments.

Returns
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_NEED_DATA,
SQL_STILL_EXECUTING, SQL_ERROR, or SQL_INVALID_HANDLE.

Diagnostics
When SQLParamData returns SQL_ERROR or SQL_SUCCESS_WITH_INFO, an asso
ated SQLSTATE value may be obtained by calling SQLError . The following table lists the
SQLSTATE values commonly returned by SQLParamData and explains each one in the
context of this function; the notation “(DM)” precedes the descriptions of SQLSTATEs
returned by the Driver Manager. The return code associated with each SQLSTATE valu
SQL_ERROR, unless noted otherwise.

Type Argument Use Description

HSTMT hstmt Input Statement handle.

PTR FAR * prgbValue Output Pointer to storage for the value specified for
the rgbValue argument in SQLBindParame-
ter (for parameter data) or the address of the
rgbValue buffer specified in SQLBindCol
(for column data).

SQLSTATE Error Description

01000 General warning Driver-specific informational message.
(Function returns
SQL_SUCCESS_WITH_INFO.)

08S01 Communication link fail-
ure

The communication link between the driver
and the data source to which the driver was
connected failed before the function com-
pleted processing.
 Function Reference 5-221

SQLParamData (ODBC 1.0, Level 1)
22026 String data, length mis-
match

The SQL_NEED_LONG_DATA_LEN infor-
mation type in SQLGetInfo was “Y” and
less data was sent for a long parameter (the
data type was SQL_LONGVARCHAR,
SQL_LONGVARBINARY, or a long, data
source–specific data type) than was specified
with the pcbValue argument in SQLBindPa-
rameter.

The SQL_NEED_LONG_DATA_LEN infor-
mation type in SQLGetInfo was “Y” and
less data was sent for a long column (the data
type was SQL_LONGVARCHAR,
SQL_LONGVARBINARY, or a long, data
source–specific data type) than was specified
in the length buffer corresponding to a col-
umn in a row of data that was added or
updated with SQLSetPos.

IM001 Driver does not support
this function

(DM) The driver that corresponds the hstmt
does not support the function.

S1000 General error An error occurred for which there was no
specific SQLSTATE and for which no imple-
mentation-specific SQLSTATE was defined.
The error message returned by SQLError in
the argument szErrorMsg describes the error
and its cause.

S1001 Memory allocation failure The driver was unable to allocate memory
required to support execution or completion
of the function.
5-222 SOLID Programmer Guide

SQLParamData (ODBC 1.0, Level 1)

can
ent
If SQLParamData is called while sending data for a parameter in an SQL statement, it
return any SQLSTATE that can be returned by the function called to execute the statem
(SQLExecute or SQLExecDirect). If it is called while sending data for a column being
updated or added with SQLSetPos, it can return any SQLSTATE that can be returned by
SQLSetPos.

S1008 Operation canceled Asynchronous processing was enabled for
the hstmt. The function was called and before
it completed execution, SQLCancel was
called on the hstmt. Then the function was
called again on the hstmt.

The function was called and, before it com-
pleted execution, SQLCancel was called on
the hstmt from a different thread in a multi-
threaded application.

SQLExecute, SQLExecDirect, or SQLSet-
Pos was called for the hstmt and returned
SQL_NEED_DATA. SQLCancel was called
before data was sent for all data-at-execution
parameters or columns.

S1010 Function sequence error (DM) The previous function call was not a
call to SQLExecDirect, SQLExecute, or
SQLSetPos where the return code was
SQL_NEED_DATA or a call to SQLPut-
Data.

The previous function call was a call to SQL-
ParamData.

(DM) An asynchronously executing function
(not this one) was called for the hstmt and
was still executing when this function was
called.

S1T00 Timeout expired The timeout period expired before the data
source completed processing the parameter
value. The timeout period is set through
SQLSetStmtOption,
SQL_QUERY_TIMEOUT.
 Function Reference 5-223

SQLParamData (ODBC 1.0, Level 1)

cution
Comments
For an explanation of how data-at-execution parameter data is passed at statement exe
time, see “Passing Parameter Values” in SQLBindParameter. For an explanation of how
data-at-execution column data is updated or added, see “Using SQLSetPos” in SQLSetPos.

Code Example
See SQLPutData.

Related Functions

For information about See

Canceling statement processing SQLCancel

Returning information about a parameter in a
statement

SQLDescribeParam (extension)

Executing an SQL statement SQLExecDirect

Executing a prepared SQL statement SQLExecute

Sending parameter data at execution time SQLPutData (extension)

Assigning storage for a parameter SQLBindParameter
5-224 SOLID Programmer Guide

SQLPrepare (ODBC 1.0, Core)

ed

 the
R,
SQLPrepare (ODBC 1.0, Core)
SQLPrepare prepares an SQL string for execution.

Syntax
RETCODE SQLPrepare(hstmt, szSqlStr, cbSqlStr)

The SQLPrepare function accepts the following arguments.

Returns
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_STILL_EXECUTING,
SQL_ERROR, or SQL_INVALID_HANDLE.

Diagnostics
When SQLPrepare returns SQL_ERROR or SQL_SUCCESS_WITH_INFO, an associat
SQLSTATE value may be obtained by calling SQLError . The following table lists the SQL-
STATE values commonly returned by SQLPrepare and explains each one in the context of
this function; the notation “(DM)” precedes the descriptions of SQLSTATEs returned by
Driver Manager. The return code associated with each SQLSTATE value is SQL_ERRO
unless noted otherwise.

Type Argument Use Description

HSTMT hstmt Input Statement handle.

UCHAR FAR * szSqlStr Input SQL text string.

SDWORD cbSqlStr Input Length of szSqlStr.

SQLSTATE Error Description

01000 General warning Driver-specific informational message. (Func-
tion returns SQL_SUCCESS_WITH_INFO.)

08S01 Communication link
failure

The communication link between the driver
and the data source to which the driver was
connected failed before the function com-
pleted processing.

21S01 Insert value list does not
match column list

The argument szSqlStr contained an INSERT
statement and the number of values to be
inserted did not match the degree of the
derived table.
 Function Reference 5-225

SQLPrepare (ODBC 1.0, Core)
21S02 Degree of derived table
does not match column
list

The argument szSqlStr contained a CREATE
VIEW statement and the number of names
specified is not the same degree as the derived
table defined by the query specification.

22005 Error in assignment The argument szSqlStr contained an SQL
statement that contained a literal or parameter
and the value was incompatible with the data
type of the associated table column.

24000 Invalid cursor state (DM) A cursor was open on the hstmt and
SQLFetch or SQLExtendedFetch had been
called.

A cursor was open on the hstmt but SQLFetch
or SQLExtendedFetch had not been called.

34000 Invalid cursor name The argument szSqlStr contained a positioned
DELETE or a positioned UPDATE and the
cursor referenced by the statement being pre-
pared was not open.

37000 Syntax error or access
violation

The argument szSqlStr contained an SQL
statement that was not preparable or contained
a syntax error.

42000 Syntax error or access
violation

The argument szSqlStr contained a statement
for which the user did not have the required
privileges.

IM001 Driver does not support
this function

(DM) The driver associated with the hstmt
does not support the function.

S0001 Base table or view
already exists

The argument szSqlStr contained a CREATE
TABLE or CREATE VIEW statement and
the table name or view name specified already
exists.

S0002 Base table not found The argument szSqlStr contained a DROP
TABLE or a DROP VIEW statement and the
specified table name or view name did not
exist.

The argument szSqlStr contained an ALTER
TABLE statement and the specified table
name did not exist.
5-226 SOLID Programmer Guide

SQLPrepare (ODBC 1.0, Core)
The argument szSqlStr contained a CREATE
VIEW statement and a table name or view
name defined by the query specification did
not exist.

The argument szSqlStr contained a CREATE
INDEX statement and the specified table
name did not exist.

The argument szSqlStr contained a GRANT or
REVOKE statement and the specified table
name or view name did not exist.

The argument szSqlStr contained a SELECT
statement and a specified table name or view
name did not exist.

The argument szSqlStr contained a DELETE ,
INSERT, or UPDATE statement and the spec-
ified table name did not exist.

The argument szSqlStr contained a CREATE
TABLE statement and a table specified in a
constraint (referencing a table other than the
one being created) did not exist.

S0011 Index already exists The argument szSqlStr contained a CREATE
INDEX statement and the specified index
name already existed.

S0012 Index not found The argument szSqlStr contained a DROP
INDEX statement and the specified index
name did not exist.

S0021 Column already exists The argument szSqlStr contained an ALTER
TABLE statement and the column specified in
the ADD clause is not unique or identifies an
existing column in the base table.

S0022 Column not found The argument szSqlStr contained a CREATE
INDEX statement and one or more of the col-
umn names specified in the column list did not
exist.

The argument szSqlStr contained a GRANT or
REVOKE statement and a specified column
name did not exist.
 Function Reference 5-227

SQLPrepare (ODBC 1.0, Core)
The argument szSqlStr contained a SELECT,
DELETE , INSERT, or UPDATE statement
and a specified column name did not exist.

The argument szSqlStr contained a CREATE
TABLE statement and a column specified in a
constraint (referencing a table other than the
one being created) did not exist.

S1000 General error An error occurred for which there was no spe-
cific SQLSTATE and for which no implemen-
tation-specific SQLSTATE was defined. The
error message returned by SQLError in the
argument szErrorMsg describes the error and
its cause.

S1001 Memory allocation fail-
ure

The driver was unable to allocate memory
required to support execution or completion of
the function.

S1008 Operation canceled Asynchronous processing was enabled for the
hstmt. The function was called and before it
completed execution, SQLCancel was called
on the hstmt. Then the function was called
again on the hstmt.

The function was called and, before it com-
pleted execution, SQLCancel was called on
the hstmt from a different thread in a multi-
threaded application.

S1009 Invalid argument value (DM) The argument szSqlStr was a null
pointer.

S1010 Function sequence error (DM) An asynchronously executing function
(not this one) was called for the hstmt and was
still executing when this function was called.

(DM) SQLExecute, SQLExecDirect, or
SQLSetPos was called for the hstmt and
returned SQL_NEED_DATA. This function
was called before data was sent for all data-at-
execution parameters or columns.

S1090 Invalid string or buffer
length

(DM) The argument cbSqlStr was less than or
equal to 0, but not equal to SQL_NTS.
5-228 SOLID Programmer Guide

SQLPrepare (ODBC 1.0, Core)

ra-
. To
tring

 sub-
auses

end a

s
rs,
 han-

tion

rabil-
efore
Comments
The application calls SQLPrepare to send an SQL statement to the data source for prepa
tion. The application can include one or more parameter markers in the SQL statement
include a parameter marker, the application embeds a question mark (?) into the SQL s
at the appropriate position.

Note If an application uses SQLPrepare to prepare and SQLExecute to submit a COM-
MIT or ROLLBACK statement, it will not be interoperable between DBMS products. To
commit or roll back a transaction, call SQLTransact.

The driver modifies the statement to use the form of SQL used by the data source, then
mits it to the data source for preparation. In particular, the driver modifies the escape cl
used to define ODBC-specific SQL. (For a description of SQL statement grammar, see
Appendix C, “SQL Grammar.”) For the driver, an hstmt is similar to a statement identifier in
embedded SQL code. If the data source supports statement identifiers, the driver can s
statement identifier and parameter values to the data source.

Once a statement is prepared, the application uses hstmt to refer to the statement in later
function calls. The prepared statement associated with the hstmt may be reexecuted by call-
ing SQLExecute until the application frees the hstmt with a call to SQLFreeStmt with the
SQL_DROP option or until the hstmt is used in a call to SQLPrepare, SQLExecDirect, or
one of the catalog functions (SQLColumns, SQLTables, and so on). Once the application
prepares a statement, it can request information about the format of the result set.

Some drivers cannot return syntax errors or access violations when the application call
SQLPrepare. A driver may handle syntax errors and access violations, only syntax erro
or neither syntax errors nor access violations. Therefore, an application must be able to
dle these conditions when calling subsequent related functions such as SQLNumResult-
Cols, SQLDescribeCol, SQLColAttributes , and SQLExecute.

Depending on the capabilities of the driver and data source and on whether the applica
has called SQLBindParameter, parameter information (such as data types) might be
checked when the statement is prepared or when it is executed. For maximum interope
ity, an application should unbind all parameters that applied to an old SQL statement b
preparing a new SQL statement on the same hstmt. This prevents errors that are due to old
parameter information being applied to the new statement.

S1T00 Timeout expired The timeout period expired before the data
source returned the result set. The timeout
period is set through SQLSetStmtOption,
SQL_QUERY_TIMEOUT.
 Function Reference 5-229

SQLPrepare (ODBC 1.0, Core)

 the

Important Committing or rolling back a transaction, either by calling SQLTransact or by
using the SQL_AUTOCOMMIT connection option, can cause the data source to delete
access plans for all hstmts on an hdbc. For more information, see the
SQL_CURSOR_COMMIT_BEHAVIOR and SQL_CURSOR_ROLLBACK_BEHAVIOR
information types in SQLGetInfo.

Code Example
See SQLBindParameter, SQLParamOptions, SQLPutData, and SQLSetPos.

Related Functions

For information about See

Allocating a statement handle SQLAllocStmt

Assigning storage for a column in a result set SQLBindCol

Canceling statement processing SQLCancel

Executing an SQL statement SQLExecDirect

Executing a prepared SQL statement SQLExecute

Returning the number of rows affected by a state-
ment

SQLRowCount

Setting a cursor name SQLSetCursorName

Assigning storage for a parameter SQLBindParameter

Executing a commit or rollback operation SQLTransact
5-230 SOLID Programmer Guide

SQLPrimaryKeys (ODBC 1.0, Level 2)

The
ri-

o-
SQLPrimaryKeys (ODBC 1.0, Level 2)
SQLPrimaryKeys returns the column names that comprise the primary key for a table.
driver returns the information as a result set. This function does not support returning p
mary keys from multiple tables in a single call.

Syntax
RETCODE SQLPrimaryKeys(hstmt, szTableQualifier, cbTableQualifier, szTableOwner,
cbTableOwner, szTableName, cbTableName)

The SQLPrimaryKeys function accepts the following arguments:

Returns
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_STILL_EXECUTING,
SQL_ERROR, or SQL_INVALID_HANDLE.

Diagnostics
When SQLPrimaryKeys returns SQL_ERROR or SQL_SUCCESS_WITH_INFO, an ass
ciated SQLSTATE value may be obtained by calling SQLError . The following table lists

Type Argument Use Description

HSTMT hstmt Input Statement handle.

UCHAR FAR * szTableQualifier Input Qualifier name. If a driver supports
qualifiers for some tables but not for
others, such as when the driver
retrieves data from different DBMSs,
an empty string ("") denotes those
tables that do not have qualifiers.

SWORD cbTableQualifier Input Length of szTableQualifier.

UCHAR FAR * szTableOwner Input Table owner. If a driver supports own-
ers for some tables but not for others,
such as when the driver retrieves data
from different DBMSs, an empty
string ("") denotes those tables that do
not have owners.

SWORD cbTableOwner Input Length of szTableOwner.

UCHAR FAR * szTableName Input Table name.

SWORD cbTableName Input Length of szTableName.
 Function Reference 5-231

SQLPrimaryKeys (ODBC 1.0, Level 2)

s
e is
the SQLSTATE values commonly returned by SQLPrimaryKeys and explains each one in
the context of this function; the notation “(DM)” precedes the descriptions of SQLSTATE
returned by the Driver Manager. The return code associated with each SQLSTATE valu
SQL_ERROR, unless noted otherwise.

SQLSTATE Error Description

01000 General warning Driver-specific informational message.
(Function returns
SQL_SUCCESS_WITH_INFO.)

08S01 Communication link
failure

The communication link between the driver
and the data source to which the driver was
connected failed before the function com-
pleted processing.

24000 Invalid cursor state (DM) A cursor was open on the hstmt and
SQLFetch or SQLExtendedFetch had been
called.

A cursor was open on the hstmt but
SQLFetch or SQLExtendedFetch had not
been called.

IM001 Driver does not support
this function

(DM) The driver associated with the hstmt
does not support the function.

S1000 General error An error occurred for which there was no
specific SQLSTATE and for which no imple-
mentation-specific SQLSTATE was defined.
The error message returned by SQLError in
the argument szErrorMsg describes the error
and its cause.

S1001 Memory allocation fail-
ure

The driver was unable to allocate memory
required to support execution or completion
of the function.

S1008 Operation canceled Asynchronous processing was enabled for
the hstmt. The function was called and before
it completed execution, SQLCancel was
called on the hstmt. Then the function was
called again on the hstmt.

The function was called and, before it com-
pleted execution, SQLCancel was called on
the hstmt from a different thread in a multi-
threaded application.
5-232 SOLID Programmer Guide

SQLPrimaryKeys (ODBC 1.0, Level 2)

s
,
Comments
SQLPrimaryKeys returns the results as a standard result set, ordered by
TABLE_QUALIFIER, TABLE_OWNER, TABLE_NAME, and KEY_SEQ. The following
table lists the columns in the result set.

Note SQLPrimaryKeys might not return all primary keys. For example, a Paradox driver
might only return primary keys for files (tables) in the current directory.

The lengths of VARCHAR columns shown in the table are maximums; the actual length
depend on the data source. To determine the actual lengths of the TABLE_QUALIFIER
TABLE_OWNER, TABLE_NAME, and COLUMN_NAME columns, call SQLGetInfo

S1010 Function sequence error (DM) An asynchronously executing function
(not this one) was called for the hstmt and
was still executing when this function was
called.

(DM) SQLExecute, SQLExecDirect, or
SQLSetPos was called for the hstmt and
returned SQL_NEED_DATA. This function
was called before data was sent for all data-
at-execution parameters or columns.

S1090 Invalid string or buffer
length

(DM) The value of one of the name length
arguments was less than 0, but not equal to
SQL_NTS.

The value of one of the name length argu-
ments exceeded the maximum length value
for the corresponding qualifier or name.

S1C00 Driver not capable A table qualifier was specified and the driver
or data source does not support qualifiers.

A table owner was specified and the driver or
data source does not support owners.

The combination of the current settings of the
SQL_CONCURRENCY and
SQL_CURSOR_TYPE statement options
was not supported by the driver or data
source.

S1T00 Timeout expired The timeout period expired before the data
source returned the requested result set. The
timeout period is set through SQLSetStm-
tOption , SQL_QUERY_TIMEOUT.
 Function Reference 5-233

SQLPrimaryKeys (ODBC 1.0, Level 2)

with the SQL_MAX_QUALIFIER_NAME_LEN, SQL_MAX_OWNER_NAME_LEN,
SQL_MAX_TABLE_NAME_LEN, and SQL_MAX_COLUMN_NAME_LEN options.

NOTE: The PK_NAME column was added in ODBC 2.0. ODBC 1.0 drivers may return a
different, driver-specific column with the same column number.

Column Name Data Type Comments

TABLE_QUALIFIER Varchar(128) Primary key table qualifier identifier; NULL
if not applicable to the data source. If a driver
supports qualifiers for some tables but not for
others, such as when the driver retrieves data
from different DBMSs, it returns an empty
string ("") for those tables that do not have
qualifiers.

TABLE_OWNER Varchar(128) Primary key table owner identifier; NULL if
not applicable to the data source. If a driver
supports owners for some tables but not for
others, such as when the driver retrieves data
from different DBMSs, it returns an empty
string ("") for those tables that do not have
owners.

TABLE_NAME Varchar(128)
not NULL

Primary key table identifier.

COLUMN_NAME Varchar(128)
not NULL

Primary key column identifier.

KEY_SEQ Smallint
not NULL

Column sequence number in key (starting
with 1).

PK_NAME Varchar(128) Primary key identifier. NULL if not applica-
ble to the data source.
5-234 SOLID Programmer Guide

SQLPrimaryKeys (ODBC 1.0, Level 2)
Related Functions

For information about See

Assigning storage for a column in a result set SQLBindCol

Canceling statement processing SQLCancel

Fetching a block of data or scrolling through a
result set

SQLExtendedFetch (extension)

Fetching a row of data SQLFetch

Returning table statistics and indexes SQLStatistics (extension)
 Function Reference 5-235

SQLPutData (ODBC 1.0, Level 1)

at
alues

ple,
SQLPutData (ODBC 1.0, Level 1)
SQLPutData allows an application to send data for a parameter or column to the driver
statement execution time. This function can be used to send character or binary data v
in parts to a column with a character, binary, or data source–specific data type (for exam
parameters of the SQL_LONGVARBINARY or SQL_LONGVARCHAR types).

Syntax
RETCODE SQLPutData(hstmt, rgbValue, cbValue)

The SQLPutData function accepts the following arguments.

Type Argument Use Description

HSTMT hstmt Input Statement handle.

PTR rgbValue Input Pointer to storage for the actual data for the
parameter or column. The data must use the
C data type specified in the fCType argu-
ment of SQLBindParameter (for parame-
ter data) or SQLBindCol (for column data).

SDWORD cbValue Input Length of rgbValue. Specifies the amount of
data sent in a call to SQLPutData. The
amount of data can vary with each call for a
given parameter or column. cbValue is
ignored unless it is SQL_NTS,
SQL_NULL_DATA, or
SQL_DEFAULT_PARAM; the C data type
specified in SQLBindParameter or SQL-
BindCol is SQL_C_CHAR or
SQL_C_BINARY; or the C data type is
SQL_C_DEFAULT and the default C data
type for the specified SQL data type is
SQL_C_CHAR or SQL_C_BINARY. For
all other types of C data, if cbValue is not
SQL_NULL_DATA or
SQL_DEFAULT_PARAM, the driver
assumes that the size of rgbValue is the size
of the C data type specified with fCType and
sends the entire data value. For more infor-
mation, see “Converting Data from C to
SQL Data Types” on page D-33.
5-236 SOLID Programmer Guide

SQLPutData (ODBC 1.0, Level 1)

ted

 the
R,
Returns
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_STILL_EXECUTING,
SQL_ERROR, or SQL_INVALID_HANDLE.

Diagnostics
When SQLPutData returns SQL_ERROR or SQL_SUCCESS_WITH_INFO, an associa
SQLSTATE value may be obtained by calling SQLError . The following table lists the SQL-
STATE values commonly returned by SQLPutData and explains each one in the context of
this function; the notation “(DM)” precedes the descriptions of SQLSTATEs returned by
Driver Manager. The return code associated with each SQLSTATE value is SQL_ERRO
unless noted otherwise.

SQLSTATE Error Description

01000 General warning Driver-specific informational message.
(Function returns
SQL_SUCCESS_WITH_INFO.)

01004 Data truncated The data sent for a character or binary
parameter or column in one or more
calls to SQLPutData exceeded the
maximum length of the associated char-
acter or binary column.

The fractional part of the data sent for a
numeric or bit parameter or column was
truncated.

Timestamp data sent for a date or time
parameter or column was truncated.

08S01 Communication link failure The communication link between the
driver and the data source to which the
driver was connected failed before the
function completed processing.
 Function Reference 5-237

SQLPutData (ODBC 1.0, Level 1)
22001 String data right truncation The SQL_NEED_LONG_DATA_LEN
information type in SQLGetInfo was
“Y” and more data was sent for a long
parameter (the data type was
SQL_LONGVARCHAR,
SQL_LONGVARBINARY, or a long,
data source–specific data type) than
was specified with the pcbValue argu-
ment in SQLBindParameter.

The SQL_NEED_LONG_DATA_LEN
information type in SQLGetInfo was
“Y” and more data was sent for a long
column (the data type was
SQL_LONGVARCHAR,
SQL_LONGVARBINARY, or a long,
data source–specific data type) than
was specified in the length buffer corre-
sponding to a column in a row of data
that was added or updated with
SQLSetPos.

22003 Numeric value out of range SQLPutData was called more than
once for a parameter or column and it
was not being used to send character C
data to a column with a character,
binary, or data source–specific data type
or to send binary C data to a column
with a character, binary, or data
source–specific data type.

The data sent for a numeric parameter
or column caused the whole (as
opposed to fractional) part of the num-
ber to be truncated when assigned to
the associated table column.

22005 Error in assignment The data sent for a parameter or col-
umn was incompatible with the data
type of the associated table column.

22008 Datetime field overflow The data sent for a date, time, or times-
tamp parameter or column was, respec-
tively, an invalid date, time, or
timestamp.
5-238 SOLID Programmer Guide

SQLPutData (ODBC 1.0, Level 1)
IM001 Driver does not support this
function

(DM) The driver associated with the
hstmt does not support the function.

S1000 General error An error occurred for which there was
no specific SQLSTATE and for which
no implementation-specific SQL-
STATE was defined. The error message
returned by SQLError in the argument
szErrorMsg describes the error and its
cause.

S1001 Memory allocation failure The driver was unable to allocate mem-
ory required to support execution or
completion of the function.

S1008 Operation canceled Asynchronous processing was enabled
for the hstmt. The function was called
and before it completed execution,
SQLCancel was called on the hstmt.
Then the function was called again on
the hstmt.

The function was called and, before it
completed execution, SQLCancel was
called on the hstmt from a different
thread in a multithreaded application.

SQLExecute, SQLExecDirect, or
SQLSetPos was called for the hstmt
and returned SQL_NEED_DATA.
SQLCancel was called before data was
sent for all data-at-execution parame-
ters or columns.

S1009 Invalid argument value (DM) The argument rgbValue was a
null pointer and the argument cbValue
was not 0, SQL_DEFAULT_PARAM,
or SQL_NULL_DATA.

S1010 Function sequence error (DM) The previous function call was
not a call to SQLPutData or SQL-
ParamData.

The previous function call was a call to
SQLExecDirect, SQLExecute, or
SQLSetPos where the return code was
SQL_NEED_DATA.
 Function Reference 5-239

SQLPutData (ODBC 1.0, Level 1)

cution

-
hen
 type.

the
col-

rame-
y

lls
Comments
For an explanation of how data-at-execution parameter data is passed at statement exe
time, see “Passing Parameter Values” in SQLBindParameter. For an explanation of how
data-at-execution column data is updated or added, see “Using SQLSetPos” in SQLSetPos.

NOTE: An application can use SQLPutData to send data in parts only when sending char
acter C data to a column with a character, binary, or data source–specific data type or w
sending binary C data to a column with a character, binary, or data source–specific data
If SQLPutData is called more than once under any other conditions, it returns
SQL_ERROR and SQLSTATE 22003 (Numeric value out of range).

Code Example
In the following example, an application prepares an SQL statement to insert data into
EMPLOYEE table. The statement contains parameters for the NAME, ID, and PHOTO
umns. For each parameter, the application calls SQLBindParameter to specify the C and
SQL data types of the parameter. It also specifies that the data for the first and third pa
ters will be passed at execution time, and passes the values 1 and 3 for later retrieval b
SQLParamData. These values will identify which parameter is being processed.

The application calls GetNextID to get the next available employee ID number. It then ca
SQLExecute to execute the statement. SQLExecute returns SQL_NEED_DATA when it
needs data for the first and third parameters. The application calls SQLParamData to
retrieve the value it stored with SQLBindParameter; it uses this value to determine which
parameter to send data for. For each parameter, the application calls InitUserData to initial-
ize the data routine. It repeatedly calls GetUserData and SQLPutData to get and send the
parameter data. Finally, it calls SQLParamData to indicate it has sent all the data for the

(DM) An asynchronously executing
function (not this one) was called for
the hstmt and was still executing when
this function was called.

S1090 Invalid string or buffer length The argument rgbValue was not a null
pointer and the argument cbValue was
less than 0, but not equal to SQL_NTS
or SQL_NULL_DATA.

S1T00 Timeout expired The timeout period expired before the
data source completed processing the
parameter value. The timeout period is
set through SQLSetStmtOption,
SQL_QUERY_TIMEOUT.
5-240 SOLID Programmer Guide

SQLPutData (ODBC 1.0, Level 1)

 both

yee
parameter and to retrieve the value for the next parameter. After data has been sent for
parameters, SQLParamData returns SQL_SUCCESS.

For the first parameter, InitUserData does not do anything and GetUserData calls a rou-
tine to prompt the user for the employee name. For the third parameter, InitUserData calls a
routine to prompt the user for the name of a file containing a bitmap photo of the emplo
and opens the file. GetUserData retrieves the next MAX_DATA_LEN bytes of photo data
from the file. After it has retrieved all the photo data, it closes the photo file.

Note that some application routines are omitted for clarity.

#define NAME_LEN 30
#define MAX_DATA_LEN 1024
SDWORD cbNameParam, cbID = 0; cbPhotoParam, cbData;
SWORD sID;
PTR pToken, InitValue;
UCHAR Data[MAX_DATA_LEN];

retcode = SQLPrepare(hstmt,
 "INSERT INTO EMPLOYEE (NAME, ID, PHOTO) VALUES (?, ?, ?)",
 SQL_NTS);
if (retcode == SQL_SUCCESS) {

/* Bind the parameters. For parameters 1 and 3, pass the */
/* parameter number in rgbValue instead of a buffer address. */

SQLBindParameter(hstmt, 1, SQL_PARAM_INPUT, SQL_C_CHAR, SQL_CHAR,

 NAME_LEN, 0, 1, 0, &cbNameParam);
SQLBindParameter(hstmt, 2, SQL_PARAM_INPUT, SQL_C_SSHORT,

 SQL_SMALLINT, 0, 0, &sID, 0, &cbID);
SQLBindParameter(hstmt, 3, SQL_PARAM_INPUT,

 SQL_C_BINARY, SQL_LONGVARBINARY,

 0, 0, 3, 0, &cbPhotoParam);

/* Set values so data for parameters 1 and 3 will be passed */
/* at execution. Note that the length parameter in the macro */
/* SQL_LEN_DATA_AT_EXEC is 0. This assumes that the driver */
/* returns "N" for the SQL_NEED_LONG_DATA_LEN information */
/* type in SQLGetInfo. */

cbNameParam = cbPhotoParam = SQL_LEN_DATA_AT_EXEC(0);
 Function Reference 5-241

SQLPutData (ODBC 1.0, Level 1)
sID = GetNextID(); /* Get next available employee ID number. */

retcode = SQLExecute(hstmt);

/* For data-at-execution parameters, call SQLParamData to get the */
/* parameter number set by SQLBindParameter. Call InitUserData. */
/* Call GetUserData and SQLPutData repeatedly to get and put all */
/* data for the parameter. Call SQLParamData to finish processing */
/* this parameter and start processing the next parameter. */

while (retcode == SQL_NEED_DATA) {
retcode = SQLParamData(hstmt, &pToken);
if (retcode == SQL_NEED_DATA) {

InitUserData((SWORD)pToken, InitValue);
while (GetUserData(InitValue, (SWORD)pToken, Data, &cbData))
SQLPutData(hstmt, Data, cbData);

}
}

}

VOID InitUserData(sParam, InitValue)
SWORD sParam;
PTR InitValue;
{
UCHAR szPhotoFile[MAX_FILE_NAME_LEN];
switch sParam {

case 3:

/* Prompt user for bitmap file containing employee photo. */
/* OpenPhotoFile opens the file and returns the file handle. */

PromptPhotoFileName(szPhotoFile);
OpenPhotoFile(szPhotoFile, (FILE *)InitValue);
break;

}
}

BOOL GetUserData(InitValue, sParam, Data, cbData)
PTR InitValue;
SWORD sParam;
UCHAR *Data;
SDWORD *cbData;

{

5-242 SOLID Programmer Guide

SQLPutData (ODBC 1.0, Level 1)
switch sParam {
case 1:

/* Prompt user for employee name. */

PromptEmployeeName(Data);
*cbData = SQL_NTS;
return (TRUE);

case 3:
/* GetNextPhotoData returns the next piece of photo data and */
/* the number of bytes of data returned (up to MAX_DATA_LEN). */

Done = GetNextPhotoData((FILE *)InitValue, Data,

 MAX_DATA_LEN, &cbData);
if (Done) {

ClosePhotoFile((FILE *)InitValue);
return (TRUE);

}
return (FALSE);

}
return (FALSE);
}

Related Functions

For information about See

Canceling statement processing SQLCancel

Executing an SQL statement SQLExecDirect

Executing a prepared SQL statement SQLExecute

Returning the next parameter to send data forSQLParamData (extension)

Assigning storage for a parameter SQLBindParameter
 Function Reference 5-243

SQLRowCount (ODBC 1.0, Core)
SQLRowCount (ODBC 1.0, Core)
SQLRowCount returns the number of rows affected by an UPDATE, INSERT, or
DELETE statement or by a SQL_UPDATE, SQL_ADD, or SQL_DELETE operation in
SQLSetPos.

Syntax
RETCODE SQLRowCount(hstmt, pcrow)

The SQLRowCount function accepts the following arguments.

Returns
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_ERROR, or
SQL_INVALID_HANDLE.

Type Argument Use Description

HSTMT hstmt Input Statement handle.

SDWORD
FAR *

pcrow Output For UPDATE, INSERT, and DELETE
statements and for the SQL_UPDATE,
SQL_ADD, and SQL_DELETE opera-
tions in SQLSetPos, pcrow is the num-
ber of rows affected by the request or
–1 if the number of affected rows is not
available.

For other statements and functions, the
driver may define the value of pcrow.
For example, some data sources may be
able to return the number of rows
returned by a SELECT statement or a
catalog function before fetching the
rows.

1RWH Many data sources cannot return
the number of rows in a result set
before fetching them; for maximum
interoperability, applications should not
rely on this behavior.
5-244 SOLID Programmer Guide

SQLRowCount (ODBC 1.0, Core)

i-

”
ode
Diagnostics
When SQLRowCount returns SQL_ERROR or SQL_SUCCESS_WITH_INFO, an assoc
ated SQLSTATE value may be obtained by calling SQLError . The following table lists the
SQLSTATE values commonly returned by

SQLRowCount and explains each one in the context of this function; the notation “(DM)
precedes the descriptions of SQLSTATEs returned by the Driver Manager. The return c
associated with each SQLSTATE value is SQL_ERROR, unless noted otherwise.

SQLSTATE Error Description

01000 General warning Driver-specific informational message.
(Function returns
SQL_SUCCESS_WITH_INFO.)

IM001 Driver does not support this
function

(DM) The driver associated with the
hstmt does not support the function.

S1000 General error An error occurred for which there was no
specific SQLSTATE and for which no
implementation-specific SQLSTATE was
defined. The error message returned by
SQLError in the argument szErrorMsg
describes the error and its cause.

S1001 Memory allocation failure The driver was unable to allocate mem-
ory required to support execution or
completion of the function.

S1010 Function sequence error (DM) The function was called prior to
calling SQLExecute, SQLExecDirect,
SQLSetPos for the hstmt.

(DM) An asynchronously executing
function was called for the hstmt and was
still executing when this function was
called.

(DM) SQLExecute, SQLExecDirect, or
SQLSetPos was called for the hstmt and
returned SQL_NEED_DATA. This func-
tion was called before data was sent for
all data-at-execution parameters or col-
umns.
 Function Reference 5-245

SQLRowCount (ODBC 1.0, Core)
Comments
If the last executed statement associated with hstmt was not an UPDATE, INSERT,
or DELETE statement, or if the fOption argument in the previous call to SQLSetPos
was not SQL_UPDATE, SQL_ADD, or SQL_DELETE, the value of pcrow is driver-
defined.

Related Functions

For information about See

Executing an SQL statement SQLExecDirect

Executing a prepared SQL statement SQLExecute
5-246 SOLID Programmer Guide

SQLSetConnectOption (ODBC 1.0, Level 1)

n

f
L-

sult
SQLSetConnectOption (ODBC 1.0, Level 1)
SQLSetConnectOption sets options that govern aspects of connections.

Syntax
RETCODE SQLSetConnectOption(hdbc, fOption, vParam)

The SQLSetConnectOption function accepts the following arguments:

Returns
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_ERROR, or
SQL_INVALID_HANDLE.

Diagnostics
When SQLSetConnectOption returns SQL_ERROR or SQL_SUCCESS_WITH_INFO, a
associated SQLSTATE value may be obtained by calling SQLError . The following table
lists the SQLSTATE values commonly returned by SQLSetConnectOption and explains
each one in the context of this function; the notation “(DM)” precedes the descriptions o
SQLSTATEs returned by the Driver Manager. The return code associated with each SQ
STATE value is SQL_ERROR, unless noted otherwise.

The driver can return SQL_SUCCESS_WITH_INFO to provide information about the re
of setting an option. For example, setting SQL_ACCESS_MODE to read-only during a
transaction might cause the transaction to be committed. The driver could use
SQL_SUCCESS_WITH_INFO — and information returned with SQLError — to inform the
application of the commit action.

Type Argument Use Description

HDBC hdbc Input Connection handle.

UWORD fOption Input Option to set, listed in “Comments.”

UDWORD vParam Input Value associated with fOption. Depending
on the value of fOption, vParam will be a
32-bit integer value or point to a null-ter-
minated character string.

SQLSTATE Error Description

01000 General warning Driver-specific informational message.
(Function returns
SQL_SUCCESS_WITH_INFO.)
 Function Reference 5-247

SQLSetConnectOption (ODBC 1.0, Level 1)
01S02 Option value changed The driver did not support the specified
value of the vParam argument and substi-
tuted a similar value. (Function returns
SQL_SUCCESS_WITH_INFO.)

08002 Connection in use The argument fOption was
SQL_ODBC_CURSORS and the driver
was already connected to the data source.

08003 Connection not open An fOption value was specified that
required an open connection, but the hdbc
was not in a connected state.

08S01 Communication link fail-
ure

The communication link between the
driver and the data source to which the
driver was connected failed before the
function completed processing.

IM001 Driver does not support
this function

(DM) The driver associated with the hdbc
does not support the function.

IM009 Unable to load transla-
tion DLL

The driver was unable to load the transla-
tion DLL that was specified for the con-
nection. This error can only be returned
when fOption is
SQL_TRANSLATE_DLL.

S1000 General error An error occurred for which there was no
specific SQLSTATE and for which no
implementation-specific SQLSTATE was
defined. The error message returned by
SQLError in the argument szErrorMsg
describes the error and its cause.

S1001 Memory allocation fail-
ure

The driver was unable to allocate memory
required to support execution or comple-
tion of the function.
5-248 SOLID Programmer Guide

SQLSetConnectOption (ODBC 1.0, Level 1)
S1009 Invalid argument value Given the specified fOption value, an
invalid value was specified for the argu-
ment vParam. (The Driver Manager
returns this SQLSTATE only for connec-
tion and statement options that accept a
discrete set of values, such as
SQL_ACCESS_MODE or
SQL_ASYNC_ENABLE. For all other
connection and statement options, the
driver must verify the value of the argu-
ment vParam.)

S1010 Function sequence error (DM) An asynchronously executing func-
tion was called for an hstmt associated
with the hdbc and was still executing
when SQLSetConnectOption was called.

(DM) SQLExecute, SQLExecDirect, or
SQLSetPos was called for an hstmt asso-
ciated with the hdbc and returned
SQL_NEED_DATA. This function was
called before data was sent for all data-at-
execution parameters or columns.(

S1011 Operation invalid at this
time

The argument fOption was
SQL_TXN_ISOLATION and a transac-
tion was open.

S1092 Option type out of range (DM) The value specified for the argu-
ment fOption was in the block of numbers
reserved for ODBC connection and state-
ment options, but was not valid for the
version of ODBC supported by the driver.

S1C00 Driver not capable The value specified for the argument fOp-
tion was a valid ODBC connection or
statement option for the version of ODBC
supported by the driver, but was not sup-
ported by the driver.

The value specified for the argument fOp-
tion was in the block of numbers reserved
for driver-specific connection and state-
ment options, but was not supported by the
driver.
 Function Reference 5-249

SQLSetConnectOption (ODBC 1.0, Level 1)

re

 val-
se.

cts

ta

m-

 calls

i-
n’s
When fOption is a statement option, SQLSetConnectOption can return any SQLSTATEs
returned by SQLSetStmtOption.

Comments
The currently defined options and the version of ODBC in which they were introduced a
shown below; it is expected that more will be defined to take advantage of different data
sources. Options from 0 to 999 are reserved by ODBC; driver developers must reserve
ues greater than or equal to SQL_CONNECT_OPT_DRVR_START for driver-specific u

An application can call SQLSetConnectOption and include a statement option. The driver
sets the statement option for any hstmts associated with the specified hdbc and establishes
the statement option as a default for any hstmts later allocated for that hdbc. For a list of
statement options, see SQLSetStmtOption.

All connection and statement options successfully set by the application for the hdbc persist
until SQLFreeConnect is called on the hdbc. For example, if an application calls SQLSet-
ConnectOption before connecting to a data source, the option persists even if SQLSetCon-
nectOption fails in the driver when the application connects to the data source; if an
application sets a driver-specific option, the option persists even if the application conne
to a different driver on the hdbc.

Some connection and statement options support substitution of a similar value if the da
source does not support the specified value of vParam. In such cases, the driver returns
SQL_SUCCESS_WITH_INFO and SQLSTATE 01S02 (Option value changed). For exa
ple, if fOption is SQL_PACKET_SIZE and vParam exceeds the maximum packet size, the
driver substitutes the maximum size. To determine the substituted value, an application
SQLGetConnectOption (for connection options) or SQLGetStmtOption (for statement
options).

The format of information set through vParam depends on the specified fOption. SQLSet-
ConnectOption will accept option information in one of two different formats: a null-term
nated character string or a 32-bit integer value. The format of each is noted in the optio
description. Character strings pointed to by the vParam argument of SQLSetConnectOp-
tion have a maximum length of SQL_MAX_OPTION_STRING_LENGTH bytes (exclud-
ing the null termination byte).

fOption vParam Contents
5-250 SOLID Programmer Guide

SQLSetConnectOption (ODBC 1.0, Level 1)
SQL_ACCESS_MODE
(ODBC 1.0)

A 32-bit integer value. SQL_MODE_READ_ONLY is
used by the driver or data source as an indicator that the
connection is not required to support SQL statements
that cause updates to occur. This mode can be used to
optimize locking strategies, transaction management, or
other areas as appropriate to the driver or data source.
The driver is not required to prevent such statements
from being submitted to the data source. The behavior
of the driver and data source when asked to process SQL
statements that are not read-only during a read-only con-
nection is implementation defined.
SQL_MODE_READ_WRITE is the default.

SQL_AUTOCOMMIT
(ODBC 1.0)

A 32-bit integer value that specifies whether to use auto-
commit or manual-commit mode:

SQL_AUTOCOMMIT_OFF = The driver uses manual-
commit mode, and the application must explicitly com-
mit or roll back transactions with SQLTransact.

SQL_AUTOCOMMIT_ON = The driver uses auto-com-
mit mode. Each statement is committed immediately
after it is executed. This is the default. Note that chang-
ing from manual-commit mode to auto-commit mode
commits any open transactions on the connection.

,PSRUWDQW Some data sources delete the access plans
and close the cursors for all hstmts on an hdbc each time
a statement is committed; autocommit mode can cause
this to happen after each statement is executed. For more
information, see the
SQL_CURSOR_COMMIT_BEHAVIOR and
SQL_CURSOR_ROLLBACK_BEHAVIOR informa-
tion types in SQLGetInfo.

SQL_CURRENT_QUALIFIER
(ODBC 2.0)

A null-terminated character string containing the name
of the qualifier to be used by the data source. For exam-
ple, in SQL Server, the qualifier is a database, so the
driver sends a USE database statement to the data
source, where database is the database specified in
vParam. For a single-tier driver, the qualifier might be a
directory, so the driver changes its current directory to
the directory specified in vParam.
 Function Reference 5-251

SQLSetConnectOption (ODBC 1.0, Level 1)
SQL_LOGIN_TIMEOUT
(ODBC 1.0)

A 32-bit integer value corresponding to the number of
seconds to wait for a login request to complete before
returning to the application. The default is driver-depen-
dent and must be nonzero. If vParam is 0, the timeout is
disabled and a connection attempt will wait indefinitely.

If the specified timeout exceeds the maximum login tim-
eout in the data source, the driver substitutes that value
and returns SQLSTATE 01S02 (Option value changed).

SQL_ODBC_CURSORS
(ODBC 2.0)

A 32-bit option specifying how the Driver Manager uses
the ODBC cursor library:

SQL_CUR_USE_IF_NEEDED = The Driver Manager
uses the ODBC cursor library only if it is needed. If the
driver supports the SQL_FETCH_PRIOR option in
SQLExtendedFetch, the Driver Manager uses the
scrolling capabilities of the driver. Otherwise, it uses the
ODBC cursor library.

SQL_CUR_USE_ODBC = The Driver Manager uses
the ODBC cursor library.

SQL_CUR_USE_DRIVER = The Driver Manager uses
the scrolling capabilities of the driver. This is the default
setting.
5-252 SOLID Programmer Guide

SQLSetConnectOption (ODBC 1.0, Level 1)
SQL_OPT_TRACE
(ODBC 1.0)

A 32-bit integer value telling the Driver Manager
whether to perform tracing:

SQL_OPT_TRACE_OFF = Tracing off (the default)

SQL_OPT_TRACE_ON = Tracing on

When tracing is on, the Driver Manager writes each
ODBC function call to the trace file. On Windows and
WOW, the Driver Manager writes to the trace file each
time any application calls a function. On Windows NT,
the Driver Manager writes to the trace file only for the
application that turned tracing on.

1RWH When tracing is on, the Driver Manager can
return SQLSTATE IM013 (Trace file error) from any
function.

An application specifies a trace file with the
SQL_OPT_TRACEFILE option. If the file already
exists, the Driver Manager appends to the file. Other-
wise, it creates the file. If tracing is on and no trace file
has been specified, the Driver Manager writes to the file
\SQL.LOG. On Windows NT, tracing should only be
used for a single application or each application should
specify a different trace file. Otherwise, two or more
applications will attempt to open the same trace file at
the same time, causing an error.

If the Trace keyword in the [ODBC] section of the
ODBC.INI file (or registry) is set to 1 when an applica-
tion calls SQLAllocEnv, tracing is enabled. On Win-
dows and WOW, it is enabled for all applications; on
Windows NT it is enabled only for the application that
called SQLAllocEnv.

SQL_OPT_TRACEFILE
(ODBC 1.0)

A null-terminated character string containing the name
of the trace file.

The default value of the SQL_OPT_TRACEFILE option
is specified with the TraceFile keyname in the [ODBC]
section of the ODBC.INI file (or registry).
 Function Reference 5-253

SQLSetConnectOption (ODBC 1.0, Level 1)
SQL_PACKET_SIZE
(ODBC 2.0)

A 32-bit integer value specifying the network packet
size in bytes.

1RWH###Many data sources either do not support this
option or can only return the network packet size.

If the specified size exceeds the maximum packet size or
is smaller than the minimum packet size, the driver sub-
stitutes that value and returns SQLSTATE 01S02
(Option value changed).

SQL_QUIET_MODE
(ODBC 2.0)

A 32-bit window handle (hwnd).

If the window handle is a null pointer, the driver does
not display any dialog boxes.

If the window handle is not a null pointer, it should be
the parent window handle of the application. The driver
uses this handle to display dialog boxes. This is the
default.

If the application has not specified a parent window han-
dle for this option, the driver uses a null parent window
handle to display dialog boxes or return in SQLGet-
ConnectOption.

1RWH###The SQL_QUIET_MODE connection option does
not apply to dialog boxes displayed by SQLDriverCon-
nect.

SQL_TRANSLATE_DLL
(ODBC 1.0)

A null-terminated character string containing the name
of a DLL containing the functions SQLDriverToData-
Source and SQLDataSourceToDriver that the driver
loads and uses to perform tasks such as character set
translation. This option may only be specified if the
driver has connected to the data source.
5-254 SOLID Programmer Guide

SQLSetConnectOption (ODBC 1.0, Level 1)
SQL_TRANSLATE_OPTION
(ODBC 1.0)

This option may only be specified if the driver has con-
nected to the data source.

The valid values are:

SQL_SOLID_XLATOPT_DEFAULT = The application
uses the default character set conversion for the operat-
ing system used.

SQL_SOLID_XLATOPT_NOCNV = No conversion is
done. The characters are stored as they are given.

SQL_SOLID_XLATOPT_ANSI = The charaters are
considered to belong to ANSI (ISO Latin 1) character
set. This character set is used i.e. in MS Windows.

SQL_SOLID_XLATOPT_PCOEM = This character set
is used i.e. in MS DOS and OS/2.

SQL_SOLID_XLATOPT_7BITSCAND = This charac-
ter set is used i.e. in VAX/VMS.

SQL_TXN_ISOLATION
(ODBC 1.0)

A 32-bit bitmask that sets the transaction isolation level
for the current hdbc. An application must call SQL-
Transact to commit or roll back all open transactions on
an hdbc, before calling SQLSetConnectOption with
this option.

The valid values for vParam can be determined by call-
ing SQLGetInfo with fInfoType equal to
SQL_TXN_ISOLATION_OPTIONS. The following
terms are used to define transaction isolation levels:

Dirty Read Transaction 1 changes a row. Transaction
2 reads the changed row before transaction 1 commits
the change. If transaction 1 rolls back the change, trans-
action 2 will have read a row that is considered to have
never existed.

Nonrepeatable Read Transaction 1 reads a row.
Transaction 2 updates or deletes that row and commits
this change. If transaction 1 attempts to reread the row,
it will receive different row values or discover that the
row has been deleted.
 Function Reference 5-255

SQLSetConnectOption (ODBC 1.0, Level 1)

-bit
t at
 to
n
 is

l.

The
Data Translation
Data translation will be performed for all data flowing between the driver and the data
source.

The translation option (set with the SQL_TRANSLATE_OPTION option) can be any 32
value. Its meaning depends on the translation DLL being used. A new option can be se
any time. The new option will be applied to the next exchange of data following the call
SQLSetConnectOption. A default translation DLL may be specified for the data source i
its data source specification in the ODBC.INI file or registry. The default translation DLL
loaded by the driver at connection time. A translation option
(SQL_TRANSLATE_OPTION) may be specified in the data source specification as wel

To change the translation DLL for a connection, an application calls SQLSetConnectOp-
tion with the SQL_TRANSLATE_DLL option after it has connected to the data source.

SQL_TXN_ISOLATION
(ODBC 1.0) (continued)

A Phantom Transaction 1 reads a set of rows that sat-
isfy some search criteria. Transaction 2 inserts a row
that matches the search criteria. If transaction 1 reexe-
cutes the statement that read the rows, it receives a dif-
ferent set of rows.

vParam must be one of the following values:

SQL_TXN_READ_UNCOMMITTED = Dirty reads,
nonrepeatable reads, and phantoms are possible.

SQL_TXN_READ_COMMITTED = Dirty reads are
not possible. Nonrepeatable reads and phantoms are
possible.

SQL_TXN_REPEATABLE_READ = Dirty reads and
nonrepeatable reads are not possible. Phantoms are pos-
sible.

SQL_TXN_SERIALIZABLE = Transactions are serial-
izable. Dirty reads, nonrepeatable reads, and phantoms
are not possible.

SQL_TXN_VERSIONING = Transactions are serializ-
able, but higher concurrency is possible than with
SQL_TXN_SERIALIZABLE. Dirty reads are not possi-
ble. Typically, SQL_TXN_SERIALIZABLE is imple-
mented by using locking protocols that reduce
concurrency and SQL_TXN_VERSIONING is imple-
mented by using a non-locking protocol such as record
versioning.
5-256 SOLID Programmer Guide

SQLSetConnectOption (ODBC 1.0, Level 1)

R

driver will attempt to load the specified DLL and, if the attempt fails, return SQL_ERRO
with the SQLSTATE IM009 (Unable to load translation DLL).

If no translation DLL has been specified in the ODBC initialization file or by calling
SQLSetConnectOption, the driver will not attempt to translate data. Any value set for the
translation option will be ignored.

Code Example
See SQLConnect and SQLParamOptions.

Related Functions

For information about See

Returning the setting of a connection option SQLGetConnectOption (extension)

Returning the setting of a statement option SQLGetStmtOption (extension)

Setting a statement option SQLSetStmtOption (extension)
 Function Reference 5-257

SQLSetCursorName (ODBC 1.0, Core)

te-

-
ATE
SQLSetCursorName (ODBC 1.0, Core)
SQLSetCursorName associates a cursor name with an active hstmt. If an application does
not call SQLSetCursorName, the driver generates cursor names as needed for SQL sta
ment processing.

Syntax
RETCODE SQLSetCursorName(hstmt, szCursor, cbCursor)

The SQLSetCursorName function accepts the following arguments.

Returns
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_ERROR, or
SQL_INVALID_HANDLE.

Diagnostics
When SQLSetCursorName returns SQL_ERROR or SQL_SUCCESS_WITH_INFO, an
associated SQLSTATE value may be obtained by calling SQLError . The following table
lists the SQLSTATE values commonly returned by SQLSetCursorName and explains each
one in the context of this function; the notation “(DM)” precedes the descriptions of SQL
STATEs returned by the Driver Manager. The return code associated with each SQLST
value is SQL_ERROR, unless noted otherwise.

Type Argument Use Description

HSTMT hstmt Input Statement handle.

UCHAR FAR * szCursor Input Cursor name.

SWORD cbCursor Input Length of szCursor.

SQLSTATE Error Description

01000 General warning Driver-specific informational message.
(Function returns
SQL_SUCCESS_WITH_INFO.)

24000 Invalid cursor state The statement corresponding to hstmt was
already in an executed or cursor-posi-
tioned state.
5-258 SOLID Programmer Guide

SQLSetCursorName (ODBC 1.0, Core)

elete

 and
Comments
The only ODBC SQL statements that use a cursor name are a positioned update and d
(for example, UPDATE table-name ...WHERE CURRENT OF cursor-name). If the appli-
cation does not call SQLSetCursorName to define a cursor name, on execution of a
SELECT statement the driver generates a name that begins with the letters SQL_CUR
does not exceed 18 characters in length.

34000 Invalid cursor name The cursor name specified by the argu-
ment szCursor was invalid. For example,
the cursor name exceeded the maximum
length as defined by the driver.

3C000 Duplicate cursor name The cursor name specified by the argu-
ment szCursor already exists.

IM001 Driver does not support
this function

(DM) The driver associated with the hstmt
does not support the function.

S1000 General error An error occurred for which there was no
specific SQLSTATE and for which no
implementation-specific SQLSTATE was
defined. The error message returned by
SQLError in the argument szErrorMsg
describes the error and its cause.

S1001 Memory allocation failure The driver was unable to allocate memory
required to support execution or comple-
tion of the function.

S1009 Invalid argument value (DM) The argument szCursor was a null
pointer.

S1010 Function sequence error (DM) An asynchronously executing func-
tion was called for the hstmt and was still
executing when this function was called.

(DM) SQLExecute, SQLExecDirect, or
SQLSetPos was called for the hstmt and
returned SQL_NEED_DATA. This func-
tion was called before data was sent for all
data-at-execution parameters or columns.

S1090 Invalid string or buffer
length

(DM) The argument cbCursor was less
than 0, but not equal to SQL_NTS.
 Function Reference 5-259

SQLSetCursorName (ODBC 1.0, Core)

 is

.
All cursor names within the hdbc must be unique. The maximum length of a cursor name
defined by the driver. For maximum interoperability, it is recommended that applications
limit cursor names to no more than 18 characters.

A cursor name that is set either explicitly or implicitly remains set until the hstmt with which
it is associated is dropped, using SQLFreeStmt with the SQL_DROP option.

Code Example
In the following example, an application uses SQLSetCursorName to set a cursor name for
an hstmt. It then uses that hstmt to retrieve results from the EMPLOYEE table. Finally, it
performs a positioned update to change the name of 25-year-old John Smith to John D
Smith. Note that the application uses different hstmts for the SELECT and UPDATE state-
ments.

For more code examples, see SQLSetPos.

#define NAME_LEN 30

HSTMT hstmtSelect,
HSTMT hstmtUpdate;
UCHAR szName[NAME_LEN];
SWORD sAge;
SDWORD cbName;
SDWORD cbAge;

/* Allocate the statements and set the cursor name */

SQLAllocStmt(hdbc, &hstmtSelect);
SQLAllocStmt(hdbc, &hstmtUpdate);
SQLSetCursorName(hstmtSelect, "C1", SQL_NTS);

/* SELECT the result set and bind its columns to local storage */

SQLExecDirect(hstmtSelect,

 "SELECT NAME, AGE FROM EMPLOYEE FOR UPDATE",
 SQL_NTS);
SQLBindCol(hstmtSelect, 1, SQL_C_CHAR, szName, NAME_LEN, &cbName);
SQLBindCol(hstmtSelect, 2, SQL_C_SSHORT, &sAge, 0, &cbAge);

/* Read through the result set until the cursor is */
/* positioned on the row for the 25-year-old John Smith */

do
 retcode = SQLFetch(hstmtSelect);
5-260 SOLID Programmer Guide

SQLSetParam (ODBC 1.0, Deprecated)
while ((retcode == SQL_SUCCESS || retcode == SQL_SUCCESS_WITH_INFO) &&
 (strcmp(szName, "Smith, John") != 0 || sAge != 25));

/* Perform a positioned update of John Smith's name */

if (retcode == SQL_SUCCESS || retcode == SQL_SUCCESS_WITH_INFO) {
SQLExecDirect(hstmtUpdate,

 "UPDATE EMPLOYEE SET NAME=\"Smith, John D.\" WHERE CURRENT OF C1",
 SQL_NTS);
}

Related Functions

SQLSetParam (ODBC 1.0, Deprecated)
In ODBC 2.0, the ODBC 1.0 function SQLSetParam has been replaced by SQLBindPar-
ameter. For more information, see SQLBindParameter.

For information about See

Executing an SQL statement SQLExecDirect

Executing a prepared SQL statement SQLExecute

Returning a cursor name SQLGetCursorName

Setting cursor scrolling options SQLSetScrollOptions (extension)
 Function Reference 5-261

SQLSetPos (ODBC 1.0, Level 2)

ate,
SQLSetPos (ODBC 1.0, Level 2)
SQLSetPos sets the cursor position in a rowset and allows an application to refresh, upd
delete, or add data to the rowset.

NOTE: This function is not implement in SOLID SQL API, but it is available through ODBC
Cursor Library.

Syntax
RETCODE SQLSetPos(hstmt, irow, fOption, fLock)

The SQLSetPos function accepts the following arguments:

Returns
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_NEED_DATA,
SQL_STILL_EXECUTING, SQL_ERROR, or SQL_INVALID_HANDLE.

Type Argument Use Description

HSTMT hstmt Input Statement handle.

UWORD irow Input Position of the row in the rowset on which
to perform the operation specified with the
fOption argument. If irow is 0, the opera-
tion applies to every row in the rowset.

For additional information, see “Com-
ments.”

UWORD fOption Input Operation to perform:

SQL_POSITION
SQL_REFRESH
SQL_UPDATE
SQL_DELETE
SQL_ADD

For more information, see “Comments.”

UWORD fLock Input Specifies how to lock the row after per-
forming the operation specified in the fOp-
tion argument.

SQL_LOCK_NO_CHANGE
SQL_LOCK_EXCLUSIVE
SQL_LOCK_UNLOCK

For more information, see “Comments.”
5-262 SOLID Programmer Guide

SQLSetPos (ODBC 1.0, Level 2)

d

 the
R,
Diagnostics
When SQLSetPos returns SQL_ERROR or SQL_SUCCESS_WITH_INFO, an associate
SQLSTATE value may be obtained by calling SQLError . The following table lists the SQL-
STATE values commonly returned by SQLSetPos and explains each one in the context of
this function; the notation “(DM)” precedes the descriptions of SQLSTATEs returned by
Driver Manager. The return code associated with each SQLSTATE value is SQL_ERRO
unless noted otherwise.

SQLSTATE Error Description

01000 General warning Driver-specific informational message.
(Function returns
SQL_SUCCESS_WITH_INFO.)

01004 Data truncated The argument fOption was SQL_ADD or
SQL_UPDATE and the value specified for a
character or binary column exceeded the
maximum length of the associated table col-
umn. (Function returns
SQL_SUCCESS_WITH_INFO.)

The argument fOption was SQL_ADD or
SQL_UPDATE and the fractional part of the
value specified for a numeric column was
truncated. (Function returns
SQL_SUCCESS_WITH_INFO.)

The argument fOption was SQL_ADD or
SQL_UPDATE and a timestamp value speci-
fied for a date or time column was truncated.
(Function returns
SQL_SUCCESS_WITH_INFO.)

01S01 Error in row The irow argument was 0 and an error
occurred in one or more rows while perform-
ing the operation specified with the fOption
argument. (Function returns
SQL_SUCCESS_WITH_INFO.)

01S03 No rows updated or
deleted

The argument fOption was SQL_UPDATE or
SQL_DELETE and no rows were updated or
deleted. (Function returns
SQL_SUCCESS_WITH_INFO.)
 Function Reference 5-263

SQLSetPos (ODBC 1.0, Level 2)
01S04 More than one row
updated or deleted

The argument fOption was SQL_UPDATE or
SQL_DELETE and more than one row was
updated or deleted. (Function returns
SQL_SUCCESS_WITH_INFO.)

21S02 Degree of derived table
does not match column
list

The argument fOption was SQL_ADD or
SQL_UPDATE and no columns were bound
with SQLBindCol.

22003 Numeric value out of
range

The argument fOption was SQL_ADD or
SQL_UPDATE and the whole part of a
numeric value was truncated.

22005 Error in assignment The argument fOption was SQL_ADD or
SQL_UPDATE and a value was incompati-
ble with the data type of the associated col-
umn.

22008 Datetime field overflow The argument fOption was SQL_ADD or
SQL_UPDATE and a date, time, or times-
tamp value was, respectively, an invalid date,
time, or timestamp.

23000 Integrity constraint vio-
lation

The argument fOption was SQL_ADD or
SQL_UPDATE and a value was NULL for a
column defined as NOT NULL in the associ-
ated column or some other integrity con-
straint was violated.

The argument fOption was SQL_ADD and a
column that was not bound with SQLBind-
Col is defined as NOT NULL or has no
default.
5-264 SOLID Programmer Guide

SQLSetPos (ODBC 1.0, Level 2)
24000 Invalid cursor state (DM) The hstmt was in an executed state but
no result set was associated with the hstmt.

(DM) A cursor was open on the hstmt but
SQLFetch or SQLExtendedFetch had not
been called.

A cursor was open on the hstmt and SQLEx-
tendedFetch had been called, but the cursor
was positioned before the start of the result
set or after the end of the result set.

The argument fOption was SQL_DELETE,
SQL_REFRESH, or SQL_UPDATE and the
cursor was positioned before the start of the
result set or after the end of the result set.

42000 Syntax error or access
violation

The driver was unable to lock the row as
needed to perform the operation requested in
the argument fOption.

The driver was unable to lock the row as
requested in the argument fLock.

IM001 Driver does not support
this function

(DM) The driver associated with the hstmt
does not support the function.

S0023 No default for column The fOption argument was SQL_ADD and a
column that was not bound did not have a
default value and could not be set to NULL.

The fOption argument was SQL_ADD, the
length specified in the pcbValue buffer bound
by SQLBindCol was SQL_IGNORE, and
the column did not have a default value.

S1000 General error An error occurred for which there was no
specific SQLSTATE and for which no imple-
mentation-specific SQLSTATE was defined.
The error message returned by SQLError in
the argument szErrorMsg describes the error
and its cause.

S1001 Memory allocation fail-
ure

The driver was unable to allocate memory
required to support execution or completion
of the function.
 Function Reference 5-265

SQLSetPos (ODBC 1.0, Level 2)
S1008 Operation canceled Asynchronous processing was enabled for
the hstmt. The function was called and before
it completed execution, SQLCancel was
called on the hstmt. Then the function was
called again on the hstmt.

The function was called and, before it com-
pleted execution, SQLCancel was called on
the hstmt from a different thread in a multi-
threaded application.

S1009 Invalid argument value (DM) The value specified for the argument
fOption was invalid.

(DM) The value specified for the argument
fLock was invalid.

The argument irow was greater than the num-
ber of rows in the rowset and the fOption
argument was not SQL_ADD.

The value specified for the argument fOption
was SQL_ADD, SQL_UPDATE, or
SQL_DELETE, the value specified for the
argument fLock was
SQL_LOCK_NO_CHANGE, and the
SQL_CONCURRENCY statement option
was SQL_CONCUR_READ_ONLY.

S1010 Function sequence error (DM) The specified hstmt was not in an exe-
cuted state. The function was called without
first calling SQLExecDirect, SQLExecute,
or a catalog function.

(DM) An asynchronously executing function
(not this one) was called for the hstmt and
was still executing when this function was
called.

(DM) SQLExecute, SQLExecDirect, or
SQLSetPos was called for the hstmt and
returned SQL_NEED_DATA. This function
was called before data was sent for all data-
at-execution parameters or columns.
5-266 SOLID Programmer Guide

SQLSetPos (ODBC 1.0, Level 2)
S1090 Invalid string or buffer
length

The fOption argument was SQL_ADD or
SQL_UPDATE, a data value was a null
pointer, and the column length value was not
0, SQL_DATA_AT_EXEC, SQL_IGNORE,
SQL_NULL_DATA, or less than or equal to
SQL_LEN_DATA_AT_EXEC_OFFSET.

The fOption argument was SQL_ADD or
SQL_UPDATE, a data value was not a null
pointer, and the column length value was less
than 0, but not equal to
SQL_DATA_AT_EXEC, SQL_IGNORE,
SQL_NTS, or SQL_NULL_DATA, or less
than or equal to
SQL_LEN_DATA_AT_EXEC_OFFSET.

S1107 Row value out of range The value specified for the argument irow
was greater than the number of rows in the
rowset and the fOption argument was not
SQL_ADD.

S1109 Invalid cursor position The cursor associated with the hstmt was
defined as forward only, so the cursor could
not be positioned within the rowset. See the
description for the SQL_CURSOR_TYPE
option in SQLSetStmtOption.

The fOption argument was SQL_REFRESH,
SQL_UPDATE, or SQL_DELETE and the
value in the rgfRowStatus array for the row
specified by the irow argument was
SQL_ROW_DELETED or
SQL_ROW_ERROR.

S1C00 Driver not capable The driver or data source does not support
the operation requested in the fOption argu-
ment or the fLock argument.

S1T00 Timeout expired The timeout period expired before the data
source returned the result set. The timeout
period is set through SQLSetStmtOption,
SQL_QUERY_TIMEOUT.
 Function Reference 5-267

SQLSetPos (ODBC 1.0, Level 2)

e

-
rray

uire

elete

r

Comments

irow Argument
The irow argument specifies the number of the row in the rowset on which to perform th
operation specified by the fOption argument. If irow is 0, the operation applies to every row
in the rowset. Except for the SQL_ADD operation, irow must be a value from 0 to the num-
ber of rows in the rowset. For the SQL_ADD operation, irow can be any value; generally it
is either 0 (to add as many rows as there are in the rowset) or the number of rows in the
rowset plus 1 (to add the data from an extra row of buffers allocated for this purpose).

NOTE: In the C language, arrays are 0-based, while the irow argument is 1-based. For exam
ple, to update the fifth row of the rowset, an application modifies the rowset buffers at a
index 4, but specifies an irow of 5.

All operations except for SQL_ADD position the cursor on the row specified by irow; the
SQL_ADD operation does not change the cursor position. The following operations req
a cursor position:

■ Positioned update and delete statements.

■ Calls to SQLGetData.

■ Calls to SQLSetPos with the SQL_DELETE, SQL_REFRESH, and SQL_UPDATE
options.

For example, if the cursor is positioned on the second row of the rowset, a positioned d
statement deletes that row; if it is positioned on the entire rowset (irow is 0), a positioned
delete statement deletes every row in the rowset.

An application can specify a cursor position when it calls SQLSetPos. Generally, it calls
SQLSetPos with the SQL_POSITION or SQL_REFRESH operation to position the curso
before executing a positioned update or delete statement or calling SQLGetData.

fOption Argument
The fOption argument supports the following operations. To determine which options are
supported by a data source, an application calls SQLGetInfo with the
SQL_POS_OPERATIONS information type.

fOption Argument Operation

SQL_POSITION The driver positions the cursor on the row specified by irow.
This is the same as the FALSE value of this argument in
ODBC 1.0.
5-268 SOLID Programmer Guide

SQLSetPos (ODBC 1.0, Level 2)
SQL_REFRESH The driver positions the cursor on the row specified by irow
and refreshes data in the rowset buffers for that row. For more
information about how the driver returns data in the rowset
buffers, see the descriptions of row-wise and column-wise
binding in SQLExtendedFetch.
This is the same as the TRUE value of this argument in
ODBC 1.0.

SQL_UPDATE The driver positions the cursor on the row specified by irow
and updates the underlying row of data with the values in the
rowset buffers (the rgbValue argument in SQLBindCol). It
retrieves the lengths of the data from the number-of-bytes
buffers (the pcbValue argument in SQLBindCol). If the length
of any column is SQL_IGNORE, the column is not updated.
After updating the row, the driver changes the rgfRowStatus
array specified in SQLExtendedFetch to
SQL_ROW_UPDATED.

SQL_DELETE The driver positions the cursor on the row specified by irow
and deletes the underlying row of data. It changes the rgfRow-
Status array specified in SQLExtendedFetch to
SQL_ROW_DELETED. After the row has been deleted, posi-
tioned update and delete statements, calls to SQLGetData and
calls to SQLSetPos with fOption set to anything except
SQL_POSITION are not valid for the row.
Whether the row remains visible depends on the cursor type.
For example, deleted rows are visible to static and keyset-
driven cursors but invisible to dynamic cursors.
 Function Reference 5-269

SQLSetPos (ODBC 1.0, Level 2)

pport
lue

ily

f the
e
 vio-
fLock Argument
The fLock argument provides a way for applications to control concurrency and simulate
transactions on data sources that do not support them. Generally, data sources that su
concurrency levels and transactions will only support the SQL_LOCK_NO_CHANGE va
of the fLock argument.

The fLock argument specifies the lock state of the row after SQLSetPos has been executed.
To simulate a transaction, an application uses the SQL_LOCK_RECORD macro to lock
each of the rows in the transaction. It then uses the SQL_UPDATE_RECORD or
SQL_DELETE_RECORD macro to update or delete each row; the driver may temporar
change the lock state of the row while performing the operation specified by the fOption
argument. Finally, it uses the SQL_LOCK_RECORD macro to unlock each row. For an
example of how an application might do this, see the second code example. Note that i
driver is unable to lock the row either to perform the requested operation or to satisfy th
fLock argument, it returns SQL_ERROR and SQLSTATE 42000 (Syntax error or access
lation).

SQL_ADD The driver adds a new row of data to the data source. Where
the row is added to the data source and whether it is visible in
the result set is driver-defined.

The driver retrieves the data from the rowset buffers (the rgb-
Value argument in SQLBindCol) according to the value of
the irow argument. It retrieves the lengths of the data from the
number-of-bytes buffers (the pcbValue argument in SQL-
BindCol). Generally, the application allocates an extra row of
buffers for this purpose.

For columns not bound to the rowset buffers, the driver uses
default values (if they are available) or NULL values (if
default values are not available). For columns with a length of
SQL_IGNORE, the driver uses default values.

If irow is less than or equal to the rowset size, the driver
changes the rgfRowStatus array specified in SQLExtended-
Fetch to SQL_ROW_ADDED after adding the row. At this
point, the rowset buffers do not match the cursors for the row.
To restore the rowset buffers to match the data in the cursor,
an application calls SQLSetPos with the SQL_REFRESH
option.

This operation does not affect the cursor position.
5-270 SOLID Programmer Guide

SQLSetPos (ODBC 1.0, Level 2)

 or
d the
Although the fLock argument is specified for an hstmt, the lock accords the same privileges
to all hstmts on the connection. In particular, a lock that is acquired by one hstmt on a con-
nection can be unlocked by a different hstmt on the same connection.

A row locked through SQLSetPos remains locked until the application calls SQLSetPos for
the row with fLock set to SQL_LOCK_UNLOCK or the application calls SQLFreeStmt
with the SQL_CLOSE or SQL_DROP option.

The fLock argument supports the following types of locks. To determine which locks are
supported by a data source, an application calls SQLGetInfo with the SQL_LOCK_TYPES
information type.

For the add, update, and delete operations in SQLSetPos, the application uses the fLock
argument as follows:

To guarantee that a row does not change after it is retrieved, an application calls SQLSetPos
with fOption set to SQL_REFRESH and fLock set to SQL_LOCK_EXCLUSIVE.

■ If the application sets fLock to SQL_LOCK_NO_CHANGE, the driver guarantees an
update, or delete operation will succeed only if the application specified
SQL_CONCUR_LOCK for the SQL_CONCURRENCY statement option.

■ If the application specifies SQL_CONCUR_ROWVER or SQL_CONCUR_VALUES
for the SQL_CONCURRENCY statement option, the driver compares row versions
values and rejects the operation if the row has changed since the application fetche
row.

fLock Argument Lock Type

SQL_LOCK_NO_CHANGE The driver or data source ensures that the row is in the
same locked or unlocked state as it was before SQLSet-
Pos was called. This value of fLock allows data sources
that do not support explicit row-level locking to use
whatever locking is required by the current concurrency
and transaction isolation levels.

This is the same as the FALSE value of the fLock argu-
ment in ODBC 1.0.

SQL_LOCK_EXCLUSIVE The driver or data source locks the row exclusively. An
hstmt on a different hdbc or in a different application
cannot be used to acquire any locks on the row.

This is the same as the TRUE value of the fLock argu-
ment in ODBC 1.0.

SQL_LOCK_UNLOCK The driver or data source unlocks the row.
 Function Reference 5-271

SQLSetPos (ODBC 1.0, Level 2)

era-

-

ORE

lue,

 “Y”

ve
■ If the application specifies SQL_CONCUR_READ_ONLY for the
SQL_CONCURRENCY statement option, the driver rejects any update or delete op
tion.

For more information about the SQL_CONCURRENCY statement option, see SQLSetStm-
tOption .

Using SQLSetPos
Before an application calls SQLSetPos, it must:

1. If the application will call SQLSetPos with fOption set to SQL_ADD or
SQL_UPDATE, call SQLBindCol for each column to specify its data type and associ
ate storage for the column’s data and length.

2. Call SQLExecDirect, SQLExecute, or a catalog function to create a result set.

3. Call SQLExtendedFetch to retrieve the data.

To delete data with SQLSetPos, an application:

■ Calls SQLSetPos with irow set to the number of the row to delete.

An application can pass the value for a column either in the rgbValue buffer or with one or
more calls to SQLPutData. Columns whose data is passed with SQLPutData are known as
data-at-execution columns. These are commonly used to send data for
SQL_LONGVARBINARY and SQL_LONGVARCHAR columns and can be mixed with
other columns.

To update or add data with SQLSetPos, an application:

1. 1.Places values in the rgbValue and pcbValue buffers bound with SQLBindCol:

■ For normal columns, the application places the new column value in the rgbValue
buffer and the length of that value in the pcbValue buffer. If the row is being
updated and the column is not to be changed, the application places SQL_IGN
in the pcbValue buffer.

■ For data-at-execution columns, the application places an application-defined va
such as the column number, in the rgbValue buffer. The value can be used later to
identify the column.

It places the result of the SQL_LEN_DATA_AT_EXEC(length) macro in the pcbValue
buffer. If the SQL data type of the column is SQL_LONGVARBINARY,
SQL_LONGVARCHAR, or a long, data source–specific data type and the driver returns
for the SQL_NEED_LONG_DATA_LEN information type in SQLGetInfo, length is the
number of bytes of data to be sent for the parameter; otherwise, it must be a nonnegati
value and is ignored.
5-272 SOLID Programmer Guide

SQLSetPos (ODBC 1.0, Level 2)

ill be

all

ific
ta

 state-

At

u-
2. Calls SQLSetPos or uses an SQLSetPos macro to update or add the row of data.

■ If there are no data-at-execution columns, the process is complete.

■ If there are any data-at-execution columns, the function returns
SQL_NEED_DATA.

3. Calls SQLParamData to retrieve the address of the rgbValue buffer for the first data-at-
execution column to be processed. The application retrieves the application-defined
value from the rgbValue buffer.

NOTE: Although data-at-execution parameters are similar to data-at-execution col-
umns, the value returned by SQLParamData is different for each.

Data-at-execution parameters are parameters in an SQL statement for which data w
sent with SQLPutData when the statement is executed with SQLExecDirect or
SQLExecute. They are bound with SQLBindParameter. The value returned by SQL-
ParamData is a 32-bit value passed to SQLBindParameter in the rgbValue argument.

Data-at-execution columns are columns in a rowset for which data will be sent with
SQLPutData when a row is updated or added with SQLSetPos. They are bound with
SQLBindCol. The value returned by SQLParamData is the address of the row in the
rgbValue buffer that is being processed.

4. Calls SQLPutData one or more times to send data for the column. More than one c
is needed if the data value is larger than the rgbValue buffer specified in SQLPutData;
note that multiple calls to SQLPutData for the same column are allowed only when
sending character C data to a column with a character, binary, or data source–spec
data type or when sending binary C data to a column with a character, binary, or da
source–specific data type.

5. Calls SQLParamData again to signal that all data has been sent for the column.

■ If there are more data-at-execution columns, SQLParamData returns
SQL_NEED_DATA and the address of the rgbValue buffer for the next data-at-exe-
cution column to be processed. The application repeats steps 4 and 5.

■ If there are no more data-at-execution columns, the process is complete. If the
ment was executed successfully, SQLParamData returns SQL_SUCCESS or
SQL_SUCCESS_WITH_INFO; if the execution failed, it returns SQL_ERROR.
this point, SQLParamData can return any SQLSTATE that can be returned by
SQLSetPos.

After SQLSetPos returns SQL_NEED_DATA, and before data is sent for all data-at-exec
tion columns, the operation is canceled, or an error occurs in SQLParamData or SQLPut-
Data, the application can only call SQLCancel, SQLGetFunctions, SQLParamData, or
SQLPutData with the hstmt or the hdbc associated with the hstmt. If it calls any other func-
 Function Reference 5-273

SQLSetPos (ODBC 1.0, Level 2)

ol-

alls

ch as
iate

or

main-
at

y

s
ns
long
tion with the hstmt or the hdbc associated with the hstmt, the function returns SQL_ERROR
and SQLSTATE S1010 (Function sequence error).

If the application calls SQLCancel while the driver still needs data for data-at-execution c
umns, the driver cancels the operation; the application can then call SQLSetPos again; can-
celing does not affect the cursor state or the current cursor position. If the application c
SQLParamData or SQLPutData after canceling the operation, the function returns
SQL_ERROR and SQLSTATE S1008 (Operation canceled).

Performing Bulk Operations
If the irow argument is 0, the driver performs the operation specified in the fOption argu-
ment for every row in the rowset. If an error occurs that pertains to the entire rowset, su
SQLSTATE S1T00 (Timeout expired), the driver returns SQL_ERROR and the appropr
SQLSTATE. The contents of the rowset buffers are undefined and the cursor position is
unchanged.

If an error occurs that pertains to a single row, the driver:

■ Sets the element in the rgfRowStatus array for the row to SQL_ROW_ERROR.

■ Posts SQLSTATE 01S01 (Error in row) in the error queue.

■ Posts one or more additional SQLSTATEs for the error after SQLSTATE 01S01 (Err
in row) in the error queue.

After it has processed the error or warning, the driver continues the operation for the re
ing rows in the rowset and returns SQL_SUCCESS_WITH_INFO. Thus, for each row th
returned an error, the error queue contains SQLSTATE 01S01 (Error in row) followed b
zero or more additional SQLSTATEs.

If the driver returns any warnings, such as SQLSTATE 01004 (Data truncated), it return
warnings that apply to the entire rowset or to unknown rows in the rowset before it retur
the error information that applies to specific rows. It returns warnings for specific rows a
with any other error information about those rows.

SQLSetPos Macros

As an aid to programming, the following macros for calling SQLSetPos are defined in the
SQLEXT.H file.

Macro name Function call

SQL_POSITION_TO(hstmt, irow) SQLSetPos(hstmt, irow,
SQL_POSITION,
SQL_LOCK_NO_CHANGE)
5-274 SOLID Programmer Guide

SQLSetPos (ODBC 1.0, Level 2)

and
es
e
y. The
si-
Code Example
In the following example, an application allows a user to browse the EMPLOYEE table
update employee birthdays. The cursor is keyset-driven with a rowset size of 20 and us
optimistic concurrency control comparing row versions. After each rowset is fetched, th
application prints them and allows the user to select and update an employee’s birthda
application uses SQLSetPos to position the cursor on the selected row and performs a po
tioned update of the row. (Error handling is omitted for clarity.)

#define ROWS 20
#define NAME_LEN 30
#define BDAY_LEN 11

UCHAR szName[ROWS][NAME_LEN], szBirthday[ROWS][BDAY_LEN], szReply[3];
SDWORD cbName[ROWS], cbBirthday[ROWS];
UWORD rgfRowStatus[ROWS];
UDWORD crow, irow;
HSTMT hstmtS, hstmtU;

SQLSetStmtOption(hstmtS, SQL_CONCURRENCY, SQL_CONCUR_ROWVER);

SQLSetStmtOption(hstmtS, SQL_CURSOR_TYPE, SQL_CURSOR_KEYSET_DRIVEN);
SQLSetStmtOption(hstmtS, SQL_ROWSET_SIZE, ROWS);
SQLSetCursorName(hstmtS, "C1", SQL_NTS);
SQLExecDirect(hstmtS,

 "SELECT NAME, BIRTHDAY FROM EMPLOYEE FOR UPDATE OF BIRTHDAY",
 SQL_NTS);

SQLBindCol(hstmtS, 1, SQL_C_CHAR, szName, NAME_LEN, cbName);
SQLBindCol(hstmtS, 1, SQL_C_CHAR, szBirthday, BDAY_LEN,

SQL_LOCK_RECORD(hstmt, irow, fLock) SQLSetPos(hstmt, irow,
SQL_POSITION, fLock)

SQL_REFRESH_RECORD(hstmt, irow, fLock) SQLSetPos(hstmt, irow,
SQL_REFRESH, fLock)

SQL_UPDATE_RECORD(hstmt, irow) SQLSetPos(hstmt, irow, SQL_UPDATE,
SQL_LOCK_NO_CHANGE)

SQL_DELETE_RECORD(hstmt, irow) SQLSetPos(hstmt, irow, SQL_DELETE,
SQL_LOCK_NO_CHANGE)

SQL_ADD_RECORD(hstmt, irow) SQLSetPos(hstmt, irow, SQL_ADD,
SQL_LOCK_NO_CHANGE)
 Function Reference 5-275

SQLSetPos (ODBC 1.0, Level 2)
 cbBirthday);

while (SQLExtendedFetch(hstmtS, FETCH_NEXT, 0, &crow, rgfRowStatus) !=

 SQL_ERROR) {
for (irow = 0; irow < crow; irow++) {

if (rgfRowStatus[irow] != SQL_ROW_DELETED)
printf("%d %-*s %*s\n", irow, NAME_LEN-1, szName[irow],
 BDAY_LEN-1, szBirthday[irow]);

}
while (TRUE) {

printf("\nRow number to update?");
gets(szReply);
irow = atoi(szReply);
if (irow > 0 && irow <= crow) {

printf("\nNew birthday?");
gets(szBirthday[irow-1]);
SQLSetPos(hstmtS, irow, SQL_POSITION, SQL_LOCK_NO_CHANGE);
SQLPrepare(hstmtU,
 "UPDATE EMPLOYEE SET BIRTHDAY=? WHERE CURRENT OF C1",
 SQL_NTS);
SQLBindParameter(hstmtU, 1, SQL_PARAM_INPUT,
 SQL_C_CHAR, SQL_DATE,
 BDAY_LEN, 0, szBirthday, 0, NULL);
SQLExecute(hstmtU);

} else if (irow == 0) {
break;

}
}

}

5-276 SOLID Programmer Guide

SQLSetPos (ODBC 1.0, Level 2)
/* Lock rows 1 and 2 */

SQL_LOCK_RECORD(hstmt, 1, SQL_LOCK_EXCLUSIVE);
SQL_LOCK_RECORD(hstmt, 2, SQL_LOCK_EXCLUSIVE);

/* Modify the rowset buffers for rows 1 and 2 (not shown).*/
/* Update rows 1 and 2. */

SQL_UPDATE_RECORD(hstmt, 1);
SQL_UPDATE_RECORD(hstmt, 2);

/* Unlock rows 1 and 2 */

SQL_LOCK_RECORD(hstmt, 1, SQL_LOCK_UNLOCK);
SQL_LOCK_RECORD(hstmt, 2, SQL_LOCK_UNLOCK);

Related Functions

For information about See

Assigning storage for a column in a result set SQLBindCol

Canceling statement processing SQLCancel

Fetching a block of data or scrolling through a
result set

SQLExtendedFetch (extension)

Setting a statement option SQLSetStmtOption (extension)
 Function Reference 5-277

SQLSetScrollOptions (ODBC 1.0, Level 2)

n

ac-

or
1.0
SQLSetScrollOptions (ODBC 1.0, Level 2)
SQLSetScrollOptions sets options that control the behavior of cursors associated with a
hstmt. SQLSetScrollOptions allows the application to specify the type of cursor behavior
desired in three areas: concurrency control, sensitivity to changes made by other trans
tions, and rowset size.

Note In ODBC 2.0, SQLSetScrollOptions has been superceded by the
SQL_CURSOR_TYPE, SQL_CONCURRENCY, SQL_KEYSET_SIZE, and
SQL_ROWSET_SIZE statement options. ODBC 2.0 drivers must support this function f
backwards compatibility; ODBC 2.0 applications should only call this function in ODBC
drivers.

If an application calls SQLSetScrollOptions, a driver must be able to return the values of
the aforementioned statement options with SQLGetStmtOption. For more information, see
SQLSetStmtOption.

NOTE: This function is not implement in SOLID SQL API, but it is available through ODBC
Cursor Library.

Syntax
RETCODE SQLSetScrollOptions(hstmt, fConcurrency, crowKeyset, crowRowset)

The SQLSetScrollOptions function accepts the following arguments:

Type Argument Use Description

HSTMT hstmt Input Statement handle.

UWORD fConcurrency Input Specifies concurrency control for the cur-
sor and must be one of the following values:

SQL_CONCUR_READ_ONLY: Cursor is
read-only. No updates are allowed.

SQL_CONCUR_LOCK: Cursor uses the
lowest level of locking sufficient to ensure
that the row can be updated.

SQL_CONCUR_ROWVER: Cursor uses
optimistic concurrency control, comparing
row versions.

SQL_CONCUR_VALUES: Cursor uses
optimistic concurrency control, comparing
values.
5-278 SOLID Programmer Guide

SQLSetScrollOptions (ODBC 1.0, Level 2)

L-
ATE
Returns
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_ERROR, or
SQL_INVALID_HANDLE.

Diagnostics
When SQLSetScrollOptions returns SQL_ERROR or SQL_SUCCESS_WITH_INFO, an
associated SQLSTATE value may be obtained by calling SQLError . The following table
lists the SQLSTATE values commonly returned by SQLSetScrollOptions and explains each
one in the context of this function; the notation “(DM)” precedes the descriptions of SQ
STATEs returned by the Driver Manager. The return code associated with each SQLST
value is SQL_ERROR, unless noted otherwise.

SDWORD crowKeyset Input Number of rows for which to buffer keys.
This value must be greater than or equal to
crowRowset or one of the following values:

SQL_SCROLL_FORWARD_ONLY: The
cursor only scrolls forward.

SQL_SCROLL_STATIC: The data in the
result set is static.

SQL_SCROLL_KEYSET_DRIVEN: The
driver saves and uses the keys for every row
in the result set.

SQL_SCROLL_DYNAMIC: The driver
sets crowKeyset to the value of crowRowset.

If crowKeyset is a value greater than crow-
Rowset, the value defines the number of
rows in the keyset that are to be buffered by
the driver. This reflects a mixed scrollable
cursor; the cursor is keyset driven within the
keyset and dynamic outside of the keyset.

UWORD crowRowset Input Number of rows in a rowset. crowRowset
defines the number of rows fetched by each
call to SQLExtendedFetch; the number of
rows that the application buffers.
 Function Reference 5-279

SQLSetScrollOptions (ODBC 1.0, Level 2)
SQLSTATE Error Description

01000 General warning Driver-specific informational message. (Function
returns SQL_SUCCESS_WITH_INFO.)

IM001 Driver does not
support this func-
tion

(DM) The driver associated with the hstmt does not
support the function.

S1000 General error An error occurred for which there was no specific
SQLSTATE and for which no implementation-specific
SQLSTATE was defined. The error message returned
by SQLError in the argument szErrorMsg describes
the error and its cause.

S1001 Memory alloca-
tion failure

The driver was unable to allocate memory required to
support execution or completion of the function.

S1010 Function
sequence error

(DM) The specified hstmt was in a prepared or exe-
cuted state. The function must be called before calling
SQLPrepare or SQLExecDirect.

(DM) An asynchronously executing function was
called for the hstmt and was still executing when this
function was called.

(DM) SQLExecute, SQLExecDirect, or SQLSetPos
was called for the hstmt and returned
SQL_NEED_DATA. This function was called before
data was sent for all data-at-execution parameters or
columns.

S1107 Row value out of
range

(DM) The value specified for the argument crowKey-
set was less than 1, but was not equal to
SQL_SCROLL_FORWARD_ONLY,
SQL_SCROLL_STATIC,
SQL_SCROLL_KEYSET_DRIVEN, or
SQL_SCROLL_DYNAMIC.

(DM) The value specified for the argument crowKey-
set is greater than 0, but less than crowRowset.

(DM) The value specified for the argument crow-
Rowset was 0.
5-280 SOLID Programmer Guide

SQLSetScrollOptions (ODBC 1.0, Level 2)

ur-
Comments
If an application calls SQLSetScrollOptions for an hstmt, it must do so before it calls SQL-
Prepare or SQLExecDirect or creating a result set with a catalog function.

The application must specify a buffer in a call to SQLBindCol that is large enough to hold
the number of rows specified in crowRowset.

If the application does not call SQLSetScrollOptions, crowRowset has a default value of 1,
crowKeyset has a default value of SQL_SCROLL_FORWARD_ONLY, and fConcurrency
equals SQL_CONCUR_READ_ONLY.

For more information concerning scrollable cursors, see “Using Block and Scrollable C
sors” in Chapter 2, “Retrieving Results.”

Related Functions

S1108 Concurrency
option out of
range

(DM) The value specified for the argument fConcur-
rency was not equal to
SQL_CONCUR_READ_ONLY,
SQL_CONCUR_LOCK, SQL_CONCUR_ROWVER,
or SQL_CONCUR_VALUES.

S1C00 Driver not capa-
ble

The driver or data source does not support the concur-
rency control option specified in the argument fCon-
currency.

The driver does not support the cursor model specified
in the argument crowKeyset.

For information about See

Assigning storage for a column in a result set SQLBindCol

Fetching a block of data or scrolling through a

result set

SQLExtendedFetch (extension)

Positioning the cursor in a rowset SQLSetPos (extension)

Setting a statement option SQLSetStmtOption
 Function Reference 5-281

SQLSetStmtOption (ODBC 1.0, Level 1)

-
ATE
SQLSetStmtOption (ODBC 1.0, Level 1)
SQLSetStmtOption sets options related to an hstmt. To set an option for all statements
associated with a specific hdbc, an application can call SQLSetConnectOption.

Syntax
RETCODE SQLSetStmtOption(hstmt, fOption, vParam)

The SQLSetStmtOption function accepts the following arguments:

Returns
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_ERROR, or
SQL_INVALID_HANDLE.

Diagnostics
When SQLSetStmtOption returns SQL_ERROR or SQL_SUCCESS_WITH_INFO, an
associated SQLSTATE value may be obtained by calling SQLError . The following table
lists the SQLSTATE values commonly returned by SQLSetStmtOption and explains each
one in the context of this function; the notation “(DM)” precedes the descriptions of SQL
STATEs returned by the Driver Manager. The return code associated with each SQLST
value is SQL_ERROR, unless noted otherwise.

Type Argument Use Description

HSTMT hstmt Input Statement handle.

UWORD fOption Input Option to set, listed in “Comments.”

UDWORD vParam Input Value associated with fOption. Depending
on the value of fOption, vParam will be a
32-bit integer value or point to a null-ter-
minated character string.

SQLSTATE Error Description

01000 General warning Driver-specific informational message. (Func-
tion returns SQL_SUCCESS_WITH_INFO.)

01S02 Option value changed The driver did not support the specified value of
the vParam argument and substituted a similar
value. (Function returns
SQL_SUCCESS_WITH_INFO.)
5-282 SOLID Programmer Guide

SQLSetStmtOption (ODBC 1.0, Level 1)
08S01 Communication link
failure

The communication link between the driver and
the data source to which the driver was con-
nected failed before the function completed pro-
cessing.

24000 Invalid cursor state The fOption was SQL_CONCURRENCY,
SQL_CURSOR_TYPE,
SQL_SIMULATE_CURSOR, or
SQL_USE_BOOKMARKS and the cursor was
open.

IM001 Driver does not sup-
port this function

(DM) The driver associated with the hstmt does
not support the function.

S1000 General error An error occurred for which there was no spe-
cific SQLSTATE and for which no implementa-
tion-specific SQLSTATE was defined. The error
message returned by SQLError in the argu-
ment szErrorMsg describes the error and its
cause.

S1001 Memory allocation
failure

The driver was unable to allocate memory
required to support execution or completion of
the function.

S1009 Invalid argument value Given the specified fOption value, an invalid
value was specified for the argument vParam.
(The Driver Manager returns this SQLSTATE
only for statement options that accept a discrete
set of values, such as SQL_ASYNC_ENABLE.
For all other statement options, the driver must
verify the value of the argument vParam.)

S1010 Function sequence
error

(DM) An asynchronously executing function
was called for the hstmt and was still executing
when this function was called.

(DM) SQLExecute, SQLExecDirect, or
SQLSetPos was called for the hstmt and
returned SQL_NEED_DATA. This function was
called before data was sent for all data-at-exe-
cution parameters or columns.

S1011 Operation invalid at
this time

The fOption was SQL_CONCURRENCY,
SQL_CURSOR_TYPE,
SQL_SIMULATE_CURSOR, or
SQL_USE_BOOKMARKS and the statement
was prepared.
 Function Reference 5-283

SQLSetStmtOption (ODBC 1.0, Level 1)

not

m-

eter-

re

 val-
se.

r-
tion.

-

Comments
Statement options for an hstmt remain in effect until they are changed by another call to
SQLSetStmtOption or the hstmt is dropped by calling SQLFreeStmt with the SQL_DROP
option. Calling SQLFreeStmt with the SQL_CLOSE, SQL_UNBIND, or
SQL_RESET_PARAMS options does not reset statement options.

Some statement options support substitution of a similar value if the data source does
support the specified value of vParam. In such cases, the driver returns
SQL_SUCCESS_WITH_INFO and SQLSTATE 01S02 (Option value changed). For exa
ple, if fOption is SQL_CONCURRENCY, vParam is SQL_CONCUR_ROWVER, and the
data source does not support this, the driver substitutes SQL_CONCUR_VALUES. To d
mine the substituted value, an application calls SQLGetStmtOption.

The currently defined options and the version of ODBC in which they were introduced a
shown below; it is expected that more will be defined to take advantage of different data
sources. Options from 0 to 999 are reserved by ODBC; driver developers must reserve
ues greater than or equal to SQL_CONNECT_OPT_DRVR_START for driver-specific u

The format of information set with vParam depends on the specified fOption. SQLSetStm-
tOption accepts option information in one of two different formats: a null-terminated cha
acter string or a 32-bit integer value. The format of each is noted in the option’s descrip
This format applies to the information returned for each option in SQLGetStmtOption.
Character strings pointed to by the vParam argument of SQLSetStmtOption have a maxi-
mum length of SQL_MAX_OPTION_STRING_LENGTH bytes (excluding the null termi
nation byte).

S1092 Option type out of
range

(DM) The value specified for the argument fOp-
tion was in the block of numbers reserved for
ODBC connection and statement options, but
was not valid for the version of ODBC sup-
ported by the driver.

S1C00 Driver not capable The value specified for the argument fOption
was a valid ODBC statement option for the ver-
sion of ODBC supported by the driver, but was
not supported by the driver.

The value specified for the argument fOption
was in the block of numbers reserved for driver-
specific connection and statement options, but
was not supported by the driver.
5-284 SOLID Programmer Guide

SQLSetStmtOption (ODBC 1.0, Level 1)
fOption vParam Contents

SQL_ASYNC_ENABLE
(ODBC 1.0)

A 32-bit integer value that specifies whether a function called
with the specified hstmt is executed asynchronously:

SQL_ASYNC_ENABLE_OFF = Off (the default)

SQL_ASYNC_ENABLE_ON = On

Once a function has been called asynchronously, no other func-
tions can be called on the hstmt or the hdbc associated with the
hstmt except for the original function, SQLAllocStmt, SQL-
Cancel, or SQLGetFunctions, until the original function
returns a code other than SQL_STILL_EXECUTING. Any
other function called on the hstmt returns SQL_ERROR with
an SQLSTATE of S1010 (Function sequence error). Functions
can be called on other hstmts. For more information, see “Exe-
cuting Functions Asynchronously” in Chapter 2.

The following functions can be executed asynchronously:

SQLColAttributes
SQLColumnPrivileges
SQLColumns
SQLDescribeCol
SQLDescribeParam
SQLExecDirect
SQLExecute
SQLExtendedFetch
SQLFetch
SQLGetData
SQLGetTypeInfo

SQLNumParams
SQLNumResultCols
SQLParamData
SQLPrepare
SQLPrimaryKeys
SQLPutData
SQLSetPos
SQLSpecialColumns
SQLStatistics
SQLTables
 Function Reference 5-285

SQLSetStmtOption (ODBC 1.0, Level 1)
SQL_BIND_TYPE
(ODBC 1.0)

A 32-bit integer value that sets the binding orientation to be
used when SQLExtendedFetch is called on the associated
hstmt. Column-wise binding is selected by supplying the
defined constant SQL_BIND_BY_COLUMN for the argument
vParam. Row-wise binding is selected by supplying a value for
vParam specifying the length of a structure or an instance of a
buffer into which result columns will be bound.

The length specified in vParam must include space for all of the
bound columns and any padding of the structure or buffer to
ensure that when the address of a bound column is incre-
mented with the specified length, the result will point to the
beginning of the same column in the next row. When using the
sizeof operator with structures or unions in ANSI C, this behav-
ior is guaranteed.

Column-wise binding is the default binding orientation for
SQLExtendedFetch.

SQL_CONCURRENCY
(ODBC 2.0)

A 32-bit integer value that specifies the cursor concurrency:

SQL_CONCUR_READ_ONLY = Cursor is read-only. No
updates are allowed.

SQL_CONCUR_LOCK = Cursor uses the lowest level of lock-
ing sufficient to ensure that the row can be updated.

SQL_CONCUR_ROWVER = Cursor uses optimistic concur-
rency control, comparing row versions.

SQL_CONCUR_VALUES = Cursor uses optimistic concur-
rency control, comparing values.

The default value is SQL_CONCUR_READ_ONLY. This
option cannot be specified for an open cursor and can also be
set through the fConcurrency argument in SQLSetScrollOp-
tions.

If the specified concurrency is not supported by the data source,
the driver substitutes a different concurrency and returns SQL-
STATE 01S02 (Option value changed). For
SQL_CONCUR_VALUES, the driver substitutes
SQL_CONCUR_ROWVER, and vice versa. For
SQL_CONCUR_LOCK, the driver substitutes, in order,
SQL_CONCUR_ROWVER or SQL_CONCUR_VALUES.
5-286 SOLID Programmer Guide

SQLSetStmtOption (ODBC 1.0, Level 1)
SQL_CURSOR_TYPE
(ODBC 2.0)

A 32-bit integer value that specifies the cursor type:

SQL_CURSOR_FORWARD_ONLY = The cursor only scrolls
forward.

SQL_CURSOR_STATIC = The data in the result set is static.

SQL_CURSOR_KEYSET_DRIVEN = The driver saves and
uses the keys for the number of rows specified in the
SQL_KEYSET_SIZE statement option.

SQL_CURSOR_DYNAMIC = The driver only saves and uses
the keys for the rows in the rowset.

The default value is SQL_CURSOR_FORWARD_ONLY. This
option cannot be specified for an open cursor and can also be
set through the crowKeyset argument in SQLSetScrollOp-
tions.

If the specified cursor type is not supported by the data source,
the driver substitutes a different cursor type and returns SQL-
STATE 01S02 (Option value changed). For a mixed or dynamic
cursor, the driver substitutes, in order, a keyset-driven or static
cursor. For a keyset-driven cursor, the driver substitutes a static
cursor.

SQL_KEYSET_SIZE
(ODBC 2.0)

A 32-bit integer value that specifies the number of rows in the
keyset for a keyset-driven cursor. If the keyset size is 0 (the
default), the cursor is fully keyset-driven. If the keyset size is
greater than 0, the cursor is mixed (keyset-driven within the
keyset and dynamic outside of the keyset). The default keyset
size is 0.

If the specified size exceeds the maximum keyset size, the
driver substitutes that size and returns SQLSTATE 01S02
(Option value changed).

SQLExtendedFetch returns an error if the keyset size is
greater than 0 and less than the rowset size.
 Function Reference 5-287

SQLSetStmtOption (ODBC 1.0, Level 1)
SQL_MAX_LENGTH
(ODBC 1.0)

A 32-bit integer value that specifies the maximum amount of
data that the driver returns from a character or binary column.
If vParam is less than the length of the available data,
SQLFetch or SQLGetData truncates the data and returns
SQL_SUCCESS. If vParam is 0 (the default), the driver
attempts to return all available data.

If the specified length is less than the minimum amount of data
that the data source can return (the minimum is 254 bytes on
many data sources), or greater than the maximum amount of
data that the data source can return, the driver substitutes that
value and returns SQLSTATE 01S02 (Option value changed).

This option is intended to reduce network traffic and should
only be supported when the data source (as opposed to the
driver) in a multiple-tier driver can implement it. To truncate
data, an application should specify the maximum buffer length
in the cbValueMax argument in SQLBindCol or SQLGetData.

1RWH In ODBC 1.0, this statement option only applied to
SQL_LONGVARCHAR and SQL_LONGVARBINARY col-
umns.

SQL_MAX_ROWS

(ODBC 1.0)

A 32-bit integer value corresponding to the maximum number
of rows to return to the application for a SELECT statement. If
vParam equals 0 (the default), then the driver returns all rows.

This option is intended to reduce network traffic. Conceptually,
it is applied when the result set is created and limits the result
set to the first vParam rows.

If the specified number of rows exceeds the number of rows
that can be returned by the data source, the driver substitutes
that value and returns SQLSTATE 01S02 (Option value
changed).

SQL_NOSCAN

(ODBC 1.0)

A 32-bit integer value that specifies whether the driver does not
scan SQL strings for escape clauses:

SQL_NOSCAN_OFF = The driver scans SQL strings for
escape clauses (the default).

SQL_NOSCAN_ON = The driver does not scan SQL strings
for escape clauses. Instead, the driver sends the statement
directly to the data source.
5-288 SOLID Programmer Guide

SQLSetStmtOption (ODBC 1.0, Level 1)
SQL_QUERY_
TIMEOUT
(ODBC 1.0)

A 32-bit integer value corresponding to the number of seconds
to wait for an SQL statement to execute before returning to the
application. If vParam equals 0 (the default), then there is no
time out.

If the specified timeout exceeds the maximum timeout in the
data source or is smaller than the minimum timeout, the driver
substitutes that value and returns SQLSTATE 01S02 (Option
value changed).

Note that the application need not call SQLFreeStmt with the
SQL_CLOSE option to reuse the hstmt if a SELECT state-
ment timed out.

SQL_RETRIEVE_DATA
(ODBC 2.0)

A 32-bit integer value:

SQL_RD_ON = SQLExtendedFetch retrieves data after it
positions the cursor to the specified location. This is the default.

SQL_RD_OFF = SQLExtendedFetch does not retrieve data
after it positions the cursor.

By setting SQL_RETRIEVE_DATA to SQL_RD_OFF, an
application can verify if a row exists or retrieve a bookmark for
the row without incurring the overhead of retrieving rows.

SQL_ROWSET_SIZE
(ODBC 2.0)

A 32-bit integer value that specifies the number of rows in the
rowset. This is the number of rows returned by each call to
SQLExtendedFetch. The default value is 1.

If the specified rowset size exceeds the maximum rowset size
supported by the data source, the driver substitutes that value
and returns SQLSTATE 01S02 (Option value changed).

This option can be specified for an open cursor and can also be
set through the crowRowset argument in SQLSetScrollOp-
tions.
 Function Reference 5-289

SQLSetStmtOption (ODBC 1.0, Level 1)
SQL_SIMULATE_
CURSOR
(ODBC 2.0)

A 32-bit integer value that specifies whether drivers that simu-
late positioned update and delete statements guarantee that such
statements affect only one single row.

To simulate positioned update and delete statements, most driv-
ers construct a searched UPDATE or DELETE statement con-
taining a WHERE clause that specifies the value of each
column in the current row. Unless these columns comprise a
unique key, such a statement may affect more than one row.

To guarantee that such statements affect only one row, the
driver determines the columns in a unique key and adds these
columns to the result set. If an application guarantees that the
columns in the result set comprise a unique key, the driver is
not required to do so. This may reduce execution time.

SQL_SC_NON_UNIQUE = The driver does not guarantee that
simulated positioned update or delete statements will affect
only one row; it is the application’s responsibility to do so. If a
statement affects more than one row, SQLExecute or SQLEx-
ecDirect returns SQLSTATE 01000 (General warning).

SQL_SC_TRY_UNIQUE = The driver attempts to guarantee
that simulated positioned update or delete statements affect
only one row. The driver always executes such statements, even
if they might affect more than one row, such as when there is no
unique key. If a statement affects more than one row, SQLExe-
cute or SQLExecDirect returns SQLSTATE 01000 (General
warning).

SQL_SC_UNIQUE = The driver guarantees that simulated
positioned update or delete statements affect only one row. If
the driver cannot guarantee this for a given statement, SQLEx-
ecDirect or SQLPrepare returns an error.

If the specified cursor simulation type is not supported by the
data source, the driver substitutes a different simulation type
and returns SQLSTATE 01S02 (Option value changed). For
SQL_SC_UNIQUE, the driver substitutes, in order,
SQL_SC_TRY_UNIQUE or SQL_SC_NON_UNIQUE. For
SQL_SC_TRY_UNIQUE, the driver substitutes
SQL_SC_NON_UNIQUE.

If a driver does not simulate positioned update and delete state-
ments, it returns SQLSTATE S1C00 (Driver not capable).
5-290 SOLID Programmer Guide

SQLSetStmtOption (ODBC 1.0, Level 1)
Code Example

See SQLExtendedFetch.

Related Functions

SQL_USE_
BOOKMARKS
(ODBC 2.0)

A 32-bit integer value that specifies whether an application will
use bookmarks with a cursor:

SQL_UB_OFF = Off (the default)

SQL_UB_ON = On

To use bookmarks with a cursor, the application must specify
this option with the SQL_UB_ON value before opening the
cursor.

For information about See

Canceling statement processing SQLCancel

Returning the setting of a connection option SQLGetConnectOption (extension)

Returning the setting of a statement option SQLGetStmtOption (extension)

Setting a connection option SQLSetConnectOption (extension)
 Function Reference 5-291

SQLSpecialColumns (ODBC 1.0, Level 1)

SQLSpecialColumns (ODBC 1.0, Level 1)
SQLSpecialColumns retrieves the following information about columns within a specified
table:

■ Τhe optimal set of columns that uniquely identifies a row in the table.

■ Columns that are automatically updated when any value in the row is updated by a
transaction.

Syntax
RETCODE SQLSpecialColumns(hstmt, fColType, szTableQualifier, cbTableQualifier,
szTableOwner, cbTableOwner, szTableName, cbTableName, fScope, fNullable)

The SQLSpecialColumns function accepts the following arguments:

Type Argument Use Description

HSTMT hstmt Input Statement handle.

UWORD fColType Input Type of column to return. Must be one of
the following values:

SQL_BEST_ROWID: Returns the opti-
mal column or set of columns that, by
retrieving values from the column or col-
umns, allows any row in the specified
table to be uniquely identified. A col-
umn can be either a pseudocolumn spe-
cifically designed for this purpose or the
column or columns of any unique index
for the table.

SQL_ROWVER: Returns the column or
columns in the specified table, if any,
that are automatically updated by the
data source when any value in the row is
updated by any transaction.

UCHAR FAR * szTableQualifier Input Qualifier name for the table. If a driver
supports qualifiers for some tables but
not for others, such as when the driver
retrieves data from different DBMSs, an
empty string ("") denotes those tables
that do not have qualifiers.

SWORD cbTableQualifier Input Length of szTableQualifier.
5-292 SOLID Programmer Guide

SQLSpecialColumns (ODBC 1.0, Level 1)
Returns
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_STILL_EXECUTING,
SQL_ERROR, or SQL_INVALID_HANDLE.

UCHAR FAR * szTableOwner Input Owner name for the table. If a driver
supports owners for some tables but not
for others, such as when the driver
retrieves data from different DBMSs, an
empty string ("") denotes those tables
that do not have owners.

SWORD cbTableOwner Input Length of szTableOwner.

UCHAR FAR * szTableName Input Table name.

SWORD cbTableName Input Length of szTableName.

UWORD fScope Input Minimum required scope of the rowid.
The returned rowid may be of greater
scope. Must be one of the following:

SQL_SCOPE_CURROW: The rowid is
guaranteed to be valid only while posi-
tioned on that row. A later reselect using
rowid may not return a row if the row
was updated or deleted by another trans-
action.

SQL_SCOPE_TRANSACTION: The
rowid is guaranteed to be valid for the
duration of the current transaction.

SQL_SCOPE_SESSION: The rowid is
guaranteed to be valid for the duration of
the session (across transaction bound-
aries).

UWORD fNullable Input Determines whether to return special
columns that can have a NULL value.
Must be one of the following:

SQL_NO_NULLS: Exclude special col-
umns that can have NULL values.

SQL_NULLABLE: Return special col-
umns even if they can have NULL val-
ues.
 Function Reference 5-293

SQLSpecialColumns (ODBC 1.0, Level 1)

-
ATE
Diagnostics
When SQLSpecialColumns returns SQL_ERROR or SQL_SUCCESS_WITH_INFO, an
associated SQLSTATE value may be obtained by calling SQLError . The following table
lists the SQLSTATE values commonly returned by SQLSpecialColumns and explains each
one in the context of this function; the notation “(DM)” precedes the descriptions of SQL
STATEs returned by the Driver Manager. The return code associated with each SQLST
value is SQL_ERROR, unless noted otherwise.

SQLSTATE Error Description

01000 General warning Driver-specific informational message.
(Function returns
SQL_SUCCESS_WITH_INFO.)

08S01 Communication link failure The communication link between the
driver and the data source to which the
driver was connected failed before the
function completed processing.

24000 Invalid cursor state (DM) A cursor was open on the hstmt
and SQLFetch or SQLExtendedFetch
had been called.

A cursor was open on the hstmt but
SQLFetch or SQLExtendedFetch had
not been called.

IM001 Driver does not support this
function

(DM) The driver associated with the
hstmt does not support the function.

S1000 General error An error occurred for which there was
no specific SQLSTATE and for which
no implementation-specific SQL-
STATE was defined. The error message
returned by SQLError in the argument
szErrorMsg describes the error and its
cause.

S1001 Memory allocation failure The driver was unable to allocate mem-
ory required to support execution or
completion of the function.
5-294 SOLID Programmer Guide

SQLSpecialColumns (ODBC 1.0, Level 1)
S1008 Operation canceled Asynchronous processing was enabled
for the hstmt. The function was called
and before it completed execution,
SQLCancel was called on the hstmt.
Then the function was called again on
the hstmt.

The function was called and, before it
completed execution, SQLCancel was
called on the hstmt from a different
thread in a multithreaded application.

S1010 Function sequence error (DM) An asynchronously executing
function (not this one) was called for
the hstmt and was still executing when
this function was called.

(DM) SQLExecute, SQLExecDirect,
or SQLSetPos was called for the hstmt
and returned SQL_NEED_DATA. This
function was called before data was
sent for all data-at-execution parame-
ters or columns.

S1090 Invalid string or buffer length (DM) The value of one of the length
arguments was less than 0, but not
equal to SQL_NTS.

The value of one of the length argu-
ments exceeded the maximum length
value for the corresponding qualifier or
name. The maximum length of each
qualifier or name may be obtained by
calling SQLGetInfo with the fInfoType
values:
SQL_MAX_QUALIFIER_NAME_LE
N,
SQL_MAX_OWNER_NAME_LEN, or
SQL_MAX_TABLE_NAME_LEN.

S1097 Column type out of range (DM) An invalid fColType value was
specified.

S1098 Scope type out of range (DM) An invalid fScope value was
specified.

S1099 Nullable type out of range (DM) An invalid fNullable value was
specified.
 Function Reference 5-295

SQLSpecialColumns (ODBC 1.0, Level 1)

lla-

 be

ted
he
-

e

s
-

Comments
SQLSpecialColumns is provided so that applications can provide their own custom scro
ble-cursor functionality, similar to that provided by SQLExtendedFetch and SQLSetStm-
tOption .

When the fColType argument is SQL_BEST_ROWID, SQLSpecialColumns returns the col-
umn or columns that uniquely identify each row in the table. These columns can always
used in a select-list or WHERE clause. However, SQLColumns does not necessarily return
these columns. If there are no columns that uniquely identify each row in the table, SQL-
SpecialColumns returns a rowset with no rows; a subsequent call to SQLFetch or SQLEx-
tendedFetch on the hstmt returns SQL_NO_DATA_FOUND.

If the fColType, fScope, or fNullable arguments specify characteristics that are not suppor
by the data source, SQLSpecialColumns returns a result set with no rows (as opposed to t
function returning SQL_ERROR with SQLSTATE S1C00 (Driver not capable)). A subse
quent call to SQLFetch or SQLExtendedFetch on the hstmt will return
SQL_NO_DATA_FOUND.

SQLSpecialColumns returns the results as a standard result set, ordered by SCOPE. Th
following table lists the columns in the result set.

The lengths of VARCHAR columns shown in the table are maximums; the actual length
depend on the data source. To determine the actual length of the COLUMN_NAME col

S1C00 Driver not capable A table qualifier was specified and the
driver or data source does not support
qualifiers.

A table owner was specified and the
driver or data source does not support
owners.

The combination of the current settings
of the SQL_CONCURRENCY and
SQL_CURSOR_TYPE statement
options was not supported by the driver
or data source.

S1T00 Timeout expired The timeout period expired before the
data source returned the requested
result set. The timeout period is set
through SQLSetStmtOption,
SQL_QUERY_TIMEOUT.
5-296 SOLID Programmer Guide

SQLSpecialColumns (ODBC 1.0, Level 1)
umn, an application can call SQLGetInfo with the SQL_MAX_COLUMN_NAME_LEN
option.

Column Name Data Type Comments

SCOPE Smallint Actual scope of the rowid. Contains one of
the following values:

SQL_SCOPE_CURROW

SQL_SCOPE_TRANSACTION

SQL_SCOPE_SESSION

NULL is returned when fColType is
SQL_ROWVER. For a description of each
value, see the description of fScope in the
“Syntax” section above.

COLUMN_NAME Varchar(128)
not NULL

Column identifier.

DATA_TYPE

Smallint
not NULL

SQL data type. This can be an ODBC
SQL data type or a driver-specific SQL
data type. For a list of valid ODBC SQL
data types, see “SQL Data Types” on
page D-2. For information about driver-
specific SQL data types, see the driver’s
documentation.

TYPE_NAME Varchar(128)
not NULL

Data source–dependent data type name;
for example, “CHAR”, “VARCHAR”,
“MONEY”, “LONG VARBINARY”, or
“CHAR () FOR BIT DATA”.

PRECISION Integer The precision of the column on the data
source. NULL is returned for data types
where precision is not applicable. For
more information concerning precision,
see “Precision, Scale, Length, and
Display Size” on page D-14.”
 Function Reference 5-297

SQLSpecialColumns (ODBC 1.0, Level 1)

these

ot
were
NOTE: The PSEUDO_COLUMN column was added in ODBC 2.0. ODBC 1.0 drivers
might return a different, driver-specific column with the same column number.

Once the application retrieves values for SQL_BEST_ROWID, the application can use
values to reselect that row within the defined scope. The SELECT statement is guaranteed
to return either no rows or one row.

If an application reselects a row based on the rowid column or columns and the row is n
found, then the application can assume that the row was deleted or the rowid columns

LENGTH Integer The length in bytes of data transferred on
an SQLGetData or SQLFetch operation
if SQL_C_DEFAULT is specified. For
numeric data, this size may be different
than the size of the data stored on the data
source. This value is the same as the PRE-
CISION column for character or binary

data. For more information, see “Preci-
sion, Scale, Length, and Display Size”
on page D-14.

SCALE Smallint The scale of the column on the data source.
NULL is returned for data types where
scale is not applicable. For more informa-

tion concerning scale, see “Precision,
Scale, Length, and Display Size” on
page D-14.”

PSEUDO_COLUMN Smallint Indicates whether the column is a pseudo-
column:
SQL_PC_UNKNOWN

SQL_PC_PSEUDO

SQL_PC_NOT_PSEUDO

1RWH For maximum interoperability,
pseudo-columns should not be quoted
with the identifier quote character
returned by SQLGetInfo.
5-298 SOLID Programmer Guide

SQLSpecialColumns (ODBC 1.0, Level 1)

s in

ta
hile

-
n the

 the
e-
 can
f the
lert
modified. The opposite is not true: even if the rowid has not changed, the other column
the row may have changed.

Columns returned for column type SQL_BEST_ROWID are useful for applications that
need to scroll forwards and backwards within a result set to retrieve the most recent da
from a set of rows. The column or columns of the rowid are guaranteed not to change w
positioned on that row.

The column or columns of the rowid may remain valid even when the cursor is not posi
tioned on the row; the application can determine this by checking the SCOPE column i
result set.

Columns returned for column type SQL_ROWVER are useful for applications that need
ability to check if any columns in a given row have been updated while the row was res
lected using the rowid. For example, after reselecting a row using rowid, the application
compare the previous values in the SQL_ROWVER columns to the ones just fetched. I
value in a SQL_ROWVER column differs from the previous value, the application can a
the user that data on the display has changed.

Code Example
For a code example of a similar function, see SQLColumns.

Related Functions

For information about See

Assigning storage for a column in a result set SQLBindCol

Canceling statement processing SQLCancel

Returning the columns in a table or tables SQLColumns (extension)

Fetching a block of data or scrolling through a
result set

SQLExtendedFetch (extension)

Fetching a row of data SQLFetch

Returning the columns of a primary key SQLPrimaryKeys (extension)
 Function Reference 5-299

SQLStatistics (ODBC 1.0, Level 1)

d
SQLStatistics (ODBC 1.0, Level 1)
SQLStatistics retrieves a list of statistics about a single table and the indexes associate
with the table. The driver returns the information as a result set.

Syntax
RETCODE SQLStatistics(hstmt, szTableQualifier, cbTableQualifier,
szTableOwner, cbTableOwner, szTableName, cbTableName, fUnique, fAccuracy)

The SQLStatistics function accepts the following arguments:

Type Argument Use Description

HSTMT hstmt Input Statement handle.

UCHAR FAR * szTableQualifier Input Qualifier name. If a driver supports
qualifiers for some tables but not
for others, such as when the driver
retrieves data from different
DBMSs, an empty string ("")
denotes those tables that do not
have qualifiers.

SWORD cbTableQualifier Input Length of szTableQualifier.

UCHAR FAR * szTableOwner Input Owner name. If a driver supports
owners for some tables but not for
others, such as when the driver
retrieves data from different
DBMSs, an empty string ("")
denotes those tables that do not
have owners.

SWORD cbTableOwner Input Length of szTableOwner.

UCHAR FAR * szTableName Input Table name.

SWORD cbTableName Input Length of szTableName.

UWORD fUnique Input Type of index:
SQL_INDEX_UNIQUE or
SQL_INDEX_ALL.
5-300 SOLID Programmer Guide

SQLStatistics (ODBC 1.0, Level 1)

ned
Returns
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_STILL_EXECUTING,
SQL_ERROR, or SQL_INVALID_HANDLE.

Diagnostics
When SQLStatistics returns SQL_ERROR or SQL_SUCCESS_WITH_INFO, an associ-
ated SQLSTATE value may be obtained by calling SQLError . The following table lists the
SQLSTATE values commonly returned by SQLStatistics and explains each one in the con-
text of this function; the notation “(DM)” precedes the descriptions of SQLSTATEs retur
by the Driver Manager. The return code associated with each SQLSTATE value is
SQL_ERROR, unless noted otherwise.

UWORD fAccuracy Input The importance of the CARDI-
NALITY and PAGES columns in
the result set:

SQL_ENSURE requests that the
driver unconditionally retrieve the
statistics.

SQL_QUICK requests that the
driver retrieve results only if they
are readily available from the
server. In this case, the driver does
not ensure that the values are cur-
rent.

SQLSTATE Error Description

01000 General warning Driver-specific informational mes-
sage. (Function returns
SQL_SUCCESS_WITH_INFO.)

08S01 Communication link failure The communication link between
the driver and the data source to
which the driver was connected
failed before the function com-
pleted processing.
 Function Reference 5-301

SQLStatistics (ODBC 1.0, Level 1)
24000 Invalid cursor state (DM) A cursor was open on the
hstmt and SQLFetch or SQLEx-
tendedFetch had been called.

A cursor was open on the hstmt but
SQLFetch or SQLExtendedFetch
had not been called.

IM001 Driver does not support this func-
tion

(DM) The driver associated with
the hstmt does not support the func-
tion.

S1000 General error An error occurred for which there
was no specific SQLSTATE and for
which no implementation-specific
SQLSTATE was defined. The error
message returned by SQLError in
the argument szErrorMsg describes
the error and its cause.

S1001 Memory allocation failure The driver was unable to allocate
memory required to support execu-
tion or completion of the function.

S1008 Operation canceled Asynchronous processing was
enabled for the hstmt. The function
was called and before it completed
execution, SQLCancel was called
on the hstmt. Then the function was
called again on the hstmt.

The function was called and, before
it completed execution, SQLCan-
cel was called on the hstmt from a
different thread in a multithreaded
application.
5-302 SOLID Programmer Guide

SQLStatistics (ODBC 1.0, Level 1)
S1010 Function sequence error (DM) An asynchronously execut-
ing function (not this one) was
called for the hstmt and was still
executing when this function was
called.

(DM) SQLExecute, SQLExecDi-
rect, or SQLSetPos was called for
the hstmt and returned
SQL_NEED_DATA. This function
was called before data was sent for
all data-at-execution parameters or
columns.

S1090 Invalid string or buffer length (DM) The value of one of the name
length arguments was less than 0,
but not equal to SQL_NTS.

The value of one of the name
length arguments exceeded the
maximum length value for the cor-
responding qualifier or name.

S1100 Uniqueness option type out of
range

(DM) An invalid fUnique value was
specified.

S1101 Accuracy option type out of range (DM) An invalid fAccuracy value
was specified.

S1C00 Driver not capable A table qualifier was specified and
the driver or data source does not
support qualifiers.

A table owner was specified and
the driver or data source does not
support owners.

The combination of the current set-
tings of the
SQL_CONCURRENCY and
SQL_CURSOR_TYPE statement
options was not supported by the
driver or data source.
 Function Reference 5-303

SQLStatistics (ODBC 1.0, Level 1)

by

x.

s
,
Comments
SQLStatistics returns information about a single table as a standard result set, ordered
NON_UNIQUE, TYPE, INDEX_QUALIFIER, INDEX_NAME, and SEQ_IN_INDEX. The
result set combines statistics information for the table with information about each inde
The following table lists the columns in the result set.

Note SQLStatistics might not return all indexes. Applications can use any valid index,
regardless of whether it is returned by SQLStatistics.

The lengths of VARCHAR columns shown in the table are maximums; the actual length
depend on the data source. To determine the actual lengths of the TABLE_QUALIFIER
TABLE_OWNER, TABLE_NAME, and COLUMN_NAME columns, an application can
call SQLGetInfo with the SQL_MAX_QUALIFIER_NAME_LEN,
SQL_MAX_OWNER_NAME_LEN, SQL_MAX_TABLE_NAME_LEN, and
SQL_MAX_COLUMN_NAME_LEN options.

S1T00 Timeout expired The timeout period expired before
the data source returned the
requested result set. The timeout
period is set through SQLSetStm-
tOption ,
SQL_QUERY_TIMEOUT.

Column Name Data Type Comments

TABLE_QUALIFIER Varchar(128) Table qualifier identifier of the table to
which the statistic or index applies;
NULL if not applicable to the data
source. If a driver supports qualifiers for
some tables but not for others, such as
when the driver retrieves data from differ-
ent DBMSs, it returns an empty string
("") for those tables that do not have qual-
ifiers.

TABLE_OWNER Varchar(128) Table owner identifier of the table to
which the statistic or index applies;
NULL if not applicable to the data
source. If a driver supports owners for
some tables but not for others, such as
when the driver retrieves data from differ-
ent DBMSs, it returns an empty string
("") for those tables that do not have own-
ers.
5-304 SOLID Programmer Guide

SQLStatistics (ODBC 1.0, Level 1)
TABLE_NAME Varchar(128)

not NULL

Table identifier of the table to which the
statistic or index applies.

NON_UNIQUE Smallint Indicates whether the index prohibits
duplicate values:

TRUE if the index values can be nonu-
nique.

FALSE if the index values must be
unique.

NULL is returned if TYPE is
SQL_TABLE_STAT.

INDEX_QUALIFIER Varchar(128) The identifier that is used to qualify the
index name doing a DROP INDEX ;
NULL is returned if an index qualifier is
not supported by the data source or if
TYPE is SQL_TABLE_STAT. If a non-
null value is returned in this column, it
must be used to qualify the index name
on a DROP INDEX statement; other-
wise the TABLE_OWNER name should
be used to qualify the index name.

INDEX_NAME Varchar(128) Index identifier; NULL is returned if
TYPE is SQL_TABLE_STAT.

TYPE Smallint
not NULL

Type of information being returned:

SQL_TABLE_STAT indicates a statistic
for the table.

SQL_INDEX_CLUSTERED indicates a
clustered index.

SQL_INDEX_HASHED indicates a
hashed index.

SQL_INDEX_OTHER indicates another
type of index.

SEQ_IN_INDEX Smallint Column sequence number in index (start-
ing with 1); NULL is returned if TYPE is
SQL_TABLE_STAT.
 Function Reference 5-305

SQLStatistics (ODBC 1.0, Level 1)
NOTE: The FILTER_CONDITION column was added in ODBC 2.0. ODBC 1.0 drivers
might return a different, driver-specific column with the same column number.

COLUMN_NAME Varchar(128) Column identifier. If the column is based
on an expression, such as SALARY +
BENEFITS, the expression is returned; if
the expression cannot be determined, an
empty string is returned. If the index is a
filtered index, each column in the filter
condition is returned; this may require
more than one row. NULL is returned if
TYPE is SQL_TABLE_STAT.

COLLATION Char(1) Sort sequence for the column; “A” for
ascending; “D” for descending; NULL is
returned if column sort sequence is not
supported by the data source or if TYPE
is SQL_TABLE_STAT.

CARDINALITY Integer Cardinality of table or index; number of
rows in table if TYPE is
SQL_TABLE_STAT; number of unique
values in the index if TYPE is not
SQL_TABLE_STAT; NULL is returned if
the value is not available from the data
source.

PAGES Integer Number of pages used to store the index
or table; number of pages for the table if
TYPE is SQL_TABLE_STAT; number of
pages for the index if TYPE is not
SQL_TABLE_STAT; NULL is returned if
the value is not available from the data
source, or if not applicable to the data
source.

FILTER_CONDITION Varchar(128) If the index is a filtered index, this is the
filter condition, such as SALARY >
30000; if the filter condition cannot be
determined, this is an empty string.

NULL if the index is not a filtered index,
it cannot be determined whether the
index is a filtered index, or TYPE is
SQL_TABLE_STAT.
5-306 SOLID Programmer Guide

SQLStatistics (ODBC 1.0, Level 1)
If the row in the result set corresponds to a table, the driver sets TYPE to
SQL_TABLE_STAT and sets NON_UNIQUE, INDEX_QUALIFIER, INDEX_NAME,
SEQ_IN_INDEX, COLUMN_NAME, and COLLATION to NULL. If CARDINALITY or
PAGES are not available from the data source, the driver sets them to NULL.

Code Example
For a code example of a similar function, see SQLColumns.

Related Functions

For information about See

Assigning storage for a column in a result set SQLBindCol

Canceling statement processing SQLCancel

Fetching a block of data or scrolling through a
result set

SQLExtendedFetch (extension)

Fetching a row of data SQLFetch

Returning the columns of a primary key SQLPrimaryKeys (extension)
 Function Reference 5-307

SQLTables (ODBC 1.0, Level 1)

turns
SQLTables (ODBC 1.0, Level 1)
SQLTables returns the list of table names stored in a specific data source. The driver re
the information as a result set.

Syntax
RETCODE SQLTables(hstmt, szTableQualifier, cbTableQualifier, szTableOwner, cbTable-
Owner, szTableName, cbTableName, szTableType, cbTableType)

The SQLTables function accepts the following arguments:

Returns
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_STILL_EXECUTING,
SQL_ERROR or SQL_INVALID_HANDLE.

Type Argument Use Description

HSTMT hstmt Input Statement handle for retrieved results.

UCHAR FAR * szTableQualifier Input Qualifier name. If a driver supports
qualifiers for some tables but not for
others, such as when a driver retrieves
data from different DBMSs, an empty
string ("") denotes those tables that do
not have qualifiers.

SWORD cbTableQualifier Input Length of szTableQualifier.

UCHAR FAR * szTableOwner Input String search pattern for owner names.

SWORD cbTableOwner Input Length of szTableOwner.

UCHAR FAR * szTableName Input String search pattern for table names. If
a driver supports owners for some
tables but not for others, such as when
the driver retrieves data from different
DBMSs, an empty string ("") denotes
those tables that do not have owners.

SWORD cbTableName Input Length of szTableName.

UCHAR FAR * szTableType Input List of table types to match.

SWORD cbTableType Input Length of szTableType.
5-308 SOLID Programmer Guide

SQLTables (ODBC 1.0, Level 1)

 the
R,
Diagnostics
When SQLTables returns SQL_ERROR or SQL_SUCCESS_WITH_INFO, an associated
SQLSTATE value may be obtained by calling SQLError . The following table lists the SQL-
STATE values commonly returned by SQLTables and explains each one in the context of
this function; the notation “(DM)” precedes the descriptions of SQLSTATEs returned by
Driver Manager. The return code associated with each SQLSTATE value is SQL_ERRO
unless noted otherwise.

SQLSTATE Error Description

01000 General warning Driver-specific informational message.
(Function returns
SQL_SUCCESS_WITH_INFO.)

08S01 Communication link fail-
ure

The communication link between the driver
and the data source to which the driver was
connected failed before the function com-
pleted processing.

24000 Invalid cursor state (DM) A cursor was open on the hstmt and
SQLFetch or SQLExtendedFetch had been
called.

A cursor was open on the hstmt but
SQLFetch or SQLExtendedFetch had not
been called.

IM001 Driver does not support
this function

(DM) The driver associated with the hstmt
does not support the function.

S1000 General error An error occurred for which there was no
specific SQLSTATE and for which no imple-
mentation-specific SQLSTATE was defined.
The error message returned by SQLError in
the argument szErrorMsg describes the error
and its cause.

S1001 Memory allocation fail-
ure

The driver was unable to allocate memory
required to support execution or completion
of the function.
 Function Reference 5-309

SQLTables (ODBC 1.0, Level 1)
S1008 Operation canceled Asynchronous processing was enabled for
the hstmt. The function was called and before
it completed execution, SQLCancel was
called on the hstmt. Then the function was
called again on the hstmt.

The function was called and, before it com-
pleted execution, SQLCancel was called on
the hstmt from a different thread in a multi-
threaded application.

S1010 Function sequence error (DM) An asynchronously executing function
(not this one) was called for the hstmt and
was still executing when this function was
called.

(DM) SQLExecute, SQLExecDirect, or
SQLSetPos was called for the hstmt and
returned SQL_NEED_DATA. This function
was called before data was sent for all data-
at-execution parameters or columns.

S1090 Invalid string or buffer
length

(DM) The value of one of the name length
arguments was less than 0, but not equal to
SQL_NTS.

The value of one of the name length argu-
ments exceeded the maximum length value
for the corresponding qualifier or name.

S1C00 Driver not capable A table qualifier was specified and the driver
or data source does not support qualifiers.

A table owner was specified and the driver or
data source does not support owners.

A string search pattern was specified for the
table owner or table name and the data source
does not support search patterns for one or
more of those arguments.

The combination of the current settings of the
SQL_CONCURRENCY and
SQL_CURSOR_TYPE statement options
was not supported by the driver or data
source.
5-310 SOLID Programmer Guide

SQLTables (ODBC 1.0, Level 1)

table

-
.

ata

ta

 for

or
exam-

of
ry.
Comments
SQLTables lists all tables in the requested range. A user may or may not have SELECT
privileges to any of these tables. To check accessibility, an application can:

■ Call SQLGetInfo and check the SQL_ACCESSIBLE_TABLES info value.

Otherwise, the application must be able to handle a situation where the user selects a
for which SELECT privileges are not granted.

The szTableOwner and szTableName arguments accept search patterns. For more informa
tion about valid search patterns, see “Search Pattern Arguments” earlier in this chapter

To support enumeration of qualifiers, owners, and table types, SQLTables defines the fol-
lowing special semantics for the szTableQualifier, szTableOwner, szTableName, and szTable-
Type arguments:

■ If szTableQualifier is a single percent character (%) and szTableOwner and szTable-
Name are empty strings, then the result set contains a list of valid qualifiers for the d
source. (All columns except the TABLE_QUALIFIER column contain NULLs.)

■ If szTableOwner is a single percent character (%) and szTableQualifier and szTable-
Name are empty strings, then the result set contains a list of valid owners for the da
source. (All columns except the TABLE_OWNER column contain NULLs.)

■ If szTableType is a single percent character (%) and szTableQualifier, szTableOwner, and
szTableName are empty strings, then the result set contains a list of valid table types
the data source. (All columns except the TABLE_TYPE column contain NULLs.)

If szTableType is not an empty string, it must contain a list of comma-separated, values f
the types of interest; each value may be enclosed in single quotes (') or unquoted. For
ple, “'TABLE','VIEW'” or “TABLE, VIEW”. If the data source does not support a specified
table type, SQLTables does not return any results for that type.

SQLTables returns the results as a standard result set, ordered by TABLE_TYPE,
TABLE_QUALIFIER, TABLE_OWNER, and TABLE_NAME. The following table lists the
columns in the result set.

Note SQLTables might not return all qualifiers, owners, or tables. For example, an Xbase
driver, for which a qualifier is a directory, might only return the current directory instead
all directories on the system. It might also only return files (tables) in the current directo

S1T00 Timeout expired The timeout period expired before the data
source returned the requested result set. The
timeout period is set through SQLSetStm-
tOption , SQL_QUERY_TIMEOUT.
 Function Reference 5-311

SQLTables (ODBC 1.0, Level 1)

ned

s
,
Applications can use any valid qualifier, owner, or table, regardless of whether it is retur
by SQLTables.

The lengths of VARCHAR columns shown in the table are maximums; the actual length
depend on the data source. To determine the actual lengths of the TABLE_QUALIFIER
TABLE_OWNER, and TABLE_NAME columns, an application can call SQLGetInfo with
the SQL_MAX_QUALIFIER_NAME_LEN, SQL_MAX_OWNER_NAME_LEN, and
SQL_MAX_TABLE_NAME_LEN options.

Code Example
For a code example of a similar function, see SQLColumns.

Related Functions

Column Name Data Type Comments

TABLE_QUALIFIER Varchar(128) Table qualifier identifier; NULL if not applicable
to the data source. If a driver supports qualifiers
for some tables but not for others, such as when
the driver retrieves data from different DBMSs, it
returns an empty string ("") for those tables that
do not have qualifiers.

TABLE_OWNER Varchar(128) Table owner identifier; NULL if not applicable to
the data source. If a driver supports owners for
some tables but not for others, such as when the
driver retrieves data from different DBMSs, it
returns an empty string ("") for those tables that
do not have owners.

TABLE_NAME Varchar(128) Table identifier.

TABLE_TYPE Varchar(128) Table type identifier; one of the following:
“TABLE”, “VIEW”, “SYSTEM TABLE”,
“GLOBAL TEMPORARY”, “LOCAL TEMPO-
RARY”, “ALIAS”, “SYNONYM” or a data
source – specific type identifier.

REMARKS Varchar(254) A description of the table.

For information about See

Assigning storage for a column in a result set SQLBindCol

Canceling statement processing SQLCancel

Returning the columns in a table or tables SQLColumns (extension)
5-312 SOLID Programmer Guide

SQLTables (ODBC 1.0, Level 1)
Fetching a block of data or scrolling through a

result set

SQLExtendedFetch (extension)

Fetching a row of data SQLFetch

Returning table statistics and indexes SQLStatistics (extension)
 Function Reference 5-313

SQLTransact (ODBC 1.0, Core)

r-

ned
SQLTransact (ODBC 1.0, Core)
SQLTransact requests a commit or rollback operation for all active operations on all hstmts
associated with a connection. SQLTransact can also request that a commit or rollback ope
ation be performed for all connections associated with the henv.

Syntax
RETCODE SQLTransact(henv, hdbc, fType)

The SQLTransact function accepts the following arguments.

Returns
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_ERROR, or
SQL_INVALID_HANDLE.

Diagnostics
When SQLTransact returns SQL_ERROR or SQL_SUCCESS_WITH_INFO, an associ-
ated SQLSTATE value may be obtained by calling SQLError . The following table lists the
SQLSTATE values commonly returned by SQLTransact and explains each one in the con-
text of this function; the notation “(DM)” precedes the descriptions of SQLSTATEs retur
by the Driver Manager. The return code associated with each SQLSTATE value is
SQL_ERROR, unless noted otherwise.

Type Argument Use Description

HENV henv Input Environment handle.

HDBC hdbc Input Connection handle.

UWORD fType Input One of the following two values:

SQL_COMMIT

SQL_ROLLBACK

SQLSTATE Error Description

01000 General warning Driver-specific informational message. (Func-
tion returns SQL_SUCCESS_WITH_INFO.)

08003 Connection not open (DM) The hdbc was not in a connected state.
5-314 SOLID Programmer Guide

SQLTransact (ODBC 1.0, Core)

-

Comments
If hdbc is SQL_NULL_HDBC and henv is a valid environment handle, then the Driver Man
ager will attempt to commit or roll back transactions on all hdbcs that are in a connected
state. The Driver Manager calls SQLTransact in the driver associated with each hdbc. The
Driver Manager will return SQL_SUCCESS only if it receives SQL_SUCCESS for each
hdbc. If the Driver Manager receives SQL_ERROR on one or more hdbcs, it will return

08007 Connection failure dur-
ing transaction

The connection associated with the hdbc failed
during the execution of the function and it can-
not be determined whether the requested
COMMIT or ROLLBACK occurred before
the failure.

IM001 Driver does not support
this function

(DM) The driver associated with the hdbc does
not support the function.

S1000 General error An error occurred for which there was no spe-
cific SQLSTATE and for which no implemen-
tation-specific SQLSTATE was defined. The
error message returned by SQLError in the
argument szErrorMsg describes the error and
its cause.

S1001 Memory allocation fail-
ure

The driver was unable to allocate memory
required to support execution or completion of
the function.

S1010 Function sequence error (DM) An asynchronously executing function
was called for an hstmt associated with the
hdbc and was still executing when SQLTrans-
act was called.

(DM) SQLExecute, SQLExecDirect, or
SQLSetPos was called for an hstmt associ-
ated with the hdbc and returned
SQL_NEED_DATA. This function was called
before data was sent for all data-at-execution
parameters or columns.

S1012 Invalid transaction opera-
tion code

(DM) The value specified for the argument
fType was neither SQL_COMMIT nor
SQL_ROLLBACK.

S1C00 Driver not capable The driver or data source does not support the
ROLLBACK operation.
 Function Reference 5-315

SQLTransact (ODBC 1.0, Core)

m-

nt data

SQL_ERROR to the application. To determine which connection(s) failed during the co
mit or rollback operation, the application can call SQLError for each hdbc.

Note The Driver Manager does not simulate a global transaction across all hdbcs and there-
fore does not use two-phase commit protocols.

If hdbc is a valid connection handle, henv is ignored and the Driver Manager calls SQL-
Transact in the driver for the hdbc.

If hdbc is SQL_NULL_HDBC and henv is SQL_NULL_HENV, SQLTransact returns
SQL_INVALID_HANDLE.

If fType is SQL_COMMIT, SQLTransact issues a commit request for all active operations
on any hstmt associated with an affected hdbc. If fType is SQL_ROLLBACK, SQLTransact
issues a rollback request for all active operations on any hstmt associated with an affected
hdbc. If no transactions are active, SQLTransact returns SQL_SUCCESS with no effect on
any data sources.

If the driver is in manual-commit mode (by calling SQLSetConnectOption with the
SQL_AUTOCOMMIT option set to zero), a new transaction is implicitly started when an
SQL statement that can be contained within a transaction is executed against the curre
source.

To determine how transaction operations affect cursors, an application calls SQLGetInfo
with the SQL_CURSOR_ROLLBACK_BEHAVIOR and
SQL_CURSOR_COMMIT_BEHAVIOR options.

If the SQL_CURSOR_ROLLBACK_BEHAVIOR or
SQL_CURSOR_COMMIT_BEHAVIOR value equals SQL_CB_DELETE, SQLTransact
closes and deletes all open cursors on all hstmts associated with the hdbc and discards all
pending results. SQLTransact leaves any hstmt present in an allocated (unprepared) state;
the application can reuse them for subsequent SQL requests or can call SQLFreeStmt to
deallocate them.

If the SQL_CURSOR_ROLLBACK_BEHAVIOR or
SQL_CURSOR_COMMIT_BEHAVIOR value equals SQL_CB_CLOSE, SQLTransact
closes all open cursors on all hstmts associated with the hdbc. SQLTransact leaves any
hstmt present in a prepared state; the application can call SQLExecute for an hstmt associ-
ated with the hdbc without first calling SQLPrepare.

If the SQL_CURSOR_ROLLBACK_BEHAVIOR or
SQL_CURSOR_COMMIT_BEHAVIOR value equals SQL_CB_PRESERVE, SQLTrans-
act does not affect open cursors associated with the hdbc. Cursors remain at the row they
pointed to prior to the call to SQLTransact.
5-316 SOLID Programmer Guide

SQLTransact (ODBC 1.0, Core)

ave

g
For drivers and data sources that support transactions, calling SQLTransact with either
SQL_COMMIT or SQL_ROLLBACK when no transaction is active will return
SQL_SUCCESS (indicating that there is no work to be committed or rolled back) and h
no effect on the data source.

Drivers or data sources that do not support transactions (SQLGetInfo fOption
SQL_TXN_CAPABLE is 0) are effectively always in autocommit mode. Therefore, callin
SQLTransact with SQL_COMMIT will return SQL_SUCCESS. However, calling SQL-
Transact with SQL_ROLLBACK will result in SQLSTATE S1C00 (Driver not capable),
indicating that a rollback can never be performed.

Code Example
See SQLParamOptions.

Related Functions

For information about See

Returning information about a driver or data
source

SQLGetInfo (extension)

Freeing a statement handle SQLFreeStmt
 Function Reference 5-317

SQLTransact (ODBC 1.0, Core)
5-318 SOLID Programmer Guide

6

 may
Using SOLID Light Client

This chapter describes how to use SOLID Light Client, a very small footprint database cli-
ent library and a subset of ODBC API, especially designed for implementing embedded
solutions with limited memory resources. With SOLID Light Client, lightweight client appli-
cations can use the full power of SOLID Embedded Engine.

The topics included in this chapter are:

■ What is SOLID Light Client?

■ Getting started with SOLID Light Client

■ Running SQL Statements on SOLID Light Client

■ SOLID Light Client Functions

■ Sample code

What is SOLID Light Client ?
The SOLID Light Client library is a 21-function subset of the ODBC API, providing full
SQL capabilities for application developers accessing SOLID Embedded Engine databases.
It provides functions for controlling database connections, executing SQL statements,
retrieving result sets, committing transactions, and other SOLID Embedded Engine function-
ality.

SOLID Light Client is suited for target environments with a small amount of memory. Its
API library is 33-41 Kb on all target platforms.

Currently, SOLID Light Client is available for DOS, ChorusOS (ix86 and PowerPC) and
VXWorks (ix86 and PowerPC), the development environment being Windows NT, Win-
dows 95/98, and SUN Solaris. Versions for certain mobile device OSs and realtime OSs
be released later on.
 Using SOLID Light Client 6-1

Getting started with SOLID Light Client

ur

 fol-
Getting started with SOLID Light Client
To get started with SOLID Light Client, be sure you have:

1. Downloaded the SOLID Light Client package for your environment from the SOLID
Light Client Web page and followed all installation instructions at the Web site.

2. Set up the TCP/IP infrastructure as instructed in the installation procedures and yo
platform specific documentation.

Setting up the Development Environment and Building a Sample
Program

Building a program using SOLID Light Client library is identical to bulding any normal C/
C++ program. If necessary, check our development environment documentation on the
lowing:

■ Insert the library file to your project

■ Include header file

■ Compile the source code

■ Link the program

The first two issues are described in more detail in the following sections.

Insert the library file into your project
Check your development environment’s documentation on how to link a library to a pro-
gram. Link the correct Light Client library to your program. The libraries are:

Include header files
The following line needs to be included in a Light Client program:

Platform Link the library....

DOS slcdos30.lib

NT slcw3230.lib

Solaris slcssx30.a

VxWorks slcvxw30.a (ix86)
slcvpx30.a (PowerPC)

ChorusOS slccrx30.z (ix86)
slccpx30.a (PowerPC)
6-2 SOLID Programmer Guide

Getting started with SOLID Light Client

to-

r-
at

.dll.

ard
ave

ork-

t
”

,
 check

#include "cli0lcli.h"

Other necessary Light Client headers are included by this header file. Insert the directory
containing all the Light Client headers into your development environment’s include direc
ries setting.

Verifying the Development Environment Setup
The easiest way to do this is to build a Light Client sample program. This enables you to ve
ify your development environment without writing any code. Please note the following th
applies to your development environment:

■ In the NT environment, the TCP/IP services are provided by standard DLL wsock32
To link these services into your project, add wsock32.lib into linker’s lib file list.

■ In the NT environment, some development tools link odbc32.lib providing the stand
ODBC service as a default library to any project. Because the functions in ODBC h
similar names and interfaces as the SOLID Light Client, the program may be linked to
use ODBC instead of Light Client. Remove odbc32.lib from the linker’s file list.

■ On ChorusOS and VxWorks target machines, you should run a kernal that has a w
ing TCP/IP stack running. Usually you can verify this by checking that the target
machine responds to ping requests. For example, if you have configured your targe
machine to have an IP address 192.168.1.111, you would run “ping 192.168.1.111
from another workstation in your LAN for a response that proves the target is alive:

C:\>ping 192.168.1.111
Pinging 192.168.1.111 with 32 bytes of data:
Reply from 192.168.1.111: bytes=32 time=260ms TTL=62

After verification, your Light Client application should work on that target machine.

Connecting to a Database using the Sample Application
Establishing a connection to a database using SOLID Light Client library is similar to estab-
lishing connections using ODBC. An application needs to obtain an environment handle
allocate space for a connection and establish a connection. Run the sample program to
whether it can obtain a connection to a SOLID Embedded Engine in your environment.

The following code establishes a connection to a SOLID Embedded Engine database run-
ning in a machine 192.168.1.111 and listening to tcp/ip at port 1313. User account DBA
with password DBA has been defined in the database.

HENV henv; /* pointer to environment object */
HDBC hdbc; /* pointer to database connection object */
 Using SOLID Light Client 6-3

Running SQL Statements on SOLID Light Client

ier to

ing
RETCODE rc; /* variable for return code */

rc = SQLAllocEnv(henv);
if (SQL_SUCCESS != rc)
{

printf("SQLAllocEnv fails.\n");
return;

}

rc = SQLAllocConnect(henv,&hdbc);
if (SQL_SUCCESS != rc)
{

printf("SQLAllocConnect fails.\n");
return;

}

rc = SQLConnect(hdbc,(UCHAR*)192.168.1.111 1313,SQL_NTS,
(UCHAR*)DBA,SQL_NTS,(UCHAR*)"DBA", SQL_NTS);
if (SQL_SUCCESS != rc)
{

printf("SQLConnect fails.\n");
return;

}

The connection established above can be cleared using the code below. To make it eas
read no return code checking is included.

SQLDisconnect(hdbc);
SQLFreeConnect(hdbc);
SQLFreeEnv(henv);

Running SQL Statements on SOLID Light Client
This section describes briefly how to do basic database operations with SQL. The follow
operations are presented here:

■ Executing statements through SOLID Light Client

■ Reading result sets

■ Transactions and autocommit mode

■ Handling database errors
6-4 SOLID Programmer Guide

Running SQL Statements on SOLID Light Client

 table

)
the
me-
 defi-
Executing Statements with SOLID Light Client
The code below executes a simple SQL statement INSERT INTO TESTTABLE (I,C)
VALUES (100,'HUNDRED') . The code expects a valid HENV henv and a valid HDBC
hdbc to exist and variable rc of type RETCODE to be defined. The code also expects a
TESTTABLE with columns I and C to exist in the database.

rc = SQLAllocStmt(hdbc, &hstmt);

if (SQL_SUCCESS != rc)
{

printf("SQLAllocStmt failed \n");
}
rc = SQLExecDirect(hstmt,(UCHAR*)INSERT INTO TESTTABLE (I,C) VALUES
(100,'HUNDRED'),"SQL_NTS);
if (SQL_SUCCESS != rc)
{

printf("SQLExecDirect failed \n");
}

rc = SQLTransact(SQL_NULL_HENV,hdbc,SQL_COMMIT);
if ((SQL_SUCCESS != rc))
{

printf("SQLTransact failed \n");
}

rc = SQLFreeStmt(hstmt,SQL_DROP);
if ((SQL_SUCCESS != rc))
{

printf("SQLFreeStmt failed \n");
}

Statement with parameters
The code example below prepares a simple statement INSERT INTO TESTTABLE (I,C
VALUES (?,?) to be executed several times with different parameter values. Note, that
Light Client does not provide ODBC-like parameter binding. Instead, the values for para
ters need to be assigned using the SQLSetParamValue function. The following variable
nitions are expected:

char buf[255];
SDWORD dwPar;
 Using SOLID Light Client 6-5

Running SQL Statements on SOLID Light Client

d
 C
As above, the code also expects a valid HENV henv and a valid HDBC hdbc to exist an
variable rc of type RETCODE to be defined and a table TESTTABLE with columns I and
to exist in the database.

rc = SQLAllocStmt(hdbc, &hstmt);

if (SQL_SUCCESS != rc) {
printf("Alloc statement failed. \n");

}

rc = SQLPrepare(hstmt,(UCHAR*)"INSERT INTO TESTTABLE(I,C)
VALUES (?,?)",SQL_NTS);

if (SQL_SUCCESS != rc) {
 printf("Prepare failed. \n");

}

for (i=1;i<100;i++)
{

 dwPar = i;
 sprintf(buf,"line%i",i);

rc = m_lc->LC_SQLSetParamValue(
hstmt,1,SQL_C_LONG,SQL_INTEGER,0,0,&dwPar,NULL);

if (SQL_SUCCESS != rc) {
printf("(SetParamValue 1 failed) \n");
return 0;

}
rc = m_lc->LC_SQLSetParamValue(

hstmt,2,SQL_C_CHAR,SQL_CHAR,0,0,buf,NULL);
if (SQL_SUCCESS != rc) {

printf("(SetParamValue 1 failed) \n");
return 0;

}

rc = m_lc->LC_SQLExecute(hstmt);

if (SQL_SUCCESS != rc) {
printf("SQLExecute failed \n");

}
}
rc = SQLFreeStmt(hstmt,SQL_DROP);
if ((SQL_SUCCESS != rc)) {

printf("SQLFreeStmt failed. \n");
6-6 SOLID Programmer Guide

Running SQL Statements on SOLID Light Client

LE,
ects
}

Reading Result Sets
The following code excerpt prepares an SQL Statement SELECT I,C FROM TESTTAB
executes it and fetches all the rows the database returns. The example code below exp
valid definitions for rc , hdbc , hstmt , henv .

rc = SQLAllocStmt(hdbc, &hstmt);

if (SQL_SUCCESS != rc) {
 printf("SQLAllocStmt failed. \n");
 }

rc = SQLPrepare(hstmt,(UCHAR*)"SELECT I,C
FROM TESTTABLE",SQL_NTS);

if (SQL_SUCCESS != rc) {
 printf("SQLPrepare failed. \n");

}

rc = SQLExecute(hstmt);

if (SQL_SUCCESS != rc) {
 printf("SQLExecute failed. \n");

}

rc = SQLFetch(hstmt);

if ((SQL_SUCCESS != rc) && (SQL_NO_DATA_FOUND != rc)) {

printf("SQLFetch returned an unexpected error code . \n");
}

while (SQL_NO_DATA_FOUND != rc)
{

rc = SQLGetCol(hstmt,1,SQL_C_LONG,&lbuf,sizeof(lbuf),NULL);
if (SQL_SUCCESS == rc)
{

printf("LC_SQLGetCol(1) returns %d \n",lbuf);
}
else printf("Error in SQLGetCol(1) \n");

 rc = SQLGetCol(hstmt,2,SQL_C_CHAR,buf,sizeof(buf),NULL);
if (SQL_SUCCESS == rc)
{
 Using SOLID Light Client 6-7

Running SQL Statements on SOLID Light Client

od

ined
no

i-
printf("SQLGetCol(2) returns %s \n",buf);
 }
 else printf("Error in SQL_GetCol(2) \n");

 rc = SQLFetch(hstmt);

}

rc = m_lc->LC_SQLFreeStmt(hstmt,SQL_DROP);
if ((SQL_SUCCESS != rc))
{

 printf("SQLFreeStmt failed. ");
}

Also the following Light Client API functions may be useful when processing result sets:

■ SQLDescribeCol

■ SQLGetCursorName

■ SQLNumResultCols

■ SQLSetCursorName

Transactions and Autocommit Mode
All SOLID Light Client connections have the autocommit option set off. There is no meth
in Light Client to set the option on. Every transaction has to be committed explicitly. This
can be achieved by calling the function SQLTransact.

To commit the transaction, call the function as follows

rc = SQLTransact(SQL_NULL_HENV,hdbc,SQL_COMMIT);

To roll the transaction back, call it as follows.

rc = SQLTransact(SQL_NULL_HENV,hdbc,SQL_ROLLBACK);

Handling Database Errors
When a Light Client API function has returned SQL_ERROR or
SQL_SUCCESS_WITH_INFO more information about the error or warning can be obta
by calling the SQLError function. If the following code is run against a database where
table TESTTABLE is defined, it will produce the appropriate error information.

As usual, the code expects a valid HENV henv and a valid HDBC hdbc to exist and var
able rc of type RETCODE to be defined .
6-8 SOLID Programmer Guide

Running SQL Statements on SOLID Light Client
rc = SQLPrepare(hstmt,(UCHAR*)"SELECT I,C FROM
TESTTABLE",SQL_NTS);

if (SQL_SUCCESS != rc)
{

char buf[255];
RETCODE rc;

char szSQLState[255];
char szErrorMsg[255];
SDWORD nativeerror = 0;
SWORD maxerrmsg = 0;

memset(szSQLState,0,sizeof(szSQLState));
memset(szErrorMsg,0,sizeof(szErrorMsg));

rc = SQLError(

SQL_NULL_HENV,hdbc,hstmt,(UCHAR*)szSQLState,&nativeerror,

(UCHAR*)szErrorMsg,sizeof(szErrorMsg),&maxerrmsg);

if (SQL_ERROR == rc)
{

printf("SQLError failed \n.");
}
else
{

 printf("Error information dump begins:-------------\n");
 printf("SQLState '%s' \n",szSQLState);

printf("nativeerror %i \n",nativeerror);
 printf("Errormsg '%s' \n", szErrorMsg);
 printf("maxerrmsg %i \n",maxerrmsg);
 printf("Error information dump ends:---------------\n");
 }
}

Check Appendix A for possible error codes.
 Using SOLID Light Client 6-9

Special Notes about SOLID Embedded Engine and SOLID Light Client

nt
ta.

cted,

le,

ets.
Special Notes about SOLID Embedded Engine and SOLID
Light Client

Network Traffic in Fetching Data
SOLID Light Client communication does not support SOLID Embedded Engine’s RowsPer-
Message setting. Every Light Client call to SQLFetch causes a network message to be se
between client and server. This affects performance when fetching large amounts of da

Notes for Programmers Familiar with ODBC

Migrating ODBC Applications to using Light Client API
If you are using ODBC functions not provided by the Light Client API, migrating to SOLID
Light Client from the standard ODBC database interface requires some programming.
Roughly, the migration steps are as follows.

1. Rewiew how your application uses ODBC and estimate whether Light Client API func-
tionality is sufficient for you. Some minor changes in your own code are to be expe
basically:

■ Calls to ODBC Extension Level 1 functions should be converted to ODBC Core
level functions

■ Rewriting the application without SQLBindParameter and SQLBindCol

2. Download SOLID Light Client package.

3. Verify your environment using SOLID Light Client samples.

4. Modify the ODBC calls in your own code, rebuild and test your program.

SOLID Light Client Functions
This section lists the functions in SOLID Light Client API, which is a subset of the ODBC
API. Refer to Chapter 5, “Function Reference” for a detailed description, parameter list,
parameter values, and example, for each of the functions listed in the following table.

NOTE: SOLID Light Client does not provide any ODBC Extension Level functionality for
setting parameter values (for example, SQLBindParameter) or data binding (for examp
SQLBindCol). Instead SOLID Light Client provides SAG CLI compliant functions SQLSet-
ParamValue for setting parameter values and SQLGetCol for reading data from result s
Read the following section, “Non-ODBC SOLID Light Client Functions” for descriptions of
these functions.
6-10 SOLID Programmer Guide

SOLID Light Client Functions
For a complete example program on how to use SOLID Light Client API, see SOLID Light
Client Examples.

Task Function

Connecting to a data source SQLAllocEnv

SQLAllocConnect

SQLConnect

Preparing SQL Statements SQLAllocStmt

SQLPrepare

SQLSetParamValue

Note this function is unique to SOLID Cli-
ent Light. For details on this function, see
the section which follows this table.

SQLSetCursorName

SQLGetCursorName

Submitting Requests SQLExecute

SQLExecDirect

Retrieving Results and Information about
Results

SQLRowCount

SQLNumResultCols

SQLDescribeCol

SQLGetCol

Note that this function is identical to the
ODBC compliant function SQLGetData.

SQLFetch

SQLGetData

Note that this function is identical to its
SAG CLI counterpart SQLGetCol.

SQLError

Terminating a Statement SQLFreeStmt

SQLTransact
 Using SOLID Light Client 6-11

SOLID Light Client Functions

the
ge
Non-ODBC SOLID Light Client Functions
This sections describes the two non-ODBC functions supported in SOLID Light Client:

■ SQLGetCol

■ SQLSetParamValue

SQLGetCol
SQLGetCol gets result data for a single column in the current row. This function allows
application to retrieve the data one column at a time. It may also be used to retrieve lar
data values in easily manageable blocks.

SQLGetCol functionality is identical to its ODBC API counterpart SQLGetData. Read
“SQLGetData (ODBC 1.0, Level 1)” in Chapter 5, Function Reference.

Syntax
RETCODE SQLGetData(hstmt, icol, fCType, rgbValue, cbValueMax, pcbValue)

The SQLGetData function accepts the following arguments:

Terminating a Connection SQLDisconnect

SQLFreeConnect

SQLFreeEnv

Type Argument Use Description

HSTMT hstmt Input Statement handle.

UWORD icol Input Column number.

SWORD fCType Input The C data type of the result data. Check the
allowed data type conversions at the end of this
chapter.

This must be one of the following values:

SQL_C_BINARY

SQL_C_CHAR

SQL_C_DOUBLE

SQL_C_FLOAT

SQL_C_LONG

SQL_C_SHORT
6-12 SOLID Programmer Guide

SOLID Light Client Functions

ed

ROR

umn

 the
e
with
col-
Returns
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_NO_DATA_FOUND,
SQL_ERROR, or SQL_INVALID_HANDLE.

Diagnostics
■ If more data is available to be retrieved, SQL_SUCCESS_WITH_INFO is returned

('01004' -- Data truncated).

■ If the data cannot be converted to the type specified fcType, SQL_ERROR is return
('07006' -- Restricted data type attribute violation).

■ If the communication link failed before the function completed processing,
SQL_ERROR is returned ('08S01' -- Communication link failure).

■ If the previous SQL statement executed on the hstmt was not a SELECT, SQL_ER
is returned ('24000' -- Invalid cursor state.)

Comments
SQLFetch must be called before calling SQLGetCol. SQLGetCol can then be used to
retrieve data for specific columns, in order. SQLGetCol cannot be used to retrieve a col
that resides at or before the last column retrieved with SQLGetCol.

If a call to SQLGetCol does not retrieve all data for the given column, pcbValue is set to
total number of bytes in the result and SQL_SUCCESS_WITH_INFO is returned with th
SQLSTATE value '01004' -- Data truncated. SQLGetCol may then be called repeatedly
the same column number until SQLGetCol returns SQL_SUCCESS, or with a different
umn number to ignore the remainder of the data for the original column.

Code Example
rc = SQLPrepare(hstmt,(UCHAR*)
"SELECT I,C FROM TESTTABLE",SQL_NTS);
...
rc = SQLExecute(hstmt);
...

PTR rgbValue Output Output data.

SDWORD cbValueMax Input Maximum length of the rgbValue buffer. Deter-
mines the amount of data that can be received
by a single call to SQLGetCol.

SDWORD
FAR *

pcbValue Output Total number of bytes. If pcbValue is is greater
than cbValueMax, there is no more data to fetch.
 Using SOLID Light Client 6-13

SOLID Light Client Functions

arame-
set in

rc = SQLFetch(hstmt);
if ((SQL_SUCCESS != rc) && (SQL_NO_DATA_FOUND != rc)) {

printf("SQLFetch returned an unexpected error code . \");
}
while (SQL_NO_DATA_FOUND != rc)
{

rc = SQLGetCol(hstmt,1,SQL_C_LONG,lbuf,sizeof(lbuf),NULL);
if (SQL_SUCCESS == rc)
{

printf("SQLGetCol(1) returns %d \n",lbuf);
}

else printf("Error in SQLGetCol(1) \");

rc = SQLGetCol(hstmt,2,SQL_C_CHAR,buf,sizeof(buf),NULL);

if (SQL_SUCCESS == rc)
{

printf("SQLGetCol(2) returns %s \",buf);
}
else printf("Error in SQL_GetCol(2) \n");

rc = SQLFetch(hstmt);
}
rc = m_lc->LC_SQLFreeStmt(hstmt,SQL_DROP);
...

SQLSetParamValue
Sets the value of a parameter marker in the SQL statement specified in SQLPrepare. P
ter markers are numbered sequentially from left-to-right, starting with one, and may be
any order. The value of argument rgbValue will be used for the parameter marker when
SQLExecute is called.

Syntax
RETCODE SQLSetParamValue(hstmt, ipar, fCType, fSqlType, cbColDef, ibScale, rgb-
Value, pcbValue)

The SQLSetParamValue function accepts the following arguments:

Type Argument Use Description

HSTMT hstmt Input Statement handle.

UWORD ipar Input Parameter number, ordered squentially left to
right, starting at 1.
6-14 SOLID Programmer Guide

SOLID Light Client Functions
SWORD fCType Input The C data type of the result data. Check the
allowed data type conversions at the end of this
chapter.

This must be one of the following values:

SQL_C_BINARY

SQL_C_CHAR

SQL_C_DOUBLE

SQL_C_FLOAT

SQL_C_LONG

SQL_C_SHORT

SDWORD fSqlType Input The SQL data type of the parameter. Check the
allowed data type conversions following this
table.

This must be one of the following values:

SQL_C_BINARY

SQL_C_CHAR

SQL_DATE

SQL_DECIMAL

SQL_C_DOUBLE

SQL_C_FLOAT

SQL_INTEGER

SQL_LONGVARBINARY

SQL_LONGVARCHAR

SQL_NUMERIC

SQL_REAL

SQL_SMALLINT

SQL_TIME

SQL_TIMESTAMP

SQL_TINYINT

SQL_VARBINARY

SQL_VARCHAR
 Using SOLID Light Client 6-15

SOLID Light Client Functions

 C

e.

ker.
pe,

-

r. The

 only
iable
ker.
g.
fCType describes the contents of rgbValue. fCType must either be SQL_C_CHAR ot the
equivalent of argument fSqlType. If fCType is SQL_C_CHAR and fSqlType is a numeric
type, rgbValue will be converted from a character string to the type specified by fSqlTyp

fSqlType is the data type of the column or expression referenced by the parameter mar
At execute time, the value in rgbValue will be read and converted from fCType to fSqlTy
and then sent to SOLID Server. Note that the value of rgbValue remains unchanged.

cbColDef is the length or precision of the column definition for the column or expression
referenced. cbColDef differs depending on the class of data as follows:

ibScale is the total number of digits to the right of the decimal point for the column refer
enced. ibScale is defined only for the SQL_DECIMAL and SQL_NUMERIC data types.
rgbValue is a character string that must contain the actual data for the parameter marke
data must be of the form specified by the fCType argument.

pcbValue is an integer that is the length of the parameter marker value in rgbValue. It is
used when fCType is SQL_C_CHAR or when specifying a null database value. The var
must be set to SQL_NULL_DATA if a null value is to be specified for the parameter mar
If the variable is set to SQL_NTS then rgbValue will be treated as a null terminated strin

Returns
SQL_SUCCESS, SQL_ERROR, or SQL_INVALID_HANDLE.

UDWORD cbColDef Input The precision of the column or expression of
the corresponding parameter marker.

SWORD ibScale Input The scale of the column or expression of the
corresponding parameter marker.

PTR rgbValue Input Output data.

SDWORD * pcbValue Input Length of data in rgbValue

Type Description

SQL_CHAR
SQL_VARCHAR

maximum length of the column

SQL_DECIMAL
SQL_NUMERIC

maximum decimal precision (that is, total number of digits possi-
ble)
6-16 SOLID Programmer Guide

SOLID Light Client Functions

iden-
a

pe

-

ith
ain
cuted,

ers
 were

)
Diagnostics
■ If the data identified by the fcType argument cannot be converted to the data value

tified by the fSqlType argument, SQL_ERROR is returned ('07006' -- Restricted dat
type attribute violation)

■ If the fcType argument is not valid, SQL_ERROR is returned ('S1003' -- Program ty
out of range).

■ If the fSqlType argument is not valid, SQL_ERROR is returned ('S1004' -- SQL data
type out of range).

■ If the ipar argument is less than 1, SQL_ERROR is returned ('S1009' -- Invalid argu
ment value).

Comments
All parameters set by this function remain in effect until either SQLFreeStmt is called w
the SQL_UNBIND_PARAMS or SQL_DROP option or SQLSetParamValue is called ag
for the same parameter number. When an SQL statement containing parameters is exe
the set values of the parameters are sent to SOLID Embedded Engine.

Note that the number of parameters must match exactly the number of parameter mark
present in the statement that was prepared. If less parameter values are set than there
parameter markers in the SQL statement, NULL values will be used instead.

Code Example
The code example below prepares a simple statement INSERT INTO TESTTABLE (I,C
VALUES (?,?) to be executed several times with different parameter values.

...
char buf[255];
SDWORD dwPar;

...
rc = SQLPrepare(hstmt,(UCHAR*)"INSERT INTO TESTTABLE(I,C)

VALUES (?,?)",SQL_NTS);
if (SQL_SUCCESS != rc) {

 printf("Prepare failed. \n");
}
for (i=1;i<100;i++)
{

 dwPar = i;
 sprintf(buf,"line%i",i);
 Using SOLID Light Client 6-17

SOLID Light Client Samples
rc = m_lc->LC_SQLSetParamValue(
hstmt,1,SQL_C_LONG,SQL_INTEGER,0,0,&dwPar,NULL);

if (SQL_SUCCESS != rc) {
printf("(SetParamValue 1 failed) \n");

 return 0;
 }

rc =
 m_lc->LC_SQLSetParamValue(
hstmt,2,SQL_C_CHAR,SQL_CHAR,0,0,buf,NULL);

if (SQL_SUCCESS != rc) {
printf("(SetParamValue 1 failed) \n");

 return 0;> >
 }

Related Functions

SOLID Light Client Samples

Sample 1:
#include "sample1.h"

/***
 *
 * File: SAMPLE1.C
 *
 * Description: Sample program for SOLID Light Client API
 *
 * Author: SOLID / ATH
 * Date: 1997-11-18
 *
 *
 * SOLID Light Client sample program does the following.
 *
 * 1. Checks that there are enough input parameters to contain sufficient
 * connect information

For information about See

Preparing a statement for execution SQLPrepare

Executing a prepared SQL statement SQLExecute

Executing an SQL statement SQLExecDirect
6-18 SOLID Programmer Guide

SOLID Light Client Samples
 * 2. Prepares to connect SOLID Embedded Engine through Light Client by
 * allocating memory for HENV and HDBC objects
 * 3. Connects to SOLID Embedded Engine using Light Client Library
 * 4. Creates a statement for one query,
 * 'SELECT TABLE_SCHEMA,TABLE_NAME,TABLE_TYPE FROM TABLES' for reading
 * data from one of SOLID Embedded Engine’s system tables.
 * 5. Executes the query
 * 6. Fetches and outputs all the rows of a result set.
 * 7. Closes the connection gracefully.
 *
 *
***/
void __cdecl main(int argc, char *argv[])
{
 HENV henv; /* pointer to environment object */
 HDBC hdbc; /* pointer to database connection object */
 RETCODE rc; /* variable for return code */
 HSTMT hstmt; /* pointer to database statement object */
 char buf[255]; /* buffer for data to be obtained from db */
 char buf2[255]; /* buffer for a printable row to be created */
 int iCount = 0; /* counter for rows to be fetched. */

 /* 1. Checks that there are enough input parameters to contain sufficient */
 /* connect information */
 if (argc != 4)
 {
 printf("Proper usage \"connect string\" uid pwd \n");
 printf("argc %i \n",argc);
 return;
 }
 printf("Will connect SOLID Embedded Engine at %s with uid %s and pwd

%s.\n",argv[1],argv[2],argv[3]);

 /* 2. Prepares to connect SOLID Embedded Engine through Light Client by * /
/* allocating memory for HENV and HDBC objects */

 rc = SQLAllocEnv(&henv);
 if (SQL_SUCCESS != rc)
 {
 printf("SQLAllocEnv fails.\n");
 return;
 }

 Using SOLID Light Client 6-19

SOLID Light Client Samples
 rc = SQLAllocConnect(henv,&hdbc);
 if (SQL_SUCCESS != rc)
 {
 printf("SQLAllocConnect fails.\n");
 return;
 }

 /* 3. Connects to SOLID Embedded Engine using Light Client Library */
 rc = SQLConnect(hdbc,(UCHAR*)argv[1],SQL_NTS, (UCHAR*)argv[2],SQL_NTS,

(UCHAR*)argv[3], SQL_NTS);
 if (SQL_SUCCESS != rc)
 {
 printf("SQLConnect fails.\n");
 return;
 }
 else printf("Connect ok.\n");

 /* 4. Creates a statement for one query, */
 /* 'SELECT TABLE_SCHEMA,TABLE_NAME,TABLE_TYPE FROM TABLES' for reading */
 /* data from one of SOLID Embedded Engine’s system tables. */

 rc = SQLAllocStmt(hdbc, &hstmt);
 if (SQL_SUCCESS != rc) {
 printf("SQLAllocStmt failed. \n");
 }

 rc = SQLPrepare(hstmt,(UCHAR*)"SELECT TABLE_SCHEMA,TABLE_NAME,TABLE_TYPE FROM
TABLES",SQL_NTS);

 if (SQL_SUCCESS != rc) {
 printf("SQLPrepare failed. \n");
 }
 else printf("SQLPrepare succeeded. \n");

 /* 5. Executes the query */
 rc = SQLExecute(hstmt);
 if (SQL_SUCCESS != rc) {
 printf("SQLExecute failed. \n");
 }
 else printf("SQLExecute succeeded. \n");

 /* 6. Fetches and outputs all the rows of a result set. */
6-20 SOLID Programmer Guide

SOLID Light Client Samples
 rc = SQLFetch(hstmt);
 if ((SQL_SUCCESS != rc) && (SQL_NO_DATA_FOUND != rc)) {
 printf("SQLFetch returned an unexpected error code . \n");
 }
 else printf("Starting to fetch data.\n");

 while (SQL_NO_DATA_FOUND != rc)
 {
 iCount++;
 sprintf(buf2,"Row %i :",iCount);

 rc = SQLGetCol(hstmt,1,SQL_C_CHAR,buf,sizeof(buf),NULL);
 if (SQL_SUCCESS == rc)
 {
 strcat(buf2,buf);
 strcat(buf2,",");
 }
 else printf("Error in SQL_GetCol(1) \n");

 rc = SQLGetCol(hstmt,2,SQL_C_CHAR,buf,sizeof(buf),NULL);
 if (SQL_SUCCESS == rc)
 {
 strcat(buf2,buf);
 strcat(buf2,",");
 }
 else printf("Error in SQL_GetCol(2) \n");

 rc = SQLGetCol(hstmt,3,SQL_C_CHAR,buf,sizeof(buf),NULL);
 if (SQL_SUCCESS == rc)
 {
 strcat(buf2,buf);
 }
 else printf("Error in SQL_GetCol(3) \n");

 printf("%s \n",buf2);

 rc = SQLFetch(hstmt);
 }

 rc = SQLFreeStmt(hstmt,SQL_DROP);
 if ((SQL_SUCCESS != rc))
 {
 printf("SQLFreeStmt failed. ");
 }
 Using SOLID Light Client 6-21

SOLID Light Client Samples
 /* 7. Closes the connection gracefully. */
 SQLDisconnect(hdbc);
 SQLFreeConnect(hdbc);
 SQLFreeEnv(henv);

 printf("Sample program ends successfully.\n");

}

Sample 2
#ifndef SAMPLE1_H
#define SAMPLE1_H

/***
 *
 * File: SAMPLE1.H
 *
 * Description: Sample program for SOLID Light Client API, header file
 *
 * Author: SOLID / ATH
 * Date: 1997-11-18
 *
 *

/

#include <stdio.h>
#include <string.h>

#include "cli0lcli.h"

#endif

Sample 3
C:\solid\lcli\samples>sample1 "fb1 1313" DBA DBA
Will connect SOLID Embedded Engine at fb1 1313 with uid DBA and pwd DBA.
Connect ok.
SQLPrepare succeeded.
SQLExecute succeeded.
Starting to fetch data.
6-22 SOLID Programmer Guide

SOLID Light Client Type Conversion Matrix
Row 1 :_SYSTEM,SYS_TABLES,BASE TABLE
Row 2 :_SYSTEM,SYS_COLUMNS,BASE TABLE
Row 3 :_SYSTEM,SYS_USERS,BASE TABLE
Row 4 :_SYSTEM,SYS_UROLE,BASE TABLE
Row 5 :_SYSTEM,SYS_RELAUTH,BASE TABLE
Row 6 :_SYSTEM,SYS_ATTAUTH,BASE TABLE
Row 7 :_SYSTEM,SYS_VIEWS,BASE TABLE
Row 8 :_SYSTEM,SYS_KEYPARTS,BASE TABLE
Row 9 :_SYSTEM,SYS_KEYS,BASE TABLE
Row 10 :_SYSTEM,SYS_CARDINAL,BASE TABLE
Row 11 :_SYSTEM,SYS_INFO,BASE TABLE
Row 12 :_SYSTEM,SYS_SYNONYM,BASE TABLE
Row 13 :_SYSTEM,TABLES,VIEW
Row 14 :_SYSTEM,COLUMNS,VIEW
Row 15 :_SYSTEM,SQL_LANGUAGES,BASE TABLE
Row 16 :_SYSTEM,SERVER_INFO,VIEW
Row 17 :_SYSTEM,SYS_TYPES,BASE TABLE
Row 18 :_SYSTEM,SYS_FORKEYS,BASE TABLE
Row 19 :_SYSTEM,SYS_FORKEYPARTS,BASE TABLE
Row 20 :_SYSTEM,SYS_PROCEDURES,BASE TABLE
Row 21 :_SYSTEM,SYS_TABLEMODES,BASE TABLE
Row 22 :_SYSTEM,SYS_EVENTS,BASE TABLE
Row 23 :_SYSTEM,SYS_SEQUENCES,BASE TABLE
Row 24 :_SYSTEM,SYS_TMP_HOTSTANDBY,BASE TABLE
Sample program ends successfully.

SOLID Light Client Type Conversion Matrix
The table below describes the type conversions provided by the SOLID Light Client func-
tions SQLGetCol and SQLSetParamValue .

Abbreviations used in the tables for the C variable data types are as follows:

Abbreviation API parameter definition C variable data types

Bin SQL_C_BINARY voidd*

Char SQL_C_CHAR char[], char*

Long SQL_C_LONG long int (*), 32 bits

Short SQL_C_SHORT short int (*), 16 bits

Float SQL_C_FLOAT float (*)

Double SQL_C_DOUBLE double (*)
 Using SOLID Light Client 6-23

SOLID Light Client Type Conversion Matrix

ypes
(*) Note that when variables of these data types are used as parameters in Light Client func-
tions calls, actually the pointer to the variable must be passed instead.

For a description of the SQL data types please refer to Appendix C, Data Types of the
SOLID Administrator Guide .

Functions SQLGetCol and SQLGetData perform the following data type conversions
between database colum types and C variable data types:

Function SQLSetParamValue provides the following type conversions between C data t
and the database column types.

SQL data type \ C variable data type Bin Char Long Short Float Double

TINYINT * * * * * *

LONG VARBINARY * *

VARBINARY * *

BINARY * *

LONG VARCHAR * *

CHAR * *

NUMERIC * * * * *

DECIMAL * * * * *

INTEGER * * * * * *

SMALLINT * * * * * *

FLOAT * * * * * *

REAL * * * * * *

DOUBLE * * * * * *

DATE *

TIME *

TIMESTAMP *

VARCHAR * *

SQL data type \ C variable data type Bin Char Long Short Float Double

TINYINT * * *

LONG VARBINARY *
6-24 SOLID Programmer Guide

SOLID Light Client Type Conversion Matrix
VARBINARY *

BINARY *

LONG VARCHAR *

CHAR *

NUMERIC * * * * *

DECIMAL * * * * *

INTEGER * * *

SMALLINT * * *

FLOAT * * * * *

REAL * * * * *

DOUBLE * * * * *

DATE *

TIME *

TIMESTAMP *

VARCHAR *
 Using SOLID Light Client 6-25

SOLID Light Client Type Conversion Matrix
6-26 SOLID Programmer Guide

7
-

base
gram-
base

art of
ase
ss

an-
up-
Using the SOLID JDBC Driver

This chapter describes how to use the SOLID JDBC Driver, a 100% Pure JavaTM implemen-
tation of the Java Database Connectivity (JDBCTM) standard. The chapter covers the follow
ing information:

■ What is SOLID JDBC Driver?

■ Getting started with SOLID JDBC Driver

■ Running SQL Statement with SOLID JDBC Driver

■ Connecting SOLID Embedded Engine through JDBC

■ SOLID JDBC Driver Classes and Methods

■ Sample code

What is SOLID JDBC Driver ?
The JDBC API, JavaSoft’s core API for JDK 1.1, defines Java classes to represent data
connections, SQL statements, result sets, database metadata, etc. It allows a Java pro
mer to issue SQL statements and process the results. JDBC is the primary API for data
access in Java.

JDBC drivers can either be entirely written in Java so that they can be downloaded as p
an applet, or they can be implemented using native methods to bridge to existing datab
access libraries. SOLID JDBC Driver provides Java developers with native database acce
to SOLID Embedded Engine. SOLID JDBC Driver is written entirely in Java and communi-
cates to a SOLID database server through SOLID Embedded Engine’s native network proto-
col.

SOLID JDBC Driver can be downloaded quickly (with a compact bytecode of 49 KB),
enabling efficient SOLID database use in thin-client Java applications. It offers JDBC st
dard compliance and is 100% pure Java certified. It is usable in all Java environments s
porting JDK 1.1.
 Using the SOLID JDBC Driver 7-1

Getting started with SOLID JDBC Driver

e

ing
s
o-
re

 the

-
uired
Getting started with SOLID JDBC Driver
To get started with SOLID JDBC Driver, be sure you have:

1. Installed the JDBC Driver and verified the installation. For details, follow the instruc-
tions on the SOLID JDBC Driver Web site.

2. Set up the development environment so that it support JDBC properly. SOLID JDBC
Driver expects support for JDBC version 1.20. The JDBC interface is included in th
java.sql package. To import this package, be sure to include the following line in
the application program:

import java.sql.*;

Registering SOLID JDBC Driver
The JDBC driver manager, which is written entirely in Java, handles loading and unload
drivers and interfacing connection requests with the appropriate driver. It was JavaSoft'
intention to make the use of a specific JDBC driver as transparent as possible to the pr
grammer and user. The driver can be registered with the three alternative ways, which a
shown below. The parameter required byClass.forName and Properties.put functions is
name of the driver, which is solid.jdbc.SolidDriver.

// registration using Class.forName service
Driver)Class.forName("solid.jdbc.SolidDriver")
// a workaround to a bug in some JDK1.1
implementations
Driver d =
(Driver)Class.forName("solid.jdbc.SolidDriver").newInstance();

// Registration using system properties
variable also
Properties p = System.getProperties();
p.put("jdbc.drivers","solid.jdbc.SolidDriver");
System.setProperties(p);

See source code for example application sample1.

Connecting to the Database
Once the driver is successfully registered with the driver manager a connection is estab
lished by creating a Java Connection object with the following code. The parameter req
by the DriverManager.getConnection function is the JDBC connection string.

Connection conn = null;
try {
7-2 SOLID Programmer Guide

Getting started with SOLID JDBC Driver

ss-
n

 be

ol-

mode.
conn = DriverManager.getConnection(sCon);
}
catch (Exception e) {

System.out.println("Connect failed : " +
e.getMessage());

throw new Exception("Halted.");
}

The connect string structure is jdbc:solid://<machine> name>:<port>/<user name>/<pa
word>. The string "jdbc:solid://fb9:1314/dba/dba" attempts to connect a SOLID server i
machine fb9 listening tcp/ip protocol at port 1314.

The application can establish several Connection objects to database. Connections can
closed be the following code.

 conn.close();

See source code for example application sample1.

Running SQL Statements With JDBC
This section describes briefly how to do basic database operations with the SQL. The f
lowing operations are presented here:

■ Executing statements through JDBC

■ Reading result sets

■ Transactions and autocommit mode

■ Handling database errors

■ Using DatabaseMetadata

For more detailed description on these subjects see JDBC and SOLID documentation.

Executing a Simple Statement
The following code expects that a Connection object conn is established before calling the
code.

stmt= conn.createStatement();
stmt.execute("INSERT INTO JDB_TEST (I1,I2)
VALUES (2,3)");

Note that the insert is not committed by the code unless the database is in autocommit

See source code for example application sample1.
 Using the SOLID JDBC Driver 7-3

Getting started with SOLID JDBC Driver

to dif-

 mode.
Statement with Parameters
The code below creates a PreparedStatement object for a query, assigns values for
its parameters and executes the query. Check the available methods for setting values
ferent column types from JDBC Type Conversion Matrix. The code expects a Connec-
tion object conn to be established.

PreparedStatement pstmt;
int count, cnt;
int i;

sQuery = "INSERT INTO ALLTYPES
(TI,SI,II,RR,FF,DP,DE,NU,CH,VC,DT,TM,TS) VALUES";
sQuery = sQuery + "(?,?,?,?,?,?,?,?,?,?,?,?,?)";

pstmt= conn.prepareStatement(sQuery);
pstmt.setInt(1,101);
pstmt.setInt(2,102);
pstmt.setInt(3,103);
pstmt.setDouble(4,2104.56);
pstmt.setDouble(5,104.56);
pstmt.setDouble(6,3104.56);
pstmt.setDouble(7,204.56);
pstmt.setDouble(8,304.56);
pstmt.setString(9,"cccc");
pstmt.setString(10,"longer string");

java.sql.Time pTime = new
java.sql.Time(11,11,11);
java.sql.Date pDate = new java.sql.Date(96,1,2);

java.sql.Timestamp pTimestamp = new
java.sql.Timestamp(96,1,2,11,11,11,0);
pstmt.setDate(11,pDate);
pstmt.setTime(12,pTime);
pstmt.setTimestamp(13,pTimestamp);

pstmt.executeUpdate();

See source code for example application sample3.

Note that the insert is not committed by the code unless the database is in autocommit
7-4 SOLID Programmer Guide

Getting started with SOLID JDBC Driver

g the
e

he
Reading result sets

The code below obtains a result set for the SQL

 SELECT TABLE_CATALOG,TABLE_SCHEMA,TABLE_NAME,TABLE_TYPE FROM
 SYS_TABLES WHERE ID < 10000

and prints out column name and type information for each column in the result set usin
ResultSetMetaData object. Then the code loops through the result set and prints th
data in each column in each row by using getString method. Check the available meth-
ods for accessing data of different column types from JDBC Type Conversion Matrix. T
code expects a Connection object conn to be established.

String sQuery;

ResultSetMetaData meta;
Statement stmt;
ResultSet result;
int count, cnt;
int i;

// the query to be executed
sQuery = "SELECT
TABLE_CATALOG,TABLE_SCHEMA,TABLE_NAME," ;
sQuery = sQuery + "TABLE_TYPE FROM
SYS_TABLES WHERE ID < 10000";

// we create statement for the query
stmt= conn.createStatement();
// execute it and obtain a result set
result = stmt.executeQuery(sQuery);

// to see what we got we obtain a
ResultSetMetaData object meta = result.getMetaData();
// check the number of columns
count = meta.getColumnCount();

// print some information about the columns
for (i=1; i <= count; i++)
{

String sName = meta.getColumnName(i);
int iType = meta.getColumnType(i);
String sTypeName = meta.getColumnTypeName(i);

System.out.println("Col:"+i+" "+sName+ "," + iType + "," +
 Using the SOLID JDBC Driver 7-5

Getting started with SOLID JDBC Driver

no
rsors.
 and
ll-
t, and

ng
.

s

 auto-
s it
red by

ed
sTypeName);
}

// and finally, loop through the ResultSet and
print the data out
int cnt = 1;
while(result.next())
{

for (i=1; i <= count; i++)
{

System.out.println("Row:"+cnt+ " column:" +i+"
: "+result.getString(i));

}
cnt++;

}

Note1: There is no JDBC method to step backwards in ResultSets. There is next() but
prev(). The primary reason is because many databases do not support bi-directional cu
Many database servers only support stepping through the result set in a single direction
therefore prev() has been left out of the standard. Many have argued, though, that a we
written object oriented program should not need to step backwards through a ResultSe
that doing so may be either inefficient or result in unreliable data results.

Note2: It is possible to improve the performance of reading large result sets by instructi
SOLID Embedded Engine to return several rows of the result set in one network message
This functionality is activated by editing configuration RowsPerMessage in section [Srv]
in SOLID Embedded Engine configuration file solid.ini. The default value is 10. This is new
functionality in JDBC Driver 2.3. In prior versions, the rows of the result set were alway
returned one by one.

See source code for example application sample1.

Transactions and Autocommit Mode
A SOLID database can be in either autocommit or non-autocommit mode. When not in
commit mode each transaction needs to be explicitly committed before the modification
made can be seen to other database connections. The autocommit state can be monito
Connection.getAutoCommit() function. The state can be set by Connec-
tion.setAutoCommit() . If autocommit mode is off the transactions can be committ
by two ways. SOLID Embedded Engine’s default setting for autocommit state is true .

■ using Connection.commit() function or

■ executing a statement for SQL 'COMMIT WORK'
7-6 SOLID Programmer Guide

Using DatabaseMetadata

xam-
key.

able

c-

-
 on
ata-

 views
Handling Database Errors
In some cases it is necessary for the application to recover from a database error. For e
ple, a unique key constraint violation can be recovered by assigning the row a different
The code below expects a Statement object stmt to exist and String sQuery to con-
tain SQL that may cause an error. A database native error code will be assigned to vari
ec . See SOLID Embedded Engine documentation for SOLID Embedded Engine native error
codes.

try {
result = stmt.executeQuery(sQuery);

}
catch (SQLException e) {

int ec = e.getErrorCode();
String ss = e.getSQLState();
String s2 = e.toString();
System.out.println("Native error code:" + ec);

}

Using DatabaseMetadata
Class DatabaseMetadData contains information about the database behind the conne
tion. Usually this information is necessary for application development tools not actual
applications. If you are developing an application on JDBC interface for one kind of data
base engine this is seldom if ever necessary. If you are developing an application to run
several database engines the application can obtain necessary information about the d
base through DatabaseMetadData .

A DatabaseMetaData object can be obtained from the Connection object by the
code below. The code also extracts database product name to string sName and all the
in the database to ResultSet rTables . As usual, the code expects that a Connec-
tion object conn is established before calling it.

DatabaseMetaData meta;

String sName;
ResultSet rTables;

String types[] = new String[1];
types[0] = "VIEW";

meta = conn.getMetaData();
sName = meta.getDatabaseProductName();
rTables =
 Using the SOLID JDBC Driver 7-7

Special Notes About SOLID and JDBC

e
lf.

eth-

e-
sed
turn
. See

ce-
meta.getTables(null,"","",types);

Special Notes About SOLID and JDBC
JDBC does not really specify what SQL you can use, it simply passes the SQL on to th
driver and lets the driver either pass it on directly to the database, or parse the SQL itse
Because of this of the SOLID JDBC Driver behavior is particular to SOLID database. In
some functions the JDBC specification leaves some details open. Check SOLID JDBC
Driver Classes and Methods for the details particular to SOLID implementation of the m
ods.

Executing stored procedures
In SOLID Embedded Engine database stored procedures can be called by executing stat
ments 'CALL proc_name [parameter ...] ' just like any other SQL. Procedures are thus u
in JDBC in the same way as any statement. Note, that SOLID stored procedures can re
result sets. Calling procedures through JDBC CallableStatement class is not necessary
source code for example application sample3 on calling SOLID Embedded Engine proce-
dures on JDBC.

Class CallableStatement
A JDBC CallableStatement class is intended to support calling database stored pro
dures. The class is not necessary when writing applications on SOLID Embedded Engine
only. Portability reasons, for instance, can make using CallableStatement a good
decision. The example below illustrates running a simple SQL using this class.

CallableStatement csta;
int i1,i2;
String s1;
ResultSet res;

// creating a CallableStatement object
csta = conn.prepareCall("select * from
keytest where i1 = ?");

// assigning a value for parameter
csta.setInt(1,1);

// obtaining a result set
res = csta.executeQuery();

while (res.next())
{
7-8 SOLID Programmer Guide

JDBC Driver Classes and Methods

enta-

pe-

ce-
s

ng
i1 = csta.getInt(1);
i2 = csta.getInt(2);
s1 = csta.getString(3);
System.out.println("Row contains " + i1 + "," + i2 +

"," + s1);
}

JDBC Driver Classes and Methods
This section lists the Java classes contained by the SOLID JDBC Driver and their methods.
JDBC is a standard interface provided by JavaSoft. JavaSoft provides the official docum
tion of JDBC interface classes and methods at their Web site.

SOLID JDBC Driver conforms to the JDBC standard and thus SOLID will neither repeat
nor maintain the JDBC interface documentation. Instead, this section lists all behavior s
cific to SOLID JDBC Driver and SOLID Embedded Engine.

For a description of how different data types are supported by SOLID JDBC Driver, see the
JDBC Driver Type Conversion Matrix at the end of this chapter.

SolidCallableStatement
A JDBC CallableStatement class is intended to support calling database stored pro
dures. SOLID Embedded Engine procedures are thus used in JDBC in the same way a
anystatement and the class CallableStatement is not necessary when writing applica-
tions on SOLID Embedded Engine only. Portability reasons, for instance, can make usi
CallableStatement a good decision.

Method name Notes

getBigDecimal(int, int) Works as specified by Java Soft

getBoolean(int) Works as specified by Java Soft

getByte(int) Works as specified by Java Soft

getBytes(int) Works as specified by Java Soft

getDate(int) Works as specified by Java Soft

getDouble(int) Works as specified by Java Soft

getFloat(int) Works as specified by Java Soft

getInt(int) Works as specified by Java Soft
 Using the SOLID JDBC Driver 7-9

JDBC Driver Classes and Methods
SolidConnection

getLong(int) Works as specified by Java Soft

getObject(int) Works as specified by Java Soft

getShort(int) Works as specified by Java Soft

getString(int) Works as specified by Java Soft

getTime(int) Works as specified by Java Soft

getTimestamp(int) Works as specified by Java Soft

registerOutParameter(int, int) Works as specified by Java Soft

registerOutParameter(int, int, int) Works as specified by Java Soft

wasNull() Works as specified by Java Soft

Method name Notes

clearWawrnings() Works as specified by Java Soft

close() Works as specified by Java Soft. Note that
connections should be explicitly closed
when not used anymore.

commit() Works as specified by Java Soft

createstatement() Works as specified by Java Soft

getAutoCommit() Works as specified by Java Soft

getCatalog() Works as specified by Java Soft

getMetaData() Works as specified by Java Soft

getTransactionIsolation() Works as specified by Java Soft

getWarnings() Works as specified by Java Soft

isClosed() Works as specified by Java Soft

isReadOnly() SOLID Embedded only supports read-only
database and read-only transactions, not
read-only connections. This method
always returns false.
7-10 SOLID Programmer Guide

JDBC Driver Classes and Methods
nativeSQL(String) Works as specified by Java Soft. SOLID
JDBC Driver does not change the SQL
passed to SOLID Embedded Engine.

prepareCall(String) Works as specified by JavaSoft. Note that
the escape call syntax is not supported.

prepareStatement(String) Works as specified by Java Soft

rollback() Works as specified by Java Soft

setAutoCommit(boolean) Works as specified by Java Soft

setCatalog(String) No operation

setReadOnly(boolean) SOLID Embedded Engine only supports
read-only database and read-only connec-
tions. This method exists but does not
affect the connection behavior.

setTransactionIsolation(int) Works as specified by JavaSoft
 Using the SOLID JDBC Driver 7-11

JDBC Driver Classes and Methods
SolidConnection

Method name Notes

clearWarnings() Works as specified by Java Soft

close() Works as specified by Java Soft. Note that
connections should be explicitly closed
when not used anymore.

commit() Works as specified by Java Soft

createstatement() Works as specified by Java Soft

getAutoCommit() Works as specified by Java Soft

getCatalog() Works as specified by Java Soft

getMetaData() Works as specified by Java Soft

getTransactionIsolation() Works as specified by Java Soft

getWarnings() Works as specified by Java Soft

isClosed() Works as specified by Java Soft

isReadOnly() SOLID Embedded only supports read-only
database and read-only transactions, not
read-only connections. This method
always returns false.

nativeSQL(String) Works as specified by Java Soft. SOLID
JDBC Driver does not change the SQL
passed to SOLID Embedded Engine.

prepareCall(String) Works as specified by JavaSoft. Note that
the escape call syntax is not supported.

prepareStatement(String) Works as specified by Java Soft

rollback() Works as specified by Java Soft

setAutoCommit(boolean) Works as specified by Java Soft

setCatalog(String) No operation

setReadOnly(boolean) SOLID Embedded Engine only supports
read-only database and read-only connec-
tions. This method exists but does not
affect the connection behavior.

setTransactionIsolation(int) Works as specified by JavaSoft
7-12 SOLID Programmer Guide

JDBC Driver Classes and Methods
SolidDatabaseMetaData

Method name Notes

allProceduresAreCallable() Works as specified by Java Soft

allTablesAreSelectable() Works as specified by Java Soft

dataDefinitionCausesTransactionCommit() Works as specified by Java Soft

dataDefinitionIgnoredInTransactions() Works as specified by Java Soft

doesMaxRowSizeIncludeBlobs() Works as specified by JavaSoft (returns
false)

getBestRowIdentifier(String, String, String, int,
boolean)

Throws SQL state 'IM001'

getCatalogs() Throws SQL state 'IM001'. SOLID
Embedded Engine does not support cata-
logs

getCatalogSeparator() Works as specified by JavaSoft

getCatalogTerm() Works as specified by JavaSoft

getColumnPrivileges(String, String, String,
String)

Throws SQL state 'IM001'

getCrossReference(String, String, String,
String, String, String)

Throws SQL state 'IM001'

getDatabaseProductName() Works as specified by JavaSoft

getDatabaseProductVersion() Works as specified by JavaSoft

getDefaultTransactionIsolation() Works as specified by JavaSoft

getDriverMajorVersion() Works as specified by JavaSoft

getDriverMinorVersion() Works as specified by JavaSoft

getDriverName() Works as specified by JavaSoft

getDriverVersion() Works as specified by JavaSoft

getExportedKeys(String, String, String) Throws SQL state 'IM001'

getExtraNameCharacters() Works as specified by JavaSoft

getIdentifierQuoteString() Works as specified by JavaSoft

getImportedKeys(String, String, String) Throws SQL state 'IM001'
 Using the SOLID JDBC Driver 7-13

JDBC Driver Classes and Methods
getIndexInfo(String, String, String, boolean,
boolean)

Throws SQL state 'IM001'

getMaxBinaryLiteralLength() Works as specified by JavaSoft

getMaxCatalogNameLength() Works as specified by JavaSoft

getMaxCharLiteralLength() Works as specified by JavaSoft

getMaxColumnNameLength() Works as specified by JavaSoft

getMaxColumnsInGroupBy() Works as specified by JavaSoft

getMaxColumnsInIndex() Works as specified by JavaSoft

getMaxColumnsInOrderBy() Works as specified by JavaSoft

getMaxColumnsInSelect() Works as specified by JavaSoft

getMaxColumnsInTable() Works as specified by JavaSoft

getMaxConnections() Works as specified by JavaSoft

getMaxCursorNameLength() Works as specified by JavaSoft

getMaxIndexLength() Works as specified by JavaSoft

getMaxProcedureNameLength() Works as specified by JavaSoft

getMaxRowSize() Works as specified by JavaSoft

getMaxSchemaNameLength() Works as specified by JavaSoft

getMaxStatementLength() Works as specified by JavaSoft

getMaxStatements() Works as specified by JavaSoft

getMaxTableNameLength() Works as specified by JavaSoft

getMaxTablesInSelect() Works as specified by JavaSoft

getMaxUserNameLength() Works as specified by JavaSoft

getNumericFunctions() Works as specified by JavaSoft

getPrimaryKeys(String, String, String) Works as specified by JavaSoft

getProcedureColumns(String, String, String,
String

Throws SQL state 'IM001'

getProcedures(String, String, String) Works as specified by JavaSoft

getProcedureTerm() Works as specified by JavaSoft

getSchemas() Throws SQL state 'IM001'

getSchemaTerm() Works as specified by JavaSoft
7-14 SOLID Programmer Guide

JDBC Driver Classes and Methods
getSearchStringEscape() Works as specified by JavaSoft

getSQLKeywords() Works as specified by JavaSoft

getStringFunctions() Works as specified by JavaSoft

getSystemFunctions() Works as specified by JavaSoft

getTablePrivileges(String, String, String) Works as specified by JavaSoft

getTables(String, String, STring, STring[]) Works as specified by JavaSoft

getTableTypes() Works as specified by JavaSoft

getTimeDateFunctions() Works as specified by JavaSoft

getTypeInfo() Works as specified by JavaSoft

getURL() Works as specified by JavaSoft

getUserName() Works as specified by JavaSoft

getVersionColumns(String, String, String) Works as specified by JavaSoft

isCatalogAtStart() Works as specified by JavaSoft

isReadOnly() Will always return false regardless of the
status of server

nullPlusNonNullIsNull() Works as specified by JavaSoft

nullsAreSortedAtEnd() Works as specified by JavaSoft

nullsAreSortedAtStart() Works as specified by JavaSoft

nullsAreSortedHigh() Works as specified by JavaSoft

nullsAreSortedLow() Works as specified by JavaSoft

storesLowerCaseIdentifiers() Works as specified by JavaSoft

storesLowerCaseQuotedIdentifiers() Works as specified by JavaSoft

storesMixedCaseIdentifiers() Works as specified by JavaSoft

storesMixedCaseQuotedIdentifiers() Works as specified by JavaSoft

storesUpperCaseIdentifiers Works as specified by JavaSoft

storesUpperCaseQuotedIdentifiers() Works as specified by JavaSoft

supportsAlterTableWithAddColumn() Works as specified by JavaSoft

supportAlterTableWithDropColumn() Works as specified by JavaSoft

supportsANSI92EntryLevelSQL() Works as specified by JavaSoft
 Using the SOLID JDBC Driver 7-15

JDBC Driver Classes and Methods
supportsANSI92FullSQL() Works as specified by JavaSoft

supportsANSI92IntermediateSQL() Works as specified by JavaSoft

supportsCatalogsInDataManipulation() Works as specified by JavaSoft

supportsCatalogsInIndexDefinitions() Works as specified by JavaSoft

supportsCatalogsInPrivilegeDefinitions() Works as specified by JavaSoft

supportsCatalogsInProcedureCalls() Works as specified by JavaSoft

supportssCatalogsInTableDefinitions() Works as specified by JavaSoft

supportsColumnAliasing() Works as specified by JavaSoft

supportsConvert() Always returns true.

supportsConvert(int, int) Always returns false.

supportsCoreSQLGrammar() Works as specified by JavaSoft

supportsCorrelatedSubqueries() Works as specified by JavaSoft

supportsDataDefinitionAndData-
ManipulationTransactions()

Works as specified by JavaSoft

supportsDifferentTableCorrelationNames() Works as specified by JavaSoft

supportsExpressionsInOrderBy() Works as specified by JavaSoft

supportsExtendedSQLGrammar() Works as specified by JavaSoft

supportsFullOuterJoins() Works as specified by JavaSoft

supportsGroupBy() Works as specified by JavaSoft

supportsGroupByBeyondSelect() Works as specified by JavaSoft

supportsGroupByUnrelated() Works as specified by JavaSoft

supportsIntegrityEnhancementFacility() Works as specified by JavaSoft

supportsLikeEscapeClause() Works as specified by JavaSoft

supportsLimitedOuterJoins() Works as specified by JavaSoft

supportsMinimumSQLGrammar() Works as specified by JavaSoft

supportsMixedCaseIdentifiers() Works as specified by JavaSoft

supportsMixedCaseQuotedIdentifiers() Works as specified by JavaSoft

supportsMultipleResultSets() Works as specified by JavaSoft

supportsMultipleTransactions() Works as specified by JavaSoft
7-16 SOLID Programmer Guide

JDBC Driver Classes and Methods
supportsNonNullableColumns() Works as specified by JavaSoft

supportsOpenCursorsAcrossCommit() Works as specified by JavaSoft

supportsOpenCursorsAcrossRollback() Works as specified by JavaSoft

supportsOpenStatementsAcrossCommit() Works as specified by JavaSoft

supportsOpenStatementsAcrossRollback() Works as specified by JavaSoft

supportsOrderByUnrelated Works as specified by JavaSoft

supportsOuterJoins() Works as specified by JavaSoft

supportsPositionedDelete() Works as specified by JavaSoft

supportsPositionedUpdate() Works as specified by JavaSoft

supportsSchemasInDataManipulation() Works as specified by JavaSoft

supportsSchemasInIndexDefinitions() Works as specified by JavaSoft

supportsSchemasInPrivilegeDefinitions() Works as specified by JavaSoft

supportsSchemasInProcedureCalls() Works as specified by JavaSoft

supportsSchemasInTableDefinitions() Works as specified by JavaSoft

supportsSelectForUpdate() Works as specified by JavaSoft

supportsStoredProcedures() Works as specified by JavaSoft

supportsSubqueriesInComparisons() Works as specified by JavaSoft

supportsSubqueriesInExists() Works as specified by JavaSoft

supportsSubqueriesInIns() Works as specified by JavaSoft

supportsSubqueriesInQuantifieds() Works as specified by JavaSoft

supportsTableCorrelationNames() Works as specified by JavaSoft

supportsTransactionIsolationLevel(int) Works as specified by JavaSoft

supportsTransactions() Works as specified by JavaSoft

supportsUnion() Works as specified by JavaSoft

supportsUnionAll() Works as specified by JavaSoft

usesLocalFilePerTable() Works as specified by JavaSoft

usesLocalFiles() Works as specified by JavaSoft
 Using the SOLID JDBC Driver 7-17

SolidDriver
SolidDriver

Method name Notes

acceptsURL(String) Works as specified by Java Soft

connect(String, Properties) Always to be called through Driver Man-
ager

getMajorVersion() Works as specified by Java Soft

getMinorVersion() Works as specified by Java Soft

getPropertyInfo(String, Properties) Works as specified by Java Soft

jdbcCompliant() Works as specified by Java Soft

clearParameters() Works as specified by Java Soft

execute() Works as specified by Java Soft

executeQuery() Works as specified by Java Soft

executeUpdate() Works as specified by Java Soft

setAsciiStream(int, InputStream, int) Works as specified by Java Soft

setBigDecimal(int, BigDecimal) Works as specified by Java Soft

setBinaryStream(int, InputStream, int) Works as specified by Java Soft

setBoolean(int, boolean) Works as specified by Java Soft

setByte(int, byte) Works as specified by JavaSoft

setBytes(int, byte[]) Works as specified by JavaSoft

setDate(int, Date) Works as specified by JavaSoft

setDouble(int, double) Works as specified by JavaSoft

setFloat(int, float) Works as specified by JavaSoft

setInt(int, int) Works as specified by JavaSoft

setLong(int, long) Works as specified by JavaSoft

setNull(int, int) Works as specified by JavaSoft

setObject(int, Object) Works as specified by JavaSoft

setObject(int, Object, int) Works as specified by JavaSoft

setObject(int, Object, int, int) Works as specified by JavaSoft
7-18 SOLID Programmer Guide

SolidResultSet
SolidResultSet

setShort(int, short) Works as specified by JavaSoft

setString(int, String) Works as specified by JavaSoft

setTime(int, Time) Works as specified by JavaSoft

setTimestamp(int, Timestamp) Works as specified by JavaSoft

setUnicodeStream(int, InputStream, int) Unicode attributes not supported by
SOLID Embedded Engine.

Method name Notes

clearWarnings() Works as specified by JavaSoft

close() Works as specified by JavaSoft

findColumn(String) Works as specified by JavaSoft

getAsciiStream(int) Works as specified by JavaSoft

getAsciiStream(String) Works as specified by JavaSoft

getBigDecimal(int, int) Works as specified by JavaSoft

getBigDecimal(String, int) Works as specified by JavaSoft

getBinaryStream(int) Works as specified by JavaSoft

getBinaryStrem(String) Works as specified by JavaSoft

getBoolean(int) Works as specified by JavaSoft

getBoolean(String) Works as specified by JavaSoft

getByte(int) Works as specified by JavaSoft

getByte(String) Works as specified by JavaSoft

getBytes(int) Works as specified by JavaSoft

getBytes(String) Works as specified by JavaSoft

getCursorName() Works as specified by JavaSoft

getDate(int) Works as specified by JavaSoft

getDate(String) Works as specified by JavaSoft

getDouble(int) Works as specified by JavaSoft
 Using the SOLID JDBC Driver 7-19

SolidResultSetMetaData
SolidResultSetMetaData

getDouble(String) Works as specified by JavaSoft

getFloat(int) Works as specified by JavaSoft

getFloat(String) Works as specified by JavaSoft

getInt(int) Works as specified by JavaSoft

getInt(String) Works as specified by JavaSoft

getLong(int) Works as specified by JavaSoft

getLong(String) Works as specified by JavaSoft

getMetaData() Works as specified by JavaSoft

getObject(int) Works as specified by JavaSoft

getObject(String) Works as specified by JavaSoft

getShort(int) Works as specified by JavaSoft

getShort(String) Works as specified by JavaSoft

getString(int) Works as specified by JavaSoft

getString(String) Works as specified by JavaSoft

getTime(int) Works as specified by JavaSoft

getTime(String) Works as specified by JavaSoft

getTimestamp(int) Works as specified by JavaSoft

getTimestamp(String) Works as specified by JavaSoft

getUnicodeStream(int) Unicode attributes not supported by
SOLID Embedded Engine.

getUnicodeStream(String) Unicode attributes not supported by
SOLID Embedded Engine.

getWarnings() Works as specified by JavaSoft

next() Works as specified by JavaSoft

wasNull() Works as specified by JavaSoft

Method name Notes

getCatalogName(int) Works as specified by JavaSoft
7-20 SOLID Programmer Guide

SolidStatement
SolidStatement

getColumnCount() Works as specified by JavaSoft

getColumnDisplaySize(int) Works as specified by JavaSoft

getColumnLabel(int) Works as specified by JavaSoft

getColumnName(int) Works as specified by JavaSoft

getColumnType(int) Works as specified by JavaSoft

getColumnTypeName(int) Works as specified by JavaSoft

getPrecision(int) Works as specified by JavaSoft

getScale(int) Works as specified by JavaSoft

getSchemaName(int) Works as specified by JavaSoft

getTableName(int) Works as specified by JavaSoft

isAutoIncrement(int) Works as specified by JavaSoft

isCaseSensitive(int) Works as specified by JavaSoft

isCurrency(int) Works as specified by JavaSoft

isDefinitelyWritable(int) Works as specified by JavaSoft

isNullable(int) Works as specified by JavaSoft

isReadOnly(int) Works as specified by JavaSoft

isSearchable(int) Works as specified by JavaSoft

isSigned(int) Works as specified by JavaSoft

isWritable(int) Works as specified by JavaSoft

Method name Notes

cancel() No operation in SOLID JDBC Driver

clearWarnings() Works as specified by JavaSoft

close() Works as specified by JavaSoft

execute(String) Works as specified by JavaSoft

executeQuery(String) Works as specified by JavaSoft

executeUpdate(String) Works as specified by JavaSoft
 Using the SOLID JDBC Driver 7-21

Code Examples
Code Examples

Sample 1:
/**
 * sample1 JDBC sample application
 *
 * Sep 24 1997 JP
 *
 * This simple JDBC application does the following using
 * SOLID native JDBC driver.
 *
 * 1. Registers the driver using JDBC driver manager services
 * 2. Prompts the user for a valid JDBC connect string
 * 3. Connects to SOLID Embedded Engine using the driver
 * 4. Creates a statement for one query,
 * 'SELECT TABLE_SCHEMA,TABLE_NAME,TABLE_TYPE FROM TABLES'
 * for reading data from one of SOLID Embedded Engine’s system tables.
 * 5. Executes the query
 * 6. Fetches and dumps all the rows of a result set.
 * 7. Closes connection
 *
 * To build and run the application

getMaxFieldSize() Maxfield size does not affect SOLID
server behavior

getMaxRows() Works as specified by JavaSoft

getMoreResults() Works as specified by JavaSoft

getQueryTimeout() Works as specified by JavaSoft

getResultSet() Works as specified by JavaSoft

getUpdateCount() Works as specified by JavaSoft

getWarnings() Works as specified by JavaSoft

setCursorName(String) Works as specified by JavaSoft

setEscapeProcessing(boolean) Works as specified by JavaSoft

setMaxFieldSize(int) Maxfield size does not affect SOLID
server behavior

setMaxRows(int) Works as specified by JavaSoft

setQueryTimeout(int) No operation.
7-22 SOLID Programmer Guide

Code Examples
 *
 * 1. Make sure you have a working Java Development environment
 * 2. Install and start Solid Embedded Engine to connect. Ensure that the
 * server is up and running.
 * 3. Append SolidDriver.zip into the CLASSPATH definition used
 * by your development/running environment.
 * 4. Create a java project based on the file sample1.java.
 * 5. Build and run the application.
 *
 * For more information read the readme.htm file contained by
 * SOLID JDBC Driver package.
 *
 */

import java.io.*;

public class sample1 {

 public static void main (String args[]) throws Exception
 {
 java.sql.Connection conn;
 java.sql.ResultSetMetaData meta;
 java.sql.Statement stmt;
 java.sql.ResultSet result;
 int i;

 System.out.println("JDBC sample application starts...");
 System.out.println("Application tries to register the driver.");

 // this is the recommended way for registering Drivers
 java.sql.Driver d =
(java.sql.Driver)Class.forName("solid.jdbc.SolidDriver").newInstance();

 System.out.println("Driver succesfully registered.");

 // the user is asked for a connect string
 System.out.println("Now sample application needs a connectstring in
format:\n");
 System.out.println("jdbc:solid://<host>:<port>/<user name>/
<password>\n");
 System.out.print("\nPlease enter the connect string >");
 BufferedReader reader = new BufferedReader(new
InputStreamReader(System.in));
 String sCon = reader.readLine();
 Using the SOLID JDBC Driver 7-23

Code Examples
 // next, the connection is attempted
 System.out.println("Attempting to connect :" + sCon);
 conn = java.sql.DriverManager.getConnection(sCon);

 System.out.println("SolidDriver succesfully connected.");

 String sQuery = "SELECT TABLE_SCHEMA,TABLE_NAME,TABLE_TYPE FROM TABLES";

 stmt= conn.createStatement();

 result = stmt.executeQuery(sQuery);
 System.out.println("Query executed and result set obtained.");

 // we get a metadataobject containing information about the
 // obtained result set
 System.out.println("Obtaining metadata information.");
 meta = result.getMetaData();
 int cols = meta.getColumnCount();

 System.out.println("Metadata information for columns is as follows:");
 // we dump the column information about the result set
 for (i=1; i <= cols; i++)
 {
 System.out.println("Column i:"+i+" "+meta.getColumnName(i)+ "," +
meta.getColumnType(i) + "," + meta.getColumnTypeName(i));
 }

 // and finally, we dump the result set
 System.out.println("Starting to dump resultset.");
 int cnt = 1;
 while(result.next())
 {
 System.out.print("\nRow "+cnt+" : ");
 for (i=1; i <= cols; i++) {
 System.out.print(result.getString(i)+"\t");
 }
 cnt++;
 }

 stmt.close();

 conn.close();
 // and not it is all over
 System.out.println("\nResult set dumped. Sample application finishes.");
 }
7-24 SOLID Programmer Guide

Code Examples
}

Sample 1 output
K:\projects\jdbc\prod10\samples>java sample1
JDBC sample application starts...
Application tries to register the driver.
Driver succesfully registered.
Now sample application needs a connectstring in format:

jdbc:solid://<host>:<port>/<user name>/<password>

Please enter the connect string >jdbc:solid://localhost:1313/dba/dba
Attempting to connect :jdbc:solid://localhost:1313/dba/dba
SolidDriver succesfully connected.
Query executed and result set obtained.
Obtaining metadata information.
Metadata information for columns is as follows:
Column i:1 TABLE_SCHEMA,12,VARCHAR
Column i:2 TABLE_NAME,12,VARCHAR
Column i:3 TABLE_TYPE,12,VARCHAR
Starting to dump resultset.

Row 1 : _SYSTEM SYS_TABLES BASE TABLE
Row 2 : _SYSTEM SYS_COLUMNS BASE TABLE
Row 3 : _SYSTEM SYS_USERS BASE TABLE
Row 4 : _SYSTEM SYS_UROLE BASE TABLE
Row 5 : _SYSTEM SYS_RELAUTH BASE TABLE
Row 6 : _SYSTEM SYS_ATTAUTH BASE TABLE
Row 7 : _SYSTEM SYS_VIEWS BASE TABLE
Row 8 : _SYSTEM SYS_KEYPARTS BASE TABLE
Row 9 : _SYSTEM SYS_KEYS BASE TABLE
Row 10 : _SYSTEM SYS_CARDINAL BASE TABLE
Row 11 : _SYSTEM SYS_INFO BASE TABLE
Row 12 : _SYSTEM SYS_SYNONYM BASE TABLE
Row 13 : _SYSTEM TABLES VIEW
Row 14 : _SYSTEM COLUMNS VIEW
Row 15 : _SYSTEM SQL_LANGUAGES BASE TABLE
Row 16 : _SYSTEM SERVER_INFO VIEW
Row 17 : _SYSTEM SYS_TYPES BASE TABLE
Row 18 : _SYSTEM SYS_FORKEYS BASE TABLE
Row 19 : _SYSTEM SYS_FORKEYPARTS BASE TABLE
Row 20 : _SYSTEM SYS_PROCEDURES BASE TABLE
Row 21 : _SYSTEM SYS_TABLEMODES BASE TABLE
 Using the SOLID JDBC Driver 7-25

Code Examples
Row 22 : _SYSTEM SYS_EVENTS BASE TABLE
Row 23 : _SYSTEM SYS_SEQUENCES BASE TABLE
Row 24 : _SYSTEM SYS_TMP_HOTSTANDBY BASE TABLE
Result set dumped. Sample application finishes.

Sample 2
/**
 * sample2 JDBC sample applet
 *
 * Sep 24 1997 JP
 *
 * This simple JDBC applet does the following using
 * Solid native JDBC driver.
 *
 * 1. Registers the driver using JDBC driver manager services
 * 2. Connects to Solid Embedded Engine using the driver.
 * Used url is read from sample2.html
 * 3. Executes given SQL statements
 *
 * To build and run the application
 *
 * 1. Make sure you have a working Java Development environment
 * 2. Install and start SOLID Embedded Engine to connect. Ensure that the
 * server is up and running.
 * 3. Append SolidDriver.zip into the CLASSPATH definition used
 * by your development/running environment.
 * 4. Create a java project based on the file sample2.java.
 * 5. Build and run the application. Check that sample2.html
 * defines valid url to your environment.
 *
 * For more information read the readme.htm file contained by
 * SOLID JDBC Driver package.
 *
 */

import java.util.*;
import java.awt.*;
import java.applet.Applet;
import java.net.URL;
import java.sql.*;

public class sample2 extends Applet {
 TextField textField;
 static TextArea textArea;
7-26 SOLID Programmer Guide

Code Examples
 String url = null;
 Connection con = null;

 public void init() {
 // a valid value for url could be
 // url = "jdbc:solid://localhost:1313/dba/dba";

 url = getParameter("url");

 textField = new TextField(40);
 textArea = new TextArea(10, 40);
 textArea.setEditable(false);

 Font font = textArea.getFont();
 Font newfont = new Font("Monospaced", font.PLAIN, 12);
 textArea.setFont(newfont);

 // Add Components to the Applet.
 GridBagLayout gridBag = new GridBagLayout();
 setLayout(gridBag);
 GridBagConstraints c = new GridBagConstraints();
 c.gridwidth = GridBagConstraints.REMAINDER;

 c.fill = GridBagConstraints.HORIZONTAL;
 gridBag.setConstraints(textField, c);
 add(textField);

 c.fill = GridBagConstraints.BOTH;
 c.weightx = 1.0;
 c.weighty = 1.0;
 gridBag.setConstraints(textArea, c);
 add(textArea);

 validate();

 try {
 // Load the SOLID JDBC Driver
 Driver d = (Driver)Class.forName
("solid.jdbc.SolidDriver").newInstance();

 // Attempt to connect to a driver.
 con = DriverManager.getConnection (url);

 // If we were unable to connect, an exception
 Using the SOLID JDBC Driver 7-27

Code Examples
 // would have been thrown. So, if we get here,
 // we are successfully connected to the url

 // Check for, and display and warnings generated
 // by the connect.
 checkForWarning (con.getWarnings ());

 // Get the DatabaseMetaData object and display
 // some information about the connection
 DatabaseMetaData dma = con.getMetaData ();

 textArea.appendText("Connected to " + dma.getURL() + "\n");
 textArea.appendText("Driver " + dma.getDriverName() + "\n");
 textArea.appendText("Version " + dma.getDriverVersion() +
"\n");
 }
 catch (SQLException ex) {
 printSQLException(ex);
 }
 catch (Exception e) {
 textArea.appendText("Exception: " + e + "\n");
 }
 }

 public void destroy() {
 if (con != null) {
 try {
 con.close();
 }
 catch (SQLException ex) {
 printSQLException(ex);
 }
 catch (Exception e) {
 textArea.appendText("Exception: " + e + "\n");
 }
 }
 }

 public boolean action(Event evt, Object arg) {
 if (con != null) {
 String sqlstmt = textField.getText();
 textArea.setText("");
 try {
 // Create a Statement object so we can submit
 // SQL statements to the driver
7-28 SOLID Programmer Guide

Code Examples
 Statement stmt = con.createStatement ();
 // set row limit
 stmt.setMaxRows(50);
 // Submit a query, creating a ResultSet object
 ResultSet rs = stmt.executeQuery (sqlstmt);

 // Display all columns and rows from the result set
 textArea.setVisible(false);
 dispResultSet (stmt,rs);
 textArea.setVisible(true);

 // Close the result set
 rs.close();

 // Close the statement
 stmt.close();
 }
 catch (SQLException ex) {
 printSQLException(ex);
 }
 catch (Exception e) {
 textArea.appendText("Exception: " + e + "\n");
 }
 textField.selectAll();
 }
 return true;
 }

 //---
 // checkForWarning
 // Checks for and displays warnings. Returns true if a warning
 // existed
 //---

 private static boolean checkForWarning (SQLWarning warn)
 throws SQLException
 {
 boolean rc = false;

 // If a SQLWarning object was given, display the
 // warning messages. Note that there could be
 // multiple warnings chained together

 if (warn != null) {
 textArea.appendText("\n*** Warning ***\n");
 Using the SOLID JDBC Driver 7-29

Code Examples
 rc = true;
 while (warn != null) {
 textArea.appendText("SQLState: " +
 warn.getSQLState () + "\n");
 textArea.appendText("Message: " +
 warn.getMessage () + "\n");
 textArea.appendText("Vendor: " +
 warn.getErrorCode () + "\n");
 textArea.appendText("\n");
 warn = warn.getNextWarning ();
 }
 }
 return rc;
 }

 //---
 // dispResultSet
 // Displays all columns and rows in the given result set
 //---

 private static void dispResultSet (Statement sta, ResultSet rs)
 throws SQLException
 {
 int i;

 // Get the ResultSetMetaData. This will be used for
 // the column headings
 ResultSetMetaData rsmd = rs.getMetaData ();

 // Get the number of columns in the result set
 int numCols = rsmd.getColumnCount ();
 if (numCols == 0) {
 textArea.appendText("Updatecount is "+sta.getUpdateCount());
 return;
 }

 // Display column headings
 for (i=1; i<=numCols; i++) {
 if (i > 1) {
 textArea.appendText("\t");
 }
 try {
 textArea.appendText(rsmd.getColumnLabel(i));
 }
 catch(NullPointerException ex) {
7-30 SOLID Programmer Guide

Code Examples
 textArea.appendText("null");
 }
 }
 textArea.appendText("\n");

 // Display data, fetching until end of the result set
 boolean more = rs.next ();
 while (more) {

 // Loop through each column, get the
 // column datza and display it
 for (i=1; i<=numCols; i++) {
 if (i > 1) {
 textArea.appendText("\t");
 }
 try {
 textArea.appendText(rs.getString(i));
 }
 catch(NullPointerException ex) {
 textArea.appendText("null");
 }
 }
 textArea.appendText("\n");

 // Fetch the next result set row
 more = rs.next ();
 }
 }

 private static void printSQLException(SQLException ex)
 {
 // A SQLException was generated. Catch it and
 // display the error information. Note that there
 // could be multiple error objects chained
 // together

 textArea.appendText("\n*** SQLException caught ***\n");

 while (ex != null) {
 textArea.appendText("SQLState: " +
 ex.getSQLState () + "\n");
 textArea.appendText("Message: " +
 ex.getMessage () + "\n");
 textArea.appendText("Vendor: " +
 ex.getErrorCode () + "\n");
 Using the SOLID JDBC Driver 7-31

Code Examples
 textArea.appendText("\n");
 ex = ex.getNextException ();
 }
 }
}

Sample 3
/**
 * sample3 JDBC sample application
 *
 * Sep 24 1997 JP
 *
 * This simple JDBC application does the following using
 * SOLID native JDBC driver.
 *
 * 1. Registers the driver using JDBC driver manager services
 * 2. Prompts the user for a valid JDBC connect string
 * 3. Connects to SOLID Embedded Engine using the driver
 * 4. Drops and creates a procedure sample3. If the procedure
 * does not exist dumps the related exception.
 * 5. Calls that procedure using java.sql.Statement
 * 6. Fetches and dumps all the rows of a result set.
 * 7. Closes connection
 *
 * To build and run the application
 *
 * 1. Make sure you have a working Java Development environment
 * 2. Install and start SOLID Embedded Engine to connect. Ensure that the
* server is up and running.

 * 3. Append SolidDriver.zip into the CLASSPATH definition used
 * by your development/running environment.
 * 4. Create a java project based on the file sample3.java.
 * 5. Build and run the application.
 *
 * For more information read the readme.htm file contained by
 * SOLID JDBC Driver package.
 *
 */

import java.io.*;
import java.sql.*;

public class sample3 {
7-32 SOLID Programmer Guide

Code Examples
 static Connection conn;
 public static void main (String args[]) throws Exception
 {
 System.out.println("JDBC sample application starts...");
 System.out.println("Application tries to register the driver.");

 // this is the recommended way for registering Drivers
 Driver d =
(Driver)Class.forName("solid.jdbc.SolidDriver").newInstance();

 System.out.println("Driver succesfully registered.");

 // the user is asked for a connect string
 System.out.println("Now sample application needs a connectstring in
format:\n");
 System.out.println("jdbc:solid://<host>:<port>/<user name>/
<password>\n");
 System.out.print("\nPlease enter the connect string >");
 BufferedReader reader = new BufferedReader(new
InputStreamReader(System.in));
 String sCon = reader.readLine();

 // next, the connection is attempted
 System.out.println("Attempting to connect :" + sCon);
 conn = DriverManager.getConnection(sCon);

 System.out.println("SolidDriver succesfully connected.");

 DoIt();

 conn.close();
 // and now it is all over
 System.out.println("\nResult set dumped. Sample application finishes.");
 }

 static void DoIt() {
 try {
 createprocs();
 PreparedStatement pstmt = conn.prepareStatement("call sample3(?)");
 // set parameter value
 pstmt.setInt(1,10);

 ResultSet rs = pstmt.executeQuery();
 Using the SOLID JDBC Driver 7-33

Code Examples
 if (rs != null) {
 ResultSetMetaData md = rs.getMetaData();
 int cols = md.getColumnCount();
 int row = 0;
 while (rs.next()) {
 row++;
 String ret = "row "+row+": ";
 for (int i=1;i<=cols;i++) {
 ret = ret + rs.getString(i) + " ";
 }
 System.out.println(ret);
 }
 }
 conn.commit();
 }
 catch (SQLException ex) {
 printexp(ex);
 }
 catch (java.lang.Exception ex) {
 ex.printStackTrace ();
 }

 }

 static void createprocs() {
 Statement stmt = null;
 String proc = "create procedure sample3 (limit integer)" +
 "returns (c1 integer, c2 integer) " +
 "begin " +
 " c1 := 0;" +
 " while c1 < limit loop " +
 " c2 := 5 * c1;" +
 " return row;" +
 " c1 := c1 + 1;" +
 " end loop;" +
 "end";

 try {
 stmt = conn.createStatement();
 stmt.execute("drop procedure sample3");
 } catch (SQLException ex) {
 printexp(ex);
 }

 try {
7-34 SOLID Programmer Guide

Code Examples
 stmt.execute(proc);
 } catch (SQLException ex) {
 printexp(ex);
 System.exit(-1);
 }
 }

 public static void printexp(SQLException ex) {
 System.out.println("\n*** SQLException caught ***");
 while (ex != null) {
 System.out.println("SQLState: " + ex.getSQLState());
 System.out.println("Message: " + ex.getMessage());
 System.out.println("Vendor: " + ex.getErrorCode());
 ex = ex.getNextException ();
 }
 }

}

Sample 4
/**
 * sample4 JDBC sample application
 *
 * Sep 24 1997 JP
 *
 * This simple JDBC application does the following using
 * SOLID native JDBC driver.
 *
 * 1. Registers the driver using JDBC driver manager services
 * 2. Prompts the user for a valid JDBC connect string
 * 3. Connects to SOLID Embedded Engine using the driver
 * 4. Drops and creates a table sample4. If the table
 * does not exist dumps the related exception.
 * 5. Inserts file given as an argument to database (method Store)
 * 6. Reads this 'blob' back to file out.tmp (method Restore)
 * 7. Closes connection
 *
 * To build and run the application
 *
 * 1. Make sure you have a working Java Development environment
 * 2. Install and start Solid Embedded Engine to connect. Ensure that the
* server is up and running.

 * 3. Append SolidDriver.zip into the CLASSPATH definition used
 * by your development/running environment.
 Using the SOLID JDBC Driver 7-35

Code Examples
 * 4. Create a java project based on the file sample4.java.
 * 5. Build and run the application.
 *
 * For more information read the readme.htm file contained by
 * SOLID JDBC Driver package.
 *
 */

import java.io.*;
import java.sql.*;

public class sample4 {

 static Connection conn;
 public static void main (String args[]) throws Exception
 {
 String filename = null;
 String tmpfilename = null;

 if (args.length < 1) {
 System.out.println("usage: java sample4 <infile>");
 System.exit(0);
 }
 filename = args[0];
 tmpfilename = "out.tmp";
 System.out.println("JDBC sample application starts...");
 System.out.println("Application tries to register the driver.");

 // this is the recommended way for registering Drivers
 Driver d =
(Driver)Class.forName("solid.jdbc.SolidDriver").newInstance();

 System.out.println("Driver succesfully registered.");

 // the user is asked for a connect string
 System.out.println("Now sample application needs a connectstring in
format:\n");
 System.out.println("jdbc:solid://<host>:<port>/<user name>/
<password>\n");
 System.out.print("\nPlease enter the connect string >");
 BufferedReader reader = new BufferedReader(new
InputStreamReader(System.in));
 String sCon = reader.readLine();

 // next, the connection is attempted
7-36 SOLID Programmer Guide

Code Examples
 System.out.println("Attempting to connect :" + sCon);
 conn = DriverManager.getConnection(sCon);

 System.out.println("SolidDriver succesfully connected.");

 // drop and create table sample4
 createsample4();
 // insert data into it
 Store(filename);
 // and restore it
 Restore(tmpfilename);

 conn.close();
 // and it is all over
 System.out.println("\nSample application finishes.");
 }

 static void Store(String filename) {
 String sql = "insert into sample4 values(?,?)";
 FileInputStream inFileStream ;
 try {
 File f1 = new File(filename);
 int blobsize = (int)f1.length();
 System.out.println("Inputfile size is "+blobsize);
 inFileStream = new FileInputStream(f1);

 PreparedStatement stmt = conn.prepareStatement(sql);
 stmt.setLong(1, System.currentTimeMillis());
 stmt.setBinaryStream(2, inFileStream, blobsize);
 int rows = stmt.executeUpdate();
 stmt.close();
 System.out.println(""+rows+" inserted.");
 conn.commit();
 }
 catch (SQLException ex) {
 printexp(ex);
 }
 catch (java.lang.Exception ex) {
 ex.printStackTrace ();
 }

 }

 static void Restore(String filename) {
 Using the SOLID JDBC Driver 7-37

Code Examples
 String sql = "select id,blob from sample4";
 FileOutputStream outFileStream ;
 try {
 File f1 = new File(filename);
 outFileStream = new FileOutputStream(f1);

 PreparedStatement stmt = conn.prepareStatement(sql);
 ResultSet rs = stmt.executeQuery();
 int readsize = 0;
 while (rs.next()) {
 InputStream in = rs.getBinaryStream(2);
 byte bytes[] = new byte[8*1024];
 int nRead = in.read(bytes);
 while (nRead != -1) {
 readsize = readsize + nRead;
 outFileStream.write(bytes,0,nRead);
 nRead = in.read(bytes);
 }

 }
 stmt.close();
 System.out.println("Read "+readsize+" bytes from database");
 }
 catch (SQLException ex) {
 printexp(ex);
 }
 catch (java.lang.Exception ex) {
 ex.printStackTrace ();
 }

 }

 static void createsample4() {
 Statement stmt = null;
 String proc = "create table sample4 (" +
 "id numeric not null primary key,"+
 "blob long varbinary)";

 try {
 stmt = conn.createStatement();
 stmt.execute("drop table sample4");
 } catch (SQLException ex) {
 printexp(ex);
 }
7-38 SOLID Programmer Guide

SOLID JDBC Driver Type Conversion Matrix

up-
d
 is
 try {
 stmt.execute(proc);
 } catch (SQLException ex) {
 printexp(ex);
 System.exit(-1);
 }
 }

 static void printexp(SQLException ex) {
 System.out.println("\n*** SQLException caught ***");
 while (ex != null) {
 System.out.println("SQLState: " + ex.getSQLState());
 System.out.println("Message: " + ex.getMessage());
 System.out.println("Vendor: " + ex.getErrorCode());
 ex = ex.getNextException ();
 }
 }

}

SOLID JDBC Driver Type Conversion Matrix
The following JDBC Driver type conversion matrix shows how different data types are s
pored by SOLID JDBC Driver. Note that this matrix applies to both ResultSet.getXXX an
ResultSet.setXXX methods for getting and setting data. An X indicates that the method
supported by SOLID JDBC driver.
 Using the SOLID JDBC Driver 7-39

SOLID JDBC Driver Type Conversion Matrix
getShort

getInt

getLong

getFloat

getDouble

getBigDecimal

getBoolean

getString

getBytes

getDate

getTime

getTimeStamp

getAsciiStream

getUnicodeStream

getObject

T
I
N
Y
I
N
T

S
M
A
L
L
I
N
T

I
N
T
E
G
E
R

R
E
A
L

F
L
O
A
T

D
O
U
B
L
E

N
U
M
E
R
I
C

V
A
R
C
H
A
R

L
O
N
G
V
A
R
B
I
N
A
R
Y

D
A
T
E

T
I
M
E

T
I
M
E
S
T
A
M
P

C
H
A
R

B
I
N
A
R
Y

V
A
R
B
I
N
A
R
Y

L
O
N
G
V
A
R
C
H
A
R

D
E
C
I
M
A
L

getByte X X X X X X X X X X X X

XXXXXXXXXXXX

XXXX XXXXXXXX

X X X X X X X X X X X X

X X X X X XX X X X X X

X

X

X

X

X X

X X

X X

X X

X

X

X X X

X X X X X X X X

X X X

X X X

X X

X

X

X

X

X

X XX X XX X X X XXX XX X

XXXXX

X X X X X X X X X X X X X X X X

XXX

XX

X

XXX

X X XX

X X X X X X

XX

X X
7-40 SOLID Programmer Guide

A

rs.

 value
and
than
of
le-

 is

 of
Error Codes

SQLError returns SQLSTATE values as defined by the X/Open and SQL Access Group
SQL CAE specification (1992). SQLSTATE values are strings that contain five characte
The following table lists SQLSTATE values that a driver can return for SQLError .

The character string value returned for an SQLSTATE consists of a two character class
followed by a three character subclass value. A class value of “01” indicates a warning
is accompanied by a return code of SQL_SUCCESS_WITH_INFO. Class values other
“01”, except for the class “IM”, indicate an error and are accompanied by a return code
SQL_ERROR. The class “IM” is specific to warnings and errors that derive from the imp
mentation of ODBC itself. The subclass value “000” in any class is for implementation
defined conditions within the given class. The assignment of class and subclass values
defined by ANSI SQL-92.

Note Although successful execution of a function is normally indicated by a return value
SQL_SUCCESS, the SQLSTATE 00000 also indicates success.

SQLSTATE Error Can be returned from

01000 General warning All ODBC functions except:

SQLAllocEnv

SQLError

01002 Disconnect error SQLDisconnect
 Error Codes A-1

01004 Data truncated SQLBrowseConnect
SQLColAttributes
SQLDataSources
SQLDescribeCol
SQLDriverConnect
SQLDrivers
SQLExecDirect
SQLExecute
SQLExtendedFetch
SQLFetch
SQLGetCursorName
SQLGetData
SQLGetInfo
SQLNativeSql
SQLPutData
SQLSetPos

01006 Privilege not revoked SQLExecDirect
SQLExecute

01S00 Invalid connection string attribute SQLBrowseConnect
SQLDriverConnect

01S01 Error in row SQLExtendedFetch
SQLSetPos

01S02 Option value changed SQLSetConnectOption
SQLSetStmtOption

01S03 No rows updated or deleted SQLExecDirect
SQLExecute
SQLSetPos

01S04 More than one row updated or
deleted

SQLExecDirect
SQLExecute
SQLSetPos

07001 Wrong number of parameters SQLExecDirect
SQLExecute

07006 Restricted data type attribute viola-
tion

SQLBindParameter
SQLExtendedFetch
SQLFetch
SQLGetData

08001 Unable to connect to data source SQLBrowseConnect
SQLConnect
SQLDriverConnect
A-2 SOLID Programmer Guide

08002 Connection in use SQLBrowseConnect
SQLConnect
SQLDriverConnect
SQLSetConnectOption

08003 Connection not open SQLAllocStmt
SQLDisconnect
SQLGetConnectOption
SQLGetInfo
SQLNativeSql
SQLSetConnectOption
SQLTransact

08004 Data source rejected establishment
of connection

SQLBrowseConnect
SQLConnect
SQLDriverConnect

08007 Connection failure during transac-
tion

SQLTransact

08S01 Communication link failure SQLBrowseConnect
SQLColumnPrivileges
SQLColumns
SQLConnect
SQLDriverConnect
SQLExecDirect
SQLExecute
SQLExtendedFetch
SQLFetch
SQLForeignKeys
SQLFreeConnect
SQLGetData
SQLGetTypeInfo
SQLParamData
SQLPrepare
SQLPrimaryKeys
SQLProcedureColumns
SQLProcedures
SQLPutData
SQLSetConnectOption
SQLSetStmtOption
SQLSpecialColumns
SQLStatistics
SQLTablePrivileges
SQLTables
 Error Codes A-3

21S01 Insert value list does not match col-
umn list

SQLExecDirect
SQLPrepare

21S02 Degree of derived table does not
match column list

SQLExecDirect
SQLPrepare
SQLSetPos

22001 String data right truncation SQLPutData

22002 Indicator variable required but not
supplied

SQLFetch
SQLGetData

22003 Numeric value out of range SQLExecDirect
SQLExecute
SQLExtendedFetch
SQLFetch
SQLGetData
SQLGetInfo
SQLPutData
SQLSetPos

22005 Error in assignment SQLExecDirect
SQLExecute
SQLGetData
SQLPrepare
SQLPutData
SQLSetPos

22008 Datetime field overflow SQLExecDirect
SQLExecute
SQLGetData
SQLPutData
SQLSetPos

22012 Division by zero SQLExecDirect
SQLExecute
SQLExtendedFetch
SQLFetch

22026 String data, length mismatch SQLParamData

23000 Integrity constraint violation SQLExecDirect
SQLExecute
SQLSetPos
A-4 SOLID Programmer Guide

24000 Invalid cursor state SQLColAttributes
SQLColumnPrivileges
SQLColumns
SQLDescribeCol
SQLExecDirect
SQLExecute
SQLExtendedFetch
SQLFetch
SQLForeignKeys
SQLGetData
SQLGetStmtOption
SQLGetTypeInfo
SQLPrepare
SQLPrimaryKeys
SQLProcedureColumns
SQLProcedures
SQLSetCursorName
SQLSetPos
SQLSetStmtOption
SQLSpecialColumns
SQLStatistics
SQLTablePrivileges
SQLTables

25000 Invalid transaction state SQLDisconnect

28000 Invalid authorization specification SQLBrowseConnect
SQLConnect
SQLDriverConnect

34000 Invalid cursor name SQLExecDirect
SQLPrepare
SQLSetCursorName

37000 Syntax error or access violation SQLExecDirect
SQLNativeSql
SQLPrepare

3C000 Duplicate cursor name SQLSetCursorName

40001 Serialization failure SQLExecDirect
SQLExecute
SQLExtendedFetch
SQLFetch
 Error Codes A-5

42000 Syntax error or access violation SQLExecDirect
SQLExecute
SQLPrepare
SQLSetPos

70100 Operation aborted SQLCancel

IM001 Driver does not support this function All ODBC functions except:

SQLAllocConnect
SQLAllocEnv
SQLDataSources
SQLDrivers
SQLError
SQLFreeConnect
SQLFreeEnv
SQLGetFunctions

IM002 Data source name not found and no
default driver specified

SQLBrowseConnect
SQLConnect
SQLDriverConnect

IM003 Specified driver could not be loadedSQLBrowseConnect
SQLConnect
SQLDriverConnect

IM004 Driver’s SQLAllocEnv failed SQLBrowseConnect
SQLConnect
SQLDriverConnect

IM005 Driver’s SQLAllocConnect failed SQLBrowseConnect
SQLConnect
SQLDriverConnect

IM006 Driver’s SQLSetConnect-Option
failed

SQLBrowseConnect
SQLConnect
SQLDriverConnect

IM007 No data source or driver specified;
dialog prohibited

SQLDriverConnect

IM008 Dialog failed SQLDriverConnect

IM009 Unable to load translation DLL SQLBrowseConnect
SQLConnect
SQLDriverConnect
SQLSetConnectOption

IM010 Data source name too long SQLBrowseConnect
SQLDriverConnect
A-6 SOLID Programmer Guide

IM011 Driver name too long SQLBrowseConnect
SQLDriverConnect

IM012 DRIVER keyword syntax error SQLBrowseConnect
SQLDriverConnect

IM013 Trace file error All ODBC functions.

S0001 Base table or view already exists SQLExecDirect
SQLPrepare

S0002 Base table not found SQLExecDirect
SQLPrepare

S0011 Index already exists SQLExecDirect
SQLPrepare

S0012 Index not found SQLExecDirect
SQLPrepare

S0021 Column already exists SQLExecDirect
SQLPrepare

S0022 Column not found SQLExecDirect
SQLPrepare

S0023 No default for column SQLSetPos

S1000 General error All ODBC functions except:

SQLAllocEnv
SQLError

S1001 Memory allocation failure All ODBC functions except:

SQLAllocEnv
SQLError
SQLFreeConnect
SQLFreeEnv

S1002 Invalid column number SQLBindCol
SQLColAttributes
SQLDescribeCol
SQLExtendedFetch
SQLFetch
SQLGetData

S1003 Program type out of range SQLBindCol
SQLBindParameter
SQLGetData
 Error Codes A-7

S1004 SQL data type out of range SQLBindParameter
SQLGetTypeInfo

S1008 Operation canceled All ODBC functions that can be
processed asynchronously:

SQLColAttributes
SQLColumnPrivileges
SQLColumns
SQLDescribeCol
SQLDescribeParam
SQLExecDirect
SQLExecute
SQLExtendedFetch
SQLFetch
SQLForeignKeys
SQLGetData
SQLGetTypeInfo
SQLMoreResults
SQLNumParams
SQLNumResultCols
SQLParamData
SQLPrepare
SQLPrimaryKeys
SQLProcedureColumns
SQLProcedures
SQLPutData
SQLSetPos
SQLSpecialColumns
SQLStatistics
SQLTablePrivileges
SQLTables
A-8 SOLID Programmer Guide

S1009 Invalid argument value SQLAllocConnect
SQLAllocStmt
SQLBindCol
SQLBindParameter
SQLExecDirect
SQLForeignKeys
SQLGetData
SQLGetInfo
SQLNativeSql
SQLPrepare
SQLPutData
SQLSetConnectOption
SQLSetCursorName
SQLSetPos
SQLSetStmtOption
 Error Codes A-9

S1010 Function sequence error SQLBindCol
SQLBindParameter
SQLColAttributes
SQLColumnPrivileges
SQLColumns
SQLDescribeCol
SQLDescribeParam
SQLDisconnect
SQLExecDirect
SQLExecute
SQLExtendedFetch
SQLFetch
SQLForeignKeys
SQLFreeConnect
SQLFreeEnv
SQLFreeStmt
SQLGetConnectOption
SQLGetCursorName
SQLGetData
SQLGetFunctions
SQLGetStmtOption
SQLGetTypeInfo
SQLMoreResults
SQLNumParams
SQLNumResultCols
SQLParamData
SQLParamOptions
SQLPrepare
SQLPrimaryKeys
SQLProcedureColumns
SQLProcedures
SQLPutData
SQLRowCount
SQLSetConnectOption
SQLSetCursorName
SQLSetPos
SQLSetScrollOptions
SQLSetStmtOption
SQLSpecialColumns
SQLStatistics
SQLTablePrivileges
SQLTables
SQLTransact
A-10 SOLID Programmer Guide

S1011 Operation invalid at this time SQLGetStmtOption
SQLSetConnectOption
SQLSetStmtOption

S1012 Invalid transaction operation code
specified

SQLTransact

S1015 No cursor name available SQLGetCursorName

S1090 Invalid string or buffer length SQLBindCol
SQLBindParameter
SQLBrowseConnect
SQLColAttributes
SQLColumnPrivileges
SQLColumns
SQLConnect
SQLDataSources
SQLDescribeCol
SQLDriverConnect
SQLDrivers
SQLExecDirect
SQLExecute
SQLForeignKeys
SQLGetCursorName
SQLGetData
SQLGetInfo
SQLNativeSql
SQLPrepare
SQLPrimaryKeys
SQLProcedureColumns
SQLProcedures
SQLPutData
SQLSetCursorName
SQLSetPos
SQLSpecialColumns
SQLStatistics
SQLTablePrivileges
SQLTables

S1091 Descriptor type out of range SQLColAttributes

S1092 Option type out of range SQLFreeStmt
SQLGetConnectOption
SQLGetStmtOption
SQLSetConnectOption
SQLSetStmtOption
 Error Codes A-11

S1093 Invalid parameter number SQLBindParameter
SQLDescribeParam

S1094 Invalid scale value SQLBindParameter

S1095 Function type out of range SQLGetFunctions

S1096 Information type out of range SQLGetInfo

S1097 Column type out of range SQLSpecialColumns

S1098 Scope type out of range SQLSpecialColumns

S1099 Nullable type out of range SQLSpecialColumns

S1100 Uniqueness option type out of rangeSQLStatistics

S1101 Accuracy option type out of range SQLStatistics

S1103 Direction option out of range SQLDataSources
SQLDrivers

S1104 Invalid precision value SQLBindParameter

S1105 Invalid parameter type SQLBindParameter

S1106 Fetch type out of range SQLExtendedFetch

S1107 Row value out of range SQLExtendedFetch
SQLParamOptions
SQLSetPos
SQLSetScrollOptions

S1108 Concurrency option out of range SQLSetScrollOptions

S1109 Invalid cursor position SQLExecute
SQLExecDirect
SQLGetData
SQLGetStmtOption
SQLSetPos

S1110 Invalid driver completion SQLDriverConnect

S1111 Invalid bookmark value SQLExtendedFetch
A-12 SOLID Programmer Guide

S1C00 Driver not capable SQLBindCol
SQLBindParameter
SQLColAttributes
SQLColumnPrivileges
SQLColumns
SQLExecDirect
SQLExecute
SQLExtendedFetch
SQLFetch
SQLForeignKeys
SQLGetConnectOption
SQLGetData
SQLGetInfo
SQLGetStmtOption
SQLGetTypeInfo
SQLPrimaryKeys
SQLProcedureColumns
SQLProcedures
SQLSetConnectOption
SQLSetPos
SQLSetScrollOptions
SQLSetStmtOption
SQLSpecialColumns
SQLStatistics
SQLTablePrivileges
SQLTables
SQLTransact
 Error Codes A-13

S1T00 Timeout expired SQLBrowseConnect
SQLColAttributes
SQLColumnPrivileges
SQLColumns
SQLConnect
SQLDescribeCol
SQLDescribeParam
SQLDriverConnect
SQLExecDirect
SQLExecute
SQLExtendedFetch
SQLFetch
SQLForeignKeys
SQLGetData
SQLGetInfo
SQLGetTypeInfo
SQLMoreResults
SQLNumParams
SQLNumResultCols
SQLParamData
SQLPrepare
SQLPrimaryKeys
SQLProcedureColumns
SQLProcedures
SQLPutData
SQLSetPos
SQLSpecialColumns
SQLStatistics
SQLTablePrivileges
SQLTables
A-14 SOLID Programmer Guide

B

nt,
ndle
over-
nt
times
,”

ied

ne
 result
ODBC State Transition Tables

The tables in this appendix show how ODBC functions cause transitions of the environ-
ment, connection, and statement states. Generally speaking, the state of the environme
connection, or statement dictates when functions that use the corresponding type of ha
(henv, hdbc, or hstmt) can be called. The environment, connection, and statement states
lap as follows, although the exact overlap of connection states C5 and C6 and stateme
states S1 through S12 is data source–dependent, since transactions begin at different
on different data sources. For a description of each state, see “Environment Transitions
“Connection Transitions,” and “Statement Transitions,” later in this appendix.

Environment:

E0 E1 E2

Connection:

C0 C1 C2 C3 C4 C5 C6

Statement:

 S0 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12

Each entry in a transition table can be one of the following values:

■ --. The state is unchanged after executing the function.

■ En, Cn, or Sn. The environment, connection, or statement state moves to the specif
state.

■ (IH) . The function returned SQL_INVALID_HANDLE. Although this error is possi-
ble in any state, it is shown only when it is the only possible outcome of calling the
function in the specified state. This error does not change the state and is always
detected by the Driver Manager, as indicated by the parentheses.

■ NS. Next State. The statement transition is the same as if the statement had not go
through the asynchronous states. For example, suppose a statement that creates a
set enters state S11 from state S1 because SQLExecDirect returned
 ODBC State Transition Tables B-1

 for
lt set: if
he
 if it is

e. For

ge the

s is

ssible
nsi-
SQL_STILL_EXECUTING. The NS notation in state S11 means that the transitions
the statement are the same as those for a statement in state S1 that creates a resu
SQLExecDirect returns an error; the statement remains in state S1; if it succeeds, t
statement moves to state S5; if it needs data, the statement moves to state S8; and
still executing, it remains in state S11.

■ XXXXX or (XXXXX). An SQLSTATE that is related to the transition table; SQL-
STATEs detected by the Driver Manager are enclosed in parentheses. The function
returned SQL_ERROR and the specified SQLSTATE, but the state does not chang
example, if SQLExecute is called before SQLPrepare, it returns SQLSTATE S1010
(Function sequence error).

NOTE: The tables do not show errors unrelated to the transition tables that do not chan
state. For example, when SQLAllocConnect is called in environment state E1 and returns
SQLSTATE S1001 (Memory allocation failure), the environment remains in state E1; thi
not shown in the environment transition table for SQLAllocConnect.

If the environment, connection, or statement can move to more than one state, each po
state is shown and one or more footnotes explains the conditions under which each tra
tion takes place. The following footnotes may appear in any table:

Footnote Meaning

b Before or after. The cursor was positioned before the start of the result set
or after the end of the result set.

c Current function. The current function was executing asynchronously.

d Need data. The function returned SQL_NEED_DATA.

e Error. The function returned SQL_ERROR.

i Invalid row. The cursor was positioned on a row in the result set and the
value in the rgfRowStatus array in SQLExtendedFetch for the row was
SQL_DELETED or SQL_ERROR.

nf Not found. The function returned SQL_NO_DATA_FOUND.

np Not prepared. The statement was not prepared.

nr No results. The statement will not or did not create a result set.

o Other function. Another function was executing asynchronously.

p Prepared. The statement was prepared.

r Results. The statement will or did create a (possibly empty) result set.

s Success. The function returned SQL_SUCCESS_WITH_INFO or
SQL_SUCCESS.
B-2 SOLID Programmer Guide

E2,
For example, the environment state transition table for SQLFreeEnv is:

If SQLFreeEnv is called in environment state E0, the Driver Manager returns
SQL_INVALID_HANDLE. If it is called in state E1, the environment moves to state E0 if
the function succeeds and remains in state E1 if the function fails. If it is called in state
the Driver Manager always returns SQL_ERROR and SQLSTATE S1010 (Function
sequence error) and the environment remains in state E2.

v Valid row. The cursor was positioned on a row in the result set and the
value in the rgfRowStatus array in SQLExtendedFetch for the row was
SQL_ADDED, SQL_SUCCESS, or SQL_UPDATED.

x Executing. The function returned SQL_STILL_EXECUTING.

SQLFreeEnv
E0
Unallocated

E1
Allocated

E2
hdbc

(IH) E0 (S1010)
 ODBC State Transition Tables B-3

Environment Transitions
Environment Transitions
The ODBC environment has the following three states:

The following tables show how each ODBC function affects the environment state.

SQLAllocConnect

SQLAllocEnv

SQLDataSources and SQLDrivers

State Description

E0 Unallocated henv

E1 Allocated henv, unallocated hdbc

E2 Allocated henv, allocated hdbc

E0
Unallocated

E1
Allocated

E2
hdbc

(IH) E2 -- 1

1 Calling SQLAllocConnect with a pointer to a valid hdbc overwrites that hdbc. This may be
an application programming error.

E0
Unallocated

E1
Allocated

E2
hdbc

E1 -- 1 E1 1

1 Calling SQLAllocEnv with a pointer to a valid henv overwrites that henv. This may be an
application programming error.

E0

Unallocated

E1
Allocated

E2
hdbc

(IH) -- --
B-4 SOLID Programmer Guide

Environment Transitions
SQLError

SQLFreeConnect

SQLFreeEnv

SQLTransact

E0
Unallocated

E1
Allocated

E2
hdbc

(IH) 1 -- --

1 This row shows transitions when henv was non-null, hdbc was SQL_NULL_HDBC, and
hstmt was SQL_NULL_HSTMT.

E0
Unallocated

E1
Allocated

E2
hdbc

(IH) (IH) -- 1

E1 2

1 There were other allocated hdbcs.
2 The hdbc was the only allocated hdbc.

E0
Unallocated

E1
Allocated

E2
hdbc

(IH) E0 (S1010)

E0
Unallocated

E1
Allocated

E2
hdbc

(IH) -- 1 -- 1

1 The hdbc argument was SQL_NULL_HDBC.
 ODBC State Transition Tables B-5

Environment Transitions
All Other ODBC Functions

E0
Unallocated

E1
Allocated

E2
hdbc

(IH) (IH) --
B-6 SOLID Programmer Guide

Connection Transitions
Connection Transitions
ODBC connections have the following states:

The following tables show how each ODBC function affects the connection state.

SQLAllocConnect

SQLAllocEnv

State Description

C0 Unallocated henv, unallocated hdbc

C1 Allocated henv, unallocated hdbc

C2 Allocated henv, allocated hdbc

C3 Connection function needs data

C4 Connected hdbc

C5 Connected hdbc, allocated hstmt

C6 Connected hdbc, transaction in progress

C0
No henv

C1
Unallo-
cated

C2
Allo-
cated

C3
Need Data

C4
Con-
nected

C5
hstmt

C6
Trans-
action

(IH) C2 -- 1 C2 1 C2 1 C2 1 C2 1

1 Calling SQLAllocConnect with a pointer to a valid hdbc overwrites that hdbc. This may be
an application programming error.

C0
No henv

C1
Unallo-
cated

C2
Allo-
cated

C3
Need Data

C4
Con-
nected

C5
hstmt

C6
Trans-
action

C1 -- 1 C1 1 C1 1 C1 1 C1 1 C1 1

1 Calling SQLAllocEnv with a pointer to a valid henv overwrites that henv. This may be an
application programming error.
 ODBC State Transition Tables B-7

Connection Transitions
SQLAllocStmt

SQLColumns, SQLGetTypeInfo, SQLPrimaryKeys, SQLSpecialColumns, SQLStatistics, and
SQLTables

SQLConnect and SQLDriverConnect

C0
No henv

C1
Unallo-
cated

C2
Allo-
cated

C3
Need Data

C4
Con-
nected

C5
hstmt

C6
Transaction

(IH) (IH) (08003) (08003) C5 -- 1 C5 1

1 Calling SQLAllocStmt with a pointer to a valid hstmt overwrites that hstmt. This may be an
application programming error.

C0
No henv

C1
Unallo-
cated

C2
Allo-
cated

C3
Need Data

C4
Con-
nected

C5
hstmt

C6
Transaction

(IH) (IH) (IH) (IH)
C4 s

(1H) -- 1
C6 2

--

1 The data source was in auto-commit mode or did not begin a transaction.
2 The data source was in manual-commit mode and began a transaction.

C0
No henv

C1
Unallo-
cated

C2
Allo-
cated

C3
Need Data

C4
Con-
nected

C5
hstmt

C6
Trans-
action

(IH) (IH) C4 (08002) (08002) (08002) (08002)
B-8 SOLID Programmer Guide

Connection Transitions
SQLDataSources and SQLDrivers

SQLDisconnect

SQLDriverConnect: see SQLConnect

SQLDrivers: see SQLDataSources

SQLError

C0
No henv

C1
Unallo-
cated

C2
Allo-
cated

C3
Need Data

C4
Con-
nected

C5
hstmt

C6
Trans-
action

(IH) -- -- -- -- -- --

C0
No henv

C1
Unallo-
cated

C2
Allo-
cated

C3
Need Data

C4
Con-
nected

C5
hstmt

C6
Trans-
action

(IH) (IH) (08003) C2 C2 C2 25000

C0
No henv

C1
Unallo-
cated

C2
Allo-
cated

C3
Need Data

C4
Con-
nected

C5
hstmt

C6
Transaction

(IH) 1 (IH) -- -- -- -- --

1 This row shows transitions when hdbc was non-null and hstmt was SQL_NULL_HSTMT.
 ODBC State Transition Tables B-9

Connection Transitions
SQLExecDirect and SQLExecute

SQLExecute: see SQLExecDirect

SQLFreeConnect

SQLFreeEnv

C0
No henv

C1
Unallo-
cated

C2
Allo-
cated

C3
Need Data

C4
Con-
nected

C5
hstmt

C6
Trans-
action

(IH) (IH) (IH) (IH) (IH) -- 1

C6 2

--

1 The data source was in auto-commit mode or did not begin a transaction.
2 The data source was in manual-commit mode and began a transaction.

C0
No henv

C1
Unallo-
cated

C2
Allo-
cated

C3
Need Data

C4
Con-
nected

C5
hstmt

C6
Trans-
action

(IH) (IH) C1 (S1010) (S1010) (S1010) (S1010)

C0
No henv

C1
Unallo-
cated

C2
Allo-
cated

C3
Need Data

C4
Con-
nected

C5
hstmt

C6
Trans-
action

(IH) C0 1

(S1010) 2

(S1010) (S1010) (S1010) (S1010) (S1010)

1 The hdbc was the only allocated hdbc.
2 There were other allocated hdbcs.
B-10 SOLID Programmer Guide

Connection Transitions
SQLFreeStmt

SQLGetConnectOption

SQLGetFunctions

C0
No henv

C1
Unallo-
cated

C2
Allo-
cated

C3
Need Data

C4
Con-
nected

C5
hstmt

C6
Trans-
action

(IH) (IH) (IH) (IH) (IH) -- 1

C4 2

-- 1
C4 2

1 The fOption argument was SQL_CLOSE, SQL_UNBIND, or SQL_RESET_PARAMS.
2 The fOption argument was SQL_DROP.

C0
No henv

C1
Unallo-
cated

C2
Allo-
cated

C3
Need Data

C4
Con-
nected

C5
hstmt

C6
Trans-
action

(IH) (IH) -- 1

(08003) 2

(S1010) -- -- --

1 The fOption argument was SQL_ACCESS_MODE or SQL_AUTOCOMMIT, or a value had
been set for the connection option.
2 The fOption argument was not SQL_ACCESS_MODE or SQL_AUTOCOMMIT, and a
value had not been set for the connection option.

C0
No henv

C1
Unallo-
cated

C2
Allo-
cated

C3
Need Data

C4
Con-
nected

C5
hstmt

C6
Trans-
action

(IH) (IH) (S1010) (S1010) -- -- --
 ODBC State Transition Tables B-11

Connection Transitions
SQLGetInfo

SQLGetTypeInfo: see SQLColumns

SQLPrepare

SQLPrimaryKeys: see SQLColumns

C0
No henv

C1
Unallo-
cated

C2
Allo-
cated

C3
Need Data

C4
Con-
nected

C5
hstmt

C6
Trans-
action

(IH) (IH) -- 1

(08003) 2

(08003) -- -- --

1 The fInfoType argument was SQL_ODBC_VER.
2 The fInfoType argument was not SQL_ODBC_VER

C0
No henv

C1
Unallo-
cated

C2
Allo-
cated

C3
Need Data

C4
Con-
nected

C5
hstmt

C6
Trans
action

(IH) (IH) (IH) (IH) (IH) -- 1

C6 2

--

1 The data source was in auto-commit mode or did not begin a transaction.
2 The data source was in manual commit mode and began a transaction.
B-12 SOLID Programmer Guide

Connection Transitions
SQLSetConnectOption

SQLSpecialColumns: see SQLColumns

SQLStatistics: see SQLColumns

SQLTables: see SQLColumns

C0
No henv

C1
Unallo-
cated

C2
Allo-
cated

C3
Need Data

C4
Con-
nected

C5
hstmt

C6
Transaction

(IH) (IH) -- 1

(08003) 2

(S1010) -- 3
(08002) 4

-- 3
(08002) 4

-- 3 and 5

C5 6

(08002) 4

S1011 7

1 The fOption argument was not SQL_TRANSLATE_DLL or SQL_TRANSLATE_OPTION.
2 The fOption argument was SQL_TRANSLATE_DLL or SQL_TRANSLATE_OPTION.

3 The fOption argument was not SQL_ODBC_CURSORS.

4 The fOption argument was SQL_ODBC_CURSORS.

5 If the fOption argument was SQL_AUTOCOMMIT, then the data source was in manual-
commit mode or the vParam argument was SQL_AUTOCOMMIT_OFF.

6 The data source was in manual-commit mode, the fOption argument was
SQL_AUTOCOMMIT, and the vParam argument was SQL_AUTOCOMMIT_ON.

7 The data source was in manual-commit mode and the fOption argument was
SQL_TXN_ISOLATION.
 ODBC State Transition Tables B-13

Connection Transitions
SQLTransact

All Other ODBC Functions

C0
No henv

C1
Unallo-
cated

C2
Allo-
cated

C3
Need Data

C4
Con-
nected

C5
hstmt

C6
Trans-
action

(IH) 1 (IH) (IH) (IH) (IH) (IH) (IH)

(IH) 2 -- (08003) (08003) -- -- -- e and 4

C5 s or 5

(IH) 3 (IH) (08003) (08003) -- -- -- e
C5 s

1 This row shows transitions when henv was SQL_NULL_HENV and hdbc was
SQL_NULL_HDBC.
2 This row shows transitions when henv was a valid environment handle and hdbc was
SQL_NULL_HDBC.

3 This row shows transitions when hdbc was a valid connection handle.

4 The commit or rollback failed on the connection.

5 The function returned SQL_ERROR but the commit or rollback succeeded on the connec-
tion.

C0
No henv

C1
Unallo-

cated

C2
Allo-

cated

C3
Need Data

C4
Con-

nected

C5
hstmt

C6
Trans-

action

(IH) (IH) (IH) (IH) (IH) -- --
B-14 SOLID Programmer Guide

Statement Transitions

r states,
ronous
e dif-
up are
Statement Transitions
ODBC statements have the following states:

States S2 and S3 are known as the prepared states, states S5 through S7 as the curso
states S8 through S10 as the need data states, and states S11 and S12 as the asynch
states. In each of these groups, the transitions are shown separately only when they ar
ferent for each state in the group; generally, the transitions for each state in each a gro
the same.

The following tables show how each ODBC function affects the statement state.

State Description

S0 Unallocated hstmt. (The connection state must be C4. For more informa-
tion, see “Connection Transitions.”)

S1 Allocated hstmt.

S2 Prepared statement. No result set will be created.

S3 Prepared statement. A (possibly empty) result set will be created.

S4 Statement executed and no result set was created.

S5 Statement executed and a (possibly empty) result set was created. The
cursor is open and positioned before the first row of the result set.

S6 Cursor positioned with SQLFetch.

S7 Cursor positioned with SQLExtendedFetch.

S8 Function needs data. SQLParamData has not been called.

S9 Function needs data. SQLPutData has not been called.

S10 Function needs data. SQLPutData has been called.

S11 Still executing.

S12 Asynchronous execution canceled. In S12, an application must call the
canceled function until it returns a value other than
SQL_STILL_EXECUTING. The function was canceled successfully
only if the function returns SQL_ERROR and SQLSTATE S1008 (Oper-
ation canceled). If it returns any other value, such as SQL_SUCCESS,
the cancel operation failed and the function executed normally.
 ODBC State Transition Tables B-15

Statement Transitions
SQLAllocConnect

SQLAllocEnv

SQLAllocStmt

S0
Unallo
-cated

S1
Alloca-
ted

S2 – S3
Prepa-
red

S4
Execu-
ted

S5 – S7
Cursor

S8 – S10
Need Data

S11 – S12
Async

-- 1 S0 1 S0 1 S0 1 S0 1 S0 1 S0 1

1 Calling SQLAllocConnect with a pointer to a valid hdbc overwrites that hdbc. This may be
an application programming error. Furthermore, this returns the connection state to C2; the
connection state must be C4 before the statement state is S0.

S0
Unallo
-cated

S1
Alloca-
ted

S2 – S3
Prepa-
red

S4
Execu-
ted

S5 – S7
Cursor

S8 – S10
Need Data

S11 – S12
Async

-- 1 S0 1 S0 1 S0 1 S0 1 S0 1 S0 1

1 Calling SQLAllocEnv with a pointer to a valid henv overwrites that henv. This may be an
application programming error. Furthermore, this returns the connection state to C1; the con-
nection state must be C4 before the statement state is S0.

S0
Unallo
-cated

S1
Alloca-
ted

S2 – S3
Prepa-
red

S4
Execu-
ted

S5 – S7
Cursor

S8 – S10
Need Data

S11 – S12
Async

S1 -- 1 S1 1 S1 1 S1 1 S1 1 S1 1

1 Calling SQLAllocStmt with a pointer to a valid hstmt overwrites that hstmt. This may be an
application programming error.
B-16 SOLID Programmer Guide

Statement Transitions
SQLBindCol

SQLBindParameter

SQLConnect, and SQLDriverConnect

S0
Unallo
-cated

S1
Alloca-
ted

S2 – S3
Prepa-
red

S4
Execu-
ted

S5 – S7
Cursor

S8 – S10
Need Data

S11 – S12
Async

(IH) -- -- -- -- (S1010) (S1010)

S0
Unallo
-cated

S1
Alloca-
ted

S2 – S3
Prepa-
red

S4
Execu-
ted

S5 – S7
Cursor

S8 – S10
Need Data

S11 – S12
Async

(IH) -- -- -- -- (S1010) (S1010)

S0
Unal-
located

S1
Alloca-
ted

S2 – S3
Prepa-
red

S4
Execu-
ted

S5 – S7
Cursor

S8 – S10
Need Data

S11 – S12
Async

(08002) (08002) (08002) (08002) (08002) (08002) (08002)
 ODBC State Transition Tables B-17

Statement Transitions
SQLCancel 1

SQLColAttributes

S0
Unal-
located

S1
Alloca-
ted

S2 – S3
Prepa-
red

S4
Execu-
ted

S5 – S7
Cursor

S8 – S10
Need Data

S11 – S12
Async

(IH) -- -- S1 np

S2 p

S1 np

S3 p

S1 2
S2 nr and 3

S3 r and 3

S7 4

S12

1 This table does not cover cancellation of a function running synchronously on one thread
when an application calls SQLCancel on a different thread with the same hstmt. In this case,
the driver must note that SQLCancel was called and return the correct return code and SQL-
STATE (if any) from the synchronous function. The statement transition when that function fin-
ishes is NS (Next State). That is, the statement transition is the same as if the function
completed processing normally; the only difference is that it is possible for the function to
return SQL_ERROR and SQLSTATE S1008 (Operation canceled).
2 SQLExecDirect returned SQL_NEED_DATA.

3 SQLExecute returned SQL_NEED_DATA.

4 SQLSetPos returned SQL_NEED_DATA.

S0
Unallo
-cated

S1
Alloca-

ted

S2 – S3
Prepa-

red

S4
Execu-

ted

S5 – S7
Cursor

S8 – S10
Need Data

S11 – S12
Async

(IH) (S1010) see below 24000 -- s

S11 x

(S1010) NS c
(S1010) o
B-18 SOLID Programmer Guide

Statement Transitions
SQLColAttributes (Prepared states)

SQLColumns, SQLGetTypeInfo, SQLPrimaryKeys, SQLSpecialColumns, SQLStatistics, and
SQLTables

SQLColumns, SQLGetTypeInfo, SQLPrimaryKeys, SQLSpecialColumns, SQLStatistics, and
SQLTables (Cursor states
)

S2
No Results

S3
Results

24000 -- s
S11 x

S0
Unallo
-cated

S1
Alloca-
ted

S2 – S3
Prepa-
red

S4
Execu-

ted

S5 – S7
Cursor

S8 – S10
Need Data

S11 – S12
Async

(IH) S5 s
S11 x

S1 e
S5 s

S11 x

S1 e
S5 s

S11 x

see below (S1010) NS c

(S1010) o

S5
Opened

S6
SQLFetch

S7
SQLExtendedFetch

24000 (24000) (24000)
 ODBC State Transition Tables B-19

Statement Transitions
SQLConnect

SQLDataSources and SQLDrivers

SQLDescribeCol

SQLDescribeCol (Prepared states)

C0
No henv

C1
Unallo-
cated

C2
Allo-
cated

C3
Need Data

C4
Con-
nected

C5
hstmt

C6
Transaction

(IH) (IH) C3 d

C4 s

-- d
C2 e

C4 s

(08002) (08002) (08002)

S0
Unal-
located

S1
Alloca-
ted

S2 – S3
Prepa-
red

S4
Execu-
ted

S5 – S7
Cursor

S8 – S10
Need Data

S11 – S12
Async

-- -- -- -- -- -- --

S0
Unallo
-cated

S1
Alloca-
ted

S2 – S3
Prepa-
red

S4
Execu-
ted

S5 – S7
Cursor

S8 – S10
Need Data

S11 – S12
Async

(IH) (S1010) see below 24000 -- s

S11 x

(S1010) NS c
(S1010) o

S2

No Results

S3
Results

24000 -- s
S11 x
B-20 SOLID Programmer Guide

Statement Transitions
SQLDescribeParam

SQLDisconnect

SQLDriverConnect: see SQLConnect

SQLDrivers: see SQLDataSources

SQLError

S0
Unallo
-cated

S1
Alloca-
ted

S2 – S3
Prepa-
red

S4
Execu-
ted

S5 – S7
Cursor

S8 – S10
Need Data

S11 – S12
Async

(IH) (S1010) -- s
S11 x

-- s
S11 x

-- s
S11 x

(S1010) NS c
(S1010) o

S0
Unallo
-cated

S1
Alloca-
ted

S2 – S3
Prepa-
red

S4
Execu-
ted

S5 – S7
Cursor

S8 – S10
Need Data

S11 – S12
Async

-- 1 S0 1 S0 1 S0 1 S0 1 (S1010) (S1010)

1 Calling SQLDisconnect frees all hstmts associated with the hdbc. Furthermore, this returns
the connection state to C2; the connection state must be C4 before the statement state is S0.

S0
Unal-
located

S1
Alloca-
ted

S2 – S3
Prepa-
red

S4
Exe-
cuted

S5 – S7
Cursor

S8 – S10
Need Data

S11 – S12
Async

(IH) 1 -- -- -- -- -- --

1 This row shows transitions when hstmt was non-null.
 ODBC State Transition Tables B-21

Statement Transitions
SQLExecDirect

SQLExecDirect (Cursor states)

SQLExecute

S0
Unallo
-cated

S1
Alloca-
ted

S2 – S3
Prepa-
red

S4
Execu-
ted

S5 – S7
Cursor

S8 – S10
Need Data

S11 – S12
Async

(IH) S4 s and nr

S5 s and r

S8 d

S11 x

S1 e
S4 s and nr

S5 s and r

S8 d

S11 x

S1 e
S4 s and nr

S5 s and r

S8 d

S11 x

see below (S1010) NS c

(S1010) o

S5
Opened

S6
SQLFetch

S7
SQLExtendedFetch

24000 (24000) (24000)

S0
Unallo
-cated

S1
Alloca-
ted

S2 – S3
Prepa-
red

S4
Execu-
ted

S5 – S7
Cursor

S8 – S10
Need Data

S11 – S12
Async

(IH) (S1010) see below S2 e and p

S4 s, p, and nr

S8 d and p

S11 x and p

(S1010) np

see below (S1010) NS c

(S1010) o
B-22 SOLID Programmer Guide

Statement Transitions
SQLExecute (Prepared states)

SQLExecute (Cursor states)

SQLExtendedFetch

SQLExtendedFetch (Cursor states)

S2
No Results

S3
Results

S4 s

S8 d

S11 x

S5 s
S8 d

S11 x

S5
Opened

S6
SQLFetch

S7
SQLExtendedFetch

24000 p

(S1010) np

(24000) p
(S1010) np

(24000) p
(S1010) np

S0
Unallo-
cated

S1
Alloca-
ted

S2 – S3
Prepa-
red

S4
Execu-
ted

S5 – S7
Cursor

S8 – S10
Need Data

S11 – S12
Async

(IH) (S1010) (S1010) 24000 see below (S1010) NS c

(S1010) o

S5
Opened

S6
SQLFetch

S7
SQLExtendedFetch

S7 s or nf

S11 x

(S1010) -- s or nf

S11 x
 ODBC State Transition Tables B-23

Statement Transitions
SQLFetch

SQLFetch (Cursor states)

SQLFreeConnect

SQLFreeEnv

S0
Unallo-
cated

S1
Alloca-
ted

S2 – S3
Prepared

S4
Execu-
ted

S5 – S7
Cursor

S8 – S10
Need Data

S11 – S12
Async

(IH) (S1010) (S1010) 24000 see below (S1010) NS c

(S1010) o

S5
Opened

S6
SQLFetch

S7
SQLExtendedFetch

S6 s or nf

S11 x

-- s or nf

S11 x

(S1010)

S0
Unallo-
cated

S1
Alloca-
ted

S2 – S3
Prepa-
red

S4
Execu-
ted

S5 – S7
Cursor

S8 – S10
Need Data

S11 – S12
Async

(S1010) (S1010) (S1010) (S1010) (S1010) (S1010) (S1010)

S0
Unallo-

cated

S1
Alloca-
ted

S2 – S3
Prepa-
red

S4
Execu-
ted

S5 – S7
Cursor

S8 – S10
Need Data

S11 – S12
Async

(S1010) (S1010) (S1010) (S1010) (S1010) (S1010) (S1010)
B-24 SOLID Programmer Guide

Statement Transitions
SQLFreeStmt

SQLGetConnectOption

SQLGetCursorName

S0
Unallo-
cated

S1
Alloca-
ted

S2 – S3
Prepa-
red

S4
Execu-
ted

S5 – S7
Cursor

S8 – S10
Need Data

S11 – S12
Async

(IH) 1 -- -- S1 np

S2 p

S1 np

S3 p

(S1010) (S1010)

(IH) 2 S0 S0 S0 S0 (S1010) (S1010)

(IH) 3 -- -- -- -- (S1010) (S1010)

1 This row shows transitions when fOption was SQL_CLOSE.
2 This row shows transitions when fOption was SQL_DROP.

3 This row shows transitions when fOption was SQL_UNBIND or SQL_RESET_PARAMS.

S0
Unallo-
cated

S1
Alloca-
ted

S2 – S3
Prepa-
red

S4
Execu-
ted

S5 – S7
Cursor

S8 – S10
Need Data

S11 – S12
Async

-- -- -- -- -- -- --

S0
Unallo-
cated

S1
Alloca-
ted

S2 – S3
Prepa-
red

S4
Execu-
ted

S5 – S7
Cursor

S8 – S10
Need Data

S11 – S12
Async

(IH) -- 1

(S1015) 2

-- 1
(S1015) 2

-- 1
(S1015) 2

-- (S1010) (S1010)

1 A cursor name had been set by calling SQLSetCursorName or by creating a result set.
2 A cursor name had not been set by calling SQLSetCursorName or by creating a result set.
 ODBC State Transition Tables B-25

Statement Transitions
SQLGetData

SQLGetData (Cursor states)

SQLGetFunctions

S0
Unallo-
cated

S1
Alloca-
ted

S2 – S3
Prepa-
red

S4
Execu-
ted

S5 – S7
Cursor

S8 – S10
Need Data

S11 – S12
Async

(IH) (S1010) (S1010) (24000) see below (S1010) NS c

(S1010) o

S5
Opened

S6
SQLFetch

S7
SQLExtendedFetch

(24000) -- s or nf

S11 x

24000 3

-- s or nf

S11 x

24000 b

S1109 i

S1C00 v and 1

1 The rowset size was greater than 1 and the SQLGetInfo did not return the
SQL_GD_BLOCK bit for the SQL_GETDATA_EXTENSIONS information type.

S0
Unallo-
cated

S1
Alloca-
ted

S2 – S3
Prepa-
red

S4
Execu-
ted

S5 – S7
Cursor

S8 – S10
Need Data

S11 – S12
Async

-- -- -- -- -- -- --
B-26 SOLID Programmer Guide

Statement Transitions
SQLGetInfo

SQLGetStmtOption

SQLGetStmtOption (Cursor states)

S0
Unallo-
cated

S1
Alloca-
ted

S2 – S3
Prepa-
red

S4
Execu-
ted

S5 – S7
Cursor

S8 – S10
Need Data

S11 – S12
Async

-- -- -- -- -- -- --

S0
Unallo-
cated

S1
Alloca-
ted

S2 – S3
Prepa-
red

S4
Execu-
ted

S5 – S7
Cursor

S8 – S10
Need Data

S11 – S12
Async

(IH) -- 1

(24000) 2

-- 1
(24000) 2

-- 1
(24000) 2

see below (S1010) (S1010)

1 The statement option was not SQL_ROW_NUMBER or SQL_GET_BOOKMARK.
2 The statement option was SQL_ROW_NUMBER or SQL_GET_BOOKMARK.

S5
Opened

S6
SQLFetch

S7
SQLExtendedFetch

-- 1

(24000) 2 or 3

-- 1 or (v and 3)

24000 b and 3

S1011 2

S1109 i and 3

-- 1 or (v and (2 or 3))

24000 b and (2 or 3)

S1109 i and (2 or 3)

1 The fOption argument was not SQL_GET_BOOKMARK or SQL_ROW_NUMBER.
2 The fOption argument was SQL_GET_BOOKMARK.

3 The fOption argument was SQL_ROW_NUMBER.
 ODBC State Transition Tables B-27

Statement Transitions
SQLGetTypeInfo: see SQLColumns

SQLNumParams

SQLNumResultCols

SQLParamData

S0
Unallo-
cated

S1
Alloca-
ted

S2 – S3
Prepa-
red

S4
Execu-
ted

S5 – S7
Cursor

S8 – S10
Need Data

S11 – S12
Async

(IH) (S1010) -- s
S11 x

-- s
S11 x

-- s
S11 x

(S1010) NS c
(S1010) o

S0
Unallo-
cated

S1
Alloca-
ted

S2 – S3
Prepa-
red

S4
Execu-
ted

S5 – S7
Cursor

S8 – S10
Need Data

S11 – S12
Async

(IH) (S1010) -- s
S11 x

-- s
S11 x

-- s
S11 x

(S1010) NS c
(S1010) o

S0
Unallo-
cated

S1
Alloca-
ted

S2 – S3
Prepa-
red

S4
Execu-
ted

S5 – S7
Cursor

S8 – S10
Need Data

S11 – S12
Async

(IH) (S1010) (S1010) (S1010) (S1010) see below NS c

(S1010) o
B-28 SOLID Programmer Guide

Statement Transitions
SQLParamData (Need Data states)

S8
Need Data

S9
Must Put

S10
Can Put

S1 e and 1

S2 e, nr, and 2

S3 e, r, and 2

S7 e and 3

S9 s

S11 x

S1010 S1 e and 1

S2 e, nr, and 2

S3 e, r, and 2

S4 s, nr, and (1 or 2)

S5 s, r, and (1 or 2)

S7 (s or e) and 3

S9 d

S11 x

1 SQLExecDirect returned SQL_NEED_DATA.
2 SQLExecute returned SQL_NEED_DATA.

3 SQLSetPos returned SQL_NEED_DATA.
 ODBC State Transition Tables B-29

Statement Transitions
SQLPrepare

SQLPrepare (Cursor states)

SQLPrimaryKeys: see SQLColumns

S0
Unallo
-cated

S1
Alloca-
ted

S2 – S3
Prepa-
red

S4
Execu-
ted

S5 – S7
Cursor

S8 – S10
Need Data

S11 – S12
Async

(IH) S2 s and nr

S3 s and r

S11 x

-- s or (e and 1)

S1 e and 2

S11 x

S1 e
S2 s and nr

S3 s and r

S11 x

see below (S1010) NS c

(S1010) o

1 The preparation fails for a reason other than validating the statement (in other words, the
SQLSTATE was S1009 (Invalid argument value) or S1090 (Invalid string or buffer length)).
2 The preparation fails while validating the statement (in other words, the SQLSTATE was not
S1009 (Invalid argument value) or S1090 (Invalid string or buffer length)).

S5
Opened

S6
SQLFetch

S7
SQLExtendedFetch

24000 (24000) (24000)
B-30 SOLID Programmer Guide

Statement Transitions
SQLPutData

SQLPutData (Need Data states)

SQLRowCount

S0
Unallo
-cated

S1
Alloca-
ted

S2 – S3
Prepa-
red

S4
Execu-
ted

S5 – S7
Cursor

S8 – S10
Need Data

S11 – S12
Async

(IH) (S1010) (S1010) (S1010) (S1010) see below NS c

(S1010) o

S8
Need Data

S9
Must Put

S10
Can Put

S1010 S1 e and 1

S2 e, nr, and 2

S3 e, r, and 2

S7 e and 3

S10 s

S11 x

-- s
S1 e and 1

S2 e, nr, and 2

S3 e, r, and 2

S7 e and 3

S11 x

1 SQLExecDirect returned SQL_NEED_DATA.
2 SQLExecute returned SQL_NEED_DATA.

3 SQLSetPos returned SQL_NEED_DATA.

S0
Unallo-
cated

S1
Alloca-
ted

S2 – S3
Prepa-
red

S4
Execu-
ted

S5 – S7
Cursor

S8 – S10
Need Data

S11 – S12
Async

(IH) (S1010) (S1010) -- -- (S1010) (S1010)
 ODBC State Transition Tables B-31

Statement Transitions
SQLSetConnectOption

SQLSetCursorName

SQLSetPos

S0
Unallo-
cated

S1
Alloca-
ted

S2 – S3
Prepa-
red

S4
Execu-
ted

S5 – S7
Cursor

S8 – S10
Need Data

S11 – S12
Async

-- 1 -- -- -- -- (S1010) (S1010)

1 This row shows transitions when fOption was a connection option. For transitions when fOp-
tion was a statement option, see the statement transition table for SQLSetStmtOption.

S0
Unallo-
cated

S1
Alloca-
ted

S2 – S3
Prepa-
red

S4
Execu-
ted

S5 – S7
Cursor

S8 – S10
Need Data

S11 – S12
Async

(IH) -- -- (24000) (24000) (S1010) (S1010)

S0
Unallo-
cated

S1
Alloca-
ted

S2 – S3
Prepa-
red

S4
Execu-
ted

S5 – S7
Cursor

S8 – S10
Need Data

S11 – S12
Async

(IH) (S1010) (S1010) (24000) see below (S1010) NS c

(S1010) o
B-32 SOLID Programmer Guide

Statement Transitions
SQLSetPos (Cursor states)

SQLSetScrollOptions

SQLSetStmtOption

S5
Opened

S6
SQLFetch

S7
SQLExtendedFetch

(24000) (S1010) -- s

S8 d

S11 x

24000 b

S1109 i

S0
Unallo-
cated

S1
Alloca-
ted

S2 – S3
Prepa-
red

S4
Execu-
ted

S5 – S7
Cursor

S8 – S10
Need Data

S11 – S12
Async

(IH) -- (S1010) (S1010) (S1010) (S1010) (S1010)

S0
Unal-
located

S1
Alloca-
ted

S2 – S3
Prepa-
red

S4
Execu-
ted

S5 – S7
Cursor

S8 – S10
Need Data

S11 – S12
Async

(IH) -- -- 1

(S1011) 2

-- 1
(24000) 2

-- 1
(24000) 2

(S1010) np or 1

(S1011) p and 2

(S1010) np or 1

(S1011) p and 2

1 The fOption argument was not SQL_CONCURRENCY, SQL_CURSOR_TYPE,
SQL_SIMULATE_CURSOR, or SQL_USE_BOOKMARKS.
2 The fOption argument was SQL_CONCURRENCY, SQL_CURSOR_TYPE,
SQL_SIMULATE_CURSOR, or SQL_USE_BOOKMARKS.
 ODBC State Transition Tables B-33

Statement Transitions
SQLSpecialColumns: see SQLColumns

SQLStatistics: see SQLColumns

SQLTables: see SQLColumns

SQLTransact

S0
Unallo
-cated

S1
Alloca-
ted

S2 – S3
Prepa-
red

S4
Execu-
ted

S5 – S7
Cursor

S8 – S10
Need
Data

S11 –
S12
Async

-- -- -- 2 or 3

S1 1

-- 3
S1 np and(1 or 2)

S1 p and 1

S2 p and 2

-- 3
S1 np and(1 or 2)

S1 p and 1

S3 p and 2

(S1010) (S1010)

1 The fType argument is SQL_COMMIT and SQLGetInfo returns SQL_CB_DELETE for
the SQL_CURSOR_COMMIT_BEHAVIOR information type, or the fType argument is
SQL_ROLLBACK and SQLGetInfo returns SQL_CB_DELETE for the
SQL_CURSOR_ROLLBACK_BEHAVIOR information type.
2 The fType argument is SQL_COMMIT and SQLGetInfo returns SQL_CB_CLOSE for the
SQL_CURSOR_COMMIT_BEHAVIOR information type, or the fType argument is
SQL_ROLLBACK and SQLGetInfo returns SQL_CB_CLOSE for the
SQL_CURSOR_ROLLBACK_BEHAVIOR information type.

3 The fType argument is SQL_COMMIT and SQLGetInfo returns SQL_CB_PRESERVE
for the SQL_CURSOR_COMMIT_BEHAVIOR information type, or the fType argument is
SQL_ROLLBACK and SQLGetInfo returns SQL_CB_PRESERVE for the
SQL_CURSOR_ROLLBACK_BEHAVIOR information type.
B-34 SOLID Programmer Guide

C

 calls
-
r, or
ar.

riv-
,

L
-92
 are

in this

urn 2.

a
e, or

a
SQL Grammar

The following paragraphs list the recommended constructs to ensure interoperability in
to SQLPrepare, SQLExecute, or SQLExecDirect. To the right of each construct is an indi
cator that tells whether the construct is part of the minimum grammar, the core gramma
the extended grammar. ODBC does not prohibit the use of vendor-specific SQL gramm

The Integrity Enhancement Facility (IEF) is included in the grammar but is optional. If d
ers parse and execute SQL directly and wish to include referential integrity functionality
then we strongly recommend the SQL syntax used for this functionality conform to the
grammar used here. The grammar for the IEF is taken directly from the X/Open and SQ
Access Group SQL CAE specification (1992) and is a subset of the emerging ISO SQL
standard. Elements that are part of the IEF and are optional in the ANSI 1989 standard
presented in the following typeface and font, distinct from the rest of the grammar:

table-constraint-definition

A given driver and data source do not necessarily support all of the data types defined
grammar. To determine which data types a driver supports, an application calls SQLGet-
Info with the SQL_ODBC_SQL_CONFORMANCE flag. Drivers that support every core
data type return 1 and drivers that support every core and every extended data type ret
To determine whether a specific data type is supported, an application calls SQLGet-
TypeInfo with the fSqlType argument set to that data type.

If a driver supports data types that map to the ODBC SQL date, time, or timestamp dat
types, the driver must also support the extended SQL grammar for specifying date, tim
timestamp literals.

Note In CREATE TABLE and ALTER TABLE statements, applications must use the dat
type name returned by SQLGetTypeInfo in the TYPE_NAME column.
 SQL Grammar C-1

Parameter Data Types

aram-
d
s
med
e

eters.
Parameter Data Types
Even though each parameter specified with SQLBindParameter is defined using an SQL
data type, the parameters in an SQL statement have no intrinsic data type. Therefore, p
eter markers can be included in an SQL statement only if their data types can be inferre
from another operand in the statement. For example, in an arithmetic expression such a? +
COLUMN1 , the data type of the parameter can be inferred from the data type of the na
column represented by COLUMN1. An application cannot use a parameter marker if th
data type cannot be determined.

The following table describes how a data type is determined for several types of param

Parameter Markers
An application cannot place parameter markers in the following locations:

■ In a SELECT list.

■ As both expressions in a comparison-predicate.

■ As both operands of a binary operator.

■ As both the first and second operands of a BETWEEN operation.

■ As both the first and third operands of a BETWEEN operation.

■ As both the expression and the first value of an IN operation.

■ As the operand of a unary + or – operation.

Location of Parameter Assumed Data Type

One operand of a binary arithmetic or comparison
operator

Same as the other operand

The first operand in a BETWEEN clause Same as the other operand

The second or third operand in a BETWEEN
clause

Same as the first operand

An expression used with IN Same as the first value or the result col-
umn of the subquery

A value used with IN Same as the expression

A pattern value used with LIKE VARCHAR

An update value used with UPDATE Same as the update column
C-2 SOLID Programmer Guide

Parameter Data Types

t call
ls

scrip-

 at

g
■ As the argument of a set-function-reference.

For more information, see the ANSI SQL-92 specification.

If an application includes parameter markers in the SQL statement, the application mus
SQLBindParameter to associate storage locations with parameter markers before it cal
SQLExecute or SQLExecDirect. If the application calls SQLPrepare, the application can
call SQLBindParameter before or after it calls SQLPrepare.

The application can set parameter markers in any order. The driver buffers argument de
tors and sends the current values referenced by the SQLBindParameter argument rgbValue
for the associated parameter marker when the application calls SQLExecute or SQLExec-
Direct. It is the application’s responsibility to ensure that all pointer arguments are valid
execution time.

NOTE: The keyword USER in the following tables represents a character string containin
the user-name of the current user.
 SQL Grammar C-3

SQL Statements
SQL Statements
The following SQL statements define the base ODBC SQL grammar.

Statement Mini-
mum

Core Exten
-
ded

SOLID
Embedded
Engne

alter-table-statement ::=
 ALTER TABLE base-table-name
 { ADD column-identifier data-type |
 ADD (column-identifier data-type
 [, column-identifier data-type]...) }

,PSRUWDQW As a data-type in an alter-table-
statement, applications must use a data type
from the TYPE_NAME column of the result
set returned by SQLGetTypeInfo.

• •

alter-table-statement ::=
 ALTER TABLE base-table-name
 { ADD column-identifier data-type |
 ADD (column-identifier data-type
 [, column-identifier data-type]...) |
 DROP [COLUMN] column-identifier
 [CASCADE | RESTRICT] }

,PSRUWDQW As a data-type in an alter-table-
statement, applications must use a data type
from the TYPE_NAME column of the result
set returned by SQLGetTypeInfo.

• •

Note Objects are always dropped with drop behavior RESTRICT.

create-index-statement ::=
 CREATE [UNIQUE] INDEX index-name
 ON base-table-name
 (column-identifier [ASC | DESC]
 [, column-identifier [ASC | DESC]]...)

• •
C-4 SOLID Programmer Guide

SQL Statements
create-table-statement ::=
 CREATE TABLE base-table-name
 (column-element [, column-element] ...)

column-element ::= column-definition |
 table-constraint-definition

column-definition ::=
 column-identifier data-type
 [DEFAULT default-value]
 [column-constraint-definition
 [column-constraint-definition]...]

default-value::= literal | NULL | USER

column-constraint-definition ::=
 NOT NULL | UNIQUE |
 PRIMARY KEY |
 REFERENCES ref-table-name
 referenced-columns |
 CHECK (search-condition)

table-constraint-definition ::=
 UNIQUE (column-identifier
 [, column-identifier]...) |
 PRIMARY KEY (column-identifier
 [, column-identifier]...) |
 CHECK (search-condition) |
 FORIEGN-KEY referencing-columns
 REFERENCES ref-table-name
 referenced-columns

,PSRUWDQW As a data-type in a create-table-
statement, applications must use a data type
from the TYPE_NAME column of the result
set returned by SQLGetTypeInfo.

• •

Note Keyword DEFAULT not is supported in column-definitions in the SQL grammar of SOLID
Server.

create-view-statement ::=
 CREATE VIEW viewed-table-name
 [(column-identifier
 [, column-identifier]...)]
 AS query-specification

• •
 SQL Grammar C-5

SQL Statements
delete-statement-positioned ::=
 DELETE FROM table-name
 WHERE CURRENT OF cursor-name

•ODBC

1.0

•ODBC

C 2.0

•

delete-statement-searched ::=
 DELETE FROM table-name
 [WHERE search-condition]

• •

drop-index-statement ::=
 DROP INDEX index-name

• •

drop-table-statement ::=
 DROP TABLE base-table-name
 [CASCADE | RESTRICT]

• •

Note Objects are always dropped with drop behavior RESTRICT.

drop-view-statement ::=
 DROP VIEW viewer-table-name
 [CASCADE | RESTRICT]

• •

Note Objects are always dropped with drop behavior RESTRICT.

grant-statement ::=
 GRANT {ALL | grant-privilege]... }
 ON table-name
 TO {PUBLIC |
 user-name [, user-name] ...}

grant-privilege ::=
 DELETE | INSERT | SELECT |
 UPDATE [(column-identifier
 [, column-identifier]...)] |
 REFERENCES [(column-identifier
 [, column-identifier]...)]

• •

insert-statement ::=
 INSERT INTO table-name
 [(column-identifier
 [, column-identifier]...)]
 VALUES (insert-value [, insert-value]...)

• •
C-6 SOLID Programmer Guide

SQL Statements
insert-statement ::=
 INSERT INTO table-name
 [(column-identifier
 [, column-identifier]...)]
 { query-specification |
 VALUES (insert-value
 [, insert-value]...)}

• •

ODBC-procedure-extension ::=
 ODBC-std-esc-initiator [?=]
 call procedure
 ODBC-std-esc-terminator |
 ODBC-ext-esc-initiator [?=]
 call procedure
 ODBC-ext-esc-terminator

• •

revoke-statement ::=
 REVOKE { ALL |
 revoke-privilege
 [, revoke-privilege]... }
 ON table-name
 FROM {PUBLIC |
 user-name [, user-name]... }
 [CASCADE | RESTRICT]

revoke-privilege :: =
 DELETE | INSERT | SELECT |
 UPDATE | REFERENCES

• •

Note. Keywords CASCADE and RESTRICT are not supported in the SQL grammar of SOLID
Server.

select-statement ::=
 SELECT [ALL | DISTINCT] select-list
 FROM table-reference-list
 [WHERE search-condition]
 [order-by-clause]

• •
 SQL Grammar C-7

SQL Statements
select-statement ::=
 SELECT [ALL | DISTINCT] select-list
 FROM table-reference-list
 [WHERE search-condition]
 [GROUP BY column-name
 [, column-name]...]
 [HAVING search-condition]
 [order-by-clause]

• •

select-statement ::=
 SELECT [ALL | DISTINCT] select-list
 FROM table-reference-list
 [WHERE search-condition]
 [GROUP BY column-name
 [, column-name]...]
 [HAVING search-condition]
 [UNION [ALL] select-statement]...
 [order-by-clause]

(In ODBC 1.0, the UNION clause was in the
Core SQL grammar and did not support the
ALL keyword.)

• •

select-for-update-statement ::=
 SELECT [ALL | DISTINCT] select-list
 FROM table-reference-list
 [WHERE search-condition]
 FOR UPDATE OF [column-name
 [, column-name]...]

•
ODBC
1.0

•
ODBC
2.0

•

statement ::= create-table-statement |
 delete-statement-searched |
 drop-table-statement | insert-stetement |
 select-statement |
 update-statement-searched

• •
C-8 SOLID Programmer Guide

SQL Statements
statement ::= alter-table-statement |
 create-index-statement |
 create-table-statement |
 create-view-statement |
 delete-statement-searched |
 drop-index-statement |
 drop-table-statement |
 drop-view-stetement |
 grant-statement | insert-stetement |
 revoke-statement | select-statement |
 update-statement-searched

• •

statement ::= alter-table-statement |
 create-index-statement |
 create-table-statement |
 create-view-statement |
 delete-statement-positioned |
 delete-statement-searched |
 drop-index-statement |
 drop-table-statement |
 drop-view-stetement |
 grant-statement | insert-stetement |
 ODBC-procedure-statement |
 revoke-statement | select-statement |
 select-for-update-statement |
 statement-list |
 update-stetement-positioned |
 update-statement-searched

(In ODBC 1.0, select-for-update-statement,
update-statement-positioned, and delete-state-
ment-positioned were in the Core SQL gram-
mar.)

• •

statement-list ::= statement |
 statement; statement-list

•

 SQL Grammar C-9

SQL Statements
update-statement-positioned ::=
 UPDATE table-name
 SET column-identifier = {expression |
 NULL}
 [, column-identifier = {expression |
 NULL}]...
 WHERE CURRENT OF cursor-name

•
ODBC
1.0

•
ODBC
2.0

•

update-statement-searched ::=
 UPDATE table-name
 SET column-identifier = {expression |
 NULL}
 [, column-identifier = {expression |
 NULL}]...
 [WHERE search-condition]

• •
C-10 SOLID Programmer Guide

SQL Statements
Elements Used in SQL Statements
The following elements are used in the SQL statements listed previously.

Element
Mini-
mum Core

Exten-
ded

SOLID
Embedded
Engine

all-function ::= {AVG | MAX | MIN |
 SUM} (expression)

• •

approximate-numeric-literal ::=
 mantissaEexponent

• •

approximate-numeric-type ::=
 {approximate numeric types}

(For example, FLOAT, DOUBLE PRECISION,
or REAL. To determine the type name used by
a data source, an application calls SQLGet-
TypeInfo.)

• •

argument-list ::= expression |
 expression, argument-list

• •

base-table-identifier ::= user-defined-name • •

base-table-name ::= base-table-identifier • •

base-table-name ::= base-table-identifier |
 owner-name.base-table-identifier |
 qualifier-name qualifier-separator
 base-table-identifier |
 qualifier-name qualifier-separator
 [owner-name].base-table-identifier

(The third syntax is valid only if the data source
does not support owners.)

• •

between-predicate ::=
 expression [NOT] BETWEEN expression
AND expression

• •

binary-literal ::=
 {implementation defined}

•

 SQL Grammar C-11

SQL Statements
binary-type ::= {binary types}

(For example, BINARY, VARBINARY, or
LONG VARBINARY. To determine the type
name used by a data source, an application
calls SQLGetTypeInfo.)

• •

bit-literal ::= 0 | 1 •

bit-type ::= {bit types}

(For example, BIT. To determine the type name
used by a data source, an application calls
SQLGetTypeInfo.)

•

boolean-factor ::= [NOT] boolean-primary • •

boolean-primary ::= predicate | (search-condi-
tion)

• •

boolean-term ::= boolean-factor
 [AND boolean-term]

• •

character ::= {any character in the implemen-
tor’s character set}

• •

character-string-literal :: = '{character}...'

(To include a single literal quote character (') in
a character-string-literal, use two literal quote
characters (' ').)

• •

character-string-type ::= {character types}

(The Minimum SQL conformance level
requires at least one character data type. For
example, CHAR, VARCHAR, or LONG VAR-
CHAR. To determine the type name used by a
data source, an application calls SQLGet-
TypeInfo.)

• •

column-alias ::= user-defined-name • •

column-identifier ::= user-defined-name • •

column-name ::=
 [table-name.]column-identifier

• •
C-12 SOLID Programmer Guide

SQL Statements
column-name ::= [{ table-name |
 correlation-name}.] column-identifier

• •

comparison-operator ::= < | > | <= |
 >= | = | <>

• •

comparison-predicate ::= expression
 comparison-operator expression

• •

comparison-predicate ::=
 expression comparison-operator
 { expression | (sub-query)}

• •

correlation-name ::= user-defined-name • •

cursor-name ::= user-defined-name • •

data-type ::= character-string-type •

data-type ::=
 character-string-type |
 exact-numeric-type |
 approximate-numeric-type

•

data-type ::=
 character-string-type |
 exact-numeric-type |
 approximate-numeric-type | bit-type |
 binary-type | date-type | time-type |
 timestamp-type

• •

date-separator ::= - • •

date-type ::= {date types}

(For example, DATE. To determine the type
name used by a data source, an application
calls SQLGetTypeInfo.)

• •

date-value ::= years-value date-separator
 months-value date-separator days-value

• •

days-value ::= digit digit • •

digit ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 • •
 SQL Grammar C-13

SQL Statements
distinct-function ::=
 {AVG | COUNT | MAX | MIN | SUM}
(DISTINCT column-name)

• •

dynamic-parameter ::= ? • •

empty-string ::= • •

escape-character ::= character • •

exact-numeric-literal ::= [+ |–]
 { unsigned-integer[.unsigned-integer] |
 unsigned-integer. | .unsigned-integer }

• •

exact-numeric-type ::=
 {exact numeric types}

(For example, DECIMAL, NUMERIC,
SMALLINT, or INTEGER. To determine the
type name used by a data source, an application
calls SQLGetTypeInfo.)

• •

exact-numeric-type ::=
 {exact numeric types}

(For example, DECIMAL, NUMERIC,
SMALLINT, INTEGER, and BIGINT. To
determine the type name used by a data source,
an application calls SQLGetTypeInfo.)

•

exists-predicate ::= EXISTS (sub-query) • •

exponent ::= [+ |–] unsigned-integer • •

expression ::= term | expression { + |–} term • •

factor ::= [+ |–]primary • •

hours-value ::= digit digit • •

index-identifier ::= user-defined-name • •

index-name ::=
 [index-qualifier.]index-identifier

• •

index-qualifier ::= user-defined-name • •
C-14 SOLID Programmer Guide

SQL Statements
in-predicate ::= expression [NOT] IN
 {(value {, value}...) | (sub-query)}

• •

insert-value ::= dynamic-parameter | literal |
 NULL | USER

• •

keyword ::= (see list of reserved keywords) • •

length ::= unsigned-integer • •

letter ::= lower-case-letter | upper-case-letter • •

like-predicate ::= expression [NOT] LIKE
 pattern-value

• •

like-predicate ::= expression [NOT] LIKE
 pattern-value [ODBC-like-escape-clause]

• •

literal ::= character-string-literal • •

literal ::= character-string-literal |
 numeric-literal

• •

literal ::= character-string-literal |
 numeric-literal | bit-literal | binary-literal |
 ODBC-date-time-extension

• •

lower-case-letter ::= a | b | c | d | e | f | g |
 h | i | j | k | l | m | n | o | p | q | r | s |
 t | u | v | w | x | y | z

• •

mantissa ::= exact-numeric-literal • •

minutes-value ::= digit digit • •

months-value ::= digit digit • •

null-predicate ::= column-name IS [NOT]
 NULL

• •

numeric-literal ::= exact-numeric-literal |
 approximate-numeric-literal

• •
 SQL Grammar C-15

SQL Statements
ODBC-date-literal ::=
 ODBC-std-esc-initiator d 'date-value'
 ODBC-std-esc-terminator |
 ODBC-ext-esc-initiator d 'date-value'
 ODBC-ext-esc-terminator

• •

ODBC-date-time-extension ::=
 ODBC-date-literal | ODBC-time-literal |
 ODBC-timestamp-literal

• •

ODBC-like-escape-clause ::=
 ODBC-std-esc-initiator
 escape 'escape-character'
 ODBC-std-esc-terminator |
 ODBC-ext-esc-initiator
 escape 'escape-character'
 DBC-ext-esc-terminator

• •

ODBC-time-literal ::=
 ODBC-std-esc-initiator
 t 'time-value' ODBC-std-esc-terminator |
 ODBC-ext-esc-initiator
 t 'time-value' ODBC-ext-esc-terminator

• •

ODBC-timestamp-literal ::=
 ODBC-std-esc-initiator ts 'timestamp-value'
 ODBC-std-esc-terminator |
 ODBC-ext-esc-initiator ts 'timestamp-value'
 ODBC-ext-esc-terminator

• •

ODBC-ext-esc-initiator ::= { • •

ODBC-ext-esc-terminator ::= } • •

ODBC-outer-join-extension ::=
 ODBC-std-esc-initiator oj outer-join
 ODBC-std-esc-terminator |
 ODBC-ext-esc-initiator oj outer-join
 ODBC-ext-esc-terminator

• •
C-16 SOLID Programmer Guide

SQL Statements
ODBC-scalar-function-extension ::=
 ODBC-std-esc-initiator fn scalar-function
 ODBC-std-esc-terminator |
 ODBC-ext-esc-initiator fn scalar-function
 ODBC-ext-esc-terminator

• •

ODBC-std-esc-initiator ::=
 ODBC-std-esc-prefix SQL-esc-vendor-
clause

• •

ODBC-std-esc-prefix ::= --(* • •

ODBC-std-esc-terminator ::= *)-- • •

order-by-clause ::= ORDER BY
 sort-specification [, sort-specification]...

• •

outer-join ::= table-name [correlation-name]
 LEFT OUTER JOIN
 {table-name [correlation-name] |
 outer-join}
 ON search-condition

(For outer joins, search-condition must contain
only the join condition between the specified
table-names.)

• •

owner-name ::= user-defined-name • •

pattern-value ::= character-string-literal |
 dynamic-parameter

(In a character-string-literal, the percent char-
acter (%) matches 0 or
more of any character; the underscore character
(_) matches 1
character.)

•

pattern-value ::= character-string-literal |
 dynamic-parameter | USER

(In a character-string-literal, the percent char-
acter (%) matches 0 or
more of any character; the underscore character
(_) matches 1
character.)

• •
 SQL Grammar C-17

SQL Statements
precision ::= unsigned-integer • •

predicate ::= comparison-predicate | like-
predicate | null-predicate

•

predicate ::= between-predicate |
 comparison-predicate | exists-predicate |
 in-predicate | like-predicate |
 null-predicate | quantified-predicate

• •

primary ::= column-name |
 dynamic-parameter | literal | (expression)

•

primary ::= column-name |
 dynamic-parameter | literal |
 set-function-reference | USER |
 (expression)

• •

primary ::= column-name |
 dynamic-parameter | literal |
 ODBC-scalar-function-extension |
 set-function-reference | USER |
 (expression)

• •

procedure ::= procedure-name |
 procedure-name (procedure-parameter-list)

• •

procedure-identifier ::= user-defined-name • •

procedure-name ::= procedure-identifier |
 owner-name.procedure-identifier |
 qualifier-name qualifier-separator
 procedure-identifier |
 qualifier-name qualifier-separator
 [owner-name].procedure-identifier

(The third syntax is valid only if the data source
does not support owners.)

• •

procedure-parameter-list ::=
 procedure-parameter |
 procedure-parameter,
 procedure-parameter-list

• •
C-18 SOLID Programmer Guide

SQL Statements
procedure-parameter ::= dynamic-parameter |
 literal | empty-string

(If a procedure parameter is an empty string,
the procedure uses the default value for that
parameter.)

• •

qualifier-name ::= user-defined-name •

qualifier-separator ::=
 {implementation-defined}

(The qualifier separator is returned through
SQLGetInfo with the
SQL_QUALIFIER_NAME_SEPARATOR
option.)

•

quantified-predicate ::=
 expression comparison-operator
 {ALL | ANY} (sub-query)

• •

query-specification ::=
 SELECT [ALL | DISTINCT] select-list
 FROM table-reference-list
 [WHERE search-condition]
 [GROUP BY
 column-name, [column-name]...]
 [HAVING search-condition]

• •

ref-table-name ::= base-table-identifier • •

ref-table-name ::= base-table-identifier |
 owner-name.base-table-identifier |
 qualifier-name qualifier-separator
 base-table-identifier |
 qualifier-name qualifier-separator
 [owner-name].base-table-identifier

(The third syntax is valid only if the data source
does not support owners.)

• •

referenced-columns ::=
 (column-identifier [, column-identifier]...)

• •

referencing-columns ::=
 (column-identifier [, column-identifier]...)

• •
 SQL Grammar C-19

SQL Statements
scalar-function ::=
 function-name (argument-list)

(The definitions for the non-terminals function-
name and function-name (argument-list) are
derived from the list of scalar functions in
Appendix F, “Scalar Functions.”)

• •

scale ::= unsigned-integer • •

search-condition ::=
 boolean-term [OR search-condition]

• •

seconds-fraction ::= unsigned-integer • •

seconds-value ::= digit digit • •

select-list ::=
 * | select-sublist [, select-sublist]...

• •

select-sublist ::= expression • •

select-sublist ::=
 expression [[AS] column-alias] |
 { table-name | correlation-name}.*

• •

set-function-reference ::= COUNT(*) |
 distinct-function | all-function

• •

sort-specification ::=
 { unsigned-integer | column-name }
 [ASC | DESC]

• •

SQL-esc-vendor-clause ::= VEN-
DOR(Microsoft), PRODUCT(ODBC)

• •

sub-query ::=
 SELECT [ALL | DISTINCT] select-list
 FROM table-reference-list
 [WHERE search-condition]
 [GROUP BY
 column-name [, column-name]...]
 [HAVING search-condition]

• •

table-identifier ::= user-defined-name • •
C-20 SOLID Programmer Guide

SQL Statements
table-name ::= table-identifier • •

table-name ::= table-identifier |
 owner-name.table-identifier |
 qualifier-name qualifier-separator
 table-identifier |
 qualifier-name qualifier-separator
 [owner-name].table-identifier

(The third syntax is valid only if the data source
does not support owners.)

• •

table-reference ::= table-name •

table-reference ::=
 table-name [correlation-name]

•

table-reference::=
 table-name [correlation-name] |
 ODBC-outer-join-extension

(A SELECT statement can contain only one
table-reference that is an ODBC-outer-join-
extension.)

• •

table-reference-list ::=
 table-reference [,table-reference]…

• •

term ::= factor | term {*| /} factor • •

time-separator ::= : • •

time-type ::= {time types}

(For example, TIME. To determine the type
name used by a data source, an application
calls SQLGetTypeInfo.)

• •

time-value ::=
 hours-value time-separator
 minutes-value time-separator
 seconds-value

• •

timestamp-separator ::=
 (The blank character.)

• •
 SQL Grammar C-21

SQL Statements
timestamp-type ::= {timestamp types}

(For example, TIMESTAMP. To determine the
type name used by a data source, an application
calls SQLGetTypeInfo.)

• •

timestamp-value ::=
 date-value timestamp-separator
 time-value[.seconds-fraction]

• •

unsigned-integer ::= {digit}... • •

upper-case-letter ::= A | B | C | D | E | F |
 G | H | I | J | K | L | M | N | O | P |
 Q | R | S | T | U | V | W | X | Y | Z

• •

user-defined-name ::=
 letter[digit | letter| _]...

• •

user-name ::= user-defined-name • •

value ::= literal | USER | dynamic-parameter • •

viewed-table-identifier ::= user-defined-name • •

viewed-table-name ::=
 viewed-table-identifier |
 owner-name.viewed-table-identifier |
 qualifier-name qualifier-separator
 viewed-table-identifier |
 qualifier-name qualifier-separator
 [owner-name].viewed-table-identifier

(The third syntax is valid only if the data source
does not support owners.)

• •

years-value ::= digit digit digit digit • •
C-22 SOLID Programmer Guide

List of Reserved Keywords

on-
p-
e
-

List of Reserved Keywords
The following words are reserved for use in ODBC function calls. These words do not c
strain the minimum SQL grammar; however, to ensure compatibility with drivers that su
port the core SQL grammar, applications should avoid using any of these keywords. Th
#define value SQL_ODBC_KEYWORDS contains a comma-separated list of these key
words.

For a complete list of reserved keywords in several SQL standards and SOLID SQL API see
Appendix F Reserved Words of SOLID Embedded Engine Administrator's Guide .

ABSOLUTE ADA

ADD ALL

ALLOCATE ALTER

AND ANY

ARE AS

ASC ASSERTION

AT AUTHORIZATION

AVG BEGIN

BETWEEN BIT

BIT_LENGTH BY

CASCADE CASCADED

CASE CAST

CATALOG CHAR

CHAR_LENGTH CHARACTER

CHARACTER_LENGTH CHECK

CLOSE COALESCE

COBOL COLLATE

COLLATION COLUMN

COMMIT CONNECT

CONNECTION CONSTRAINT

CONSTRAINTS CONTINUE
 SQL Grammar C-23

List of Reserved Keywords
CONVERT CORRESPONDING

COUNT CREATE

CURRENT CURRENT_DATE

CURRENT_TIME CURRENT_TIMESTAMP

CURSOR DATE

DAY DEALLOCATE

DEC DECIMAL

DECLARE DEFERRABLE

DEFERRED DELETE

DESC DESCRIBE

DESCRIPTOR DIAGNOSTICS

DICTIONARY DISCONNECT

DISPLACEMENT DISTINCT

DOMAIN DOUBLE

DROP ELSE

END END-EXEC

ESCAPE EXCEPT

EXCEPTION EXEC

EXECUTE EXISTS

EXTERNAL EXTRACT

FALSE FETCH

FIRST FLOAT

FOR FOREIGN

FORTRAN FOUND

FROM FULL

GET GLOBAL

GO GOTO

GRANT GROUP

HAVING HOUR
C-24 SOLID Programmer Guide

List of Reserved Keywords
IDENTITY IGNORE

IMMEDIATE IN

INCLUDE INDEX

INDICATOR INITIALLY

INNER INPUT

INSENSITIVE INSERT

INTEGER INTERSECT

INTERVAL INTO

IS ISOLATION

JOIN KEY

LANGUAGE LAST

LEFT LEVEL

LIKE LOCAL

LOWER MATCH

MAX MIN

MINUTE MODULE

MONTH MUMPS

NAMES NATIONAL

NCHAR NEXT

NONE NOT

NULL NULLIF

NUMERIC OCTET_LENGTH

OF OFF

ON ONLY

OPEN OPTION

OR ORDER

OUTER OUTPUT

OVERLAPS PARTIAL

PASCAL PLI
 SQL Grammar C-25

List of Reserved Keywords
POSITION PRECISION

PREPARE PRESERVE

PRIMARY PRIOR

PRIVILEGES PROCEDURE

PUBLIC RESTRICT

REVOKE RIGHT

ROLLBACK ROWS

SCHEMA SCROLL

SECOND SECTION

SELECT SEQUENCE

SET SIZE

SMALLINT SOME

SQL SQLCA

SQLCODE SQLERROR

SQLSTATE SQLWARNING

SUBSTRING SUM

SYSTEM TABLE

TEMPORARY THEN

TIME TIMESTAMP

TIMEZONE_HOUR TIMEZONE_MINUTE

TO TRANSACTION

TRANSLATE TRANSLATION

TRUE UNION

UNIQUE UNKNOWN

UPDATE UPPER

USAGE USER

USING VALUE

VALUES VARCHAR

VARYING VIEW
C-26 SOLID Programmer Guide

List of Reserved Keywords
WHEN WHENEVER

WHERE WITH

WORK YEAR
 SQL Grammar C-27

List of Reserved Keywords
C-28 SOLID Programmer Guide

D

nd

 and

es
mn or
the

 to the
Data Types

Data stored on a data source has an SQL data type, which may be specific to that data
source. A driver maps data source–specific SQL data types to ODBC SQL data types a
driver-specific SQL data types. (A driver returns these mappings through SQLGet-
TypeInfo. It also returns the SQL data types when describing the data types of columns
parameters in SQLColAttributes , SQLColumns, SQLDescribeCol, SQLDescribeParam,
SQLProcedureColumns, and SQLSpecialColumns.)

Each SQL data type corresponds to an ODBC C data type. By default, the driver assum
that the C data type of a storage location corresponds to the SQL data type of the colu
parameter to which the location is bound. If the C data type of a storage location is not
default C data type, the application can specify the correct C data type with the fCType argu-
ment in SQLBindCol, SQLGetData, or SQLBindParameter. Before returning data from
the data source, the driver converts it to the specified C data type. Before sending data
data source, the driver converts it from the specified C data type.

This appendix discusses the following:

■ ODBC SQL data types

■ ODBC C data types

■ Default ODBC C data types

■ Transferring data in its binary form

■ Precision, scale, length, and display size of SQL data types

■ Converting data from SQL to C data types

■ Converting data from C to SQL data types

For information about driver-specific SQL data types, see the driver’s documentation.
 Data Types D-1

SQL Data Types

erset

L

ined
ata

nta-

spond-

arac-
 lim-
may
urce,

f those
SQL Data Types
The ODBC SQL grammar defines three sets of SQL data types, each of which is a sup
of the previous set.

■ Minimum SQL data types provide a basic level of ODBC conformance.

■ Core SQL data types are the data types in the X/Open and SQL Access Group SQ
CAE specification (1992) and are supported by most SQL data sources.

■ Extended SQL data types are additional data types supported by some SQL data
sources.

A given driver and data source do not necessarily support all of the SQL data types def
in the ODBC grammar. Furthermore, they may support additional, driver-specific SQL d
types. To determine which data types a driver supports, an application calls SQLGet-
TypeInfo. For information about driver-specific SQL data types, see the driver’s docume
tion.

Minimum SQL Data Types
The following table lists valid values of fSqlType for the minimum SQL data types. These
values are defined in SQL.H. The table also lists the name and description of the corre
ing data type from the X/Open and SQL Access Group SQL CAE specification (1992).

NOTE: The minimum SQL grammar requires that a data source support at least one ch
ter SQL data type. This table is only a guideline and shows commonly used names and
its of these data types. For a given data source, the characteristics of these data types
differ from those listed below. For information about the data types in a specific data so
see the documentation for that data source.

To determine which data types are supported by a data source and the characteristics o
data types, an application calls SQLGetTypeInfo.

fSqlType SQL Data Type Description

SQL_CHAR CHAR(n) Character string of fixed string

length n (1 ≤ n ≤ 254).

SQL_VARCHAR VARCHAR(n) Variable-length character string
with a maximum string length n (1

≤ n ≤ 254).

SQL_LONGVARCHAR LONG VARCHAR Variable length character data.
Maximum length is data
source–dependent.
D-2 SOLID Programmer Guide

SQL Data Types

g
e
its to

its
ypes
or
ut the

ter-
data
Core SQL Data Types
The following table lists valid values of fSqlType for the core SQL data types. These values
are defined in SQL.H. The table also lists the name and description of the correspondin
data type from the X/Open and SQL Access Group SQL CAE specification (1992). In th
table, precision refers to the total number of digits and scale refers to the number of dig
the right of the decimal point.

NOTE: This table is only a guideline and shows commonly used names, ranges, and lim
of core SQL data types. A given data source may support only some of the listed data t
and the characteristics of the supported data types may differ from those listed below. F
example, some data sources support unsigned numeric data types. For information abo
data types in a specific data source, see the documentation for that data source. To de
mine which data types are supported by a data source and the characteristics of those
types, an application calls SQLGetTypeInfo.

fSqlType SQL Data Type Description

SQL_DECIMAL DECIMAL(p,s) Signed, exact, numeric value with a precision p

and scale s (1 ≤ p ≤ 15; 0 ≤ s ≤ p).

SQL_NUMERIC NUMERIC(p,s) Signed, exact, numeric value with a precision p

and scale s (1 ≤ p ≤ 15; 0 ≤ s ≤ p).

SQL_SMALLINT SMALLINT Exact numeric value with precision 5 and scale 0

(signed: –32,768 ≤ n ≤ 32,767, unsigned: 0≤ n ≤

65,535) a.

SQL_INTEGER INTEGER Exact numeric value with precision 10 and scale

0 (signed: –231 ≤ n ≤ 231 – 1,

unsigned: 0 ≤ n ≤ 232 – 1) a.

SQL_REAL REAL Signed, approximate, numeric value with a
mantissa precision 7 (zero or absolute value
10–38 to 1038).

SQL_FLOAT FLOAT Signed, approximate, numeric value with a
mantissa precision 15 (zero or absolute value
10–308 to 10308).

SQL_DOUBLE DOUBLE
PRECISION

Signed, approximate, numeric value with a
mantissa precision 15 (zero or absolute value
10–308 to 10308).
 Data Types D-3

SQL Data Types

orre-
 refers

its
ata

elow.
 about
 deter-

 data
Extended SQL Data Types
The following table lists valid values of fSqlType for the extended SQL data types. These
values are defined in SQLEXT.H. The table also lists the name and description of the c
sponding data type. In the table, precision refers to the total number of digits and scale
to the number of digits to the right of the decimal point.

NOTE: This table is only a guideline and shows commonly used names, ranges, and lim
of extended SQL data types. A given data source may support only some of the listed d
types and the characteristics of the supported data types may differ from those listed b
For example, some data sources support unsigned numeric data types. For information
the data types in a specific data source, see the documentation for that data source. To
mine which data types are supported by a data source and the characteristics of those
types, an application calls SQLGetTypeInfo.

a An application uses SQLGetTypeInfo or SQLColAttributes to determine if a particular
data type or a particular column in a result set is unsigned.

fSqlType Typical SQL Data Type Description

SQL_BIT BIT Single bit binary data.

SQL_TINYINT TINYINT Exact numeric value with pre-
cision 3 and scale 0 (signed:

–128 ≤ n ≤ 127, unsigned: 0≤

n ≤ 255) a.

SQL_BIGINT BIGINT Exact numeric value with pre-
cision 19 (if signed) or 20 (if
unsigned) and scale 0 (signed:

–263 ≤ n ≤ 263 – 1, unsigned: 0

≤ n ≤ 264 – 1) a.

SQL_BINARY BINARY(n) Binary data of fixed length n

(1 ≤ n ≤ 255).

SQL_VARBINARY VARBINARY(n) Variable length binary data
of maximum length n

(1 ≤ n ≤ 255).

SQL_LONGVARBINARY LONG VARBINARY Variable length binary data.
Maximum length is data
source–dependent.
D-4 SOLID Programmer Guide

SQL Data Types
SQL_DATE DATE Date data.

SQL_TIME TIME Time data.

SQL_TIMESTAMP TIMESTAMP Date/time data.

a An application uses SQLGetTypeInfo or SQLColAttributes to determine if a particular
data type or a particular column in a result set is unsigned.
 Data Types D-5

C Data Types

e that
 data
. The
erted

ort

e

e of

u-

s
ach
C Data Types
Data is stored in the application in ODBC C data types. The core C data types are thos
support the minimum and core SQL data types. They also support some extended SQL
types. The extended C data types are those that only support extended SQL data types
bookmark C data type is used only to retrieve bookmark values and should not be conv
to other data types.

NOTE: Unsigned C data types for integers were added to ODBC 2.0. Drivers must supp
the integer C data types specified in both ODBC 1.0 and ODBC 2.0; ODBC 2.0 or later
applications must use the ODBC 1.0 integer C data types with ODBC 1.0 drivers and th
ODBC 2.0 integer C data types with ODBC 2.0 drivers.

The C data type is specified in the SQLBindCol, SQLGetData, and SQLBindParameter
functions with the fCType argument.

Core C Data Types
The following table lists valid values of fCType for the core C data types. These values are
defined in SQL.H. The table also lists the ODBC C data type that implements each valu
fCType and the definition of this data type from SQL.H.

NOTE: Because objects of the CString class in Microsoft C++ are signed and string arg
ments in ODBC functions are unsigned, applications that pass CString objects to ODBC
functions without casting them will receive compiler warnings.

Extended C Data Types
The following table lists valid values of fCType for the extended C data types. These value
are defined in SQLEXT.H. The table also lists the ODBC C data type that implements e
value of fCType and the definition of this data type from SQLEXT.H or SQL.H.

fCType ODBC C Typedef C Type

SQL_C_CHAR UCHAR FAR * unsigned char FAR *

SQL_C_SSHORT SWORD short int

SQL_C_USHORT UWORD unsigned short int

SQL_C_SLONG SDWORD long int

SQL_C_ULONG UDWORD unsigned long int

SQL_C_FLOAT SFLOAT float

SQL_C_DOUBLE SDOUBLE double
D-6 SOLID Programmer Guide

C Data Types
fCType ODBC C Typedef C Type

SQL_C_BIT UCHAR unsigned char

SQL_C_STINYINT SCHAR signed char

SQL_C_UTINYINT UCHAR unsigned char

SQL_C_BINARY UCHAR FAR * unsigned char FAR *

SQL_C_DATE DATE_STRUCT struct tagDATE_STRUCT {
 SWORD year; a

 UWORD month; b
 UWORD day; c
}

SQL_C_TIME TIME_STRUCT struct tagTIME_STRUCT {
 UWORD hour; d
 UWORD minute; e
 UWORD second; f

}

SQL_C_TIMESTAMP TIMESTAMP_STRUCT struct
tagTIMESTAMP_STRUCT {
 SWORD year; a

 UWORD month; b
 UWORD day; c
 UWORD hour; d
 UWORD minute; e
 UWORD second; f

 UDWORD fraction; g
}

 Data Types D-7

C Data Types

ca-

Bookmark C Data Type
Bookmarks are 32-bit values used by an application to return to a specific row; an appli
tion retrieves a bookmark either from column 0 of the result set with SQLExtendedFetch or
SQLGetData or by calling SQLGetStmtOption. For more information, see “Using Book-
marks” in Chapter 7, “Retrieving Results.”

The following table lists the value of fCType for the bookmark C data type, the ODBC C
data type that implements the bookmark C data type, and the definition of this data type
from SQL.H.

a The value of the year field must be in the range from 0 to 9,999. Years are measured from 0
A.D. Some data sources do not support the entire range of years.

b The value of the month field must be in the range from 1 to 12.

c The value of day field must be in the range from 1 to the number of days in the month. The
number of days in the month is determined from the values of the year and month fields and is
28, 29, 30, or 31.

d The value of the hour field must be in the range from 0 to 23.

e The value of the minute field must be in the range from 0 to 59.

f The value of the second field must be in the range from 0 to 59.

g The value of the fraction field is the number of billionths of a second and ranges from 0 to
999,999,999 (1 less than 1 billion). For example, the value of the fraction field for a half-sec-
ond is 500,000,000, for a thousandth of a second (one millisecond) is 1,000,000, for a mil-
lionth of a second (one microsecond) is 1,000, and for a billionth of a second (one nanosecond)
is 1.

fCType ODBC C Typedef C Type

SQL_C_BOOKMARK BOOKMARK unsigned long int
D-8 SOLID Programmer Guide

ODBC 1.0 C Data Types

ith

hese

ned or
igned

d

lt C
pes”

es as

ck
on,

a-

te-
ODBC 1.0 C Data Types
In ODBC 1.0, all integer C data types were signed. The following table lists values of
fCType for the integer C data types that were valid in ODBC 1.0. To remain compatible w
applications that use ODBC 1.0, all drivers must support these values of fCType. To remain
compatible with drivers that use ODBC 1.0, ODBC 2.0 or later applications must pass t
values of fCType to ODBC 1.0 drivers. However, ODBC 2.0 or later applications must not
pass these values to ODBC 2.0 or later drivers.

Because the ODBC 1.0 integer C data types (SQL_C_TINYINT, SQL_C_SHORT, and
SQL_C_LONG) are signed, and because the ODBC integer SQL data types can be sig
unsigned, ODBC 1.0 applications and drivers had to interpret signed integer C data as s
or unsigned.

ODBC 2.0 applications and drivers treat the ODBC 1.0 integer C data types as unsigne
only when:

■ The column from which data will be retrieved is unsigned, and

■ The C data type of the storage location in which the data will be placed is the defau
data type for that column. (For a list of default C data types, see “Default C Data Ty
later in this chapter.)

In all other cases, these applications and drivers treat the ODBC 1.0 integer C data typ
signed.

In other words, for any conversion except the default conversion, ODBC 2.0 drivers che
the validity of the conversion based on the numeric data value. For the default conversi
the drivers simply pass the data value without attempting to validate it numerically and
applications interpret the data value according to whether the column is signed. (Applic
tions call SQLGetTypeInfo to determine whether a column is signed or unsigned.)

For example, the following table shows how an ODBC 2.0 driver interprets ODBC 1.0 in
ger C data sent to both signed and unsigned SQL_SMALLINT columns.

fCType ODBC C Typedef C Type

SQL_C_TINYINT SCHAR signed char

SQL_C_SHORT SWORD short int

SQL_C_LONG SDWORD long int
 Data Types D-9

ODBC 1.0 C Data Types
From C Data Type To SQL Data Type C Data Values
SQL Data
Values

SQL_C_TINYINT SQL_SMALLINT
(signed)

–128 to 127 –128 to 127

SQL_SMALLINT
(unsigned)

< 0

0 to 127

--- a
0 to 127

SQL_C_SHORT
(default conversion)

SQL_SMALLINT
(signed)

–32,768 to 32,767 –32,768 to
32,767

SQL_SMALLINT
(unsigned)

–32,768 to –1
0 to 32,767

32,768 to 65,535
0 to 32,767

SQL_C_LONG SQL_SMALLINT
(signed)

< –32,768

–32,768 to 32,767

> 32,767

--- a
–32,768 to
32,767
--- a

SQL_SMALLINT
(unsigned)

< 0

0 to 32,767

> 32,767

--- a
0 to 32,767
--- a

a The driver returns SQLSTATE 22003 (Numeric value out of range).
D-10 SOLID Programmer Guide

Default C Data Types

-
ch
-
ee
Default C Data Types
In an application specifies SQL_C_DEFAULT for the fCType argument in SQLBindCol,
SQLGetData, or SQLBindParameter, the driver assumes that the C data type of the out
put or input buffer corresponds to the SQL data type of the column or parameter to whi
the buffer is bound. For each ODBC SQL data type, the following table shows the corre
sponding, or default, C data type. For information about driver-specific SQL data types, s
the driver’s documentation.

SQL Data Type Default C Data Type

SQL_CHAR SQL_C_CHAR

SQL_VARCHAR SQL_C_CHAR

SQL_LONGVARCHAR SQL_C_CHAR

SQL_DECIMAL SQL_C_CHAR

SQL_NUMERIC SQL_C_CHAR

SQL_BIT SQL_C_BIT

SQL_TINYINT SQL_C_STINYINT or SQL_C_UTINYINT a

SQL_SMALLINT SQL_C_SSHORT or SQL_C_USHORT a

SQL_INTEGER SQL_C_SLONG or SQL_C_ULONG a

SQL_BIGINT SQL_C_CHAR

SQL_REAL SQL_C_FLOAT

SQL_FLOAT SQL_C_DOUBLE

SQL_DOUBLE SQL_C_DOUBLE

SQL_BINARY SQL_C_BINARY

SQL_VARBINARY SQL_C_BINARY

SQL_LONGVARBINARY SQL_C_BINARY

SQL_DATE SQL_C_DATE

SQL_TIME SQL_C_TIME

SQL_TIMESTAMP SQL_C_TIMESTAMP
 Data Types D-11

Default C Data Types

an
not
 deter-

nd
NOTE: For maximum interoperability, applications should specify a C data type other th
SQL_C_DEFAULT. This allows drivers that promote SQL data types (and therefore can
always determine default C data types) to return data. It also allows drivers that cannot
mine whether an integer column is signed or unsigned to correctly return data.

NOTE: ODBC 2.0 drivers use the ODBC 2.0 default C data types for both ODBC 1.0 a
ODBC 2.0 integer C data.

a If the driver can determine whether the column is signed or unsigned, such as when the driver
is fetching data from the data source or when the data source supports only a signed type or
only an unsigned type, but not both, the driver uses the corresponding signed or unsigned C
data type. If the driver cannot determine whether the column is signed or unsigned, it passes
the data value without attempting to validate it numerically.
D-12 SOLID Programmer Guide

Transferring Data in its Binary Form

in the
e the

d trans-
li-

out
Transferring Data in its Binary Form
Among data sources that use the same DBMS, an application can safely transfer data
internal form used by that DBMS. For a given piece of data, the SQL data types must b
same in the source and target data sources. The C data type is SQL_C_BINARY.

When the application calls SQLFetch, SQLExtendedFetch, or SQLGetData to retrieve the
data from the source data source, the driver retrieves the data from the data source an
fers it, without conversion, to a storage location of type SQL_C_BINARY. When the app
cation calls SQLExecute, SQLExecDirect, or SQLPutData to send the data to the target
data source, the driver retrieves the data from the storage location and transfers it, with
conversion, to the target data source.

NOTE: Applications that transfer any data (except binary data) in this manner are not
interoperable among DBMS’s.
 Data Types D-13

Precision, Scale, Length, and Display Size

d dis-

s
n or

lumn
ion
ta
Precision, Scale, Length, and Display Size
SQLColAttributes , SQLColumns, and SQLDescribeCol return the precision, scale,
length, and display size of a column in a table. SQLProcedureColumns returns the preci-
sion, scale, and length of a column in a procedure. SQLDescribeParam returns the preci-
sion or scale of a parameter in an SQL statement; SQLBindParameter sets the precision or
scale of a parameter in an SQL statement. SQLGetTypeInfo returns the maximum preci-
sion and the minimum and maximum scales of an SQL data type on a data source.

Due to limitations in the size of the arguments these functions use, precision, length, an
play size are limited to the size of an SDWORD, or 2,147,483,647.

Precision
The precision of a numeric column or parameter refers to the maximum number of digit
used by the data type of the column or parameter. The precision of a nonnumeric colum
parameter generally refers to either the maximum length or the defined length of the co
or parameter. To determine the maximum precision allowed for a data type, an applicat
calls SQLGetTypeInfo. The following table defines the precision for each ODBC SQL da
type.

fSqlType Precision

SQL_CHAR
SQL_VARCHAR

The defined length of the column or parameter. For exam-
ple, the precision of a column defined as CHAR(10) is
10.

SQL_LONGVARCHAR a, b The maximum length of the column or parameter.

SQL_DECIMAL
SQL_NUMERIC

The defined number of digits. For example, the precision
of a column defined as NUMERIC(10,3) is 10.

SQL_BIT c 1

SQL_TINYINT c 3

SQL_SMALLINT c 5

SQL_INTEGER c 10

SQL_BIGINT c 19 (if signed) or 20 (if unsigned)

SQL_REAL c 7

SQL_FLOAT c 15

SQL_DOUBLE c 15
D-14 SOLID Programmer Guide

Precision, Scale, Length, and Display Size

 the
s,

 sepa-
ed

Scale
The scale of a numeric column or parameter refers to the maximum number of digits to
right of the decimal point. For approximate floating point number columns or parameter
the scale is undefined, since the number of digits to the right of the decimal point is not
fixed. (For the SQL_DECIMAL and SQL_NUMERIC data types, the maximum scale is
generally the same as the maximum precision. However, some data sources impose a
rate limit on the maximum scale. To determine the minimum and maximum scales allow
for a data type, an application calls SQLGetTypeInfo.) The following table defines the scale
for each ODBC SQL data type.

SQL_BINARY
SQL_VARBINARY

The defined length of the column or parameter. For exam-
ple, the precision of a column defined as BINARY(10) is
10.

SQL_LONGVARBINARY a, b The maximum length of the column or parameter.

SQL_DATE c 10 (the number of characters in the yyyy-mm-dd format).

SQL_TIME c 8 (the number of characters in the hh:mm:ss format).

SQL_TIMESTAMP The number of characters in the “yyyy-mm-dd
hh:mm:ss[.f...]” format used by the TIMESTAMP data
type. For example, if a timestamp does not use seconds or
fractional seconds, the precision is 16 (the number of
characters in the “yyyy-mm-dd hh:mm” format). If a
timestamp uses thousandths of a second, the precision is
23 (the number of characters in the “yyyy-mm-dd
hh:mm:ss.fff” format).

a For an ODBC 1.0 application calling SQLSetParam in an ODBC 2.0 driver, and for an
ODBC 2.0 application calling SQLBindParameter in an ODBC 1.0 driver, when pcbValue
is SQL_DATA_AT_EXEC, cbColDef must be set to the total length of the data to be sent, not
the precision as defined in this table.

b If the driver cannot determine the column or parameter length, it returns SQL_NO_TOTAL.

c The cbColDef argument of SQLBindParameter is ignored for this data type.

fSqlType Scale

SQL_CHAR a
SQL_VARCHAR a
SQL_LONGVARCHAR a

Not applicable.
 Data Types D-15

Precision, Scale, Length, and Display Size

en
lude
ber

, see
Length
The length of a column is the maximum number of bytes returned to the application wh
data is transferred to its default C data type. For character data, the length does not inc
the null termination byte. Note that the length of a column may be different than the num
of bytes required to store the data on the data source. For a list of default C data types
“Default C Data Types” in this appendix.

The following table defines the length for each ODBC SQL data type.

SQL_DECIMAL
SQL_NUMERIC

The defined number of digits to the right of the dec-
imal point. For example, the scale of a column
defined as NUMERIC(10,3) is 3.

SQL_BIT a
SQL_TINYINT a
SQL_SMALLINT a
SQL_INTEGER a
SQL_BIGINT a

0

SQL_REAL a
SQL_FLOAT a
SQL_DOUBLE a

Not applicable.

SQL_BINARY a
SQL_VARBINARY a
SQL_LONGVARBINARY a

Not applicable.

SQL_DATE a
SQL_TIME a

Not applicable.

SQL_TIMESTAMP The number of digits to the right of the decimal
point in the “yyyy-mm-dd hh:mm:ss[.f...]” format.
For example, if the TIMESTAMP data type uses the
“yyyy-mm-dd hh:mm:ss.fff” format, the scale is 3.

a The ibScale argument of SQLBindParameter is ignored for this data type.

fSqlType Length

SQL_CHAR
SQL_VARCHAR

The defined length of the column. For example,
the length of a column defined as CHAR(10) is 10.

SQL_LONGVARCHAR a The maximum length of the column.
D-16 SOLID Programmer Guide

Precision, Scale, Length, and Display Size

n
pe.
Display Size
The display size of a column is the maximum number of bytes needed to display data i
character form. The following table defines the display size for each ODBC SQL data ty

SQL_DECIMAL
SQL_NUMERIC

The maximum number of digits plus 2. Since these
data types are returned as character strings, char-
acters are needed for the digits, a sign, and a deci-
mal point. For example, the length of a column
defined as NUMERIC(10,3) is 12.

SQL_BIT
SQL_TINYINT

1 (one byte).

SQL_SMALLINT 2 (two bytes).

SQL_INTEGER 4 (four bytes).

SQL_BIGINT 20 (since this data type is returned as a character
string, characters are needed for 19 digits and a
sign, if signed, or 20 digits, if unsigned).

SQL_REAL 4 (four bytes).

SQL_FLOAT 8 (eight bytes).

SQL_DOUBLE 8 (eight bytes).

SQL_BINARY
SQL_VARBINARY

The defined length of the column. For example,
the length of a column defined as BINARY(10) is
10.

SQL_LONGVARBINARY a The maximum length of the column.

SQL_DATE
SQL_TIME

6 (the size of the DATE_STRUCT or
TIME_STRUCT structure).

SQL_TIMESTAMP 16 (the size of the TIMESTAMP_STRUCT struc-
ture).

a If the driver cannot determine the column or parameter length, it returns
SQL_NO_TOTAL.

fSqlType Display Size

SQL_CHAR
SQL_VARCHAR

The defined length of the column. For example, the dis-
play size of a column defined as CHAR(10) is 10.
 Data Types D-17

Precision, Scale, Length, and Display Size
SQL_LONGVARCHAR a The maximum length of the column.

SQL_DECIMAL
SQL_NUMERIC

The precision of the column plus 2 (a sign, precision dig-
its, and a decimal point). For example, the display size of
a column defined as NUMERIC(10,3) is 12.

SQL_BIT 1 (1 digit).

SQL_TINYINT 4 if signed (a sign and 3 digits) or 3 if unsigned (3 digits).

SQL_SMALLINT 6 if signed (a sign and 5 digits) or 5 if unsigned (5 digits).

SQL_INTEGER 11 if signed (a sign and 10 digits) or 10 if unsigned (10
digits).

SQL_BIGINT 20 (a sign and 19 digits if signed or 20 digits if unsigned).

SQL_REAL 13 (a sign, 7 digits, a decimal point, the letter E, a sign,
and 2 digits).

SQL_FLOAT
SQL_DOUBLE

22 (a sign, 15 digits, a decimal point, the letter E, a sign,
and 3 digits).

SQL_BINARY
SQL_VARBINARY

The defined length of the column times 2 (each binary
byte is represented by a 2 digit hexadecimal number). For
example, the display size of a column defined as
BINARY(10) is 20.

SQL_LONGVARBINARY a The maximum length of the column times 2.

SQL_DATE 10 (a date in the format yyyy-mm-dd).

SQL_TIME 8 (a time in the format hh:mm:ss).

SQL_TIMESTAMP 19 (if the scale of the timestamp is 0) or 20 plus the scale
of the timestamp (if the scale is greater than 0). This is the
number of characters in the “yyyy-mm-dd
hh:mm:ss[.f...]” format. For example, the display size of a
column storing thousandths of a second is 23 (the number
of characters in “yyyy-mm-dd hh:mm:ss.fff”).

a If the driver cannot determine the column or parameter length, it returns
SQL_NO_TOTAL.
D-18 SOLID Programmer Guide

Converting Data from SQL to C Data Types

type in

fer

DBC
 data
Converting Data from SQL to C Data Types
When an application calls SQLExtendedFetch, SQLFetch, or SQLGetData, the driver
retrieves the data from the data source. If necessary, it converts the data from the data
which the driver retrieved it to the data type specified by the fCType argument in SQLBind-
Col or SQLGetData. Finally, it stores the data in the location pointed to by the rgbValue
argument in SQLBindCol or SQLGetData.

NOTE: The word convert is used in this section in a broad sense, and includes the trans
of data, without a conversion in data type, from one storage location to another.

The following table shows the supported conversions from ODBC SQL data types to O
C data types. A solid circle indicates the default conversion for an SQL data type (the C
type to which the data will be converted when the value of fCType is SQL_C_DEFAULT). A
hollow circle indicates a supported conversion.
 Data Types D-19

Converting Data from SQL to C Data Types
 C Data Type—SQL_C_datatype where datatype is:

• Default conversion o Supported conversion

SQL Data Type

 C
 H
 A
 R

 B
 I
 T

 S
 T
 I
 N
 Y
 I
 N
 T

 U
 T
 I
 N
 Y
 I
 N
 T

 T
 I
 N
 Y
 I
 N
 T

 S
 S
 H
 O
 R
 T

 U
 S
 H
 O
 R
 T

 S
 H
 O
 R
 T

 S
 L
 O
 N
 G

 U
 L
 O
 N
 G

 L
 O
 N
 G

 F
 L
 O
 A
 T

 D
 O
 U
 B
 L
 E

 B
 I
 N
 A
 R
 Y

 D
 A
 T
 E

 T
 I
 M
 E

 T
 I
 M
 E
 S
 T
 A
 M
 P

SQL_CHAR • o o o o o o o o o o o o o o o o

SQL_VARCHAR • o o o o o o o o o o o o o o o o

SQL_LONGVARCHAR • o o o o o o o o o o o o o o o o

SQL_DECIMAL • o o o o o o o o o o o o o o o o

SQL_NUMERIC • o o o o o o o o o o o o o o o o

SQL_BIT o • o o o o o o o o o o o o

SQL_TINYINT (signed) o o • o o o o o o o o o o o

SQL_TINYINT (unsigned) o o o • o o o o o o o o o o

SQL_SMALLINT (signed) o o o o o • o o o o o o o o

SQL_SMALLINT (unsigned) o o o o o o • o o o o o o o

SQL_INTEGER (signed) o o o o o o o o o • o o o o

SQL_INTEGER (unsigned) o o o o o o o o o o • o o o

(SQL_BIGINT (signed and unsigned) • o o o o o o o o o o o o o

SQL_REAL o o o o o o o o o o o • o o

SQL_FLOAT o o o o o o o o o o o o • o

SQL_DOUBLE o o o o o o o o o o o o • o

SQL_BINARY o •

SQL_VARBINARY o •

SQL_LONGVARBINARY o •

SQL_DATE o o • o

SQL_TIME o o • o

SQL_TIMESTAMP o o o o •
D-20 SOLID Programmer Guide

Converting Data from SQL to C Data Types

a
 C
ata

the

-

e

la-
pe-

r

at.

ar.
Table Description—SQL to C
The tables in the following sections describe how the driver or data source converts dat
retrieved from the data source; drivers are required to support conversions to all ODBC
data types from the ODBC SQL data types that they support. For a given ODBC SQL d
type, the first column of the table lists the legal input values of the fCType argument in SQL-
BindCol and SQLGetData. The second column lists the outcomes of a test, often using
cbValueMax argument specified in SQLBindCol or SQLGetData, which the driver per-
forms to determine if it can convert the data. For each outcome, the third and fourth col
umns list the values of the rgbValue and pcbValue arguments specified in SQLBindCol or
SQLGetData after the driver has attempted to convert the data. The last column lists th
SQLSTATE returned for each outcome by SQLExtendedFetch, SQLFetch, or SQLGet-
Data.

If the fCType argument in SQLBindCol or SQLGetData contains a value for an ODBC C
data type not shown in the table for a given ODBC SQL data type, SQLExtendedFetch,
SQLFetch, or SQLGetData returns SQLSTATE 07006 (Restricted data type attribute vio
tion). If the fCType argument contains a value that specifies a conversion from a driver-s
cific SQL data type to an ODBC C data type and this conversion is not supported by the
driver, SQLExtendedFetch, SQLFetch, or SQLGetData returns SQLSTATE S1C00
(Driver not capable).

Though it is not shown in the tables, the pcbValue argument contains SQL_NULL_DATA
when the SQL data value is NULL. For an explanation of the use of pcbValue when multi-
ple calls are made to retrieve data, see SQLGetData. When SQL data is converted to char-
acter C data, the character count returned in pcbValue does not include the null termination
byte. If rgbValue is a null pointer, SQLBindCol or SQLGetData returns SQLSTATE S1009
(Invalid argument value).

The following terms and conventions are used in the tables:

■ Length of data is the number of bytes of C data available to return in rgbValue, regard-
less of whether the data will be truncated before it is returned to the application. Fo
string data, this does not include the null termination byte.

■ Display size is the total number of bytes needed to display the data in character form

■ Words in italics represent function arguments or elements of the ODBC SQL gramm

SQL to C: Character
The character ODBC SQL data types are:

SQL_CHAR
SQL_VARCHAR
SQL_LONGVARCHAR
 Data Types D-21

Converting Data from SQL to C Data Types

 con-
The following table shows the ODBC C data types to which character SQL data may be
verted. For an explanation of the columns and terms in the table, see the “Table Descrip-
tion—SQL to C” on page D-21.

fCType Test
rgb-
Value

pcb-
Value

SQL-
STATE

SQL_C_CHAR Length of data < cbValue-
Max

Length of data ≥ cbValue-
Max

Data

Truncated
data

Length of
data

Length of
data

N/A

01004

SQL_C_STINYINT
SQL_C_UTINYINT
SQL_C_TINYINT a
SQL_C_SSHORT
SQL_C_USHORT
SQL_C_SHORT a
SQL_C_SLONG
SQL_C_ULONG
SQL_C_LONG a

Data converted without
truncation b

Data converted with trun-
cation of fractional digits b

Conversion of data would
result in loss of whole (as
opposed to fractional)
digits b

Data is not a numeric-lit-
eral b

Data

Truncated
data

Untouched

Untouched

Size of the C
data type

Size of the C
data type

Untouched

Untouched

N/A

01004

22003

22005

SQL_C_FLOAT
SQL_C_DOUBLE

Data is within the range of
the data type to which the
number is being con-
verted b

Data is outside the range
of the data type to which
the number is being con-
verted b

Data is not a numeric-lit-
eral b

Data

Untouched

Untouched

Size of the C
data type

Untouched

Untouched

N/A

22003

22005
D-22 SOLID Programmer Guide

Converting Data from SQL to C Data Types
SQL_C_BIT Data is 0 or 1 a

Data is greater than 0, less
than 2, and not equal to 1 a

Data is less than 0 or
greater than or equal to 2 a

Data is not a numeric-lit-
eral a

Data

Truncated
data

Untouched

Untouched

1 c

1 c

Untouched

Untouched

N/A

01004

22003

22005

SQL_C_BINARY Length of data ≤ cbValue-
Max

Length of data > cbValue-
Max

Data

Truncated
data

Length of
data

Length of
data

N/A

01004

SQL_C_DATE Data value is a valid date-
value b

Data value is a valid
timestamp-value; time
portion is zero b

Data value is a valid
timestamp-value; time
portion is non-zero b, d

Data value is not a valid
date-value or timestamp-
value b

Data

Data

Truncated
data

Untouched

6 c

6 c

6 c

Untouched

N/A

N/A

01004

22008

SQL_C_TIME Data value is a valid time-
value b

Data value is a valid
timestamp-value; frac-
tional seconds portion is
zero b, e

Data value is a valid
timestamp-value; frac-
tional seconds portion is
non-zero b, e, f

Data value is not a valid
time-value or timestamp-
value b

Data

Data

Truncated
data

Untouched

6 c

6 c

6 c

Untouched

N/A

N/A

01004

22008
 Data Types D-23

Converting Data from SQL to C Data Types

ding

 to
 to

p C
When character SQL data is converted to numeric, date, time, or timestamp C data, lea
and trailing spaces are ignored.

All drivers that support date, time, and timestamp data can convert character SQL data
date, time, or timestamp C data as specified in the previous table. Drivers may be able
convert character SQL data from other, driver-specific formats to date, time, or timestam
data. Such conversions are not interoperable among data sources.

SQL to C: Numeric
The numeric ODBC SQL data types are:

SQL_DECIMAL SQL_BIGINT
SQL_NUMERIC SQL_REAL

SQL_C_
TIMESTAMP

Data value is a valid
timestamp-value; frac-
tional seconds portion not
truncated b

Data value is a valid
timestamp-value; frac-
tional seconds portion
truncated b

Data value is a valid date-
value b

Data value is a valid time-
value b

Data value is not a valid
date-value, time-value, or
timestamp-value b

Data

Truncated
data

Data g

Data h

Untouched

16 c

16 c

16 c

16 c

Untouched

N/A

N/A

N/A

N/A

22008

a For more information, see “ODBC 1.0 C Data Types,” earlier in this appendix.

b The value of cbValueMax is ignored for this conversion. The driver assumes that the size of
rgbValue is the size of the C data type.

c This is the size of the corresponding C data type.

d The time portion of the timestamp-value is truncated.

e The date portion of the timestamp-value is ignored.

f The fractional seconds portion of the timestamp is truncated.

g The time fields of the timestamp structure are set to zero.

h The date fields of the timestamp structure are set to the current date.
D-24 SOLID Programmer Guide

Converting Data from SQL to C Data Types

con-
SQL_TINYINT SQL_FLOAT
SQL_SMALLINT SQL_DOUBLE
SQL_INTEGER

The following table shows the ODBC C data types to which numeric SQL data may be
verted. For an explanation of the columns and terms in the table, see page the “Table
Description—SQL to C” on page D-21.

fCType Test
rgb-
Value

pcb-
Value

SQL-
STATE

SQL_C_CHAR Display size < cbVal-
ueMax

Number of whole (as
opposed to fractional)
digits < cbValueMax

Number of whole (as
opposed to fractional)
digits ≥ cbValueMax

Data

Truncated
data

Untouched

Length of
data

Length of
data

Untouched

N/A

01004

22003

SQL_C_STINYINT
SQL_C_UTINYINT
SQL_C_TINYINT a
SQL_C_SSHORT
SQL_C_USHORT
SQL_C_SHORT a
SQL_C_SLONG
SQL_C_ULONG
SQL_C_LONG a

Data converted with-
out truncation b

Data converted with
truncation of frac-
tional digits b

Conversion of data
would result in loss of
whole (as opposed to
fractional) digits b

Data

Truncated
data

Untouched

Size of the C
data type

Size of the C
data type

Untouched

N/A

01004

22003

SQL_C_FLOAT
SQL_C_DOUBLE

Data is within the
range of the data type
to which the number is
being converted b

Data is outside the
range of the data type
to which the number is
being converted b

Data

Untouched

Size of the C
data type

Untouched

N/A

22003
 Data Types D-25

Converting Data from SQL to C Data Types

rted.
SQL to C: Bit
The bit ODBC SQL data type is:

SQL_BIT

The following table shows the ODBC C data types to which bit SQL data may be conve
For an explanation of the columns and terms in the table, see the “Table Description—SQL
to C” on page D-21.

SQL_C_BIT Data is 0 or 1 b

Data is greater than 0,
less than 2, and not
equal to 1 b

Data is less than 0 or
greater than or equal to
2 b

Data

Truncated
data

Untouched

1 c

1 c

Untouched

N/A

01004

22003

SQL_C_BINARY Length of data ≤
cbValueMax

Length of data >
cbValueMax

Data

Untouched

Length of
data

Untouched

N/A

22003

a For more information, see “ODBC 1.0 C Data Types,” earlier in this appendix.

b The value of cbValueMax is ignored for this conversion. The driver assumes that the size of
rgbValue is the size of the C data type.

c This is the size of the corresponding C data type.

fCType Test
rgb-
Value

pcb-
Value

SQL-
STAT
E

SQL_C_CHAR cbValueMax > 1

cbValueMax ≤ 1

Data

Untouched

1

Untouched

N/A

22003
D-26 SOLID Programmer Guide

Converting Data from SQL to C Data Types

”.
When bit SQL data is converted to character C data, the possible values are “0” and “1

SQL to C: Binary
The binary ODBC SQL data types are:

SQL_BINARY
SQL_VARBINARY
SQL_LONGVARBINARY

SQL_C_STINYINT
SQL_C_UTINYINT
SQL_C_TINYINT a
SQL_C_SSHORT
SQL_C_USHORT
SQL_C_SHORT a
SQL_C_SLONG
SQL_C_ULONG
SQL_C_LONG a
SQL_C_FLOAT
SQL_C_DOUBLE

None b Data Size of the C
data type

N/A

SQL_C_BIT None b Data 1 c N/A

SQL_C_BINARY cbValueMax ≥ 1

cbValueMax < 1

Data

Untouched

1

Untouched

N/A

22003

a For more information, see “ODBC 1.0 C Data Types,” earlier in this appendix.

b The value of cbValueMax is ignored for this conversion. The driver assumes that the size of
rgbValue is the size of the C data type.

c This is the size of the corresponding C data type.
 Data Types D-27

Converting Data from SQL to C Data Types

n-

ta is
enta-
d to

s the

byte

-

The following table shows the ODBC C data types to which binary SQL data may be co
verted. For an explanation of the columns and terms in the table, see the “Table Descrip-
tion—SQL to C” on page D-21.

When binary SQL data is converted to character C data, each byte (8 bits) of source da
represented as two ASCII characters. These characters are the ASCII character repres
tion of the number in its hexadecimal form. For example, a binary 00000001 is converte
“01” and a binary 11111111 is converted to “FF”.

The driver always converts individual bytes to pairs of hexadecimal digits and terminate
character string with a null byte. Because of this, if cbValueMax is even and is less than the
length of the converted data, the last byte of the rgbValue buffer is not used. (The converted
data requires an even number of bytes, the next-to-last byte is a null byte, and the last
cannot be used.)

SQL to C: Date
The date ODBC SQL data type is:

SQL_DATE

The following table shows the ODBC C data types to which date SQL data may be con
verted. For an explanation of the columns and terms in the table, see the “Table Descrip-
tion—SQL to C” on page D-21.

fCType Test
rgb-
Value

pcb-
Value

SQL-
STATE

SQL_C_CHAR (Length of data) * 2 <
cbValueMax

(Length of data) * 2 ≥
cbValueMax

Data

Truncated data

Length of
data

Length of
data

N/A

01004

SQL_C_BINARY Length of data ≤
cbValueMax

Length of data >
cbValueMax

Data

Truncated data

Length of
data

Length of
data

N/A

01004
D-28 SOLID Programmer Guide

Converting Data from SQL to C Data Types

y-

-

When date SQL data is converted to character C data, the resulting string is in the “yyy
mm-dd” format.

SQL to C: Time
The time ODBC SQL data type is:

SQL_TIME

The following table shows the ODBC C data types to which time SQL data may be con
verted. For an explanation of the columns and terms in the table, see the “Table Descrip-
tion—SQL to C” on page D-21.

fCType Test
rgb-
Value

pcb-
Value

SQL-
STAT
E

SQL_C_CHAR cbValueMax ≥ 11

cbValueMax < 11

Data

Untouched

10

Untouched

N/A

22003

SQL_C_BINARY Length of data ≤
cbValueMax

Length of data >
cbValueMax

Data

Untouched

Length of data

Untouched

N/A

22003

SQL_C_DATE None a Data 6 c N/A

SQL_C_TIMESTAMP None a Data b 16 c N/A

a The value of cbValueMax is ignored for this conversion. The driver assumes that the size of
rgbValue is the size of the C data type.

b The time fields of the timestamp structure are set to zero.

c This is the size of the corresponding C data type.

fCType Test
rgb-
Value

pcb-
Value

SQL-
STAT
E

SQL_C_CHAR cbValueMax ≥ 9

cbValueMax < 9

Data

Untouched

8

Untouched

N/A

22003
 Data Types D-29

Converting Data from SQL to C Data Types

e
When time SQL data is converted to character C data, the resulting string is in the
“hh:mm:ss” format.

SQL to C: Timestamp
The timestamp ODBC SQL data type is:

SQL_TIMESTAMP

The following table shows the ODBC C data types to which timestamp SQL data may b
converted. For an explanation of the columns and terms in the table, seehe “Table Descrip-
tion—SQL to C” on page D-21.

SQL_C_BINARY Length of data ≤
cbValueMax

Length of data >
cbValueMax

Data

Untouched

Length of data

Untouched

N/A

22003

SQL_C_TIME None a Data 6 c N/A

SQL_C_TIMESTAMP None a Data b 16 c N/A

a The value of cbValueMax is ignored for this conversion. The driver assumes that the size of
rgbValue is the size of the C data type.

b The date fields of the timestamp structure are set to the current date and the fractional sec-
onds field of the timestamp structure is set to zero.

c This is the size of the corresponding C data type.

fCType Test
rgb-
Value

pcb-
Value

SQL-
STAT
E

SQL_C_CHAR cbValueMax > Dis-

play size

20 ≤ cbValueMax ≤

Display size

cbValueMax < 20

Data

Truncated
data b

Untouched

Length of
data

Length of
data

Untouched

N/A

01004

22003

SQL_C_BINARY Length of data ≤
cbValueMax

Length of data >
cbValueMax

Data

Untouched

Length of
data

Untouched

N/A

22003
D-30 SOLID Programmer Guide

Converting Data from SQL to C Data Types

e

e
When timestamp SQL data is converted to character C data, the resulting string is in th
“yyyy-mm-dd hh:mm:ss[.f...]” format, where up to nine digits may be used for fractional
seconds. (Except for the decimal point and fractional seconds, the entire format must b
used, regardless of the precision of the timestamp SQL data type.)

SQL_C_DATE Time portion of
timestamp is zero a

Time portion of
timestamp is non-zero
a

Data

Truncated
data c

6 f

6 f

N/A

01004

SQL_C_TIME Fractional seconds
portion of timestamp
is zero a

Fractional seconds
portion of timestamp
is non-zero a

Data d

Truncated
data d, e

6 f

6 f

N/A

01004

SQL_C_TIMESTAMP Fractional seconds
portion of timestamp
is not truncated a

Fractional seconds
portion of timestamp
is truncated a

Data e

Truncated
data e

16 f

16 f

N/A

01004

a The value of cbValueMax is ignored for this conversion. The driver assumes that the size of
rgbValue is the size of the C data type.

b The fractional seconds of the timestamp are truncated.

c The time portion of the timestamp is truncated.

d The date portion of the timestamp is ignored.

e The fractional seconds portion of the timestamp is truncated.

f This is the size of the corresponding C data type.
 Data Types D-31

Converting Data from SQL to C Data Types
SQL to C Data Conversion Examples
The following examples illustrate how the driver converts SQL data to C data:

SQL Data
Type

SQL Data
Value C Data Type

cbValue
-
Max

rgbValue
SQL-
STAT
E

SQL_CHAR abcdef SQL_C_CHAR 7 abcdef\0 a N/A

SQL_CHAR abcdef SQL_C_CHAR 6 abcde\0 a 01004

SQL_
DECIMAL

1234.56 SQL_C_CHAR 8 1234.56\0 a N/A

SQL_
DECIMAL

1234.56 SQL_C_CHAR 5 1234\0 a 01004

SQL_
DECIMAL

1234.56 SQL_C_CHAR 4 ---- 22003

SQL_
DECIMAL

1234.56 SQL_C_
FLOAT

ignored 1234.56 N/A

SQL_
DECIMAL

1234.56 SQL_C_
SSHORT

ignored 1234 01004

SQL_
DECIMAL

1234.56 SQL_C_
STINYINT

ignored ---- 22003

SQL_
DOUBLE

1.2345678 SQL_C_
DOUBLE

ignored 1.2345678 N/A

SQL_
DOUBLE

1.2345678 SQL_C_
FLOAT

ignored 1.234567 N/A

SQL_
DOUBLE

1.2345678 SQL_C_
STINYINT

ignored 1 N/A

SQL_DATE 1992-12-31 SQL_C_CHAR 11 1992-12-31\0
a

N/A

SQL_DATE 1992-12-31 SQL_C_CHAR 10 ----- 22003

SQL_DATE 1992-12-31 SQL_C_
TIMESTAMP

ignored 1992,12,31,
0,0,0,0 b

N/A
D-32 SOLID Programmer Guide

Converting Data from C to SQL Data Types

r of

 C
Converting Data from C to SQL Data Types
When an application calls SQLExecute or SQLExecDirect, the driver retrieves the data for
any parameters bound with SQLBindParameter from storage locations in the application.
For data-at-execution parameters, the application sends the parameter data with SQLPut-
Data. If necessary, the driver converts the data from the data type specified by the fCType
argument in SQLBindParameter to the data type specified by the fSqlType argument in
SQLBindParameter. Finally, the driver sends the data to the data source.

NOTE: The word convert is used in this section in a broad sense, and includes the transfe
data, without a conversion in data type, from one storage location to another.

The following table shows the supported conversions from ODBC C data types to ODBC
SQL data types. A solid circle indicates the default conversion for an SQL data type (the
data type from which the data will be converted when the value of fCType is
SQL_C_DEFAULT). A hollow circle indicates a supported conversion.

SQL_
TIMES-
TAMP

1992-12-31
23:45:55.1
2

SQL_C_CHAR 23 1992-12-31
23:45:55.12\0
a

N/A

SQL_
TIMES-
TAMP

1992-12-31
23:45:55.1
2

SQL_C_CHAR 22 1992-12-31
23:45:55.1\0 a

01004

SQL_
TIMES-
TAMP

1992-12-31
23:45:55.1
2

SQL_C_CHAR 18 ---- 22003

a “\0” represents a null-termination byte. The driver always null-terminates SQL_C_CHAR
data.

b The numbers in this list are the numbers stored in the fields of the TIMESTAMP_STRUCT
structure.
 Data Types D-33

Converting Data from C to SQL Data Types

o

o

o

•

SQL Data Type —SQL_datatype where datatype is:

• Default conversion o Supported conversion

C Data Type

 C
 H
 A
 R

 V
 A
 R
 C
 H
 A
 R

 L
 O
 N
 G
 V
 A
 R
 C
 H
 A
 R

 D
 E
 C
 I
 M
 A
 L

 N
 U
 M
 E
 R
 I
 C

 B
 I
 T

 T
 I
 N
 Y
 I
 N
 T
 (sig

ned)

 T
 I
 N
 Y
 I
 N
 T
(un-

signed)

 S
 M
 A
 L
 L
 I
 N
 T
 (sign

ed)

 S
 M
 A
 L
 L
 I
 N
 T
 (un-

signed)

 I
 N
 T
 E
 G
 E
 R
(sig

 ed)

 I
 N
 T
 E
 G
 E
 R
 (un-

 signed)

 B
 I
 G
 I
 N
 T
 (signed)

 and un-

 signed)

 R
 E
 A
 L

 F
 L
 O
 A
 T

 D
 O
 U
 B
 L
 E

 B
 I
 N
 A
 R
 Y

 V
 A
 R
 B
 I
 N
 A
 R
 Y

 L
 O
 N
 G
 V
 A
 R
 B
 I
 N
 A
 R
 Y

 D
 A
 T
 E

 T
 I
 M
 E

 T
 I
 M
 E
 S
 T
 A
 M
 P

SQL_C_CHAR

 •

•

•

•

•

 o

 o

 o

 o

 o

 o

 o

 •

 o

 o

 o

 o

 o o o o

SQL_C_BIT o o o o o • o o o o o o o o o o

SQL_C_STINY
INT

 o o o o o o • o o o o o o o o o

SQL_C_UTINY
INT

 o o o o o o o • o o o o o o o o

SQL_C_TINYINT o o o o o o o o o o o o o o o o

SQL_C_SSHORT o o o o o o o o • o o o o o o o

SQL_C_USHORT o o o o o o o o o • o o o o o o

SQL_C_SHORT o o o o o o o o o o o o o o o o

SQL_C_SLONG o o o o o o o o o o • o o o o o

SQL_C_ULONG o o o o o o o o o o o • o o o o

SQL_C_LONG o o o o o o o o o o o o o o o o

SQL_C_FLOAT o o o o o o o o o o o o o • o o

SQL_C_DOUBLE o o o o o o o o o o o o o o • •

SQL_C_BINARY o o o o o o o o o o o o o o o o • • • o o

SQL_C_DATE o o o • o

SQL_C_TIME o o o •

SQL_C_
TIMESTAMP

 o o o o o
D-34 SOLID Programmer Guide

Converting Data from C to SQL Data Types

ent to
o the
f the

e

 type

n in

,
r

i-

e
Table Description—C to SQL
The tables in the following sections describe how the driver or data source converts data s
the data source; drivers are required to support conversions from all ODBC C data types t
ODBC SQL data types that they support. For a given ODBC C data type, the first column o
table lists the legal input values of the fSqlType argument in SQLBindParameter. The second
column lists the outcomes of a test that the driver performs to determine if it can convert th
data. The third column lists the SQLSTATE returned for each outcome by SQLExecDirect,
SQLExecute, or SQLPutData. Data is sent to the data source only if SQL_SUCCESS is
returned.

If the fSqlType argument in SQLBindParameter contains a value for an ODBC SQL data type
that is not shown in the table for a given C data type, SQLBindParameter returns SQLSTATE
07006 (Restricted data type attribute violation). If the fSqlType argument contains a driver-spe-
cific value and the driver does not support the conversion from the specific ODBC C data
to that driver-specific SQL data type, SQLBindParameter returns SQLSTATE S1C00 (Driver
not capable).

If the rgbValue and pcbValue arguments specified in SQLBindParameter are both null point-
ers, that function returns SQLSTATE S1009 (Invalid argument value). Though it is not show
the tables, an application sets the value pointed to by the pcbValue argument of SQLBindPar-
ameter or the value of the cbValue argument to SQL_NULL_DATA to specify a NULL SQL
data value. The application sets these values to SQL_NTS to specify that the value in rgbValue
is a null-terminated string.

The following terms are used in the tables:

■ Length of data is the number of bytes of SQL data available to send to the data source
regardless of whether the data will be truncated before it is sent to the data source. Fo
string data, this does not include the null termination byte.

■ Column length and display size are defined for each SQL data type in the section “Prec
sion, Scale, Length, and Display Size” earlier in this chapter.

■ Number of digits is the number of characters used to represent a number, including th
minus sign, decimal point, and exponent (if needed).

■ Words in italics represent elements of the ODBC SQL grammar.

C to SQL: Character
The character ODBC C data type is:

SQL_C_CHAR
 Data Types D-35

Converting Data from C to SQL Data Types

 con-
The following table shows the ODBC SQL data types to which C character data may be
verted. For an explanation of the columns and terms in the table, see “Table Description—C
to SQL” on page D-35 .

fSqlType Test
SQL-
STATE

SQL_CHAR
SQL_VARCHAR
SQL_LONGVARCHAR

Length of data ≤ Column length

Length of data > Column length

N/A

01004

SQL_DECIMAL
SQL_NUMERIC
SQL_TINYINT
SQL_SMALLINT
SQL_INTEGER
SQL_BIGINT

Data converted without truncation

Data converted with truncation of fractional
digits

Conversion of data would result in loss of
whole (as opposed to fractional) digits

Data value is not a numeric-literal

N/A

01004

22003

22005

SQL_REAL
SQL_FLOAT
SQL_DOUBLE

Data is within the range of the data type to
which the number is being converted

Data is outside the range of the data type to
which the number is being converted

Data value is not a numeric-literal

N/A

22003

22005

SQL_BIT Data is 0 or 1

Data is greater than 0, less than 2, and not
equal to 1

Data is less than 0 or greater than or equal to 2

Data is not a numeric-literal

N/A

01004

22003

22005

SQL_BINARY
SQL_VARBINARY
SQL_LONG-VARBINARY

(Length of data) / 2 ≤ Column length

(Length of data) / 2 > Column length

Data value is not a hexadecimal value

N/A

01004

22005

SQL_DATE Data value is a valid ODBC-date-literal

Data value is a valid ODBC-timestamp-literal;
time portion is zero

Data value is a valid ODBC-timestamp-literal;
time portion is non-zero a

Data value is not a valid ODBC-date-literal or
ODBC-timestamp-literal

N/A

N/A

01004

22008

•

D-36 SOLID Programmer Guide

Converting Data from C to SQL Data Types

ding

ata are
esent
d

e
t

date,
con-
L
When character C data is converted to numeric, date, time, or timestamp SQL data, lea
and trailing blanks are ignored.

When character C data is converted to binary SQL data, each two bytes of character d
converted to a single byte (8 bits) of binary data. Each two bytes of character data repr
a number in hexadecimal form. For example, “01” is converted to a binary 00000001 an
“FF” is converted to a binary 11111111.

The driver always converts pairs of hexadecimal digits to individual bytes and ignores th
null termination byte. Because of this, if the length of the character string is odd, the las
byte of the string (excluding the null termination byte, if any) is not converted.

All drivers that support date, time, and timestamp data can convert character C data to
time, or timestamp SQL data as specified in the previous table. Drivers may be able to
vert character C data from other, driver-specific formats to date, time, or timestamp SQ
data. Such conversions are not interoperable among data sources.

SQL_TIME Data value is a valid ODBC-time-literal

Data value is a valid ODBC-timestamp-literal;
fractional seconds portion is zero b

Data value is a valid ODBC-timestamp-literal;
fractional seconds portion is non-zero b, c

Data value is not a valid ODBC-time-literal or
ODBC-timestamp-literal

N/A

N/A

01004

22008

SQL_TIMESTAMP Data value is a valid ODBC-timestamp-literal;
fractional seconds portion not truncated

Data value is a valid ODBC-timestamp-literal;
fractional seconds portion
truncated

Data value is a valid ODBC-date-literal d

Data value is a valid ODBC-time-literal e

Data value is not a valid ODBC-date-literal,
ODBC-time-literal,or ODBC-timestamp-literal

N/A

01004

N/A

N/A

22008

a The time portion of the timestamp is truncated.

b The date portion of the timestamp is ignored.

c The fractional seconds portion of the timestamp is truncated.

d The time portion of the timestamp is set to zero.

e The date portion of the timestamp is set to the current date.
 Data Types D-37

Converting Data from C to SQL Data Types

xpla-
C to SQL: Numeric
The numeric ODBC C data types are:

SQL_C_STINYINT SQL_C_SLONG
SQL_C_UTINYINT SQL_C_ULONG
SQL_C_TINYINT SQL_C_LONG
SQL_C_SSHORT SQL_C_FLOAT
SQL_C_USHORT SQL_C_DOUBLE
SQL_C_SHORT

For more information about the SQL_C_TINYINT, SQL_C_SHORT, and SQL_C_LONG
data types, see “ODBC 1.0 C Data Types,” earlier in this appendix. The following table
shows the ODBC SQL data types to which numeric C data may be converted. For an e
nation of the columns and terms in the table, see tsee “Table Description—C to SQL” on
page D-35 .

fSqlType Test
SQL-
STATE

SQL_CHAR
SQL_VARCHAR
SQL_LONGVARCHAR

Number of digits ≤ Column length

Number of whole (as opposed to fractional)

digits ≤ Column length

Number of whole (as opposed to fractional)

digits > Column length

N/A

01004

22003

SQL_DECIMAL
SQL_NUMERIC
SQL_TINYINT
SQL_SMALLINT
SQL_INTEGER
SQL_BIGINT

Data converted without truncation

Data converted with truncation of fractional
digits

Conversion of data would result in loss of
whole (as opposed to fractional) digits

N/A

01004

22003

SQL_REAL
SQL_FLOAT
SQL_DOUBLE

Data is within the range of the data type to
which the number is being converted

Data is outside the range of the data type to
which the number is being converted

N/A

22003

SQL_BIT Data is 0 or 1

Data is greater than 0, less than 2, and not
equal to 1

Data is less than 0 or greater than or equal to 2

N/A

01004

22003
D-38 SOLID Programmer Guide

Converting Data from C to SQL Data Types

rted.

The value pointed to by the pcbValue argument of SQLBindParameter and the value of the
cbValue argument of SQLPutData are ignored when data is converted from the numeric C
data types. The driver assumes that the size of rgbValue is the size of the numeric C data
type.

C to SQL: Bit
The bit ODBC C data type is:

SQL_C_BIT

The following table shows the ODBC SQL data types to which bit C data may be conve
For an explanation of the columns and terms in the table, see “Table Description—C to
SQL” on page D-35.

The value pointed to by the pcbValue argument of SQLBindParameter and the value of the
cbValue argument of SQLPutData are ignored when data is converted from the bit C data
type. The driver assumes that the size of rgbValue is the size of the bit C data type.

C to SQL: Binary
The binary ODBC C data type is:

SQL_C_BINARY

fSqlType Test SQLSTATE

SQL_CHAR
SQL_VARCHAR
SQL_LONGVARCHAR

None N/A

SQL_DECIMAL
SQL_NUMERIC
SQL_TINYINT
SQL_SMALLINT
SQL_INTEGER
SQL_BIGINT
SQL_REAL
SQL_FLOAT
SQL_DOUBLE

None N/A

SQL_BIT None N/A
 Data Types D-39

Converting Data from C to SQL Data Types

n-

-

The following table shows the ODBC SQL data types to which binary C data may be co
verted. For an explanation of the columns and terms in the table, see “Table Description—C
to SQL” on page D-35.

C to SQL: Date

The date ODBC C data type is:

SQL_C_DATE
The following table shows the ODBC SQL data types to which date C data may be con
verted.For an explanation of the columns and terms in the table, see see “Table Descrip-
tion—C to SQL” on page D-35.

fSqlType Test
SQL-
STATE

SQL_CHAR
SQL_VARCHAR
SQL_LONGVARCHAR

Length of data ≤ Column length

Length of data > Column length

N/A

01004

SQL_DECIMAL
SQL_NUMERIC
SQL_TINYINT
SQL_SMALLINT
SQL_INTEGER
SQL_BIGINT
SQL_REAL
SQL_FLOAT
SQL_DOUBLE

Length of data = SQL data length a

Length of data ≠ SQL data length a

N/A

22003

SQL_BIT Length of data = SQL data length a

Length of data ≠ SQL data length a

N/A

22003

SQL_BINARY
SQL_VARBINARY
SQL_LONGVARBINARY

Length of data ≤ Column length

Length of data > Column length

N/A

01004

SQL_DATE
SQL_TIME
SQL_TIMESTAMP

Length of data = SQL data length a

Length of data ≠ SQL data length a

N/A

22003

a The SQL data length is the number of bytes needed to store the data on the data source. (This
may be different than the column length, as defined earlier in this appendix.)

fSqlType Test SQLSTATE
D-40 SOLID Programmer Guide

Converting Data from C to SQL Data Types

 the

ta

-

For information about what values are valid in a SQL_C_DATE structure, see “Extended C
Data Types” earlier in this appendix.

When date C data is converted to character SQL data, the resulting character data is in
“yyyy-mm-dd” format.

The value pointed to by the pcbValue argument of SQLBindParameter and the value of the
cbValue argument of SQLPutData are ignored when data is converted from the date C da
type. The driver assumes that the size of rgbValue is the size of the date C data type.

C to SQL: Time
The time ODBC C data type is:

SQL_C_TIME

The following table shows the ODBC SQL data types to which time C data may be con
verted. For an explanation of the columns and terms in the table, see see “Table Descrip-
tion—C to SQL” on page D-35 .

SQL_CHAR
SQL_VARCHAR
SQL_LONGVARCHAR

Column length ≥ 10

Column length < 10

Data value is not a valid date

N/A

22003

22008

SQL_DATE Data value is a valid date

Data value is not a valid date

N/A

22008

SQL_TIMESTAMP Data value is a valid date a

Data value is not a valid date

N/A

22008

a The time portion of the timestamp is set to zero.

fSqlType Test SQLSTATE

SQL_CHAR
SQL_VARCHAR
SQL_LONGVARCHAR

Column length ≥ 8

Column length < 8

Data value is not a valid time

N/A

22003

22008

SQL_TIME Data value is a valid time

Data value is not a valid time

N/A

22008

SQL_TIMESTAMP Data value is a valid time a

Data value is not a valid time

N/A

22008
 Data Types D-41

Converting Data from C to SQL Data Types

 the

ta

e
For information about what values are valid in a SQL_C_TIME structure, see “Extended C
Data Types” earlier in this appendix.

When time C data is converted to character SQL data, the resulting character data is in
“hh:mm:ss” format.

The value pointed to by the pcbValue argument of SQLBindParameter and the value of the
cbValue argument of SQLPutData are ignored when data is converted from the time C da
type. The driver assumes that the size of rgbValue is the size of the time C data type.

C to SQL: Timestamp
The timestamp ODBC C data type is:

SQL_C_TIMESTAMP

The following table shows the ODBC SQL data types to which timestamp C data may b
converted. For an explanation of the columns and terms in the table, see “Table Descrip-
tion—C to SQL” on page D-35.

a The date portion of the timestamp is set to the current date and the fractional seconds portion
of the timestamp is set to zero.

fSqlType Test
SQL-
STATE

SQL_CHAR
SQL_VARCHAR
SQL_LONGVARCHAR

Column length ≥ Display size

19 ≤ Column length < Display size a

Column length < 19

Data value is not a valid date

N/A

01004

22003

22008

SQL_DATE Time fields are zero

Time fields are non-zero b

Data value does not contain a valid date

N/A

01004

22008

SQL_TIME Fractional seconds fields are zero c

Fractional seconds fields are non-zero c, d

Data value does not contain a valid time

N/A

01004

22008

SQL_TIMESTAMP Fractional seconds fields are not truncated

Fractional seconds fields are truncated d

Data value is not a valid timestamp

N/A

01004

22008
D-42 SOLID Programmer Guide

Converting Data from C to SQL Data Types

ta is in

 C
For information about what values are valid in a SQL_C_TIMESTAMP structure, see
“Extended C Data Types” earlier in this appendix.

When timestamp C data is converted to character SQL data, the resulting character da
the “yyyy-mm-dd hh:mm:ss[.f...]” format.

The value pointed to by the pcbValue argument of SQLBindParameter and the value of the
cbValue argument of SQLPutData are ignored when data is converted from the timestamp
data type. The driver assumes that the size of rgbValue is the size of the timestamp C data
type.

C to SQL Data Conversion Examples
The following examples illustrate how the driver converts C data to SQL data:

a The fractional seconds of the timestamp are truncated.

b The time fields of the timestamp structure are truncated.

c The date fields of the timestamp structure are ignored.

d The fractional seconds fields of the timestamp structure are truncated.

C DataType C Data
Value

SQL Data
Type

Column
length

SQL
Data
Value

SQL-
STAT
E

SQL_C_CHAR abcdef\0 a SQL_CHAR 6 abcdef N/A

SQL_C_CHAR abcdef\0 a SQL_CHAR 5 abcde 01004

SQL_C_CHAR 1234.56\0 a SQL_DECIMA
L

8 b 1234.56 N/A

SQL_C_CHAR 1234.56\0 a SQL_DECIMA
L

7 b 1234.5 01004

SQL_C_CHAR 1234.56\0 a SQL_DECIMA
L

4 ---- 22003

SQL_C_
FLOAT

1234.56 SQL_FLOAT not
applicable

1234.56 N/A

SQL_C_
FLOAT

1234.56 SQL_INTEGER not
applicable

1234 01004

SQL_C_
FLOAT

1234.56 SQL_TINYINT not
applicable

---- 22003
 Data Types D-43

Converting Data from C to SQL Data Types
SQL_C_DATE 1992,12,31
c

SQL_CHAR 10 1992-12-
31

N/A

SQL_C_DATE 1992,12,31
c

SQL_CHAR 9 ---- 22003

SQL_C_DATE 1992,12,31
c

SQL_
TIMESTAMP

not
applicable

1992-12-
31
00:00:00.0

N/A

SQL_C_
TIMESTAMP

1992,12,31
,
23,45,55,
120000000
d

SQL_CHAR 22 1992-12-
31
23:45:55.1
2

N/A

SQL_C_
TIMESTAMP

1992,12,31
,
23,45,55,
120000000
d

SQL_CHAR 21 1992-12-
31
23:45:55.1

01004

SQL_C_
TIMESTAMP

1992,12,31
,
23,45,55,
120000000
d

SQL_CHAR 18 ---- 22003

a “\0” represents a null-termination byte. The null-termination byte is required only if the
length of the data is SQL_NTS.

b In addition to bytes for numbers, one byte is required for a sign and another byte is required
for the decimal point.

c The numbers in this list are the numbers stored in the fields of the DATE_STRUCT structure.

d The numbers in this list are the numbers stored in the fields of the TIMESTAMP_STRUCT
structure.
D-44 SOLID Programmer Guide

E

s
992).

ould

tion
Comparison Between Embedded SQL and
ODBC

This appendix compares ODBC and embedded SQL.

ODBC to Embedded SQL
The following table compares core ODBC functions to embedded SQL statements. Thi
comparison is based on the X/Open and SQL Access Group SQL CAE specification (1

ODBC uses a parameter marker in place of a host variable, wherever a host variable w
occur in embedded SQL.

The SQL language is based on the X/Open and SQL Access Group SQL CAE specifica
(1992).

ODBC Function Statement Comments

SQLAllocEnv none Driver Manager and driver mem-
ory allocation.

SQLAllocConnect none Driver Manager and driver mem-
ory allocation.

SQLConnect CONNECT Association management.

SQLAllocStmt none Driver Manager and driver mem-
ory allocation.
 Comparison Between Embedded SQL and ODBC E-1

ODBC to Embedded SQL
SQLPrepare PREPARE The prepared SQL string can
contain any of the valid prepara-
ble functions as defined by the
X/Open specification, including
ALTER, CREATE, cursor-speci-
fication, searched DELETE,
dynamic SQL positioned
DELETE, DROP, GRANT,
INSERT, REVOKE, searched
UPDATE, or dynamic SQL posi-
tioned UPDATE.

SQLBindParameter SET DESCRIPTOR Dynamic SQL ALLOCATE
DESCRIPTOR and dynamic
SQL SET DESCRIPTOR.
ALLOCATE DESCRIPTOR
would normally be issued on the
first call to SQLBindParame-
ter for an hstmt. Alternatively,
ALLOCATE DESCRIPTOR can
be called during SQLAllocStmt,
although this call would be
unneeded by SQL statements
containing no embedded param-
eters. The descriptor name is
generated by the driver.

SQLSetCursorName none The specified cursor name is
used in the DECLARE CUR-
SOR statement generated by
SQLExecute or SQLExecDi-
rect.

SQLGetCursorName none Driver cursor name management.

SQLExecute EXECUTE or DECLARE
CURSOR and OPEN CUR-
SOR

Dynamic SQL EXECUTE. If the
SQL statement requires a cursor,
then a dynamic SQL DECLARE
CURSOR statement and a
dynamic SQL OPEN are issued
at this time.
E-2 SOLID Programmer Guide

ODBC to Embedded SQL
SQLExecDirect EXECUTE IMMEDIATE or
DECLARE CURSOR and
OPEN CURSOR

The ODBC function call pro-
vides for support for a cursor
specification and statements
allowed in an EXECUTE
IMMEDIATE dynamic SQL
statement. In the case of a cursor
specification, the call corre-
sponds to static SQL DECLARE
CURSOR and OPEN statements.

SQLNumResultCols GET DESCRIPTOR COUNT form of dynamic SQL
GET DESCRIPTOR.

SQLColAttributes GET DESCRIPTOR COUNT form of dynamic SQL
GET DESCRIPTOR or VALUE
form of dynamic SQL GET
DESCRIPTOR with field-name
in {NAME, TYPE, LENGTH,
PRECISION, SCALE, NUL-
LABLE}.

SQLDescribeCol GET DESCRIPTOR VALUE form of dynamic SQL
GET DESCRIPTOR with field-
name in {NAME, TYPE,
LENGTH, PRECISION,
SCALE, NULLABLE}.

SQLBindCol none This function establishes output
buffers that correspond in usage
to host variables for static SQL
FETCH, and to an SQL
DESCRIPTOR for dynamic SQL
FETCH cursor USING SQL
DESCRIPTOR descriptor.
 Comparison Between Embedded SQL and ODBC E-3

ODBC to Embedded SQL
SQLFetch FETCH Static or dynamic SQL FETCH.
If the call is a dynamic SQL
FETCH, then the VALUE form
of GET DESCRIPTOR is used,
with field-name in {DATA,
INDICATOR}. DATA and INDI-
CATOR values are placed in out-
put buffers specified in
SQLBindCol.

SQLRowCount GET DIAGNOSTICS Requested field ROW_COUNT.

SQLFreeStmt
(SQL_CLOSE option)

CLOSE Dynamic SQL CLOSE.

SQLFreeStmt
(SQL_DROP option)

none Driver Manager and driver mem-
ory deallocation.

SQLTransact COMMIT WORK or COM-
MIT ROLLBACK

None.

SQLDisconnect DISCONNECT Association management.

SQLFreeConnect none Driver Manager and driver mem-
ory deallocation.

SQLFreeEnv none Driver Manager and driver mem-
ory deallocation.

SQLCancel none None.

SQLError GET DIAGNOSTICS GET DIAGNOSTICS retrieves
information from the SQL diag-
nostics area that pertains to the
most recently executed SQL
statement. This information can
be retrieved following execution
and preceding the deallocation of
the statement.
E-4 SOLID Programmer Guide

Embedded SQL to ODBC

 and
table
92).
Embedded SQL to ODBC
The following tables list the relationship between the X/Open Embedded SQL language
corresponding ODBC functions. The section number shown in the first column of each
refers to the section of the X/Open and SQL Access Group SQL CAE specification (19

Declarative Statements
The following table lists declarative statements.

Section SQL Statement ODBC Function Comments

4.3.1 Static SQL DECLARE
CURSOR

none Issued implicitly by the
driver if a cursor specifi-
cation is passed to
SQLExecDirect.

4.3.2 Dynamic SQL
DECLARE CURSOR

none Cursor is generated auto-
matically by the driver.
To set a name for the cur-
sor, use SQLSetCursor-
Name. To retrieve a
cursor name, use
SQLGetCursorName.
 Comparison Between Embedded SQL and ODBC E-5

Embedded SQL to ODBC
Data Definition Statements
The following table lists data definition statements.

Data Manipulation Statements
The following table lists data manipulation statements.

Section SQL Statement ODBC Function Comments

5.1.2

5.1.3

5.1.4

5.1.5

5.1.6

5.1.7

5.1.8

5.1.9

ALTER TABLE
CREATE INDEX

CREATE TABLE

CREATE VIEW

DROP INDEX

DROP TABLE

DROP VIEW

GRANT

REVOKE

SQLPrepare,
SQLExecute,

or SQLExecDirect

None.

Section SQL Statement ODBC Function Comments

5.2.1 CLOSE SQLFreeStmt
(SQL_CLOSE option)

None.

5.2.2 Positioned DELETE SQLExecDirect(...,
“DELETE FROM
table-name WHERE
CURRENT OF cursor-
name”)

Driver-generated cursor-
name can be obtained by
calling SQLGetCursor-
Name.

5.2.3 Searched DELETE SQLExecDirect(...,
“DELETE FROM
table-name WHERE
search-condition”)

None.
E-6 SOLID Programmer Guide

Embedded SQL to ODBC
Dynamic SQL Statements
The following table lists dynamic SQL statements.

5.2.4 FETCH SQLFetch None.

5.2.5 INSERT SQLExecDirect
(...,“INSERT INTO
table-name ...”)

Can also be invoked by
SQLPrepare and
SQLExecute.

5.2.6 OPEN none Cursor is OPENed
implicitly by SQLExe-
cute or SQLExecDirect
when a SELECT state-
ment is specified.

5.2.7 SELECT ...INTO none Not supported.

5.2.8 Positioned UPDATE SQLExecDirect(...,
“UPDATE table-name
SET column-identifier
= expression ...WHERE
CURRENT OF cursor-
name”)

Driver-generated cursor-
name can be obtained by
calling SQLGetCursor-
Name.

5.2.9 Searched UPDATE SQLExecDirect(...,
“UPDATE table-name
SET column-identifier
= expression ...WHERE
search-condition”)

None.

Section SQL Statement ODBC Function Comments

5.3

(see 5.2.1)

Dynamic SQL CLOSE SQLFreeStmt
(SQL_CLOSE option)

None.

5.3(see5.2.2) Dynamic SQL Posi-
tioned DELETE

SQLExecDirect(...,
“DELETE FROM table-
name WHERE CUR-
RENT OF cursor-
name”)

Can also be invoked by
SQLPrepare and
SQLExecute.
 Comparison Between Embedded SQL and ODBC E-7

Embedded SQL to ODBC
5.3(see5.2.8) Dynamic SQL Posi-
tioned UPDATE

SQLExecDirect(...,
“UPDATE table-name
SET column-identifier =
expression ...WHERE
CURRENT OF cursor-
name”)

Can also be invoked by
SQLPrepare and
SQLExecute.

5.3.3 ALLOCATE DESCRIP-
TOR

None Descriptor information
is implicitly allocated
and attached to the hstmt
by the driver. Allocation
occurs at either the first
call to SQLBindPar-
ameter or at SQLExe-
cute or SQLExecDirect
time.

5.3.4 DEALLOCATE
DESCRIPTOR

SQLFreeStmt
(SQL_DROP option)

None.

5.3.5 DESCRIBE none None.

5.3.6 EXECUTE SQLExecute None.

5.3.7 EXECUTE IMMEDI-
ATE

SQLExecDirect None.

5.3.8 Dynamic SQL FETCH SQLFetch None.

5.3.9 GET DESCRIPTOR SQLNumResultCols
SQLDescribeCol

SQLColAttributes

COUNT FORM.
VALUE form with
field-name in {NAME,
TYPE, LENGTH,
PRECISION, SCALE,
NULLABLE}.

5.3.10 Dynamic SQL OPEN SQLExecute None.

5.3.11 PREPARE SQLPrepare None.
E-8 SOLID Programmer Guide

Embedded SQL to ODBC
Transaction Control Statements
The following table lists transaction control statements.

Association Management Statements
The following table lists association management statements.

5.3.12 SET DESCRIPTOR SQLBindParameter SQLBindParameter is
associated with only one
hstmt where a descrip-
tor is applied to any
number of statements
with USING SQL
DESCRIPTOR.

Section SQL Statement ODBC Function Comments

5.4.1 COMMIT WORK SQLTransact
(SQL_COMMIT option)

None.

5.4.2 ROLLBACK WORK SQLTransact
(SQL_ROLLBACK option)

None.

Section SQL Statement ODBC Function Comments

5.5.1 CONNECT SQLConnect None.

5.5.2 DISCONNECT SQLDisconnect ODBC does not support
DISCONNECT ALL.
 Comparison Between Embedded SQL and ODBC E-9

Embedded SQL to ODBC
5.5.3 SET CONNECTION None The SQL Access Group
(SAG) Call Level Inter-
face allows for multiple
simultaneous connec-
tions to be established,
but only one connection
to be active at one time.
SAG-compliant drivers
track which connection is
active, and automatically
switch to a different con-
nection if a different con-
nection handle is
specified. However, the
active connection must be
in a state that allows the
connection context to be
switched, in other words,
there must not be a trans-
action in progress on the
current connection.
Drivers that are not
SAG-compliant are not
required to support this
behavior. That is, drivers
that are not SAG-com-
pliant are not required to
return an error if the
driver and its associated
data source can simulta-
neously support multi-
ple active connections.
E-10 SOLID Programmer Guide

Embedded SQL to ODBC
Diagnostic Statement
The following table lists the GET DIAGNOSTIC statement.

Section SQL Statement ODBC Function Comments

5.6.1 GET DIAGNOSTICS SQLError
SQLRowCount

For SQLError , the follow-
ing fields from the diagnos-
tics area are available:
RETURNED_SQLSTATE,
MESSAGE_TEXT, and
MESSAGE_LENGTH. For
SQLRowCount, the
ROW_COUNT field is avail-
able.
 Comparison Between Embedded SQL and ODBC E-11

Embedded SQL to ODBC
E-12 SOLID Programmer Guide

F

yn-

gle

lt

r

arac-
Scalar Functions

ODBC specifies five types of scalar functions:

■ String functions

■ Numeric functions

■ Time and date functions

■ System functions

■ Data type conversion functions

The following sections list functions by function type. Descriptions include associated s
tax.

String Functions
The following table lists string manipulation functions.

Character string literals used as arguments to scalar functions must be bounded by sin
quotes.

Arguments denoted as string_exp can be the name of a column, a string literal, or the resu
of another scalar function, where the underlying data type can be represented as
SQL_CHAR, SQL_VARCHAR, or SQL_LONGVARCHAR.

Arguments denoted as start, length or count can be a numeric literal or the result of anothe
scalar function, where the underlying data type can be represented as SQL_TINYINT,
SQL_SMALLINT, or SQL_INTEGER.

The string functions listed here are 1-based, that is, the first character in the string is ch
ter 1.
 Scalar Functions F-1

String Functions
Function Description

ASCII(string_exp) Returns the ASCII code value of the left-
most character of string_exp as an inte-
ger.

CHAR(code) Returns the character that has the ASCII
code value specified by code. The value
of code should be between 0 and 255;
otherwise, the return value is data
source–dependent.

CONCAT(string_exp1, string_exp2) Returns a character string that is the
result of concatenating string_exp2 to
string_exp1. If the column represented
by string_exp1 or string_exp2 contained
a NULL value, SOLID Server returns
NULL.

INSERT(string_exp1, start, length, string_exp2) Returns a character string where length
characters have been deleted from
string_exp1 beginning at start and where
string_exp2 has been inserted into
string_exp, beginning at start.

LCASE(string_exp) Converts all upper case characters in
string_exp to lower case.

LEFT(string_exp, count) Returns the leftmost count of characters
of string_exp.

LENGTH(string_exp) Returns the number of characters in
string_exp, excluding trailing blanks and
the string termination character.
F-2 SOLID Programmer Guide

String Functions
LOCATE(string_exp1, string_exp2[, start]) Returns the starting position of the first
occurrence of string_exp1 within
string_exp2. The search for the first
occurrence of string_exp1 begins with
the first character position in string_exp2
unless the optional argument, start, is
specified. If start is specified, the search
begins with the character position indi-
cated by the value of start. The first char-
acter position in string_exp2 is indicated
by the value 1. If string_exp1 is not
found within string_exp2, the value 0 is
returned.

LTRIM(string_exp) Returns the characters of string_exp,
with leading blanks removed.

REPEAT(string_exp,count) Returns a character string composed of
string_exp repeated count times.

REPLACE(string_exp1, string_exp2, string_exp3) Replaces all occurrences of string_exp2
in string_exp1 with string_exp3.

RIGHT(string_exp, count) Returns the rightmost count of charac-
ters of string_exp.

RTRIM(string_exp) Returns the characters of string_exp with
trailing blanks removed.

SPACE(count) Returns a character string consisting of
count spaces.

SUBSTRING(string_exp, start, length) Returns a character string that is derived
from string_exp beginning at the charac-
ter position specified by start for length
characters.

UCASE(string_exp) Converts all lower case characters in
string_exp to upper case.
 Scalar Functions F-3

Numeric Functions

nc-

a-
s

lar
Numeric Functions
The following table describes numeric functions that are included in the ODBC scalar fu
tion set.

Arguments denoted as numeric_exp can be the name of a column, the result of another sc
lar function, or a numeric literal, where the underlying data type could be represented a
SQL_NUMERIC, SQL_DECIMAL, SQL_TINYINT, SQL_SMALLINT, SQL_INTEGER,
SQL_BIGINT, SQL_FLOAT, SQL_REAL, or SQL_DOUBLE.

Arguments denoted as float_exp can be the name of a column, the result of another scalar
function, or a numeric literal, where the underlying data type can be represented as
SQL_FLOAT.

Arguments denoted as integer_exp can be the name of a column, the result of another sca
function, or a numeric literal, where the underlying data type can be represented as
SQL_TINYINT, SQL_SMALLINT, SQL_INTEGER, or SQL_BIGINT.

Function Description

ABS(numeric_exp) Returns the absolute value of
numeric_exp.

ACOS(float_exp) Returns the arccosine of float_exp as an
angle, expressed in radians.

ASIN(float_exp) Returns the arcsine of float_exp as an
angle, expressed in radians.

ATAN(float_exp) Returns the arctangent of float_exp as an
angle, expressed in radians.

ATAN2(float_exp1, float_exp2) Returns the arctangent of the x and y
coordinates, specified by float_exp1 and
float_exp2, respectively, as an angle,
expressed in radians.

CEILING(numeric_exp) Returns the smallest integer greater than
or equal to numeric_exp.

COS(float_exp) Returns the cosine of float_exp, where
float_exp is an angle expressed in radi-
ans.

COT(float_exp) Returns the cotangent of float_exp,
where float_exp is an angle expressed in
radians.
F-4 SOLID Programmer Guide

Numeric Functions
DEGREES(numeric_exp) Returns the number of degrees converted
from numeric_exp radians.

EXP(float_exp) Returns the exponential value of
float_exp.

FLOOR(numeric_exp) Returns largest integer less than or equal
to numeric_exp.

LOG(float_exp) Returns the natural logarithm of
float_exp.

LOG10(float_exp) Returns the base 10 logarithm of
float_exp.

MOD(integer_exp1, integer_exp2) Returns the remainder (modulus) of
integer_exp1 divided by integer_exp2.

PI() Returns the constant value of pi as a
floating point value.

POWER(numeric_exp, integer_exp) Returns the value of numeric_exp to the
power of integer_exp.

RADIANS(numeric_exp) Returns the number of radians converted
from numeric_exp degrees.

ROUND(numeric_exp, integer_exp) Returns numeric_exp rounded to
integer_exp places right of the decimal
point. If integer_exp is negative,
numeric_exp is rounded to |integer_exp|
places to the left of the decimal point.

SIGN(numeric_exp) Returns an indicator or the sign of
numeric_exp. If numeric_exp is less than
zero, –1 is returned. If numeric_exp
equals zero, 0 is returned. If numeric_exp
is greater than zero, 1 is returned.

SIN(float_exp) Returns the sine of float_exp, where
float_exp is an angle expressed in radi-
ans.

SQRT(float_exp) Returns the square root of float_exp.
 Scalar Functions F-5

Time and Date Functions

nc-

ld be

ented

nted
Time and Date Functions
The following table lists time and date functions that are included in the ODBC scalar fu
tion set.

Arguments denoted as timestamp_exp can be the name of a column, the result of another
scalar function, or a time, date, or timestamp literal, where the underlying data type cou
represented as SQL_CHAR, SQL_VARCHAR, SQL_TIME, SQL_DATE, or
SQL_TIMESTAMP.

Arguments denoted as date_exp can be the name of a column, the result of another scalar
function, or a date or timestamp literal, where the underlying data type could be repres
as SQL_CHAR, SQL_VARCHAR, SQL_DATE, or SQL_TIMESTAMP.

Arguments denoted as time_exp can be the name of a column, the result of another scalar
function, or a time or timestamp literal, where the underlying data type could be represe
as SQL_CHAR, SQL_VARCHAR, SQL_TIME, or SQL_TIMESTAMP.

Values returned are represented as ODBC data types.

TAN(float_exp) Returns the tangent of float_exp, where
float_exp is an angle expressed in radi-
ans.

TRUNCATE(numeric_exp, integer_exp) Returns numeric_exp truncated to
integer_exp places right of the decimal
point. If integer_exp is negative,
numeric_exp is truncated to |integer_exp|
places to the left of the decimal point.

Function Description

CURDATE() Returns the current date as a date value.

CURTIME() Returns the current local time as a time
value.

DAYNAME(date_exp) Returns a character string containing the
data source–specific name of the day (for
example, Sunday, through Saturday or
Sun. through Sat. for a data source that
uses English, or Sonntag through Sam-
stag for a data source that uses German)
for the day portion of date_exp.
F-6 SOLID Programmer Guide

Time and Date Functions
DAYOFMONTH(date_exp) Returns the day of the month in date_exp
as an integer value in the range of 1–31.

DAYOFWEEK(date_exp) Returns the day to the week in date_exp
as an integer value in the range of 1–7,
where 1 represents Sunday.

DAYOFYEAR(date_exp) Returns the day of the year in date_exp as
an integer value in the range of 1–366.

HOUR(time_exp) Returns the hour in time_exp as an inte-
ger value in the range of 0 –23.

MINUTE(time_exp) Returns the minute in time_exp as an
integer value in the range of 0 –59.

MONTH(date_exp) Returns the month in date_exp as an inte-
ger value in the range of 1–12.

MONTHNAME(date_exp) Returns a character string containing the
data source–specific name of the month
(for example, January throughDecember
or Jan. through Dec. for a data source
that uses English, or Januar through
Dezember for a data source that uses
German) for the month portion of
date_exp.

NOW() Returns current date and time as a times-
tamp value.

QUARTER(date_exp) Returns the quarter in date_exp as an
integer value in the range of 1– 4, where 1
represents January 1 through March 31.

SECOND(time_exp) Returns the second in time_exp as an
integer value in the range of 0 –59.
 Scalar Functions F-7

Time and Date Functions
TIMESTAMPADD(interval, integer_exp,
timestamp_exp)

Returns the timestamp calculated by add-
ing integer_exp intervals of type interval
to timestamp_exp. Valid values of inter-
val are the following keywords:
SQL_TSI_FRAC_SECOND

SQL_TSI_SECOND

SQL_TSI_MINUTE

SQL_TSI_HOUR

SQL_TSI_DAY

SQL_TSI_WEEK

SQL_TSI_MONTH

SQL_TSI_QUARTER

SQL_TSI_YEAR
F-8 SOLID Programmer Guide

Time and Date Functions
TIMESTAMPADD(interval, integer_exp,
timestamp_exp) (continued)

where fractional seconds are expressed
in billionths of a second. For example,
the following SQL statement returns the
name of each employee and their one-
year anniversary dates:

SELECT NAME,

{fn
TIMESTAMPADD(SQL_TSI_YEAR,

{fn CURDATE()},
 1,HIRE_DATE)} FROM

EMPLOYEES

If timestamp_exp is a time value and
interval specifies days, weeks, months,
quarters, or years, the date portion of
timestamp_exp is set to the current date
before calculating the resulting times-
tamp.

If timestamp_exp is a date value and
interval specifies fractional seconds,
seconds, minutes, or hours, the time por-
tion of timestamp_exp is set to 0 before
calculating the resulting timestamp.

An application determines which inter-
vals a data source supports by calling
SQLGetInfo with the
SQL_TIMEDATE_ADD_INTERVALS
option.
 Scalar Functions F-9

Time and Date Functions
TIMESTAMPDIFF(interval, timestamp_exp1,
timestamp_exp2)

Returns the integer number of intervals
of type interval by which
timestamp_exp2 is greater than
timestamp_exp1. Valid values of interval
are the following keywords:

SQL_TSI_FRAC_SECOND

SQL_TSI_SECOND

SQL_TSI_MINUTE

SQL_TSI_HOUR

SQL_TSI_DAY

SQL_TSI_WEEK

SQL_TSI_MONTH

SQL_TSI_QUARTER

SQL_TSI_YEAR

where fractional seconds are expressed
in billionths of a second. For example,
the following SQL statement returns the
name of each employee and the number
of years they have been employed.

SELECT NAME,
{fn

TIMESTAMPDIFF(SQL_TSI_YEAR,
{fn CURDATE()},

HIRE_DATE)}

FROM EMPLOYEES
F-10 SOLID Programmer Guide

System Functions

 set.

-
IC,

 be

System Functions
The following table lists system functions that are included in the ODBC scalar function

Arguments denoted as exp can be the name of a column, the result of another scalar func
tion, or a literal, where the underlying data type could be represented as SQL_NUMER
SQL_DECIMAL, SQL_TINYINT, SQL_SMALLINT, SQL_INTEGER, SQL_BIGINT,
SQL_FLOAT, SQL_REAL, SQL_DOUBLE, SQL_DATE, SQL_TIME, or
SQL_TIMESTAMP.

Arguments denoted as value can be a literal constant, where the underlying data type can
represented as SQL_NUMERIC, SQL_DECIMAL, SQL_TINYINT, SQL_SMALLINT,
SQL_INTEGER, SQL_BIGINT, SQL_FLOAT, SQL_REAL, SQL_DOUBLE, SQL_DATE,
SQL_TIME, or SQL_TIMESTAMP.

TIMESTAMPDIFF(interval, timestamp_exp1,
timestamp_exp2) (continued)

If either timestamp expression is a time
value and interval specifies days, weeks,
months, quarters, or years, the date por-
tion of that timestamp is set to the cur-
rent date before calculating the
difference between the timestamps.

If either timestamp expression is a date
value and interval specifies fractional
seconds, seconds, minutes, or hours, the
time portion of of that timestamp is set
to 0 before calculating the difference
between the timestamps.

An application determines which inter-
vals a data source supports by calling
SQLGetInfo with the
SQL_TIMEDATE_DIFF_INTERVALS
option.

WEEK(date_exp) Returns the week of the year in date_exp
as an integer value in the range of 1–53.

YEAR(date_exp) Returns the year in date_exp as an integer
value. The range is data source–depen-
dent.
 Scalar Functions F-11

Explicit Data Type Conversion

-
eter-

 syn-
Values returned are represented as ODBC data types.

Explicit Data Type Conversion
Explicit data type conversion is specified in terms of ODBC SQL data type definitions.

The ODBC syntax for the explicit data type conversion function does not restrict conver
sions. The validity of specific conversions of one data type to another data type will be d
mined by each driver-specific implementation. The driver will, as it translates the ODBC
syntax into the native syntax, reject those conversions that, although legal in the ODBC
tax, are not supported by the data source. The ODBC function SQLGetInfo provides a way
to inquire about conversions supported by the data source.

The format of the CONVERT function is:

CONVERT(value_exp, data_type)

The function returns the value specified by value_exp converted to the specified data_type,
where data_type is one of the following keywords:

Function Description

IFNULL(exp,value) If exp is null, value is returned. If exp is
not null, exp is returned. The possible
data type(s) of value must be compatible
with the data type of exp.

USER() Returns the user’s authorization name. (
The user’s authorization name is also
available via SQLGetInfo by specifying
the information type:
SQL_USER_NAME or by using
pseudocolumn ‘USER’ SQL: SELECT
USER...)

SQL_BIGINT SQL_BINARY

SQL_BIT SQL_CHAR

SQL_DATE SQL_DECIMAL

SQL_DOUBLE SQL_FLOAT

SQL_INTEGER SQL_LONGVARBINARY
F-12 SOLID Programmer Guide

Explicit Data Type Conversion

ica-
ng

a

'

'

The ODBC syntax for the explicit data type conversion function does not support specif
tion of conversion format. If specification of explicit formats is supported by the underlyi
data source, a driver must specify a default value or implement format specification.

The argument value_exp can be a column name, the result of another scalar function, or
numeric or string literal. For example:

{ fn CONVERT({ fn CURDATE() }, SQL_CHAR) }

converts the output of the CURDATE scalar function to a character string..

The following two examples illustrate the use of the CONVERT function. These examples
assume the existence of a table called EMPLOYEES, with an EMPNO column of type
SQL_SMALLINT and an EMPNAME column of type SQL_CHAR.

If an application specifies the following:

SELECT EMPNO FROM EMPLOYEES WHERE

--(*vendor(Microsoft),product(ODBC) fn CONVERT(EMPNO,SQL_CHAR)*)-- LIKE '1%

or its equivalent in shorthand form:

SELECT EMPNO FROM EMPLOYEES WHERE {fn CONVERT(EMPNO,SQL_CHAR)}
LIKE '1%'

SOLID ODBC driver translates the request to:

SELECT EMPNO FROM EMPLOYEES WHERE CONVERT_CHAR(EMPNO) LIKE '1%

If an application specifies the following:

SELECT --(*vendor(Microsoft),product(ODBC) fn ABS(EMPNO)*)--, --(*ven-
dor(Microsoft),product(ODBC) fn CONVERT(EMPNAME,SQL_SMALLINT)*)-- FROM
EMPLOYEES WHERE EMPNO <> 0

or its equivalent in shorthand form:

SELECT {fn ABS(EMPNO)}, {fn CONVERT(EMPNAME,SQL_SMALLINT)} FROM
EMPLOYEES WHERE EMPNO <> 0

SQL_LONGVARCHAR SQL_NUMERIC

SQL_REAL SQL_SMALLINT

SQL_TIME SQL_TIMESTAMP

SQL_TINYINT SQL_VARBINARY

SQL_VARCHAR
 Scalar Functions F-13

Explicit Data Type Conversion
SOLID ODBC driver translates the request to:

SELECT ABS(EMPNO), CONVERT_SMALLINT(EMPNAME) FROM EMPLOYEES
WHERE EMPNO <> 0
F-14 SOLID Programmer Guide

G

Supported ODBC Functions in SOLID
Embedded Engine

Task Function Name

Availability when using
ODBC (WinNT, Win98/95
Available)

ODBC Con-
formance
Level

Connecting to a Data Source SQLAllocEnv Available Core

SQLAllocConnect Available Core

SQLConnect Available Core

SQLDriverConnect Available Level1

SQLBrowseConnect Not implemented Level2

Obtaining Information
about a Driver and Data
Source

SQLDataSources Available
(Driver Manager*)

Level2

SQLDrivers Available
(Driver Manager*)

Level2

SQLGetInfo Available Level1

SQLGetFunctions Available Level1

SQLGetTypeInfo Available Level1

Setting and Retrieving
Driver Options

SQLSetConnectOption Available Level1

SQLSetStmtOption Available Level1

SQLGetStmtOption Available Level1

Preparing SQL Requests SQLAllocStmt Available Core

SQLPrepare Available Core
 Supported ODBC Functions in SOLID Embedded Engine G-1

SQLBindParameter Available Level1

SQLParamOptions Not implemented Level2

SQLGetCursorName Available Core

SQLSetCursorName Available Core

SQLSetScrollOptions Available (Cursor Library**) Level2

Submitting Requests SQLExecute Available Core

SQLExecDirect Available Core

SQLNativeSQL Not implemented Level2

SQLDescribeParam Available Level2

SQLNumParams Available Level2

SQLParamData Available Level1

SQLPutData Available Level1

Retrieving Results and
Information about
Results

SQLRowCount Available Core

SQLNumResultCols Available Core

SQLDescribeCol Available Core

SQLColAttributes Available Core

SQLBindCol Available Core

SQLFetch Available Core

SQLExtendedFetch Available (Cursor
Library**)

Level2

SQLGetData Available Available Level1

SQLSetPos Available (Cursor
Library**)

Level 2

SQLMoreResults Not implemented Level 2

SQLError Available Core

Obtaining Information about
the Data Source’s System
Tables

SQLColumnPrivileges Not implemented Level2

Task Function Name

Availability when using
ODBC (WinNT, Win98/95
Available)

ODBC Con-
formance
Level
G-2 SOLID Programmer Guide

* Support for this function is implemented in the ODBC Driver Manager.
** Support for this function is implemented in the ODBC Cursor Library.

SQLColumns Available Level1

SQLForeignKeys Not implemented Level2

SQLPrimaryKeys Available Level2

SQLProcedureColumns Not implemented Level2

SQLProcedures Not implemented Level2

SQLSpecialColumns Available Level1

SQLStatistics Available Level1

SQLTablePrivileges Not implemented Level2

SQLTables Available Level1

Terminating a Statement SQLFreeStmt Available Core

SQLCancel Available Core

SQLTransact Available Core

Terminating a Connec-
tion

SQLDisconnect Available Core

SQLFreeConnect Available Core

SQLFreeEnv Available Core

Task Function Name

Availability when using
ODBC (WinNT, Win98/95
Available)

ODBC Con-
formance
Level
 Supported ODBC Functions in SOLID Embedded Engine G-3

G-4 SOLID Programmer Guide

	Programmer Guide
	Welcome
	1 Introduction to SOLID APIs
	SOLID SQL API
	SOLID SQL API

	SOLID Light Client
	SOLID JDBC Driver

	2 Using SOLID SQL API and ODBC API
	Guidelines for calling Functions
	General Information
	Determining Conformance Levels
	Driver Conformance
	API Conformance Levels
	SQL Conformance Levels

	Using the Driver Manager
	Calling ODBC Functions
	Buffers
	Input Buffers
	Output Buffers

	Environment, Connection, and Statement Handles

	Basic Application Steps
	Connecting to a Data Source
	About Data Sources
	Initializing the API Environment
	Allocating a Connection Handle
	Connecting to a Data Source

	ODBC Extensions for Connections
	Connecting to a Data Source With SQLDriverConnect

	Translating Data
	Additional Extension Functions

	Executing SQL Statements
	Executing an SQL Statement
	Prepared Execution
	Direct Execution

	Setting Parameter Values
	Performing Transactions
	ODBC Extensions for SQL Statements
	Retrieving Information About the Data Source’s Catalog
	Sending Parameter Data at Execution Time
	Executing Functions Asynchronously

	Using ODBC Extensions to SQL
	Additional Extension Functions

	Retrieving Results
	Assigning Storage for Results (Binding)
	Determining the Characteristics of a Result Set
	Fetching Result Data
	Using Cursors
	ODBC Extensions for Results
	Retrieving Data from Unbound Columns
	Assigning Storage for Rowsets (Binding)
	Column-Wise Binding
	Row-Wise Binding

	Retrieving Rowset Data
	Using Block and Scrollable Cursors
	Specifying the Cursor Type
	Specifying Cursor Concurrency

	Using Bookmarks
	Modifying Result Set Data
	Executing Positioned Update and Delete Statements
	Modifying Data with SQLSetPos

	Function Return Codes
	Retrieving Error Messages
	ODBC Error Messages
	Error Text Format
	Sample Error Messages
	Single-Tier Driver
	Multiple-Tier Driver
	Gateways
	Driver Manager

	Processing Error Messages

	Terminating Transactions and Connections
	Terminating Statement Processing
	Terminating Transactions
	Terminating Connections

	Constructing an Application
	Sample Application Code
	Interactive Ad Hoc Query Example
	Testing and Debugging an Application

	Installing and Configuring ODBC Software

	3 Stored Procedures, Events, and Sequences
	Stored Procedures
	Basic procedure structure
	Naming procedures
	Parameter section
	Declare section
	Procedure body
	Assignments
	Expressions
	Comparison Operators
	Logical Operators
	IS NULL Operator

	Control structures
	IF Statement
	IF-THEN
	IF-THEN-ELSE
	IF-THEN-ELSEIF
	WHILE-LOOP
	Leaving Loops
	Handling Nulls
	NOT Operator
	Zero-Length Strings
	Example
	Exiting a procedure
	Returning data

	Using SQL in a stored procedure
	Error Handling
	SQLSUCCESS
	SQLERRCODE
	SQLERRSTR
	SQLROWCOUNT
	SQLERROR OF cursorname

	Parameter markers in cursors

	Calling other procedures
	Positioned updates and deletes
	Transactions
	Default cursor management
	Notes on SQL

	Using sequences
	Using events
	Procedure privileges

	4 Using UNICODE in SOLID Embedded Engine
	What is Unicode?
	What Characters Does the Unicode Standard Include?
	Encoding Forms
	Unicode and ISO/IEC 10646

	Implementing Unicode in SOLID Embedded Engine
	Setting Up SOLID Embedded Engine for Unicode Data
	Creating Columns for Storing Unicode Data
	Loading Unicode Data
	Using Unicode in Database Entity Names
	Unicode User Names and Passwords
	Converting Old Databases
	SOLID Data Dictionary, SOLID Export, and SOLID Speedloader
	SOLID SQL Editor and Remote Control
	Client Libraries
	Old Client Versions
	Unicode Variables and Binding
	String Functions
	Translations

	Unicode and JDBC

	5 Function Reference
	Function Descriptions
	Arguments

	SOLID SQL API Include Files
	ODBC Include Files
	Diagnostics
	Tables and Views
	Catalog Functions
	Search Pattern Arguments
	SQLAllocConnect (ODBC 1.0, Core)
	SQLAllocEnv (ODBC 1.0, Core)
	SQLAllocStmt (ODBC 1.0, Core)
	SQLBindCol (ODBC 1.0, Core)
	SQLBindParameter (ODBC 2.0, Level 1)
	SQLCancel (ODBC 1.0, Core)
	SQLColAttributes (ODBC 1.0, Core)
	SQLColumns (ODBC 1.0, Level 1)
	SQLConnect (ODBC 1.0, Core)
	SQLDataSources (ODBC 1.0, Level 2)
	SQLDescribeCol (ODBC 1.0, Core)
	SQLDescribeParam (ODBC 1.0, Level 2)
	SQLDisconnect (ODBC 1.0, Core)
	SQLDriverConnect (ODBC 1.0, Level 1)
	SQLDrivers (ODBC 2.0, Level 2)
	SQLError (ODBC 1.0, Core)
	SQLExecDirect (ODBC 1.0, Core)
	SQLExecute (ODBC 1.0, Core)
	SQLExtendedFetch (ODBC 1.0, Level 2)
	SQLFetch (ODBC 1.0, Core)
	SQLFetchPrev (SOLID Extension)
	SQLFreeConnect (ODBC 1.0, Core)
	SQLFreeEnv (ODBC 1.0, Core)
	SQLFreeStmt (ODBC 1.0, Core)
	SQLGetConnectOption (ODBC 1.0, Level 1)
	SQLGetCursorName (ODBC 1.0, Core)
	SQLGetData (ODBC 1.0, Level 1)
	SQLGetFunctions (ODBC 1.0, Level 1)
	SQLGetInfo (ODBC 1.0, Level 1)
	SQLGetStmtOption (ODBC 1.0, Level 1)
	SQLGetTypeInfo (ODBC 1.0, Level 1)
	SQLNumParams (ODBC 1.0, Level 2)
	SQLNumResultCols (ODBC 1.0, Core)
	SQLParamData (ODBC 1.0, Level 1)
	SQLPrepare (ODBC 1.0, Core)
	SQLPrimaryKeys (ODBC 1.0, Level 2)
	SQLPutData (ODBC 1.0, Level 1)
	SQLRowCount (ODBC 1.0, Core)
	SQLSetConnectOption (ODBC 1.0, Level 1)
	SQLSetCursorName (ODBC 1.0, Core)
	SQLSetParam (ODBC 1.0, Deprecated)
	SQLSetPos (ODBC 1.0, Level 2)
	SQLSetScrollOptions (ODBC 1.0, Level 2)
	SQLSetStmtOption (ODBC 1.0, Level 1)
	SQLSpecialColumns (ODBC 1.0, Level 1)
	SQLStatistics (ODBC 1.0, Level 1)
	SQLTables (ODBC 1.0, Level 1)
	SQLTransact (ODBC 1.0, Core)

	6 Using SOLID Light Client
	What is SOLID Light Client?
	Getting started with SOLID Light Client
	Setting up the Development Environment and Building a Sample Program
	Insert the library file into your project
	Include header files

	Verifying the Development Environment Setup
	Connecting to a Database using the Sample Application

	Running SQL Statements on SOLID Light Client
	Executing Statements with SOLID Light Client
	Statement with parameters
	Reading Result Sets
	Transactions and Autocommit Mode
	Handling Database Errors

	Special Notes about SOLID Embedded Engine and SOLID Light Client
	Network Traffic in Fetching Data
	Notes for Programmers Familiar with ODBC

	SOLID Light Client Functions
	Non-ODBC SOLID Light Client Functions
	SQLGetCol
	SQLSetParamValue

	SOLID Light Client Samples
	SOLID Light Client Type Conversion Matrix

	7 Using the SOLID JDBC Driver
	What is SOLID JDBC Driver?
	Getting started with SOLID JDBC Driver
	Registering SOLID JDBC Driver
	Connecting to the Database
	Running SQL Statements With JDBC
	Executing a Simple Statement
	Statement with Parameters
	Reading result sets
	Transactions and Autocommit Mode
	Handling Database Errors

	Using DatabaseMetadata
	Special Notes About SOLID and JDBC
	Executing stored procedures
	Class CallableStatement

	JDBC Driver Classes and Methods
	SolidCallableStatement
	SolidConnection
	SolidConnection
	SolidDatabaseMetaData

	SolidDriver
	SolidResultSet
	SolidResultSetMetaData
	SolidStatement
	Code Examples
	SOLID JDBC Driver Type Conversion Matrix

	A Error Codes
	B ODBC State Transition Tables
	Environment Transitions
	Connection Transitions
	Statement Transitions

	C SQL Grammar
	Parameter Data Types
	Parameter Markers

	SQL Statements
	Elements Used in SQL Statements

	List of Reserved Keywords

	D Data Types
	SQL Data Types
	C Data Types
	ODBC 1.0 C Data Types
	Default C Data Types
	Transferring Data in its Binary Form
	Precision, Scale, Length, and Display Size
	Converting Data from SQL to C Data Types
	Converting Data from C to SQL Data Types

	E Comparison Between Embedded SQL and ODBC
	ODBC to Embedded SQL
	Embedded SQL to ODBC

	F Scalar Functions
	String Functions
	Numeric Functions
	Time and Date Functions
	System Functions
	Explicit Data Type Conversion

	G Supported ODBC Functions in SOLID Embedded Engine

