SOLID Embedded Engine

Administrator Guide

Version 3.0

Copyright © 1992-1999 Solid Information Technology Ltd, Helsinki, Finland.

All rights reserved. No portion of this product may be used in any way except as expressly authorized in writing by
Solid Information Technology Ltd.

Solid logo with the text "SOLID" is a registered trademark of Solid Information Technology Ltd.

SOLID SynchroNét, SOLID Embedded Engiri#, SOLID Intelligent Transactiof", SOLID Bonsai Treé",
SOLID SQL Editof™, and SOLIDRemote Control™ are trademarks of Solid Information Technology Ltd.

SOLID Intelligent Transactiorpatent pending Solid Information Technology Ltd.

This product contains the skeleton output parser for bison ("Bison"). Copyright (c) 1984, 1989, 1990 Bob Corbett
and Richard Stallman.

For a period of three (3) years from the date of this license, Solid Information Technology, Ltd. will provide you, the
licensee, with a copy of the Bison source code upon receipt of your written request and the payment of Solid's rea-
sonable costs for providing such copy.

Document number SSAG-3.0-0399
Date: March 26, 1999

Contents

VAV [e10] 1 4 L XTSRS OUROR iX

1 Introducing SOLID Embedded Engine

About SOLID Embedded ENQINE.........coiiii ittt e e e e e e 1-1.
SOLID Embedded ENgiNECOMPONENTS....ciiiiiiiiiiciiiieieeeie e s sesietieee e e ee e s e e ssntanereeae e s e s snnsanneeeeaeeeeannns 1-3
SOLID SYNCNIONEL ...ttt ettt e e e e e e et e ettt e e e e e e e e e s eannbbbbeeeeeaaaaeaeeaannnes 1-6....

2 Basic Administration Tasks

Installing SOLID Embedded ENGINE.........cooiiiiiiiiiiiii ettt a e e e e 2-1.
Starting SOLID EMbedded ENQINE.........uuiiiiiiei ittt e e e e e e e e e e e e aennes 2-1.
Creating @ NEW DatabaSe........cioii i e e s e e e e e e e s s s s s sran e e eeeaaeeeanaanns 2:2...
Connecting to SOLID EMbedded ENQINE..........ocviiiiiiiiiie et 2-3
Viewing the SOLID Embedded ENgiN@MeSSage LOQ......ccuaauiiiiiiiiiiiiiiiiaaa et eeee e e e 2:4
Shutting Down SOLID Embedded ENQINe........cccviiiiiiiieeee ettt e e e ar e e e e e s 2-4

3 Database Maintenance

MAKING BACKUPS ...vvvttieeiieeee et ettt s et e e e e e et e e e e ee e e s s sna st e e eeeeeeessesanssnbneeeeeeeaeeessnnses s mmmmr s 3-1
RESTOMNNG BACKUPSeeieiiiie ittt s et e e s e e e e eab e e e s e r e e e e e maeee 3-3...
Recovering from Abnormal SRULAOWN............cooiiiiiiie e 3-4.
QL= U 15X 1o 0o 1 10T T 11 T PSP 3:4....
Creating ChECKPOINTS.ttt e st e e e e nn b e e e e e e e e e ennees 3-4...
CloSiNg the DAtADASE.euiieei e 3-5....
Changing Database LOCALION............cciueiiiieiiie e e e es st e e e e e e e e s rr e e e e e e s e e sne e eeeeaaeeenesanns 3-5..
Running Several Servers 0N ONe COMPULEL...........iuriiiriiiieeeeeitieeee s eessirrreeessrrreeeesaieeeees e 3:6
Entering TImed COMMENASccoiiiiieeiiiiee ettt e st e e s r e e e s sbrreee e e 3:6...

iii

—.

Using SOLID Data Management Tools

CoMMAN LINE ATNGUIMENTS.eiieiiiiiieeeee ettt e e e e e e ettt e e e ea e e e e s e e s s abbb b beeeeaaeaeeaaannnrebeeeaaeas 4:1...
Y@]I S o =T =T | I = Uo = SRS 4:2....
S 1 15 2 Lo 4-11
SOLID Data DICHONAIYuutiiieiiiiaiaeeiiiiiiieieeee e e e e e e e eiibeieeeeeaaeeeeessssrsssseeeeeeaesssessnnnssssseeeeeess L2
SOLID Remote Contro(TeIELYPE).......cicvreriiiiiee e ceiiee e e e s sveeere e e e s e ssnnnnneee e e e e e ennnnnnnneeeee e A0l 3
SOLID SQL EQItOr (TEIELYPE)....eeeeiiiieiieiitiete ettt ettt s e e e e e 4-16
Tools Sample: Reloading & Database...........ccveiiiiiiiiiieeiiieee e 4-18

Administration with SQL Statements

ADOUL SOLID SQL SYNTBX. . tttttteiiiieeteeiiteet e e sttt e ettt e st e e st e et e s asb et e e s sabn e e e s s anneeeeesnnreeeens 5:1...
AdmInistering the Database..........uuviiiiieii i 5:1...
Managing User Privileges and ROIES...........uuiiiiiiiiiie ittt 5-2.
MaNAGING TADIES. ...t e et e e s b e e e s s bbbt e e e anbbeeee e s aabe e e 5-5.
1Y F= T F= o o T 1 0 1= (=SS 5-7...
PIIMANY KBYS ... ettt et e et e e e ettt e e e e e et e e e e st b et e e e e ek b et e e e e s be e e e e eas mmmmmmmnene s 5-8
[0 (=T To I () TP TR 5-8

Network Connections

Communication between Clent and SEIVEE.........coiii e 6-1
Network Names for SOLID Embedded ENQINEG........ccoeeiiiiiiiiiiiiieiccee et 6-1
NEtWOrk NamME fOr CENTS...... ...t r e e e e e s s bbb e e e e e e e e s e bnbreeeaeas 6-3...
COoMMUNICALION PrOtOCOIS......ciiiiiiiiii ittt e e e e e e e e s e et e e e e e e e e e e ennaaed G-4...
Logical Data SOUICE NAMES......cc.uuuiiiiiiieeeeeeiiesieiie et ereee e e s sss st rraeeaeessessnsraaaereeeaeeesessannrenneees 6-11.
Configuration

Configuration File and Default SEttNGS........uuuiiiiiieiiiiricr e e e e e e 7:1.
MOSt IMPOItANT PATAMETEIS ... e aa e et e eeeeaeeaaeeeeeeeees 7-1..
MaNAGING PAIBIMELEIS.eiiiiiiiiiie ittt ettt r et e st e e s et e e sabb et e e s anre e e e s snneeees A=5....

Performance Tuning

Tuning SQL Statements and APPIICALIONS...........ocviiiiiiiiii e 8-
TUNING MEMOTY AlIOCALION ...eeciii e e e e s e e e e e e e e e e s s e s sranb e e ereeaeeeeanannnnnes 8:3...

Solid Administrator Guide

L1 1211 T 8-4
Y011 11T PSP UURTR 8-5
111 Vo @ = Tod 1 o L0111 SR 8:5....

9 Diagnostics and Troubleshooting

(O 01T AV a o T =Ty (o] 1 42T 1T =R 9-2...
Tracing Communication between Client and SErVer.............oovcciiiiiiiiiie e 9-8
(o] o] (=T o T =T oo £ 1] oo [OO P PP OPPRPPP 9:12..
(0] o11=T 0 g @2 1 (=Yoo =S PPRR 9-12.

A Error Codes

(0 GO 11 To o] =S A-l
SOLID SQL EITOIS ..iiiiiiiiie ettt e e ettt e e e e e e et e e e e e e ee et e e e e e e st e aeeesestaneeeeeessstanaeeaeees A:3....
SOLID Databas@ EFTOIS.....uuuuiiiiieieii i e e e e ee ettt s s e s e s e e e s e e e aaaeaaaeaeaaaaneaaeees A-12.
Y@]I 1§V = (o] =SS A-17..
Y@]I = oL =t o) =S PEEE A-20..
SOLID Embedded ENGINEEITOIScccoiiiiieeeiiiiiee e ittt e ettt e st e e st e e e s srbn e e e s anbeeeeesnnneeeeeaa A:-30
SOLID COMMUNICALION EFTOTS ...ceviiiiiiiiieee e e e s is s st e e e e e e e s ssestanteae e e eeae e e s esssnnranananeaeeeeeesennnns A:32
SOLID CommuNIiCatioN WaAIMINGScciiiiiueriiiieeeeee e e e eessiteeeeeeeeesessssssnssbeeeeeeeeeeessananssssaneeeeeeeeees A-35

S @] I 1B o Tor = [V I =t g (o] £ SR A-36.
S O]I I 2S04 (] g =1 (] £ A-4Q.

B Configuration Parameters

(1= =T = | IS T=T) 1o o S B-2
T o Ty T LTS T =T o o U B-3
[WoTo o[[aTe JEST=Tex 1To] o DU PP PR B-4
(©70] 1211 41T T Tor=1 1 ToT g RS- !) o 1S B-5...
D= U= TS Y0 LU o =SS B-6
Y= V=T ST =Tex 1o o PP B-6
S @] I Y =Tox 1o PSP E PP S R B-7
Yo (=T ST =Tox 1T0] o PP B-8

C Data Types
Supported Data Types in SOLIDEmbedded ENGINE...........ccooiiiiiiiiiiiiie e C-1

D SOLID SQL Syntax

ADMIN COMMAND ...ttt ettt ettt st ekt e e s ebe e e e sbe e e s abe e e eabeeeesteeeesbeeesnbeeessbeeesnneeennd D-2....
ALTER TABLE ..ottt ettt e sn e s nne e e nne e e D-4
ALTER USER ..ottt ettt ettt n et e s et e s e e s e e ner e s s e s mmmmmenne s D-5
CALL ittt h et e h e e bt oo eh e e e e eE bt e e ek bt e ebe e e et be e e memmeeamneneesbee s D-5
(010 11 PP D-5
CREATE EVENT ottt ettt ettt ettt h et s et e e sttt e s a b b e e s abe e e am b e e e sabbe e enbe e e anbbe e s e s D-6..
CREATE INDEX ..ottt ettt ettt ettt stttk e et e e s e be e e et e e e e be e e e abe e e e be e e s seee e D-8.
CREATE PROCEDUREooiiiiitiite ettt e e D-8...
CREATE ROLE ..ottt ettt sttt b ettt e et e s bb e e st be e e sbneesnbneesnseemmeea D-16
CREATE SEQUENCE ..ottt ittt ettt sb ettt e ebe e e e be e e sabe e e esbaeesnneeesnbseesnnneen D-16.
CREATE TABLE ..ottt e e s nreeene D-17..
CREATE USER.....coi ittt ettt ekttt ekttt e e bttt st e e eab e s sab e e e snbe e e enbe e e s D-18
CREATE VIEW .ottt ettt ettt ettt ettt b bt e e bt e et e e s be e e snbbe e e abbeesnbeeesneeemmread D-19
9 I I P PP PP D-19
DELETE (POSIIONEA) ...ttt ettt e e b e e e s e e s b e e e e e e D-109.
DROP EVENT ..ttt ettt ettt ettt ettt ettt ettt ettt ekttt et e ek bt e ekt e e et b e e e abbe e e abbe e s aabeeabeeesanne e s mammm s D-20
DROP INDEX ...ciieiiiitie ittt sr ettt e e s n e s s e e s n e e s an e e ane e e s nne e e memmmn s D-20
DROP PROCEDURE.......coitiiiitii ettt ettt ettt st e st sabeeessneeesnbeeesnnee e D-20.
DROP ROLE ...ttt ettt ettt et be e e e ehe e e e bt e e e eb et e eabe e e shbe e e eabe e e bbe e e s mmmmmne s D-20
DROP SEQUENCE........ooi ittt ettt s e e s re e nnne e e nnre e e nnneeans D-21.
DROP TABLE ...ttt ettt etttk e e bb e e st e e e e bbe e e bbe e s esbe e e be e e s aaee e s memam D21
DROP USER ...ttt ettt bbbt ettt et bt e st e e bee e s ab b e e sabe e e bee e s et e smmammmmn oo D-21
DROP VIEW ...ttt ettt et et se et e sn e sane e e nn e e e nnneesnne e e nn s emmmnenm e D-21
EXPLAIN PLAN FOR ittt sttt et e be e e s bt e e s be e e s be e e s be e e e abeae e D22
GRAIN T ittt ettt ettt ettt h et s bt e ea bt e ekt e eeh b et e okt e e eh ket e ek be e e ehe e e eRbe e e eEbe e e ehe e smneammneeannn s e D-22
1N ST =1 OO D-23
INSERT (USING QUEIY) .tettieiieeiie ittt ittt e e e e ettt ta e e e e e s e s s aaabbe bt e e e aeaaaeaasaanbanbeeeeaaaaaeaeaannnne D-24.
REVOKE (ROIE frOM USEI)....oiiiiiiiiiiitit ettt ettt e e e e e s et et e e e e e e e e e sabnbbaeeeeaaeeeeaanns D-24
REVOKE (Privilege from ROIE OF USE)......cccoiiiiiiiiiiieiiiee e e e e sttt e s e e e e s s s svennneeneae e e e s e snnnened D:25
ROLLBACK .ttt ettt h ettt ettt b e e e sttt e ok bt e s kb e e st b e e e bbe e embbe e s abbe e aabee e s bs mmnnmmn s D-25
S | I = 3 E TP TP D-26
LS SOOI D-27
SET SCHEMA .ttt ettt ettt b bt e e s ab e e ek b e e s ek be e e abbe e e abbe e s abeeesbeee s smmmmn D:28
UPDATE (POSITIONE).ceittiieeeiiiiiee ettt ettt e e st e e s s e e e e sbbnee e e s snnneeeessnnreeeeened D-29.

vi Solid Administrator Guide

UPDATE (SEAICNEA).. ... utiiieiiieiieei e e it ee et e e s et s e e e e e e e e e s s s snnn e e e e e aeeeessssnnnnnnnnreeeeeeeseennnd D:-30..

= Lo (SR =T {=T (=1 o o = USSR URPPPPPUPPPTPI D:-30
L@ U= VS o =T o o] o R D-31.
Y= =Yoo oo o {1170} o PSS D-31
(O aT=Tod 1 oTo 1 o 1 1T0] o PSPPI D-32
g] 1571 o D-33
S 11T T L] od 1T o S D-34
NUMENIC FUNCHION ...t e e reersrernraeeeed D:-35..
DAte TiME FUNCHION.uiiiiiiie e e e sttt ee e e e e s et e e e e et s s et e e e e e s e s snntanteaeeeeesssaansnnrnnneeeeeesanannes D-36.
3V £53 (=1 TN U0 T o o PR D:37
D2 1z 1Y o1 TP D-37
Date and TiMeE LItEIalS.........cciiuuiiiiieiiee et e s s e e e e e e e e s s s st ber e e e e aeeeeeennennernnneees D-38.
Y= T Lo TN @0 [] =SSR D-38

E System Views and System Tables
F SOLID SQL API Reserved Words
G SOLID Embedded Engine Command Line Options

Glossary

Index

Vil

viii Solid Administrator Guide

Welcome

SOLID Embedded Engif# provides the local data storage needs required for today’s com-
plex distributed systems

SOLID Embedded Engingrovides support for real-time operating systems such as

VxWorks and ChorusOS, and for preferred platforms such as Window 98/NT, Linus, Solaris,
HP-UX and other UNIX platforms. It provides the features you would expect to find in any
industrial-strength database server—multithread architecture, stored procedures, row level
transaction management—but it delivers them with the special needs of today’s applications.

About This Guide

Organization

This SOLIDAdministrator Guide is designed to make the administration of SOLID
Embedded Enginemoother. This guide provides quick instructions on basic administration
and maintenance, tools and utilities, and also provides reference information.

This manual contains the following chapters:

« Chapter 1, Introduction to SOLID Embedded Endamailiarizes you with the back-
ground and components of your SOLID data management system.

« Chapter 2, Basic Administrative Tast@vers the typical administration tasks such as
starting, connecting to, and shutting down servers.

« Chapter 3, Database Maintenanegplains how to make backups, create checkpoints,
and use timed commands.

« Chapter 4, Using SOLID Data Management Tat#scribes the available utilities for
handling database operations.

« Chapter 5, Administration with SQL Statemegit®es readers the information they need
to manage users, tables and indexes.

Audience

Conventions

« Chapter 6, Network Connectiodsscribes how to connect to SOLHEMbedded Engine
using different communication protocols.

« Chapter 7, Configurationlescribes how to set SOLEEmbedded Engingarameters for
customization to meet your own environment, performance, and operation needs.

« Chapter 8, Performance Tunimgscribes how to optimize SOLIEmbedded Engin®
improve performance.

« Chapter 9Diagnostics and Troubleshootirpscribes tools to use for observing perfor-
mance and tracing problems.

Appendixes

The Appendixegive you detailed information about error messages, configuration parame-
ters, and SOLID SQL functionality.

Glossary

TheGlossary of Termsxplains some of the terminology used in SOLID documentation.

This manual assumes general DBMS knowledge, and a familiarity with SQL.

Product Name

In version 3.0, SOLICserveror SOLID Web Engine is now known as SOLHNbedded
Engine.This guide may still make reference to SOL3Brver Throughout this guide,
"SOLID Server'and "SOLIDEmbedded Enginedre used synonymously.

Typographic
This manual uses the following typographic conventions.
Format Used for
WIN.INI Uppercase letters indicate filenames, SQL

statements, macro names, and terms used
at the operating-system command level.

RETCODE SQLFetch(hdbc) This font is used for sample command
lines and program code.

argument Italicized words indicate information that
the user or the application must provide, or
word emphasis.

SQLTransact Bold type indicates that syntax must be
typed exactly as shown, including func-
tion names.

[Brackets indicate optional items; if in bold
text, brackets must be included in the syn-
tax.

| A vertical bar separates two mutually
exclusive choices in a syntax line.

{3 Braces delimit a set of mutually exclusive
choices in a syntax line; if in bold text,
braces must be included in the syntax.

An ellipsis indicates that arguments can be
repeated several times.

A column of three dots indicates continua-
tion of previous lines of code.

Other Solid Documentation

SOLID Embedded Engingdocumentation is distributed in an electronic format (PDF,
HTML, or Windows Help files).

Solid Online Services on our Web server offer the latest product and technical information
free of charge. The service is located at:

http://www.solidtech.com/

Electronic Documentation

« Read Mecontains installation instructions and additional information about the spe-
cific product version. Thisesadme.txt file is typically copied onto your system
when you install the software.

« Release Notesontains additional information about the specific product version. This
relnotes.txt file is typically copied onto your system when you install the soft-
ware.

« SOLID SynchroNetGuide introduces you to synchronization concepts and architec-
ture and describes how to set up, use and administer S&jrithroNet

Xi

« SOLID Programmer Guide describes the interfaces (APIs and drivers) available for
accessing SOLIEmMbedded Engineand how to use them with an embedded engine.

Xii

1

Introducing SOLID Embedded Engine

This chapter introduces you to SOLEnbedded Engid#, providing local data storage
capabilities in today’s complex distributed system environments. It describes its benefits,
features, and main components.

About SOLID Embedded Engine

SOLID Embedded Engineleveloped for this new era of distributed computing systems,
provides what developers need, data storage features that meet the demands and require-
ments of their application environments.

Application developers can rely on SOLEnbedded Engineiwide range of data types,
volumes, and processing features, which include, multithreaded parallel processing, sym-
metric multiprocessing (SMP), automatic roll-forward recovery, and stored procedures. Fur-
thermore, SOLICEmbedded Enginejsortability and ease of deployment are ideal in

today’s internetworked environments. SOLHNbedded Engingupports operating systems

in such infrastructure platforms as Window 98/NT, Linux, ChorusOS, VxWorks, Solaris,
HP-UX and other UNIX platforms. It is fully Year 2000 Compliant.

SOLID Embedded Engingelivers performance within SQL-92, scalability, and high avail-
ability; yet it is lightweight, flexible, easy-to-use, and maintenance free with automatic oper-
ations.

SOLID Embedded Engine Features:

SOLID Embedded Enginis a secure, reliable, and accommodating solution to your data
storage needs. This section includes some of its unique benefits and features.

SOLID Bonsai Tree ™

SOLID Embedded Enginfeatures a small, but efficient index, known as The Bonsai Tree.
This index tree resides in the main memory and maintains multiversion information. The
Bonsai Tree performs concurrency control, detecting if any operations conflict with each

Introducing SOLID Embedded Engine 1-1

About SOLID Embedded Engine

other. This minimizes the effort needed for validating transactions. Active new data is sepa-
rated from older, more stable data, which is transferred to a storage server as a highly-opti-
mized batch insert, thus minimizing the hard disk load. The Bonsai Tree offers:

« Both optimistic and pessimistic concurrency control
« Fully serializable transactions free from phantom updates
« Multi-versioning that allows a consistent view of the database without extra locking

« Row-level locking is available if needed for pessimistic or mixed concurrency con-
trol methods. It can be turned on table by table, and a single transactions can use
both pessimistic and optimistic concurrency control methods simultaneously.

« Declarative referential integrity ensuring the validity of references between tables.

Wide range of data type support

SOLID Embedded Enginsupports binary compatible databases across all platforms. This
support includes:

« Binary Large Objects (BLOBS), such as a picture, video clip, sound excerpt, or a for-
matted text object.

« Data stored in a variable-length format.
« Practically unlimited amount of tables, columns, keys, etc.

« Unicode support for double-byte character sets.

Stored procedures, event alerts, and sequencer objects
SOLID Embedded Engingrovides these active database objects for reduced overhead:
« Stored procedure are used to execute part of the application logic in the server and for

optimizing queries. A stored procedure can contain several SQL statements or a whole
transaction for execution with a single call statement.

« Event alerts are used with stored procedures to signal an event in the database, thereby
freeing the stored procedure from conducting its own database polling.

« Sequencer objects generate number sequences for objects stored in databases.
Sequences have an advantage over separate tables. They are specifically fine-tuned for
fast execution and result in less overhead than normal update statements.

Easy Administration

With SOLID Embedded Enginall administrative operations, including backups are per-
formed automatically or at the administrator’s request. Built-in timers are available for vari-

1-2 SOLID Administrator Guide

SOLID Embedded Engine Components

ous administrative tasks. For example, administrator’s can specify automated daily or
weekly backups.

SOLID Embedded Enginalso features online concurrent backup, and automatic and roll-
forward recovery. Automatic recovery returns the database to the state it was in at the
moment it encountered the error. To guarantee database integrity, all committed transactions
are read from the transaction log.

SOLID Embedded Engingrovides administrative tools for interactive SQL, remote admin-
istration, as well as transformation tools for loading character data from character format
data files, exporting character data to character format files, and writing data dictionary defi-
nitions of a database. For brief description of these tools Sestém Tools and Utilitiea

this chapter.

SOLID Embedded Engine Components

SOLID Embedded Engin¢helocal data storage system for complex distributed network
environments, contains the components described in the following sections

Programming interfaces (SQL API, ODBC, and JDBC)

SOLID SQL APIis a Call Level Interface (CLI) that follows the ANSI SQL CLI and ODBC
CLI specifications. SOLID provides ODBC and JDBC APIs for programming access to
SOLID data. For more details on programming interfaces, rea8l@héD Programmer
Guide.

Network Services

SOLID Embedded Engine runs on all major network types and supports all of the main com-
munication protocols. Developers can create distributed applications for use in heteroge-
neous computing environments. For more details on network communication, read Chapter
6, “Network Connections” in this guide.

SQL Parser and Optimizer

The SQL syntax used is based on the ANSI X3H3-1989 Level 2 standard and ANSI X3H3-
1992 (SQL2) extensions. SOLIBmbedded Engineontains an advanced cost-based opti-
mizer, which ensures that even complex queries can be run efficiently. The optimizer auto-
matically maintains information about table sizes, the number of rows in tables, the available
indices, and the statistical distribution of the index values.

Introducing SOLID Embedded Engine 1-3

SOLID Embedded Engine Components

Engine
The SOLID engine is the core of the SOLEHMbedded Engingroduct. It processes the data

requests submitted via SOLID SQL. The engine stores data and retrieves it from the data-
base.

Figure 1-1 SOLID Embedded Engine Components

Application

ODBC JDBC

Network Communication Layer

N\

Network Communication Layer

SQL Parser and Optimizer

Query Executor

-

SOLID Engine

1-4 SOLID Administrator Guide

SOLID Embedded Engine Components

System Tools and Utilities

SOLID Embedded Engine also includes the following tools for data management and
administration:

SOLID Remote Control

SOLID Remote Contrak a program for administration of SOLID servers. With SOLID
Remote Contrglyou can:

« administer all database servers in a network from a single workstation
« generate backups either on-line or as a timed command

« obtain server status information

SOLID SQL Editor

SOLID SQL Editoris a tool for executing SQL queries and commands. It has an easy-to-use
graphical user interface. With SOLID SQL Editor, you can:

« use either the interactive or batch mode operation
« have multiple active connections to various servers

« Save or print query results

Tools for handling ASCII data
SOLID Embedded Engine provides the following tools for handling ASCII data:

« SOLID Speedloadeloads data from external ASCII files into a SOLID database. It is
capable of inserting character data from character format. SSh#adLoader
bypasses the SQL parser and uses direct writes to the database file with loading, which
allows for fast loading speed.

« SOLID Exportwrites from a SOLID database to character format files. It is capable of
writing control files used by SOLIBpeedLoadeto perform data unload/load opera-
tions.

« SOLID Data Dictionary(SOLDD) writes the data dictionary of a database. This tool
produces an SQL script that contains data definition statements describing the structure
of the database.

Read Chapter 4, “Using SOLID Data Management Tools” for details.

Introducing SOLID Embedded Engine 1-5

SOLID SynchroNet

SOLID SynchroNet

SOLID SynchroNebuilds on the local data storage capabilities of SOEfibedded

Engine It provides system-wide data sharing, which is particularly suited for applications in
today’s internetworked systems. With SOLEYnchroNet'sasynchronous, bi-directional

data synchronization, you can store data where it makes sense and deliver data where and
when you need it there.

SOLID SynchroNet'siew approach to replication addresses the data reliablity shortcomings
of traditional replication models. Its architecture builds data synchronization functionality
inside a business application. Using SOISinchroNeSQL extensions and Intelligent
Transaction8", application developers, with minimal effort, can provide the logic to ensure
data reliability within the context of their applications.

For details on SOLICBynchroNetread theSOLID SynchroNeBuide.

Figure 1-2 System-wide sharing with SOLID SynchroNet

_

SOLID
SynchroNet

<> NCL

N

Application

C

NCL 43 NCL

SOLID SOLID

SynchroNet SynchroNet Application
Replical Replica2

NCL = Network Communication Layer

1-6 SOLID Administrator Guide

2

Basic Administration Tasks

This chapter covers the basic SOLlHMbedded Enginedministrative tasks. It tells you
how to:

Install SOLIDEmbedded Engine

Start SOLIDEmbedded Engine

Create a new database

Connect to the server using SOLR2mote Controbr SOLID SQL Editor

Shut down SOLICEmbedded Engingsing SOLIDRemote Contrabr from the server
computer console

Installing SOLID Embedded Engine

If you have not yet installed SOLIEBmbedded Engineefer to theReadMe notice deliv-
ered with the software for a detailed description of the installation.

Starting SOLID Embedded Engine

When SOLIDEmbedded Enginis started, it checks if a database already exists in the

SOLID directory, that is, the directory where you installed SOLID executables. If a database
file is found, SOLIDEmbedded Engineill automatically open that database. If not, which

is the case when you start the server for the first time, a new database will be created.

Operating System To Start the Server...

UNIX Enter the commansdolid at the command prompt. When you

start the server for the first time, enter the commsiid -
f at the command prompt to force the server to run in the fore-
ground.

Novell Netware Enter the commatahd solid.nim at the command prompt.

Basic Administration Tasks 2-1

Creating a New Database

Operating System To Start the Server...
Open VMS Enter the commaniun solid at the command prompt.
Windows Click the icon labele8OLID Embedded Engine in the SOLID

Embedded Engine program group.

Creating a New Database

If a database does not exist, SOlEhbedded Engineill automatically start creating a

new database. In the Windows environment, creating the database begins with a dialog
prompting for the database administrator's username and password. In other environments, if
you do not have an existing database, the following message appears:

Database does not exist. Do you want to create a new database (y/n)?

Answer y(es), and SOLIEmbedded Engineill prompt for the database administrator's
username and password. When they have been accepted, a new database will be created.

The username and password are case insensitive. The username must have at least two char-
acters; the password at least three. You can use lower case letters from a to z, upper case let-
ters from A to Z and the underscore character ‘ ', and numbers from 0 to 9.

NOTE: You must remember your username and password to be able to connect to SOLID
Embedded Engindhere are no default usernames; the username you enter when creating
the database is the only username available for connecting to the new database.

After accepting the database administrator's username and password, S@ih¢Dded
Enginewill create a new database. By default the database will be created as one file
(solid.db) into the SOLID directory, where the current working directory is located. The time
that the database creation process takes depends on the hardware platform you are using.

After the database has been created, SGriibedded Engingtarts listening to the net-
work for client connection requests. In the Windows environment, you will see a SOLID
Embedded Enginieon, but in most environments SOLEIbedded Engineill run invisi-
bly in the background as a daemon process.

Windows only If in the Windows environment you double-click the icon of a run-
ning server, nothing will happen. SOLEmbedded Enginis a
background process that only reacts to messages from clients
through the communication interface.

2-2 SOLID Administrator Guide

Connecting to SOLID Embedded Engine

Connecting to SOLID Embedded Engine

After starting SOLIDEmbedded Engine/ou can test the configuration by connecting to the
server from your workstation by using either SOIRBmote Controbr SOLID SQL Editor

NOTE: You need to have the privileges of SYS_ADMIN_ROLE or SYS_CONSOLE_ROLE
to be able to connect to a server using SORHMote Control

Connecting with SOLID Remote Control

1.

View thesolmsg.out file for valid network names that you can use to connect to
SOLID Embedded Engine

The following messages indicate what names you can use.

Listening of 'ShMem Solid' started.
Listening of "TCP/IP 1313’ started.

Start SOLIDRemote Controand give the network name of server as a command line
parameter:

solcon "tcp hobbes 1313"
Enter the database administrator's user name and password when prompted.

After a while you will see a message indicating that a connection to the server has been
established.

Connecting with SOLID SQL Editor

1.

3.
4.

View thesolmsg.out file for valid network names that can be used to connect to
SOLID Embedded Engine

The following messages indicate what names you can use:

Listening of 'ShMem solid' started.
Listening of "TCP/IP 1313’ started.

Start SOLIDSQL Editorand give the network name of server as a command line
parameter:

solsql "tcp hobbes 1313"
Enter the database administrator's user name and password when prompted.

After a while you will see a message indicating that a connection to the server has been
established.

Basic Administration Tasks 2-3

Viewing the SOLID Embedded Engine Message Log

Viewing the SOLID Embedded Engine Message Log

SOLID Embedded Enginerites all error and info messages to a text file. This message log
file is namedsolmsg.out and it is located in the SOLID directory. You can view this file
using any text editor or file viewer. The error messages and their explanations are listed in
Appendix A, “Error Codes’of this document.

Shutting Down SOLID Embedded Engine

You can shut down SOLIEmbedded Enginie these ways:

« Programmatically from an application using the following SQL commands: ADMIN
COMMAND 'throwout all' and ADMIN COMMAND 'shutdown'

« Using the SOLIDRemote Contrgbrogram

« Clicking the server icon and selecti@pse from the menu appearing in the Windows
environment

All the shutdown mechanisms will start the same routine, which writes all buffered data to
the database file, frees cache memory and finally terminates the server program. Shutting
down a server may take a while since the server must write all buffered data from main
memory to the disk.

2-4 SOLID Administrator Guide

3

Database Maintenance

This chapter gives you information on data security and database maintenance. It is divided
into the following topics:

« making backups

« restoring backups

« recovering from abnormal shutdown

« logging

« creating checkpoints

« closing and opening the database

« changing database location

« running several servers on one computer

« entering timed commands

Making Backups

Backups are made to secure the information stored in your database files. If you have lost
your database files because of a system failure, you can continue working with the backup
database.

You can initiate a backup in the following ways:

« Automate the backup using a timed command that initiates the backup according to a
pre-defined schedule. ReaHritering Timed Commands# this chapter for details.

« Use the SQL command ADMIN COMMAND ‘backup’ from the application.
« Start the backup from SOLIRemote Control

Database Maintenance 3-1

Making Backups

NOTE: Be sure to have enough disk space in the backup directory. You will need space for
your database and log files.

SOLID Embedded Engingses a multiversioning technique allowing backups to be made
on-line. You need not close the database file or shut down the server. However, it is advis-
able to automate your backups to be run at non-busy hours. After completivag ki,

copy your backup files on tape using your backup software for protection against disk
crashes.

Please also note the following:

« You can query programmatically the status of the most recently started backup by using
SQL command ADMIN COMMAND ‘status backup’. To query the list of all com-
pleted backups and their success status, use SQL command ADMIN COMMAND
‘backuplist’.

« The backup directory you enter must be a valid path name in the server operating sys-
tem. For example, if the server runs on a UNIX operating system, path separators must
be slashes, not backslashes.

« The time needed for making a backup is the time that passed between the messages
Backup started andBackup completed successfully , which arrive to
your SOLIDRemote ContraIESSAGE®age.

Before starting the backup process, a checkpoint is created automatically. This guarantees
that the state of a backup database is from the moment the backup process was started. The
following files will be copied to the backup directory:

« database file(s)
« configuration file §olid.ini)

« log file(s) modified or created after the previous backup (paramBetkupCopyLog
is setyes by default)

The unnecessary log files are deleted from original directory after successful backup (param-
eterBackupDeleteLog is setyes by default).

To Correct a Failed Backup

When SOLIDEmbedded Enginis performing a backup, the ADMIN COMMAND ‘status
backup’ command returns the value ‘ACTIVE'. Once the backup is completed, the com-
mand returns either ‘OK’ or ‘FAILED’. You can also query this information from SOLID
Embedded Enginesing SOLIDRemote Control

3-2 SOLID Administrator Guide

Restoring Backups

If the backup failed, you can find the error message that describes the reason for the failure
from the solmsg.out file. Correct the cause of the error and try again. The most common
causes for failed backups are:

« the backup media is out of disk space
« the backup directory does not exist

« adatabase directory is defined as the backup directory

Restoring Backups

There are two alternative ways to restore a backup. You can either:
« Return to the state when backup was created, or

« Revive a backup database to the current state by using log files to add data inserted or
updated after the backup was made.

To Return to the State when the Backup was Made
1. Shut down SOLICEmbedded Enginéf it is running.

2. Delete all log files from the log file directory. The default log file names are
sol00001.log , sol00002.log , etc.

3. Copy the database file(s) from the backup directory to the database file directory.
4. Start SOLIDEmbedded Engine

This method will not perform any recovery because no log files exist.

To Revive a Backup Database to the Current State
1. Shut down SOLICEmbedded Enginéf it is running.

2. Copy the database file(s) from the backup directory to the database file directory.

3. Copy the log files from the backup directory to the log file directory. If there are log-
files with the same file namedo not replace those log files in the log file directory
with log files from the backup directory.

4. Start SOLIDEmbedded Engine

SOLID Embedded Enginill automatically use the log files to perform a roll-forward
recovery.

Database Maintenance 3-3

Recovering from Abnormal Shutdown

Recovering from Abnormal Shutdown

If the server was closed abnormally, that is, if it was not shut down using the procedures
described earlier, SOLIEmbedded Engineill automatically use the log files to perform a
roll-forward recovery during the next start up. No administrative procedures are needed to
start the recovery.

The messag8tarting roll-forward recovery appears. After the recovery has
been completed, a message will indicate how many transactions were recovered. If no trans-
actions were made since the last checkpoint, this is indicated by the following message

Recovery successfully completed

Transaction Logging

Transaction logging guarantees that no committed operations are lost in case of a system
failure. When an operation is executed in the server, the same operation is also saved to a log
file. The log file is used for recovery in case the server is shut down abnormally.

A backup operation will copy the log and database files to the backup directory and delete
the log files from the database directory. You may change the default behavior by changing
the parameterBackupCopyLog andBackupDeleteLog intheGeneral section of
parameters isolid.ini

TIP: For both security and performance reasons, it is a good idea to keep log files and data-
base files on different physical disk devices. If one disk drive is damaged, you will lose
either your database files or log files but not both.

Creating Checkpoints

Checkpoints are used to store a consistent state of the database onto the database file. Check-
points are needed for speeding up the roll-forward recovery after a system failure. In the roll-
forward recovery, the database will start recovering transactions from the last checkpoint.

The longer it has been since the last checkpoint was created, the more operations are recov-
ered from the log file(s).

To speed up recoveries, checkpoints should be created frequently; however, the server per-
formance is reduced during the creation of a checkpoint. Furthermore, the speed of check-
point creation depends on the amount of database cache used; the more database cache is
used, the longer the checkpoint creation will take. Consider these issues when deciding the
frequency of checkpoints. Sé@pendix B, “Configuration Parameteri&r a description of

the use ofCacheSize parameter.

SOLID Embedded Enginkeas an automatic checkpoint creation daemon, which creates a
checkpoint after a certain number of writes to the log files. The default checkpoint interval is

3-4 SOLID Administrator Guide

Changing Database Location

every 5000 log writes. You may change the value of the para@iémkpointinter-
val intheGeneral section of parameters. To learn how to change a parameter value, see
Chapter 7, “Configuration”in this guide.

Before and after a database operation, you may want to create a checkpoint manually. You
can do this programmatically from your application with SQL command ADMIN COM-
MAND 'makecp'. You can also force a checkpoint using a timed command. Read the section
“Entering Timed Commands# this chapter for details.

NOTE. There can be only one checkpoint in the database at a time. When a new checkpoint
is created, the older checkpoint is automatically erased.

Closing the Database
To close the database, use SQL command ADMIN COMMAND ‘close'.

In some cases you may want to prevent users from connecting to the engine. For example,
when you are shutting down an engine, you may want to prevent new users from connecting
to the engine. After closing the database, only connections from SR&nibte Controbvill

be accepted. Closing the database does not affect existing user connections.

When the database is closed no new connections are accepted (clients will get SOLID Error
Message 14506).

Changing Database Location

Changing a database location in SOlHBbedded Enginie as easy as copying a file from
one directory to another.

NOTE. To copy a database file, you need to shut down the engine to release the operating
system file locks on the database file and log files.

To Change Database Location
1. \Verify that SOLIDEmbedded Enginis not running.

2. Copy the database and log files to the target directory.

3. Copy thesolid.ini file to the target directory. Check that the database file direc-
tory, log file directory and backup directory are correctly defined in the configuration
file solid.ini

4. Start SOLIDEmbedded Engingsing the target directory as the current working direc-
tory using the command line optien directory-name

Database Maintenance 3-5

Running Several Servers on One Computer

Running Several Servers on One Computer

In some cases, you may want to run two or more databases on one computer. For example,
you may need a configuration with a production database and a test database running on the
same computer.

SOLID Embedded Enginis able to use one database per database server, but you can start
several engines each using its own database file. To make these engines use different data-
bases, either start the engine processes from the directories your databases are located in or
give the locations of configuration files by using the command line ogtior@irec-

tory-name to change the working directory. Remember to use different network names

for each engine.

Entering Timed Commands

SOLID Embedded Engineas a built-in timer, which allows you to automate your adminis-
trative tasks. You can use timed commands to execute system commands, to create backups,
checkpoints and database status reports, to open and close databases, to disconnect users or
to shut down engines.

To Enter a Timed Command
Timed commands are entered manually by editingAthparameter of thESrv] section in
thesolid.ini file. The syntax is:

At-string :=timed-command], timed-command]
timed-command :=[day] HH:MM command argument
day :=sun|mon |tue | wed | thu | fri | sat

If the day is not given, the command is executed daily.
Example:

[Sv]
At=20:30 makecp,21:00 backup,sun 23:00 shutdown

NOTE: The format used is HH:MM (24-hour format).

3-6 SOLID Administrator Guide

Entering Timed Commands

Arguments and the Defaults for the Different Timed Commands

Command Argument Default

backup backup directory the default backup direc-
tory that is set in the con-
figuration file

throwout user name, all no default, argument com-
pulsory

makecp no arguments no default

shutdown no arguments no default

report report file name no default, argument com-
pulsory

system system command no default

open no arguments no default

close no arguments no default

Database Maintenance 3-7

Entering Timed Commands

3-8 SOLID Administrator Guide

A

Using SOLID Data Management Tools

This chapter describes SOLID data management tools, a set of utilities for performing vari-
ous database tasks. Not all SOLID Tools are necessarily part of the standard product deliv-
ery, and their availability on some platforms may be limited. For information about SOLID
data management tools, contact your SOLID sales representative or SOLID Online Services
at the Solid Web site:

http:/Amww.solidtech.com/

Command Line Arguments

This paragraph lists and describes the available command line arguments that can be used
with all teletype SOLID Database Tools. The tool-specific options are listed with the usage
of each tool.

NOTE. When there is a contradiction in the command line, the tool gives you a list of the
possible options as a result. Please check the command line you entered.

Command Line Arguments

Argument Description

server name This network name of the SOLID server that you are connected to. Logical
Data Source Names can also be used with tools; refer ehalpéer Net-
work Connectiondor further information. The given network name must
be enclosed in quotes.

user name This is required to identify the user and to determine which rights he has.
Without appropriate rights execution is denied.

password This password given to the user for accessing the database.

Using SOLID Data Management Tools 4-1

SOLID SpeedLoader

table name The name of the table accessed. * can be used with B€ididto export
all tables with one command line.

control file The name of the control file that defines the import file used with SOLID
SpeedLoadeA file of this type is produced by executing SOLERport

SOLID SpeedLoader

SOLID SpeedLoadeis a tool for loading data from external ASCII files into a SOLID data-
base. SOLIDSpeedLoadecan load data in a variety of formats and produce detailed infor-
mation of the loading process into a log file. The format of the import file, that is, the file
containing the external ASCII data, is specified in a control file.

The data is loaded into the database through the S@hibedded Engingrogram. This
enables online operation of the database during the loading. The data to be loaded does not
have to reside in the server computer.

Control File

The control file provides information on the structure of the import file. It gives the follow-
ing information:

« hame of the import file
« format of the import file
« table and columns to be loaded

NOTE. Each import file requires a separate control file. SCipieedLoadeloads data into
one table at a time.

The control file format is somewhat similar to control file structures found in other database
management systems, such as Oracle and DB/2. Please note the following:

« The table must exist in the database in order to perform data loading.

« Schema support is not currently available in SOBIzedloader

Import File

The import file must be of ASCII type. The import file may contain the data either in a fixed
or a delimited format:

« Infixed-length format data records have a fixed length, and the data fields inside the
records have a fixed position and length.

4-2 SOLID Administrator Guide

SOLID SpeedLoader

« In delimited format data records can be of variable length. Each data field and data
record is separated from the next with a delimiting character such as a comma (this is
what SOLIDExportproduces). Fields containing no data are automatically set to
NULL.

Data fields within a record may be in any order specified by the control file. Please note the
following:

« Data in the import file must be of a suitable type. For example, numbers that are pre-
sented in a Float format cannot be loaded into a field of Integer or Smallint type.

« Data of Varbinary and Long Varbinary type are hexadecimal encoded in the import file.

Message Log File

During loading, SOLIDSpeedLoadeproduces a log file containing the following informa-
tion:

« the date and time of the loading

« loading statistics such as the number of rows successfully loaded, the number of failed
rows, and the load time if it has been specified with the option

« Any possible error messages

If the log file cannot be created, the loading process is terminated. By default the name of
the log file is generated from the name of the import file by substituting the file extension of
the import file with the file extensiofog . For examplemy _table.ctr creates the log

file my table.log . To specify another kind of file name, use the option -I.

Configuration File

A configuration file is not required for SOLIBpeedLoadeiThe configuration values for
the server parameters are included in the SCEtibhedded Engineonfiguration file
solid.ini

Client copies of this file can be made to provide connection information required for SOLID
Speedloadedf no server name is specified in the command line, SGBgBedLoadewill

choose the server name it will connect to from the server configuration file. For example to
connect to a server using the NetBIOS protocol and with the server name SOLID, the fol-
lowing lines should be included in the configuration file:

[Com]
Connect=netbios SOLID

Using SOLID Data Management Tools 4-3

SOLID SpeedLoader

Invoking SOLID SpeedLoader

SOLID SpeedLoadeis invoked with the commarsblload followed by various argu-
ments. If you invoke SOLI3peedLoadewith no arguments, you will see a summary of the
arguments with a brief description, i.e. their usage. The command line syntax is:

solload [options] [server-name] <user-name> <password> <controk-file>

The possible options are in the following table:

Option Description

-b<records> Number of records to commit in one batch
-c<dir> Change working directory

-I<filename> Write log entries to this file

-L<filename> Append log entries to this file

-n<records> Insert array size (network version)

-t Print load time

-X emptytable Load data only if there are no rows in the table
-X errors:<count> Maximum error count

-X nointegrity No integrity checks during load (standalone version)
-x skip:<records> Number of records to skip

-? Help = Usage

Control File Syntax
The control file syntax has the following characteristics:

« keywords must be given in capital letters
« comments can be included using the standard SQL double-dash (--) comment notation
« Statements can continue from line to line with new lines beginning with any word

SOLID SpeedLoadereserved words must be enclosed in quotes if they are used as data dic-
tionary objects, that is, table or column names. The following list contains all reserved words
for the SOLIDSpeedLoadecontrol file:

AND ANSI
APPEND BINARY

4-4 SOLID Administrator Guide

SOLID SpeedLoader

BLANKS
CHAR
DATA
DECIMAL
ENCLOSED
FIELDS
IBMPC
INSERT
INTO
LONG
NOCNV
NULLIF
NUMERIC
OPTIONS
POSITION
PRESERVE
REPLACE
SKIP
TABLE
TIME
TINYINT
VARCHAR

The control file begins with the statement LOAD DATA followed by several statements that
describe the data to be loaded. Only comments or the OPTIONS statement may optionally

precede the LOAD DATA statement.

BY
CHARACTERSET
DATE
DOUBLE
ERRORS
FLOAT
INFILE
INTEGER
LOAD
MSWINDOWS
NOCONVERT
NULLSTR
OPTIONALLY
PCOEM
PRECISION
REAL
SCAND7BIT
SMALLINT
TERMINATED
TIMESTAMP
VARBIN
WHITESPACE

The following table describes the full syntax of the control file.

Syntax Element

control-file

::= [option-part] load-data-part into-table-part

Using SOLID Data Management Tools 4-5

SOLID SpeedLoader

option-part ;= OPTIONS (options)

options ::= option [, option]

option = [SKIP ="int_literal] | [ERRORS ="int_literal']
load-data-part ::= LOAD [DATA] [characterset-specification] [DATE

date_mask] [TIME time_mask]
[TIMESTAMP timestamp_mask] [INFILE filename] [PRE-
SERVE BLANKS]

characterset-specification = CHARACTERSET
{ NOCONVERT | NOCNV | ANSI | MSWINDOWS |
PCOEM | IBMPC | SCAND7BIT }

into-table-part ::= INTO TABLE tablename [APPEND | INSERT |
REPLACE]
[FIELDS TERMINATED BY
{ WHITESPACE | hex_literal |'char]}
[FIELDS [OPTIONALLY] ENCLOSED BY
{"char™| hex_literal} [AND "char" | hex_literal]]

(column_list)
hex_literal = X'hex_byte_string'
column_list ::= column [, column]
column ::= column_name datatype_spec

[POSITION ('int_literal' {: | -} 'int_literal’)]

[DATE date_mask] [TIME time_mask]

[TIMESTAMP timestamp_mask]

[NULLIF BLANKS | NULLIF NULLSTR| NULLIF 'string' |
NULLIF (Cint_literal' {: | -} 'int_literal") = 'string")]

datatype_spec == {BINARY | CHAR [length] | DATE |
DECIMAL [(precision [, scale])]| DOUBLE PRECI-
SION | FLOAT [(precision)] | INTEGER | LONG VARBI-
NARY | LONG VARCHAR | NUMERIC [(precision [,
scale])]| REAL | SMALLINT | TIME |
TIMESTAMP [(timestamp precision)] | TINYINT | VAR-
BINARY | VARCHAR [(length)1}

The following paragraphs explain syntax elements and their use is in detail.
CHARACTERSET

The CHARACTERSET keyword is used to define the character set used in the input file. If
the CHARACTERSET keyword is not used or if it is used with the parameter NOCON-

4-6 SOLID Administrator Guide

SOLID SpeedLoader

VERT or NOCNYV, no conversions are made. Use the parameter ANSI for the ANSI charac-
ter set, MSWINDOWS for the MS Windows character set, PCOEM for the ordinary PC
character set, IBMPC for the IBM PC character set, and SCAND7BIT for the 7-bit charac-
ter set containing Scandinavian characters.

DATE, TIME, and TIMESTAMP
These keywords can be used in two places with different functionality:

« When one of these keywords is used as a part of the load-data-part element, it defines
the format used in the import file for inserting data into any column of that type.

« When a keyword appears as a part of a column definition it specifies the format used
when inserting data into that column.

NOTE 1. Masks used as part of the load-data-part element must be in the following order:
DATE, TIME, and TIMESTAMP. Each is optional.

NOTE 2. Data must be of the same type in the import-file, the mask, and the column in the
table into which the data is loaded.

The following table shows the available data masks:

Data Type Available Data Masks

DATE YYYY/YY-MM/M-DD/D

TIME HH/H:NN/N:SS/S

TIMESTAMP YYYY/YY-MM/M-DD/D HH/H:NN/N:SS/S

In the above table, year masks are YYYY and YY, month masks MM and M, day masks DD
and D, hour masks HH and H, minute masks NN and N, and second masks SS and S. Mask
within a date mask may be in any order, e.g., a date mask could be ‘MM-DD-YYYY". If the
date data of the import file is formatted as 1995-01-31 13:45:00, use the mask YYYY-MM-
DD HH:NN:SS.

PRESERVE BLANKS
The PRESERVE BLANKS keyword is used to preserve all blanks in text fields.

into-table-part

The into-table-part element is used to define the name of the table and columns that the date
is inserted into.

Using SOLID Data Management Tools 4-7

SOLID SpeedLoader

FIELDS TERMINATED BY

The FIELDS TERMINATED BY keyword is used to define the character used to distin-
guish where fields end in the input file.

The ENCLOSED BY keyword is used to define the character that precedes and follows data
in the input file.

POSITION

The POSITION keyword is used to define a field's position in the logical record. Both start
and end positions must be defined.

NULLIF

The NULLIF keyword is used to give a column a NULL value if the appropriate field has a
specified value. An additional keyword specifies the value the field must have. The keyword
BLANKS sets a NULL value if the field is empty; the keyword NULL sets a NULL value if
the field is a string 'NULL'; the definition 'string’ sets a NULL value if the field matches the
string 'string’; the definition '((start : end) = 'string")’ sets a NULL value if a specified part of
the field matches the string 'string'.

Loading Fixed-format Records
Examples of the control file when loading data from a fixed-format import file:

-- EXAMPLE 1

LOAD DATA

INFILE 'EXAMP1.DAT

INTO TABLE SUPPLIERS (
NAME POSITION(01:19) CHAR,

ADDRESS POSITION(20:40) VARCHAR,
ID POSITION(41:48) INTEGER)
-- EXAMPLE 2

OPTIONS (SKIP = 10, ERRORS =5)

-- Skip the first ten records. Stop if

-- errorcount reaches five.

LOAD DATA

INFILE 'sample.dat'

-- import file is named sample.dat

INTO TABLE TEST1 (

ID INTEGER POSITION(1-5),

ANOTHER_ID INTEGER POSITION(8-15),

DATE1 POSITION(20:29) DATE 'YYYY-MM-DD',

4-8 SOLID Administrator Guide

SOLID SpeedLoader

DATE2 POSITION(40:49) DATE 'YYYY-MM-DD' NULLIF NULL)

Loading Variable-length Records
Examples of the control file when loading data from a variable-length import file:

-- EXAMPLE 1

LOAD DATA

INFILE 'EXAMP2.DAT

INTO TABLE SUPPLIERS

FIELDS TERMINATED BY ')

(NAME VARCHAR, ADDRESS VARCHAR, ID INTEGER)
-- EXAMPLE 2

OPTIONS (SKIP=10, ERRORS=5)

-- Skip the first ten records. Stop if

-- errorcount reaches five.

LOAD

DATE 'YYYY-MM-DD HH:NN:SS'

-- The date format in the import file

INFILE 'sample.dat'

-- The import file

INTO TABLE TEST1

-- data is inserted into table named TEST1
FIELDS TERMINATED BY X'2C'

-- Field terminator is HEX ',' == 2C

-- This line could also be:

-- FIELDS TERMINATED BY ',
OPTIONALLY ENCLOSED BY T AND ")’

-- Fields may also be enclosed

-- with T"and)’

(

ID INTEGER,

ANOTHER_ID DECIMAL(2),

DATE1 DATE(20) DATE 'YYYY-MM-DD HH:NN:SS',
DATE2 NULLIF NULL

)

-- ID is inserted as integer

-- ANOTHER_ID is a decimal number with 2
-- digits.

-- DATEL1 is inserted using the datestring

-- given above

-- The default datestring is used for DATE2.

Using SOLID Data Management Tools 4-9

SOLID SpeedLoader

-- If the column for DATEZ2 is 'NULL' a NULL is
-- inserted.

Running a Sample Load Using Solload

To Run a Sample Load Using Solload
1. Start SOLIDEmbedded Engine

2. Create the table using teample.sql script and your SOLIIBQL Editor.
3. Start loading using the following command line:
solload "shmem solid" dba dba delim.ctr
The user name and password are assumed to be 'dba’. To use the fixed length control file, use
the following command line:
solload "shmem solid" dba dba fixed.ctr

The output of a successful loading usitedim.ctr will be:

SOLID Speed Loader v.3.00.00xx

(C) Copyright Solid Information Technology Ltd 1992-1999

Load completed successfully, 19 rows loaded.

The output of a successful loading usfixgd.ctr will be:

SOLID Speed Loader v.3.00.00xx
(C) Copyright Solid Information Technology Ltd 1992-1999
Load completed successfully, 19 rows loaded.

Hints to Speed up Loading
The following hints can be used to ensure that loading is done with maximum performance:

« Itis faster not to load data over the network, that is, connect locally if possible.

« Increasing the number of records committed in one batch speeds up the load. By
default, commit is done after each record.

« Disable logging.

To disable logging the LogEnabled parameter needs to be used. The following lines in the
solid.ini file will disable logging:

[Logging]

4-10 SOLID Administrator Guide

SOLID Export

LogEnabled=no

After the loading has been completed, remember to enable logging again. The following line
in thesolid.ini file will enable logging:

[Logging]

LogEnabled=yes

NOTE. Running the server with logging disabled is strongly discouraged. If logs are not
written, no recovery can be made if an error occurs due to power failure, disk error etc.

SOLID Export

SOLID Exportis a product for unloading data from a SOLID database to ASCII files.
SOLID Exportproduces both the import file, that is, the file containing the exported ASCII
data, and the control file that specifies the format of the import file. SGpkzdLoader

can directly use these files to load data into a SOLID database.

NOTE. The user name used for performing the export operation must have select rights on
the table exported. Otherwise no data is exported.

Invoking SOLID Export

SOLID Exportis invoked with the commarsblexp . If you invoke solexp with no argu-
ments, you'll see a summary of the arguments with a brief description. The command line
syntax is:

solexp [options] [servemame] <usemame> <password> <tablename[*>

The possible options are

Option Description

-c<dir> Change working directory
-e<sql-string> Execute SQL string for export
-f<filename> Execute SQL string from file for export
-h, -? Help = Usage

-I<filename> Write log entries to this file
-L<filename> Append log entries to this file
-o<filename> Write exported data to this file

Using SOLID Data Management Tools 4-11

SOLID Data Dictionary

-s<schemaname> Use only this schema for export

NOTE 1. The symbol * can be used to export all tables with one command. However, it can-
not be used as a wildcard.

NOTE 2. The -tTABLENAME (Export table) option is still supported in order to keep old
scripts valid.

SOLID Data Dictionary

SOLID Data Dictionaryis a product for retrieving data definition statements from a SOLID
database. SOLIData Dictionaryproduces an SQL script that contains data definition state-
ments describing the structure of the database. The generated script contains definitions for
tables, views, procedures, sequences, and events.

NOTE 1. User and role definitions are not listed for security reasons.

NOTE 2. The user name used for performing the export operation must have select right on
the tables. Otherwise the connection is refused.

Invoking SOLID Data Dictionary

SOLID Data Dictionaryis invoked with the commarsbldd . If you invokesoldd with

no arguments, you'll see a summary of the arguments with a brief description. The com-
mand line syntax is:

soldd [options] [servemame] <usemame> <password> [tablename]

The possible options are:

Option Description

-c<dir> Change working directory

-h, -? Help = Usage

-o<filename> Write data definitions to this file
-O<filename> Append data definitions to this file
-s<schemaname> List definitions from this schema only
-X indexonly List index definitions only

-x tableonly List table definitions only

4-12 SOLID Administrator Guide

SOLID Remote Control (Teletype)

Example:
soldd -odatabase.sq|l “tcp database_server 1313” dbadmin f1g324
NOTE 1. If no table name is given, all definitions are listed to which the user has rights.

NOTE 2. The -ttablename option is still supported in order to keep old scripts valid.

SOLID Remote Control (Teletype)

With SOLID Remote Contro(Teletype), commands can be given at the command line, com-
mand prompt, or by executing a script file that contains the commands.

NOTE. The user performing the administration operation must have administrator’s rights,
or the connection will be refused.

Invoking SOLID Remote Control (Teletype)

SOLID Remote Contro{Teletype) is invoked with the commasdicon . On Novell Net-

ware, you start SOLIIRemote ControfTeletype) with the commaridad solcon at the
command prompt. SOLIRemote ControfTeletype) connects to the first server specified in
theConnect parameter in theolid.ini file. If you start SOLIDRemote Contro{Tele-

type) with no arguments, you'll be prompted for the database administrator's user name and
password. The command line syntax is:

solcon [options] [servemame] [usemame password]

The possible options are:

Option Description

-c<dir> Change working directory
-e<string> Execute command string
-f<filename> Execute command string from file
-h, -? Help = Usage

You can give the connection information at the command line to override the connect defini-
tion in solid.ini

Example:
solcon "spx solid"

Using SOLID Data Management Tools 4-13

SOLID Remote Control (Teletype)

Also the administrator's user name and password can be given at the command line.

Example:
solcon "tcp localhost 1313 admin iohidy

Using SOLID Remote Control (Teletype)

After the connection to the server is established, the command prompt appears.

Available commands are described in the following table:

Command Abbreviation Explanation
backup bak Makes a backup of the database. The default
[backup_directory backup directory is the one defined in configu-

ration parameter General.Backup.Directory.
The backup directory may also be given as an
argument. For exampléackup abccreates
backup on directory ‘abc’. All directory defini-
tions are relative to the SOLIEmbedded
Engineworking directory.

backuplist bls Displays a status list of last backups.

close clo Closes server from new connections; no new
connections are allowed.

errorcode ec Displays a description of an error code. Give

SOLID_error_code the code number as an argument. For example,
‘errorcode 10033

exit ex Exits SOLIDRemote Control

help ? Displays available commands.

makecp mcp Makes a checkpoint.

messages mes Displays server messages.

monitor {on | off} mon Sets server monitoring on and off. Monitoring

[userusernaméuser logs user activity and SQL calls to SOL-

id] TRACE.OUT file

open ope Opens server for new connections; new con-

nections are allowed.

reportfilename rep Generates a report of server info to a file given
as an argument.

shutdown sd Stops SOLIEBmbedded Engine

4-14 SOLID Administrator Guide

SOLID Remote Control (Teletype)

status sta

status backup sta bak

throwout {username to
| userid| all

userlist fl] [name| ul
id]

version ver
pid pid

parametersrjamé par

perfmon [c] pmon

trace {on |off} sql| tra
rpc | sync

Displays server statistics.

Displays status of the last started backup. The
status can be one of the following:

« Ifthe last backup was successful or any
backups have not been requested, the out-
putis 0 SUCCESS.

« Ifthe backup is in process; for example,
started but not ready yet, the output is
14003 ACTIVE.

« Ifthe last backup failed, the output is:
errorcodeERROR
where theerrcodeshows the reason for
the failure.

Exits users from SOLIEmbedded Engindo

exit a specified user, give the user id as an argu-
ment. To throw out all users, use the keyword
ALL as an argument.

Displays a list of users. option - displays more
detailed output.

Displays server version info.
Returns server process id.

Displays server parameter values. For example:

« parameter used alone displays all param-
eters.

« parameter generd displays all parame-
ters from section “general.”

« parameter general.readonlydisplays a
single parameter “readonly” from section
“general.”

Returns performance statistics from the server.
The -c option returns all values as counter. By
default, some values are averages/second.

Sets server trace on or off. This command is
similar to themonitor command, but traces
different entities and a different levels. By
default, the output is witten to the SOL-
TRACE.OQUT file.

Using SOLID Data Management Tools 4-15

SOLID SQL Editor (Teletype)

You can execute all commands either using this interface or giving them at the command
line with the -e option or in a text file with the -f option. Commands can be given using
either the complete command name or its abbreviation.

You can also execute all SOLRemote Contratommands programmatically from an
application using options of the SQL command “ADMIN COMMAND?”. For example, you
can start a backup with the SQL command ADMIN COMMAND ‘backup’.

SOLID SQL Editor (Teletype)

With SOLID SQL Editor(Teletype), statements can be given at the command line, com-
mand prompt, or by executing a script file that contains the SQL statements.

NOTE. The user performing SQL statements must have appropriate user rights on the corre-
sponding tables, or the connection will be refused.

Starting SOLID SQL Editor (Teletype)

SOLID SQL Editor(Teletype) is started by entering the commsagoldgl. On Novell
Netware, you start SOLIBQL Editor(Teletype) with the commaridad solsq| at the
command prompt. SOLIBQL Editor(Teletype) connects by default to the first server spec-
ified in theConnect parameter irsolid.ini file and prompts for a user name and pass-
word. The command line syntax is:

solsgl [options] [servemame] [usemame] [password] [flename]

The possible options are:

Option Description

-a Auto commit every statement
-C Change working directory
-e<sgl-string > Execute SQL string
-f<filename> Execute SQL string from file
-h, -? Help = Usage

-o<filename> Write result set to this file
-O<filename> Append result set to this file
-s<schemaname> Use only this schema

-t Print execution time per command
-u Expect input is in UTF-8format

4-16 SOLID Administrator Guide

SOLID SQL Editor (Teletype)

-x onlyresults Print only rows

NOTE: If user name and password are given as command line arguments also the server
name must be given as a command line argument. Also if the name of the SQL script file is
given as a command line argument (not with the option -f), the server name, user name and
password must also be given as command line arguments.

Using SOLID SQL Editor (Teletype)

Executing SQL Statements

After the connection to the server has been established a command prompt appears. SOLID
SQL Editor(Teletype) executes SQL statements terminated by a semicolon.

Example:
create table testtable (value integer, name varchar);

commit work;

insert into testtable (value, name) values (31, Duffy Duck);
select value, name from testtable;

commit work;
drop table testtable;

commit work;

Exiting SOLID SQL Editor
To exit from SOLIDSQL Editor(Teletype) enter the command:

exit;

Executing an SQL Script

To execute an SQL script from a file, the name of the script file must be given as a com-
mand line parameter:

solsgl server-name user-name password file-name
All statements in the script must be terminated by a semicolon. SOQIDEditor(Tele-
type) exits after all statements in the script file have been executed.

Using SOLID Data Management Tools 4-17

Tools Sample: Reloading a Database

Example:

salsql “tcp localhost 1313" admin iohedy tables.sql

NOTE: Remember to commit work at the end of the SQL script or before exiting SOLID
SQL Editor(Teletype). If an SQL-string is executed with the option -e, commit can only be
done using the -a option.

Tools Sample: Reloading a Database

This example demonstrates how a SOHMDbedded Engingatabase can be reloaded to a
new one. At the same time the use of each SOLID tool is introduced with an example. This
reload is a useful procedure since it shrinks the size of the databasdidildb to a
minimum.

To Reload the Database:
1. Extract data definitions from the old database.

2. Extract data from the old database.

3. Replace the old database with a new one.
4. Load data definitions into a new database.
5

Load data into the new database.

Walkthrough

In this example the server name is SOLID and the protocol used for connections is Shared
Memory. Therefore, the network name is “ShMem SOLID". The database has been created
with the user name “dbadmin” and the password “password”.

1. Data definitions are extracted with SOLIEata Dictionary.Use the following com-
mand line to extract an SQL-script containing definitions for all tables, views, proce-
dures, sequences, and events. The default for the extracted SQIsdileédsql

soldd "ShiMem SOLID" dbadmin password
With this command all data definitions are listed into oneditédd.sql (the default

name). As mentioned earlier, user and role definitions are not listed for security rea-
sons. If the database contains users or roles, they need to be appended into this file.

2. All data is extracted with SOLIExport. The export results in control files (files with
the extensionctr) and data files (files with the extensialat). The default file name
is the same as the exported table name. In 16-bit environments, file names longer than

4-18 SOLID Administrator Guide

Tools Sample: Reloading a Database

eight letters are concatenated. Use the following command line to extract the control
and data files for all tables.

solexp "ShMem SOLID" dbadmin password *

With this command data is exported from all tables. Each table’s data is written to an
import file namedable_name.dat . A separate control fileable_name.ctr is
written for each table name.

A new database can be created to replace the old one by delesiogjdidh and all
sol####t.log files from the appropriate directories. When SOHMDbedded Engine
is started for the first time after this, a new database is created.

NOTE. It is recommended that a backup is created of the old database before it is
deleted. This can be done using SOIRBmote ControTeletype).

Use the following command line to create a backup using S®d@ote Contro{Tele-
type):
solcon -eBACKUP "ShMem SOLID" dbadmin password

With this command a backup is created. The option -e precedes an administration com-
mand.

Load data definitions into the new database. This can be done using SQLIEditor
(Teletype). Use the following command line to execute the SQL-script created by
SOLID Data Dictionary

salsql fSOLDD.SQL "ShiMem SOLID" dbadmin password

With this command, data definitions are loaded into the new, empty database. Defini-
tions are retrieved with the option -f from the leldd.sql . Connection parameters
are the same as in the earlier examples.

The previous two steps can be performed together by starting S&hHeédded Engine
with the following command line. The option -x creates a new database, executes com-
mands from a file, and exits. User name and password are defined as well.

solid -Udbadmin -Ppassword -x execute:soldd.sq|

Load data into the new database. This is be done SSpHadloadeiTo load several

tables into the database a batch file containing a separate command line for each table i
recommended. In Unix-based operating systems and in OS/2, using the wildcard sym-

bol * is possible. Use either of the following command lines to load data into the new
database.

solload "ShMem SOLID" dbadmin password table_name.ctr

Using SOLID Data Management Tools 4-19

Tools Sample: Reloading a Database

7. With this command data for one table is loaded. The server is online.
Batch files that can be used are:

Shell scripts in Unix environments

« .com-scripts in VMS
« .bat -scriptsin Windows 95, 98 and NT

4-20 SOLID Administrator Guide

5

Administration with SQL Statements

This chapter tells you how to manage the database as well as its users and schema using
SQL statements. You can use SOL3QL Editorand many ODBC compliant tools for exe-
cuting these SQL statements.

To automate these tasks, you may want to save the SQL statements to a file. You can use
these files for rerunning your SQL statements later or as a document of your users, tables,
and indexes.

About SOLID SQL Syntax

The SQL syntax is based on the ANSI X3H2-1989 level 2 standard including important
ANSI X3H2-1992 (SQL2) extensions. User and role management services missing from
previous standards are based on the ANSI SQL3 draft. For a more formal definition of the
syntax, refer td\ppendix D SOLID Embedded Engine SQL Syatdiis document.

Administering the Database

SOLID Embedded Engingrovides the SQL-extension ADMIN COMMANRAm-
mandcommand_ardgsto perform basic administrative tasks, such as backups, performance
monitoring, and shutdown.

You can use SOLIIRemote Controprogram to perform the command options provided by
ADMIN COMMAND. For details, read the “SOLID Remote Control (Teletype)” in Chapter
4.,

You can find a short description of available commands by executing ADMIN COMMAND
‘help'. For a formal definition of the syntax of these statements, refer to Appendix D,
“SOLID SQL Syntax” in this guide.

Administration with SQL Statements 5-1

Managing User Privileges and Roles

Managing User Privileges and Roles

You can use SOLIBQL Editorand many ODBC compliant SQL tools to modify user privi-
leges. Users and roles are created and deleted using SQL statements or commands. A file
consisting of several SQL statements is called a SQL script.

In the SOLID directory, you will find an SQL script calleders.sgl , which gives an
example of creating users and roles. You can run it using SSJD Editor To create your
own users and roles, you can make your own script describing your user environment.

NOTE: All SQL statements must be terminated with a semicolon (;).

User Privileges

When using SOLICEmbedded Engin@ a multi-user environment, you may want to apply
user privileges to hide certain tables from some users. For example, you may not want an
employee to see the table in which employee salaries are listed, or you may not want other
users to mess with your test tables.

SOLID Embedded Enginallows you to apply five different kinds of user privileges. A user
may be able to view, delete, insert, update or reference information in a table or view. Any
combination of these privileges may also be applied. A user who has none of these privi-
leges to a table is not able to use the table at all.

User Roles

Privileges can also be granted to an entity called a role. A role is a group of privileges that
can be granted to users as one unit. SCEhibedded Enginallows you to create roles and
assign users to certain roles.

NOTE: Same string can not be used both as a user name and a role name.

The following user and role names are reserved:

Reserved name Description

PUBLIC You can use this role to grant privileges to
all users. When user privileges to a certain
table are granted to the rdd&JBLIC, all
current and future users have the specified
user privileges to this table. This role is
granted automatically to all users.

5-2 SOLID Administrator Guide

Managing User Privileges and Roles

SYS_ADMIN_ROLE This is the default role for the database
administrator. This role has administration
privileges to all tables, indexes and users.
This is also the role of the creator of the
database.

_SYSTEM This is the schema name of all system
tables and views.

SYS CONSOLE_ROLE This role has right to use SOR&mnote
Control, but does not have other adminis-
tration privileges.

Examples of SQL Statements
Below are some examples of SQL commands for administering users, roles and user privi-
leges.

Creating Users
CREATE USER <usemame> IDENTIFIED BY <password>;

Only an administrator has the privilege to execute this statement. The following example
creates a new user namedLVIN with the passwor¢HOBBES
CREATE USER CALVIN IDENTIFIED BY HOBBES;

Deleting Users
DROP USER <usemame>;

Only an administrator has the privilege to execute this statement. The following example
deletes the user nameaALVIN.

DROP USER CALVIN;

Changing a Password
ALTER USER <usemame> IDENTIFIED BY <new password>;

The userxusername> and the administrator have the privilege to execute this command.
The following example chang€ALVIN' s password ta6GUBBES

ALTER USER CALVIN IDENTIFIED BY GUBBES;

Administration with SQL Statements 5-3

Managing User Privileges and Roles

Creating Roles
CREATE ROLE <rolename>;

The following example creates a new user role na@igBEST_USERS

CREATE ROLE GUEST_USERS;

Deleting Roles
DROP ROLE <role_name>;

The following example deletes the user role na@BEST _USERS
DROP ROLE GUEST_USERS;

Granting Privileges to a User or a Role

GRANT <user_privilege> ON <table_name> TO <usemame or role_name>;

The possible user privileges on tables are SELECT, INSERT, DELETE, UPDATE, REFER-
ENCES and ALL. ALL will give a user or a role all five privileges mentioned above. EXE-
CUTE privilege will give a user a right to execute a stored procedure. A new user has not
any privileges.

The following example grantSISERT andDELETEprivileges on a table named
TEST_TABLEto theGUEST_USER®le.

GRANT INSERT, DELETE ON TEST_TABLE TO GUEST_USERS;
The following example grants EXECUTE privilege on a stored procedure named SP_TEST
to user CALVIN.

GRANT EXECUTE ON SP_TEST TO CALVIN,;

Granting Privileges to a User by Giving the User a Role
GRANT <role_name>TO <usemame>;

The following example gives the useALVIN the privileges that are defined for the
GUEST_USERSole.

GRANT GUEST_USERS TO CALVIN,;

Revoking Privileges from a User or a Role
REVOKE <user_privilege> ON <table_name>FROM <usemame or role_name>;

5-4 SOLID Administrator Guide

Managing Tables

The following example revokes thiSERT privilege on the table nam@&ST _TABLE
from theGUEST_USERSole.

REVOKE INSERT ON TEST_TABLE FROM GUEST_USERS,

Revoking Privileges by Revoking the Role of a User

REVOKE <role_name>FROM <usemame>;
The following example revokes the privileges that are defined faBeST USERSole
from CALVIN.

REVOKE GUEST_USERS FROM CALVIN,;

Granting Administrator Privileges to a User

GRANT SYS_ADMIN_ROLE TO <usemame>;
The following example grants administrator privilege€&LVIN, who now has all privi-
leges to all tables.

GRANT SYS_ADMIN_ROLE TO CALVIN;

NOTE. If the autocommit mode is set OFF, you need to commit your work. To commit your
work use the SQL statemeDOMMIT WORK;If the autocommit mode is set ON the trans-
actions are committed automatically.

Managing Tables

SOLID Embedded Enginkas a dynamic data dictionary that allows you to create, delete
and alter tables on-line. SOLIEmbedded Engintables are managed using SQL com-
mands.

In the SOLID directory, you can find an SQL script narmardhple.sql , which gives an
example of managing tables. You can run the script using SSQDEditor

Below are some examples of SQL statements for managing tables. For a formal definition of
the SOL syntax of SOLID Embedded Engine, refekppendix D SOLID Embedded Engine
SQL Syntaxf this document.

TIP. If you want to see the names of all tables in your database, issue the SQL statement
SELECT * FROM TABLES or use predefined command TABLES from SOLIQL Edi-
tor. The table names can be found in the colUiABLE_NAME.

Examples of SQL Statements
Below are some examples of SQL commands for administering tables.

Administration with SQL Statements 5-5

Managing Tables

Creating Tables
CREATE TABLE <table_name> (<column> <column type>

[[<column> <column type>]...);
All users have privileges to create tables.

The following example creates a new table naE8T with the column of the column
type INTEGERand the columiTEXT of the column typ& ARCHAR

CREATE TABLE TEST (I INTEGER, TEXT VARCHAR);

Removing Tables
DROP TABLE <table_name>,

Only the creator of the particular table or users hag8ivi§_ ADMIN_ROLHhave privileges
to remove tables.

The following example removes the table nam&$T.

DROP TABLE TEST;

Adding Columns to a Table

ALTER TABLE <table_name>ADD COLUMN <column_name>
<column type>;

Only the creator of the particular table or users hag8ivi§_ ADMIN_ROLHhave privileges
to add or delete columns in a table.

The following example adds the colur@rof the column typ€HAR(1) to the tableTEST
ALTER TABLE TEST ADD COLUMN C CHAR();

Deleting Columns from a Table

ALTER TABLE <table_name>DROP COLUMN
<column_name>;

The following example statement deletes the col@fmom the tableTEST.

ALTER TABLE TEST DROP COLUMNCC,;

NOTE. If the autocommit mode is set OFF, you need to commit your work before you can
modify the table you altered. To commit your work after altering a table, use the SQL state-
mentCOMMIT WORK;If the autocommit mode is set ON transactions are committed auto-
matically.

5-6 SOLID Administrator Guide

Managing Indexes

Managing Indexes

Indexes are used to speed up access to tables. The database engine uses indexes to access
rows in a table directly. Without indexes, the engine would have to search the whole con-
tents of a table to find the desired row. There are two kinds of indexes: non-unique indexes
and unique indexes. A unique index is an index where all key values are unique. You can
create as many indexes as you like to a single table. However, adding indexes slows down
updates on that table.

SOLID Embedded Enginallowsyou to create and delete indexes using the following SQL
statements. For a formal definition of the syntax of these statements, r&fgyeiadix D
SOLID Embedded Engine SQL Synpéxhis document.

Examples of SQL Statements
Below are some examples of SQL commands for administering indexes.

Creating an Index to a Table

CREATE INDEX <index_name>ON <table_name>

(<column_name>[ASC | DESC);
Only the creator of the particular table or users having SYS_ADMIN_ROLE have privileges
to create or delete indexes.

The following example creates an index namte@EST on the tabl@EST to the columri .
CREATE INDEX X_TEST ON TEST (l;

Creating a Unique Index to a Table

CREATE UNIQUE INDEX <index_name>ON <table_name>

(<column_name>);
The following example creates a unigue index nab€dTESTon the tabl@fESTto the
columnl .

CREATE UNIQUE INDEX UX_TEST ON TEST (I);

Deleting an Index
DROP INDEX <index_name>;

The following example deletes the index nam¥edTEST.

DROP INDEX X_TEST;

NOTE. If the autocommit mode is set OFF, you need to commit your work before you can
modify the table on which you altered the indexes. To commit your work after modifying

Administration with SQL Statements 5-7

Primary Keys

indexes, use the SQL statem@@MMIT WORK;If the autocommit mode is set ON the
transactions are committed automatically.

Primary Keys

A primary key is a column or combination of columns that uniquely identify each record in a
table. Primary keys like indexes speed up access to tables. The difference between primary
keys and indexes in SOLIEmbedded Enginis that the primary key cluster data in the
database according to the key values.

This behavior differs from the default clustering in SOIHMbedded Engineyhere the
data is clustered according to the insertion time only.

Foreign Keys

A foreign key is a column or group of columns within a table that refers to, or relates to,
some other table through its values. The foreign key must always include enough columns in
its definition to uniquely identify a row in the referenced table. The main reason for defin-

ing foreign keys is to ensure that rows in one table always have corresponding rows in
another table; that is, to ensure that referential integrity of data is maintained.

5-8 SOLID Administrator Guide

S

Network Connections

Communication between Client and Server

The database server and client transfer information between each other through the com-
puter network using a communication protocol.

When a database server process is started, it will publish at least one network name that dis:
tinguishes it in the network. We say that the server stalistéa to the network using the

given network name. The network name consists of a communication protocol and an server
name.

To establish a connection from a client to to a server they both have to be able to use the
same communication protocol. The client has to know the network name of the server and
often also the location of theserver in the network. The client process uses the network name
to specify which server it wikonnecto.

This chapter will give you information on how to administer network names.

Network Names for SOLID Embedded Engine

The network name of a server consists cbamunication protocand aserver nameThis
combination identifies the embedded engine in the network. The network names are defined
in configuration filesolid.ini in[Com] section with the.isten parameter. The

solid.ini file should be located in the embedded engine program's working directory or
in the directory set by theOLIDDIR environment variable.

A server may use an unlimited number of network names. To make establishing connections
easier all components of network names are case insensitive.

Network names are managed on HEETWORHKage in SOLIDRemote Controbr directly
by editing the server configuration fiselid.ini . An example of an entry in
solid.ini

[Com]

Network Connections 6-1

Network Names for SOLID Embedded Engine

Listen= tcpip 1313, nmpipe solid

The example contains two network names which are separated by a comma. The first one
uses the protocol TCP/IP and the service port 1313, the other one uses the Named Pipes pro-
tocol with the name ‘solid’. In our example the ‘tcpip’ and ‘nmpipe’ are communication pro-
tocols while ‘1313’ and ‘solid’ are server names.

If the Listen parameter is not set in the SOLID.INI file, the environment dependent
defaults as used.

NOTE 1. When a database server process is started it publishes the network names it starts
to listen to. This information is also written to a file narsetinsg.out in the located in
the same directory as tbelid.ini file.

NOTE 2. Network names must be unique within one host computer. For example, you can-
not have two database servers running, both listening to the same TCP/IP port in one host,
but it is possible that the same port number is in use in different hosts. Exceptions to this are
the NetBIOS and IPX/SPX protocols, which require that used server names are unique
throughout the whole network.

To Add a Network Name for the Server

1. Open thesolid.ini file located in the working directory of your SOLEmbedded
Engineprocess.

2. View the parametdristen in the[Com] section.

3. Add a new network name to the list of network names. Use a comma (,) to separate nert-
work names.

4. Save the changes.

You need to restart the SOLIEmbedded Enginprocess to activate the changes.

To Modify a Network Name

1. Open thesolid.ini file located in the working directory of your SOLEmbedded
Engineprocess.

2. View the parametdristen in the[Com] section.
3. Edit the network name in the list of network names.
4. Save the changes.

You need to restart the SOLIEmbedded Enginprocess to activate the changes.

6-2 SOLID Administrator Guide

Network Name for Clients

To Remove a Network Name from the Server

1. Open thesolid.ini file located in the working directory of your SOLEmMbedded
Engineprocess.

2. View the parametdristen in the[Com] section.

3. Remove the network name from the list of network names.

4. Save the changes.

You need to restart the SOLIEmbedded Engingrocess to activate the changes.

NOTE: The modifications to network names does not become active immediately after edit-
ing thesolid.ini file.. You must restart the SOLIBmbedded Engingrocess.

HINT: You can disable a network name using option -d after the protocol name in the net-
work name:

tcp -d hobbes 1313, shmem -d solid

Network Name for Clients

The network name of a client consists @oanmunication protocogn optionahost com-

puter nameand aserver name By this combination the client specifies the server it will
establish a connection to. The communication protocol and the server name must match the
ones that the server is using in its network listening name. Most protocols need additionally
the host computer name to be specified if the client and server are running on different
machines. All components of the client's network name are case insensitive.

The client’s network names are defined in the configuratiorsdiligl.ini in the[Com]
section with theConnect parameter. Theolid.ini file should be located in the appli-
cation program's working directory or in the directory set bysB&IDDIR environment
variable.

The following connect line in theolid.ini of the application workstation will connect
an application (client) using the TCP/IP protocol to a SOLID server running on a host com-
puter named ‘spiff’ and listening with the name (port number in this case) ‘1313".

[Com]
Connect = tcpip spiff 1313

If the Connect parameter is not found in the configuration §itdid.ini the client uses

the environment dependent default instead. The defaults foistem andConnect

parameters are selected so that the application (client) will always connect to a local SOLID
serverlistening with a default network name. So the local communication (inside one
machine) does not necessarily need a configuration file for establishing a connection.

Network Connections 6-3

Communication Protocols

NOTE 1. When the connection is requested by client program usifgieConnect

function the network name of the server is given as a Data Source Name parameter for that
function. If the given name is not an empty string, its contents are used as a network name
and theConnect parameter in the configuration file is omitted. If an empty string is

passed, the possibly existi@pnnect parameter is used.

NOTE 2. In the Windows (95, 98, NT) operating system, the connection can be made by
using the SOLIDODBC Driver When a client program is using the SOLODBC Driver

the network name of the server can be used as the ODBC Data Source NameCamnd the
nect parameter in the configuration file is not used.

Communication Protocols

A client process and SOLIBEmbedded Engineommunicate with each other by using com-
puter networks and network protocols. A network operating system - for example, IBM
LAN Server or Novell NetWare - is not necessarily needed. You only need a functioning
communication protocol for both ends. Supported communication protocols depend on the
type of computer and network you are using.

The following paragraphs describe the supported communication protocols and common
environments that may be used and also show the required forms of network names for the
various protocols.

Shared Memory

Usually the fastest way two processes can exchange information is to use Shared Memory.
This can be used only when the embedded engine and application processes are both run-
ning in the same computer. The Shared Memory protocol uses a shared memory location for
moving data from one process to another.

To use the Shared Memory protocol in SOlHmbedded EnginsglectShMenfrom the
list of protocols in SOLIORemote Contrahnd enter server name. The server name has to be
unique only in this computer.

The Format Used in the solid.ini File
Server Listen = shmem <server name>
Client Connect = shmem <server name>

NOTE 1. Server names must be character strings less than 128 characters long.

6-4 SOLID Administrator Guide

Communication Protocols

TCP/IP

The TCP/IP protocol is typically used for communicating to a server process running under
a UNIX operating system. When starting an server using the TCP/IP protocol, you must
reserve a port number for it. You will find reserved port numbers ifethéservices

file of your system. Select a free number greater than 1024 since smaller numbers are usu-
ally reserved for the operating system.

To use the TCP/IP protocol, sel@@P/IP in the list of protocols in SOLIRRemote Con-
trol and enter a non-reserved port number.

The Format Used in the solid.ini File

Server Listen = tcpip <server port number>

Client Connect = tcpip [host computer name]
<server port number>

NOTE 1: If the server is running in the same computer with the client program, the host
computer name need not be specified. The client computer has to have the used host name
listed in itsetc/hosts file or it must be recognized by the DNS (Domain Name

Server). You can also give the host computer’'s TCP/IP address in dotted decimal format
(e.g.: 194.53.94.97) instead of its host name.

NOTE 2: On Windows 95, Windows 98, Windows NT and UNIX the TCP/IP protocol is
usually included in the operating system. On other environments (like VAX/VMS) the TCP/
IP software needs to be installed to the system. For a list of supported TCP/IP software, con-
tact your SOLID Embedded Engidealer.

NOTE 3: Using optioni<ip-address>or -i<host name> SOLID Embedded
Enginelistens only to the specified IP-address or host name. For example, a server with the
following setting insolid.ini

[com]
Listen = tcp -i127.0.0.1 1313

accepts connection requests only from inside the same machine, either referred by IP-
address 127.0.0.1 or with the name 'localhost’, if the DNS is correctly configured.

UNIX Pipes

The UNIX domain sockets (UNIX Pipes, Named Pipes, portals) are typically used when
communicating between two processes running in the same UNIX machine. UNIX Pipes
usually have a very good throughput. They are also more secure than TCP/IP since Pipes ca
only be accessed from applications that run on the computer where the server executes.

Network Connections 6-5

Communication Protocols

When starting a server using UNIX Pipes, you must reserve a unique listening name (inside
that machine) for the server, for instance, 'solid'. Because UNIX Pipes handle the UNIX
domain sockets as standard file system entries, there is always a corresponding file created
for every listened pipe. In SOLIEBmbedded Enginetsase, the entries are created under the
path '/tmp'. Our example listening name 'solid' creates the directory '/tmp/solunp_SOLID'
and shared files into that directory. The ‘/tmp/solunp_"is a constant prefix for all created
objects while the latter part (‘'SOLID' in this case) is the listening name in upper case format.

The Format Used in the solid.ini File
Server Listen = upipe <server name>
Client Connect = upipe <server name>

NOTE 1: Server and clientprocesses must run in the same machine in order to use UNIX
Pipes for communication.

NOTE 2: The server process must have a “write” permission to the directory '/tmp'.

NOTE 3: The client accessing UNIX Pipes must have an “execute” permission to the direc-
tory '/tmp'.

NOTE 4: The directory '/tmp' must exist.
NOTE 5: UNIX Pipes cannot be used in SCO UNIX.

NetBIOS
The NetBIOS protocol is commonly used in the Windows (95, 98, NT) operating systems.

To use NetBIOS protocol, selegetBIOS in the list of available protocols in SOLID
Remote ContrdNetwork pageand enter a non-reserved server name.

The Format Used in the solid.ini File
Server Listen = netbios [-aLANA NUMBER] <server name>
Client Connect = netbios [-aLANA_NUMBER] <server name>

NOTE 1. The server name must be a character string at most 16 characters long. It may not
begin with an asterisk (*).

NOTE 2. In the above format the optional -aLANA NUMBER is used to override the
default value of the LANA number.

NOTE 3. In Windows NT the available LANA numbers can be checked using the Network
Setup found in the Control Panel. The default value O may not be generally very good. You
should choose the one(s) where the protocol stack matches the other computers you are
using. The LANA number (Network Route: Nbf->EInk3->EInk31) that uses NetBEUI as a

6-6 SOLID Administrator Guide

Communication Protocols

transport usually functions quite smoothly when used for SOLID communication.

NOTE 4. The server names have to be unique in the whole network. Establishing a connec-
tion or starting the listener using the NetBIOS protocol may be somewhat slow because of
the checks needed for uniqueness.

NOTE 5. SOLIDEmbedded Enginand SOLID Client versions 2.2 and newer use all avail-
able LANA numbers by default. This makes it unnecessary to specify explicitly which
LANA number the application or embedded engine should use. For backward compatibility
the parameter ‘-aLANA_NUMBER'’ remains available.

Named Pipes
Named Pipes is a protocol commonly used in the Windows (95, 98, NT) operating systems.

Windows 95 and Windows 98 support Named Pipes only in client end communication. Win-
dows NT supports Named Pipes both in server and clint communication.

The Format Used in the solid.ini File

Server Listen = nmpipe <server name>

Client Connect = nmpipe [host computer name]
<server name>

NOTE 1: The server names must be character strings at most 50 characters long.

NOTE 2: If the server is running in the same computer with the application program, the
host computer name should not be specified.

NOTE 3: In order to connect to the SOLEMbedded Enginier Windows NT through

Named Pipes, the user must have at least the same rights as the user, who started the serve
For example if an administrator starts the server only, users with administrator’s rights are
able to connect to the server through Named Pipes. Similarly if a user with normal user’s
rights starts theserver all users with greater rights are able to connect the server through
Named Pipes. If a user doesn't have proper rights, SOLID Communication Error 21306 mes-
sage will be given.

NOTE 4: It is not recommended to use the Named Pipes communication from SOLID
Remote ControlThe asynchronous nature of SOLIR@mote Controtommunication may
cause problems with Named Pipes.

DECnet

The DECnet protocol is used to connect to an embedded engine running on a OpenVMS
system. To use this protocol in Windows NT, Windows 98 or Windows 95, you need to have
PATHWORKS 32 installed to your client computer.

Network Connections 6-7

Communication Protocols

To use the DECnet protocol, sel®fECnet in the list of protocols in SOLIRemote Con-
trol Network Page and enter a non-reserved server name.

The Format Used in the solid.ini File
Server Listen = decnet <server name>
Client Connect = decnet <node name> <server name>

NOTE: To establish a connection the DECnet node name of the server machine is config-
ured to your node database. The node name can be given either as a node number such as
‘1.1’ or as a node name such as ‘VAX1'.

IPX/SPX

The IPX/SPX protocol is used to communicate with SOEBbedded Enginfor Novell
Netware.

SOLID Embedded Enginfer Novell Netware starts listening with the default listening name

SOLID if no listening name is specified in the configuration gitdid.ini . When
SOLID Embedded Engingtarts, it prints out the network and node information of the server
machine.

The SOLID server listening name can be given as a character string or as a socket number. If
the given network name is a valid socket number, that is, hex number with exactly 4 charac-
ters (e.g. 400F) SOLIEmMbedded Engingtarts listening in the given port. If the network

name could not be interpreted as a socket number it is treated as a server name character
string and is published using Novell NetWare SAP (Service Advertising Protocol).

Connecting to a SOLIEmMbedded Enginaesing SAP needs specifying only the correct
server name i€onnect parameter. If the server is listening using some given port, the full
NLM server info (see comment below) has to be given.

To use the IPX/SPX protocol, seléBX/SPX in the list of protocols in SOLIRemote
Control and enter a non-reserved server name.

The Format Used in the solid.ini File
Server Listen = spx {<server name> | <socket number>}
Client Connect = spx {<NLM server info> |

<server name>}

NOTE 1. The server names must be less than 48 characters long.

NOTE 2. In the above format, <NLM server info> stands for a string containing the network
number, the node number and the socket number separated by colons. For example, <NLM

6-8 SOLID Administrator Guide

Communication Protocols

server info> for network 1, node 1, socket number 1313 is 00000001:000000000001:1313.
You can abbreviate the information by removing the leading zeros. The previous embedded
engine info could thus also be written as 1:1:1313.

<server name> stands for an alphanumeric string.

NOTE 3. The possibility to use socket numbers as the listening name is supported mainly for
historical reasons. SAPiIng is intended to be the primary method.

NOTE 4. After removing a network name or shutting down SOEiBbedded Engingsing
SOLID Remote Contrathe server name used may still remain reserved for up to one minute
although everything completes successfully. The error ‘network name in use’ is displayed if
SOLID Embedded Enginis restarted immediately. This is a ‘normal’ NetWare SAP feature
and happens more often if your network consists of more than one NetWare server. Propa-
gating the SAP cancellation packets to every network node may take a while.

A Summary of Protocols
The following tables summarize the possible operating systems and required forms for net-
work names for the various communication protocols.

NOTE: The following tables contain the protocols and operating systems that were available
when this guide was printed. For an updated list, contact your Sbinlfiedded Engine
dealer.

Network Connections 6-9

Communication Protocols

Embedded Engine Protocols and Network Names

Protocol Server OS Network name in solid.ini file

Shared Windows 95 Listen = shmem <server>
Windows 98

Memory Windows NT

NetBIOS Windows 95 Listen = netbios <server>
Windows 98
Windows NT

Named Pipes Windows NT Listen = nmpipe <server>

IPX/SPX

TCP/IP

UNIX Pipes

Novell Netware

Windows 95
Windows 98
Windows NT
UNIX

UNIX

Listen = spx <server>
Listen = spx <socket number>

Listen = tcpip <port>

Listen = upipe <server>

Application Protocols and Network Names

Protocol

Client OS

Network name in solid.ini file

Shared

Memory

NetBIOS

Named Pipes

IPX/SPX

TCP/IP

6-10 SOLID Administrator Guide

Windows 95
Windows 98
Windows NT

Windows 95
Windows 98
Windows NT

Windows 95
Windows 98
Windows NT

Novell Netware
Windows 95
Windows 98!
Windows NT?

Windows 95
Windows 98
Windows NT
UNIX

Connect = shmem <server>

Connect = nethios <server>

Connect = nmpipe [host] <server>

Connect = spx <server>
Connect = spx <NLM server info>

Connect = tcpip [host] <port>

Logical Data Source Names

UNIX Pipes UNIX Connect = upipe <server>
DECnet Windows 95 Connect = decnet <host> <server>
Windows 98
Windows NT?

1) requires Novell's Netware Client for Windows 95 and Windows NT
2) requires Digital PATHWORKS 32 for Windows 95 and Windows NT

Logical Data Source Names

SOLID Clients support Logical Data Source Names. These nhames can be used for giving a
database a descriptive name. This name can be mapped to a network name in three ways:

1. Using the parameter settings in the applicatisol#d.ini file.
2. Using the Windows operating systems registry settings.
3. Using settings in a solid.ini file located in the Windows directory.

This feature is available on all supported platforms. However, on non-Windows platforms,
only the first method is available.

A SOLID Client attempts to open the féelid.ini first from the directory set by the
SOLIDDIR environment variable. If the file is not found from the path specified by this
variable or if the variable is not set, an attempt is made to open the file from the current
working directory.

To define a Logical Data Source Name usingsthiéd.ini file, you need to create a

solid.ini file containing the sectiojData Sources] . In that section you need to

enter the ‘logical name’ and ‘network name’ pairs that you want to define. The syntax of the
parameters is the following:

[Data Sources]
<logical name> = <network name>, <Description>

In the description field, you may enter comments on the purpose of this logical name.

If, for example, you want to define a logical name for the application ‘My_application’, and
the database is located in a UNIX server that you want to connect to by using TCP/IP. You
should include the following lines to the solid.ini file, which you need to place in the work-

ing directory of your application:

[Data Sources]
My_application = tcpip irix 1313, Sample data source

Network Connections 6-11

Logical Data Source Names

When your application now calls the Data Source ‘My_application’, the SOLID Client maps
this to a call to ‘tcpip irix 1313".

On Windows platforms (Windows 95, Windows 98 and Windows NT), the registry can be
used to map Data Sources. These follow the standards of mapping ODBC Data Sources on a
system.

In Windows 95, Windows 98 and Windows NT, a Data Source may be defined in the Win-
dows Registry. The entry is searched from the path “software\odbc\odbc.ini”

1. first under the root HKEY_CURRENT_USER and if not found,
2. under the root HKEY_LOCAL_MACHINE.
The order of resolving a Data Source name in Windows systems is the following:

1. Look for the Data Source Name from #wid.ini file in the current working direc-
tory, under the sectigiData Source]

2. Look for the Data Source Name from the following registry path
HKEY_CURRENT_USER\software\odbc\odbc.inNDSN

3. Look for the Data Source Name from the following registry path
HKEY_LOCAL_MACHINE\software\odbc\odbc.ini\DSN

In case an application uses normal ODBC Data Sources, the network name is mapped nor-
mally using the methods that are provided in the ODBC Driver Manager.

6-12 SOLID Administrator Guide

v

Configuration

This chapter describes how to configure the SOEHbedded Engin® meet your environ-
ment, performance, and operation needs. It includes SEhiBedded Engingarameters

and their settings. The topic Managing Parameters in this chapter gives you step-by-step
instructions on how to view and set the parameter values dtatheneters page in

SOLID Remote Control

Configuration File and Default Settings

When SOLIDEmbedded Enginis started, it attempts to open the configuration file

solid.ini first from the directory set bOLIDDIR environment variable. If the file is

not found from the path specified by this variable or if the variable is not set, an attempt is
made to open the file from the current working directory.

The configuration values for the embedded engine parameters are included in this file. If the
file does not exist, SOLIEmbedded Engineill use default settings for the parameters.

Also, if a value for a parameter is not set ingbkd.ini file, SOLID Embedded Engine

will use a default value for the parameter. The default values depend on the operating sys-
tem you are using.

Generally, default settings offer good performance and operability, but in some cases modi-
fying some parameter values can improve performance.

Most Important Parameters

The following paragraphs will explain the most important SOEBbedded Enginparam-
eters and their default settings. $ggpendix B, “Configuration Parametersif this manual
for a description of all parameters.

Configuration 7-1

Most Important Parameters

[Com]

Connect

Listen

The parameteConnect in the[Com] section defines a network name for an application
program. The application program will establish a connection to an embedded engine pro-
gram with a similatisten network name. The format for these parameters is explained in
the chapteCommunication protocols.

If the connect information is defined in the application program witls@eConnect

function, this parameter is ignored. In the Windows operating systems the connection can be
made by using SOLIDDBC driver When an application program is using a SOLID

ODBC driverthe ODBC Data Source Name is used andbenect parameter has no

effect. Thesolid.ini file, which includes th€onnect parameter, must be located in

the application program’s working directory or in the directory s&®¥IDDIR environ-

ment variable.

The following connect line will connect a client program using the TCP/IP protocol to a
SOLID Embedded Engine running in a computer named ‘spiff’ and server port number
1313

connect = tcpip spiff 1313

[IndexFile]
FileSpec_[1...N]

In SOLID Embedded Engingata and indexes are stored in the same logical files. The term
‘index file’ is used here as a synonym for the term ‘database file'.

TheFileSpec parameter describes the location and the maximum size of the index file
(database file). You can use it to define the location and maximum value the index file may
grow to.

TheFileSpec parameter accepts the following three arguments:
« database file name

« max filesize

« device number (optional)

You can also use thHéleSpec parameter to divide the index file into multiple files and
onto multiple disks. To do this, specify anotRdeSpec parameter identified by the num-
ber2. The index file will be written to the second file if it grows over the maximum value of

7-2 SOLID Administrator Guide

Most Important Parameters

the firstFileSpec parameter. The default value for this parameter is solid.db, 2147483647
(which equals 2 GB expressed in bytes).

FileSpec_1=SOLID.DB 2147483647

In the following example, the parameters divide the index file on the disks C:, D: and E: to
be split after growing larger than 1 GB (=1073741824 bytes).

FieSpec_1=ci\soldb\solid.1 1073741824 1
FieSpec_2=Disoldb\solid.2 1073741824 2
FieSpec_3=Gi\soldb\solid.3 1073741824 3

NOTE. The index file locations entered must be valid path names in the server’s operating
system. For example, if the server runs on a UNIX operating system, path separators must b
slashes instead of backslashes.

Although the database files reside in different directories, the file names must be unique. In
the above example, it is assumed that C:, D: and E: partitions reside on separate physical
disks.

Splitting the index file on multiple disks will increase the performance of the server because
multiple disk heads will access the data in your index file. There is no limit to the number of
index files you may use.

If the database file is split into multiple physical disks, then multithreaded SOLID Embed-
ded Engine is capable of assigning a separate disk I/O thread for each device. This way the
server can perform database file I/O in a parallel manner.

[General]

BackupDirectory

Backups of the database, log files and the configuratiosdiid.ini are copied to the
backup directory. The default directofyackup’ is a directory relative to your SOLID
directory. For example if the parameter is

BackupDirectory=bu

then the backup will be written to a directory that is a sub-directory of the SOLID directory.
You may also specify a absolute path name for the directory. For example:

BackupDirectory=e:\backup\solid

The backup directory must exist and it must have enough disk space for the backup files. It
can be set to any existing directory except the database file directory, the log file directory or
the working directory.

NOTE. The backup directory entered must be a valid path name in the server’s operating

Configuration 7-3

Most Important Parameters

system! For example if the server runs on a UNIX operating system, path separators must be
slashes instead of backslashes.

[Logging]

FileNameTemplate

The transaction log files are created automatically to the directory specified and by using the
filename structure specified by the param&ilNameTemplate in theLogging sec-

tion. For example, the following setting

FileNameTemplate = dNlogdinsol#####.log

instructs SOLIDEmbedded Engire create log files to directogz\logdir and to name
them sequentially starting froeol00001.log

[Sorter]
TmpDir_[1...N]
TheTmpDir[1...N] parameter in th8orter section specifies the directory (or directo-

ries) that can be used for the external sorter algorithm which is used for sorting processes
that do not fit in main memory. All temporary files used by the external sort are created in
this directory (or directories) and are automatically deleted. Setting this parameter enables
the use of external sorter.

[IndexFile]
CacheSize

TheCacheSize parameter (the default value depends on the server operating system)
defines the amount of main memory the server allocates for the cache. Although SOLID
Embedded Enginis able to run with a small cache size, a larger cache size speeds up the
server. The cache size needed depends on the size of the index file, the number of connected
users, and the nature of the operations executed against the server.

[Srv]

Threads

TheThreads parameter in thESrv] section defines the amount of threads the SOLID
Embedded Engineill use in addition to the communication, /O and log manager threads.
The default value is two threads for embedded engine use. The optimum number of threads
depends on the number of processors available. Finding the value that provides the best per-
formance requires experimentation. A good formula to start with is:

threads= (2 x number of processors) + 1

7-4 SOLID Administrator Guide

Managing Parameters

[SQL]

Info

Thelnfo parameter in thESQL] section specifies the tracing level on the SQL parser and
optimizer as an integer between 0 (no tracing) and 9 (extensive trace outputting). Trace
information will be output to the file namadltrace.out in the SOLID directory.

[Com]
Trace
TraceFile

These parameters control the outputting of network trace information vital to solving possi-
ble network problems. By setting the param@&teice to the valueres, SOLID Embed-

ded Enginestarts logging trace information on network messages to the file specified in the
TraceFile parameter.

Managing Parameters

SOLID Embedded Engingarameters and their values can be viewed and modified by edit-
ing thesolid.ini file in the SOLID directory.

To View and Set Configuration Parameter Values

1. Open thesolid.ini file located in the working directory of your SOLEmMbedded
Engineprocess.

2. View the value of the parameter

3. If necessary add the section, parameter and parameter's value.

4. Save the changes.

You need to restart the SOLIEmbedded Engingrocess to activate the changes.

The parameters displayed are the parameters currently active in the server. If you have not
set a parameter value, the displayed value is the default value for the parameter. The default
values are set at start-up and depend on the operating system E@bh#dded Enginains

on.

NOTE 1. To force a parameter value change to take effect you must shut down and restart
the SOLIDEmbedded Engingrocess.

NOTE 2. The new parameter values are not checked by the server. Setting an unreasonable
value for a parameter may result in an operation failure the next time the server process is
started. Do not set a parameter to a random value unless you know what you are doing. Use
the default parameter values as an indication on the value range.

Configuration 7-5

Managing Parameters

Constant Parameter Values

The values of some parameters were set when the database was created and they cannot be
modified afterwards.

If you want to use different constant values, you have to create a new database. Before creat-

ing a new database, set new constant values by editisgltdeni file in the SOLID
directory.

The example below sets a new block size for the index file by adding the following lines to
thesolid.ini file:

[Indexdile]

Blocksize=4096

After editing and saving theolid.ini file, move the old database and log files, and start
SOLID Embedded Enginé he server program will create a new database with the new con-
stant values from theolid.ini file.

7-6 SOLID Administrator Guide

8

Performance Tuning

This chapter discusses techniques that you can use to improve the performance of SOLID
Embedded Engine

Tuning SQL Statements and Applications

Tuning the SQL statements, especially in applications where complex queries are involved,
is generally the most efficient means of improving the database performance.

You should tune your application before tuning the RDBMS because:

« during application design you have control over the SQL statements and data to be pro-
cessed

« you can improve performance even if you are not familiar with the internal working of
the RDBMS you are going to use

« if your application is not tuned well, it will not run well even on a well-tuned RDBMS

So, find out what data your application processes, what are the SQL statements used and
what operations the application performs on the data.

Using SOLID Server Diagnostic Tools

SOLID Embedded Engingrovides the following tools that may be helpful in tuning appli-
cations:

« the SQL info facility
« the EXPLAIN PLAN statement

ReadChapter 9, “Diagnostics and Troubleshootinfgr additional information on how to
use these tools.

Performance Tuning 8-1

Tuning SQL Statements and Applications

Indexes

You can use indexes to improve the performance of queries. A query that references an
indexed column in its WHERE clause can use the index. If the query selects only the
indexed column, the query can read the indexed column value directly from the index, rather
than from the table.

If a table has a primary key, SOLEEmbedded Enginerders the rows on disk in the order
of the values of the primary key. Otherwise the rows are ordered using the ROWID, that is,
the rows are stored on disk in the order they are inserted into the database.

Indexes improve the performance of queries that select a small percentage of rows from a
table. You should consider using indexes for queries that select less than 15% of table rows.

Full table scan

If a query does not use an index, SOlHMbedded Enginmust perform a full table scan to
execute the query. This involves reading all rows of a table sequentially. Each row is exam-
ined to determine whether it meets the criteria of the query’s WHERE clause. Finding a sin-
gle row with an indexed query can be substantially faster than finding the row with a full
table scan. On the other hand, a query that selects more than 15% of a table’s rows may be
performed faster by a full table scan than by an indexed query.

To perform a full table scan, every block in the table is read. For each block, every row
stored in the block is read. To perform an indexed query the rows are read in the order in
which they appear in the index, regardless of which blocks contain them. If a block contains
more than one selected row it may be read more than once. So, there are cases when a full
table scan requires less 1/O than an indexed query.

Concatenated indexes

An index can be made up of more than one column. Such an index is called a concatenated
index. It is recommended to use concatenated indexes when possible.

Whether or not a SQL statement uses a concatenated index is determined by the columns
contained in the WHERE clause of the SQL statement. A query can use a concatenated
index if it references a leading portion of the index in the WHERE clause. A leading portion
of an index refers to the first column or columns specified in the CREATE INDEX state-
ment.

Example:

create indexjob_sal deptno on emp(job, sal, deptno);

This index can be used by these queries:

select * from emp where job =‘clerk and sal =

8-2 SOLID Administrator Guide

Tuning Memory Allocation

800 and deptno = 20;
select * from emp where sal = 1250 and job = salesman;
select job, sal from emp where job = ‘manager’;

The following query does not contain the first column of the index in its WHERE clause and
cannot use the index:

select * from emp where sal = 6000;

Choosing columns to index

The following list gives guidelines in choosing columns to index:

« index columns that are used frequently in WHERE clauses

« index columns that are used frequently to join tables

« index columns that are used frequently in ORDER BY clauses

« index columns that have few of the same values or unique values in the table.

« do not index small tables (tables that use only a few blocks) because a full table scan
may be faster than an indexed query

« if possible choose a primary key that orders the rows in the most appropriate order

« if only one column of the concatenated index is used frequently in WHERE clauses,
place that column first in the CREATE INDEX statement

« if more than one column in concatenated index is used frequently in WHERE clauses,
place the most selective column first in the CREATE INDEX statement

Tuning Memory Allocation

Tuning Your Operating System

Your operating system may store information in
« real memory

« Vvirtual memory

« expanded storage

« disk

Your operating system may also move information from one location to another. Depending
on your operating system, this movement is called paging or swapping. Many operating sys-
tems page and swap to accommodate large amounts of information that do not fit into real

Performance Tuning 8-3

Tuning I/0

memory. However, this takes time. Excessive paging or swapping can reduce the perfor-
mance of your operating system and indicates that your system’s total memory may not be
large enough to hold everything for which you have allocated memory. You should either
increase the amount of total memory or decrease the amount of database cache memory allo-
cated.

Database Cache

The information used by SOLIEmbedded Enginis stored either in memory or on disk.
Since memory access is faster than disk access, it is desirable for data requests to be satis-
fied by access to memory rather than access to disk.

The basic element of the database server memory management system is a pool of central
memory buffers of equal size. The size of the memory buffers and their amount can be con-
figured to meet the demands of different application environments.

Database cache uses available memory to store information that is read from the hard disk.
When an application next time requests this information, the data is read from memory
instead of from the hard disk. The default value of cache depends on the platform used and
can be changed by changing thacheSize parameter. Increasing the value is recom-
mended when there are several concurrent users.

The following values can be used as a starting point:

« adedicated server with 16 MB RAM: Cachesize 4 MB
« adedicated server with 32 MB RAM: Cachesize 10 MB
« adedicated server with 64 MB RAM: Cachesize 30 MB

NOTE. You should increase the valueGzchesize very carefully. Too large a value leads
to very poor performance.

Tuning 1/O

The performance of many software systems is inherently limited by disk I/O. Often CPU
activity must be suspended while 1/O activity completes.

Distributing I/O

Disk contention occurs when multiple processes try to access the same disk simultaneously.
To avoid this, move files from heavily accessed disks to less active disks until they all have
roughly the same amount of I/O.

Follow these guidelines:

« Use a separate disk for log files

8-4 SOLID Administrator Guide

Tuning Checkpoints

Sorting

« divide your database into several files and place each of these database files on a sepa-
rate disk

« consider using a separate disk for the external sorter

SOLID Embedded Engindoes all sorting by default in memory. The amount of memory
used for sorting is determined by the param8@RTARRAYSIZEn the[SQL] section. If
the amount of data to be sorted does not fit into the allocated memory, you may want to
increase the value of the param&@&RTARRAYSIZEIf there is not enough memory to
increase the value SORTARRAYSIZEou should activate external sort that stores inter-
mediate information to disk.

The external disk sort is activated by adding the following section and parameters in the con-
figuration file solid.ini

[sorter]
TmpDir_1=cMmp

Additional sort directories are added with similar definitions:

[sorter]

TmpDir_1=cMmp
TmpDir_2 =dMmp
TmpDir_3=e\mp

Defining more than one sorter temporary directory on separate physical disks significantly
improves sort performance by balancing the I/O load to multiple disks.

Tuning Checkpoints

Checkpoints affect:
« recovery time performance
« runtime performance

Frequent checkpoints can reduce the recovery time in the event of a system failure. If the
checkpoint interval is small, then relatively few changes to the database are made between
checkpoints and relatively few changes must be recovered.

Checkpoints cause SOLIBmbedded Engine perform 1/0, so they momentarily reduce
the runtime performance. This overhead is usually small.

Performance Tuning 8-5

Tuning Checkpoints

8-6 SOLID Administrator Guide

9

Diagnostics and Troubleshooting

This chapter provides information on the following SOlHBbedded Engindiagnostic
tools:

« SQL info facility and the EXPLAIN PLAN statement used to tune your application and
identify inefficient SQL statements in your application.

« Network trace facility used to trace the server communication
« Ping facility used to trace client communication

You can use these facilities to observe performance, troubleshooting, and produce high qual-
ity problem reports.

In addition, this chapter describes how, using SOEmbedded Enginetliagnostic tools,
you can capture all relevant information about a problem quickly produce a problem report
under various categories, such as SQL API, ODBC Driver, JDBC Driver, etc.

Diagnostics and Troubleshooting 9-1

Observing Performance

Observing Performance

The SQL Info Facility

Run your application with the SQL Info facility enabled. The SQL Info facility generates
information for each SQL statement processed by SMrtibedded Engine

SQL Info levels

Info value Information

0 no output

1 table, index, and view info in SQL format

2 SQL execution graphs

3 some SQL estimate info, Solid selected
key name

4 all SQL estimate info, Solid selected key
info

5 Solid info also from discarded keys

6 Solid table level info

7 SQL info from every fetched row

8 Solid info from every fetched row

The SQL Info facility is turned on by setting a non-zero value tdrtfoe parameter in the
[SQL] section of the configuration file. The output is written to a file nasoed
trace.out in the SOLID directory.

Example:

[SQL]

info=1

The SQL Info facility can also be turned on with the following SQL statement (this sets SQL
Info on only for the client that executes the statement):

SETSQLINFOONLEVEL infovalue FILE fie-name

and turned off with the following SQL statement:
SET SQL INFO OFF

9-2 SOLID Administrator Guide

Observing Performance

Example:
SET SQL INFO ON LEVEL 1 FILE ‘my_query.txt

The EXPLAIN PLAN Statement
The syntax of the EXPLAIN PLAN statement is:
EXPLAIN PLAN FOR sql-statement
The EXPLAIN PLAN statement is used to show the execution plan that the SQL optimizer
has selected for a given SQL statement. An execution plan is a series of primitive opera-

tions, and an ordering of these operations, that S@ribedded Engingerforms to exe-
cute the statement. Each operation in the execution plan is called a unit.

Unit Description

JOIN UNIT Join unit joins two or more tables. The join
can be done by using loop join or merge
join. Note that the join unit is generated
also for queries that reference only a sin-
gle table. In that case no join is executed in
the join unit, the join unit just passes the
rows without manipulating them.

TABLE UNIT Table unit is used to fetch the data rows
from a table. Table unit is always the last
unit in the chain, since it is responsible for
fetching the actual data from the index or
table.

ORDER UNIT Order unit is used to order rows for group-
ing or to satisfy ORDER BY. The ordering
can be done in memory or using an exter-
nal disk sorter.

GROUP UNIT Group unit is used to do grouping and
aggregate calculation.

Explain Plan Table Columns
The table returned by the EXPLAIN PLAN statement contains the following columns.

Column name Description

ID The output row number, used only to guarantee that the
rows are unique.

Diagnostics and Troubleshooting 9-3

Observing Performance

UNIT_ID This is the internal unit id in the SQL interpreter. Each
unit has a different id. The unit id is a sparse sequence of
numbers, because the SQL interpreter generates unit ids
also for those units that are removed during the optimiza-
tion phase. If more than one row has the same unit id it
means that those rows belong to the same unit. For for-
matting reasons the info from one unit may be divided
into several different rows.

PAR_ID Parent unit id for the unit. The parent id number refers to
the id in the UNIT_ID column.

JOIN_PATH For join unit there is a join path which specifies which
tables are joined in the join unit and the join order for
tables. The join path number refers to the unit id in the
UNIT_ID column. It means that the input to the join unit
comes from that unit. The order in which the tables are
joined is the order in which the join path is listed. The
first listed table is the outermost table in a loop join.

UNIT_TYPE Unit type is the execution graph unit type.

INFO Info column gives additional info. It may contain e.g.
index usage, the database table name and constraints used
in the database engine to select rows. Note that the con-
straints listed here may not match those constraints given
in the SQL statement.

The following texts may exist in the INFO column for different types of units.

Unit type Text in Info column Description

TABLE UNIT <tablename> The table unit refers to table
<tablename>.

TABLE UNIT <constraints> The constraints that are passed
to the database engine are
listed. If for example in joins
the constraint value is not
known in advance, the con-
straint value is displayed as
NULL.

TABLE UNIT SCAN TABLE Full table scan is used to
search for rows.

9-4 SOLID Administrator Guide

Observing Performance

TABLE UNIT

TABLE UNIT

TABLE UNIT

TABLE UNIT

JOIN UNIT

JOIN UNIT

ORDER UNIT

ORDER UNIT

SCAN <indexname>

PRIMARY KEY

INDEX <indexname>

INDEX ONLY <indexname>

MERGE JOIN

LOOP JOIN

NO ORDERING REQUIRED

EXTERNAL SORT

Index <indexname> is used to
search for rows. If all selected
columns are found from an
index, sometimes it is faster to
scan the index instead of the
clustering key because the
index has fewer disk blocks.

The primary key is used to
search rows. This differs from
SCAN in that the whole table

is not scanned because there is
a limiting constraint to the pri-
mary key attributes.

Index <indexname> is used to
search for rows. For every
matching index row, the actual
data row is fetched separately.

Index <indexname> is used to
search for rows. All selected
columns are found from the
index, so the actual data rows
are not fetched separately.

Merge join is used to join the
tables.

Loop join is used to join the
tables.

No ordering is required, the
rows are retrieved in correct
order from the database
engine.

External sorter is used to sort
the rows. To enable external
sorter, the temporary direc-
tory name must be specified in
the Sorter section of the con-
figuration file.

Diagnostics and Troubleshooting 9-5

Observing Performance

ORDER UNIT FIELD <n> USED AS PARTIAL Internal sorter (in-memory
ORDER sorter) is used for sorting and

the rows retrieved from the
database engine are partially
sorted with column number
<n>. The partial ordering
helps the internal sorter to
avoid multiple passes over the
data.

ORDER UNIT NO PARTIAL SORT Internal sorter is used for sort-
ing and the rows are retrieved
in random order from the data-

base engine.
Example 1
EXPLAIN PLAN FOR SELECT * FROM TENKTUP1 WHERE UNIQUE2_NIBETWEEN 0 AND
99;
JOIN_ UNIT
ID UNIT_ID PAR_ID PATH TYPE INFO
1 2 1 3 JOIN UNIT
2 3 2 0 TABLE UNIT TENKTUP1
3 3 2 0 FULL SCAN
4 3 2 0 UNIQUE2_NI
<=99
5 3 2 0 UNIQUEZ2_NI
>=0
6 3 2 0

Execution graph:
JOIN UNIT 2 gets input from TABLE UNIT 3

TABLE UNIT 3 for table TENKTUP1 does a full table scan with constraints UNIQUE2_NI
<=99 and UNIQUE2_NI>=0

9-6 SOLID Administrator Guide

Observing Performance

JOIN UNIT 2

JOIN_PATH 3

TABLE UNIT 3

Example 1. Execution graph

Example 2

EXPLAIN PLAN FOR SELECT * FROM TENKTUP1, TENKTUP2 WHERE TENKTUP1.UNIQUEZ2
> 4000 AND TENKTUPL.UNIQUE2 < 4500 AND TENKTUPLUNIQUE2 =

TENKTUP2.UNIQUE2;
JOIN_ UNIT_

ID UNIT_ID PAR_ID PATH TYPE INFO

1 6 1 9 JOIN UNIT MERGE JOIN

2 6 1 10

3 9 6 0 ORDER UNIT NO ORDER-
ING
REQUIRED

4 8 9 0 TABLE UNIT TENKTUP2

5 8 9 0 PRIMARY
KEY

6 8 9 0 UNIQUE2 <
4500

7 8 9 0 UNIQUE2 >
4000

8 8 9 0

9 10 6 0 ORDER UNIT NO ORDER-
ING
REQUIRED

10 7 10 0 TABLE UNIT TENKTUP1

Diagnostics and Troubleshooting 9-7

Tracing Communication between Client and Server

11 7
12 7
13 7
14 7

Execution graph:

10

10

10

10

PRIMARY
KEY

UNIQUE2 <
4500

UNIQUE2 >
4000

JOIN UNIT 6 the input from order units 9 and 10 are joined using merge join algorithm

ORDER UNIT 9 orders the input from TABLE UNIT 8. Since the data is retrieved in cor-
rect order, no real ordering is needed

ORDER UNIT 10 orders the input from TABLE UNIT 7. Since the data is retrieved in cor-
rect order, no real ordering is needed

TABLE UNIT 8: rows are fetched from table TENKTUP2 using primary key. Constraints
UNIQUEZ2 < 4500 and UNIQUE2 > 4000 are used to select the rows

TABLE UNIT 7: rows are fetched from table TENKTUPL1 using primary key. Constraints
UNIQUEZ2 < 4500 and UNIQUE2 > 4000 are used to select the rows

JOIN UNIT 6

JOIN_PATH 9

ORDER UNIT 9

I

TABLE UNIT 8

JOIN_PATH 10

ORDER UNIT 10

I

TABLE UNIT 7

Example 2. Execution graph

Tracing Communication between Client and Server

SOLID Embedded Engingrovides following tools for observing the communication

between an application and an embedded engine:

« the Network Trace facility

9-8 SOLID Administrator Guide

Tracing Communication between Client and Server

« the Ping facility

You can use these tools to analyze the functionality of the networking between an applica-
tion and an embedded engine. The network trace facility should be used when you want to
know why a connection is not established to an embedded engine. The ping facility is used
to determine how fast packets are transferred between an application and an embedded
engine.

The Network Trace Facility

Network tracing can be done on the embedded engine computer, on the application com-
puter or on both computers concurrently. The trace information is written to the default trace
file or file specified in th&raceFile parameter.

The default name of the output file is SOLTRACE.OUT. This file will be written to the cur-
rent working directory of the server or client depending on which end the tracing is started.

The file contains information about:

« loaded DLLs

« network addresses

« possible errors

The Network Trace facility is turned on by editing the configuration file

[Com]

Trace ={Yes|No}

; default No

TraceFile = fle-name
; default solrace.out

or by using the environment variab®®LTRACENdSOLTRACEFILEto override the def-
initions in the configuration file. Setting SOLTRACENdSOLTRACEFILEenvironment
variables have the same effect as the paranietace andTraceFile in the configura-
tion file.

NOTE: Defining theTraceFile configuration parameter or tis8OL TRACEFILEenvi-
ronment variable automatically turns on the Network trace facility.

A third alternative to turn on the Network trace facility is to use the option -t andiler -o
nameas a part of the network name. The option -t turns on the Network trace facility. The
option -o turns on the facility and defines the name of the trace output file.

Diagnostics and Troubleshooting 9-9

Tracing Communication between Client and Server

Example 1. Defining Parameter Trace in the Configuration File
[Com]

Connect=nmp SOLID

Listen =nmp SOLID

Trace=Yes

Example 2. Defining Environment Variables
set SOLTRACE =Yes

or

set SOLTRACEFILE =trace.out

Example 3. Using Network Name Options

[Com]
Connect =nmp -t solid
Listen = nmp -t solid

or

[Com]
Connect = nmp -oclient.out solid
Listen = nmp -oserver.out solid

The Ping Facility

The Ping facility can be used to test the performance and functionality of the networking.
The Ping facility is built in all SOLID client applications and is turned on with the network
name option -jevel

The output file will be written to the current working directory of the computer where the
parameter is given. The default name of the output file is SOLTRACE.OUT.

Clients can always use the Ping facility at level 1. Levels 2, 3, 4 or 5 may only be used if the
server is set to use the Ping facility at least at the same level.

The Ping facility levels are:

Setting Function Description

0 no operation do nothing, default

9-10 SOLID Administrator Guide

Tracing Communication between Client and Server

1 check that server is alive exchange one 100 byte
message
2 basic functional test exchange messages of

sizes 0.1K, 1K, 2K..30K,
increment 1K

3 basic speed test exchange 100 messages of
sizes 0.1K, 1K, 8K and
display each sub-result
and total time

4 heavy speed test exchange 100 messages of
sizes 0.1K, 1K, 2K, 4K,
8K, 16K and display each
sub-result and total time

5 heavy functional test exchange messages of
sizes 1..30K, increment 1
byte

Example 1

The client turns on the Ping facility by using the following network name:

nmp 41 -oping.out SOLID

This runs the Ping facility at the level 1 into a file named SOLTRACE.OUT. This test checks
if the server is alive and exchanges one 100 byte message to the server.

After the Ping facility has been run, the client exits with the following message:

SOLID Communication retum code xxx: Ping test successfulfailed,
results are in file FFF.XX

Example 2
If the server is using the following listen parameter

[Com]
Listen =nmp -p3 SOLID
clients can run the Ping facility at levels 1, 2 and 3, but not 4 and 5.

NOTE. Ping clients running at level greater than 3 may cause heavy network traffic and may
cause slowness of application using the network. They will also slow down ordinary SQL
clients connected to the same SOIHmMbedded Engine

Diagnostics and Troubleshooting 9-11

Problem Reporting

Problem Reporting

SOLID Embedded Engineffers sophisticated diagnostic tools and methods for producing
high quality problem reports with very limited effort. Use the diagnostic tools to capture all
the relevant information about the problem.

All problem reports should contain the following files and information:
« solid.ini

« license number

« solmsg.out

« solerror.out

« Soltrace.out

« problem description

« steps to reproduce the problem

« all error messages and codes

« contact information, preferably email address of the contact person

Problem Categories

Most problems can be divided into the following categories:

« SOLID SQL API

« SOLID ODBC Driver

« UNIFACE driver for SOLIDEmbedded Engine

« Communication problems between the application and S@nibedded Engine

The following pages include a detailed instructions to produce proper problem report for
each problem type. Please follow the guidelines carefully.

SOLID SQL API Problems

If the problem concerns the performance of SOBIRL APlor a specific SQL statement,
you should run SQL info facility at level 4 and include the genersittthce.out file
into your problem report. This file contains the following information:

. create table statements

. create view statements

9-12 SOLID Administrator Guide

Problem Categories

« create index statements

« SQL statement(s)

SOLID ODBC Driver Problems

If the problem concerns the performance of SOLID ODBC Driver, please include the follow-
ing information:

« SOLID ODBC Drivername, version, and size
« ODBC Driver Manager version and size

If the problem concerns the cooperation of SOERbedded Enginand any third party
standard software package, please include the following information:

« Full name of the software

« Version and language

« Manufacturer

« Error messages from the third party software package

Use ODBC trace option to get a log of the ODBC statements and include it to your problem
report.

SOLID JDBC Driver Problems

If the problem is related to the SOLIDBC Driver, please include the following informa-
tion into your problem report:

« Exact version of JDK used
« Size and date of the SOLIDDriver class package
« Contents of DriverManager.setLogStream(someOutputStream) output, if available

« Call stack (that is, Exception.printStackTract() output) of the application, if an Excep-
tion has occurred n the application

UNIFACE Driver for SOLID Embedded Engine Problems

If the problem concerns the performance of SOLID UNIFACE Driver, please include follow-
ing information:

« SOLID UNIFACE Driverversion and size
« UNIFACE version and platform

Diagnostics and Troubleshooting 9-13

Problem Categories

« Contents of the UNIFACE message frame
« Error codes from the driver, $STATUS, $ERROR
« All necessary files to reproduce the problem (TRXs, SQL scripts, USYS.ASN etc.)

Communication between a Client and Server

If the problem concerns the performance of the communication between a client and server
use the Network trace facility and include the generated trace files into your problem report.
Please include the following information:

« SOLID communication DLLs used: version and size
« other communication DLLs used: version and size

« description of the network configuration

9-14 SOLID Administrator Guide

A

Error Codes

Error Categories

SQL Errors

These errors are caused by erroneous SQL statements and are detected by the SOLID SQL
Parser. Administrative actions are not needed.

Database Errors

These errors are detected by the SOEAbedded Enginand may demand administrative
actions.

System Errors
These errors are detected by the operating system and demand administrative actions.

Table Errors

These errors are caused by erroneous SQL statements and detected by thES8d#dD
ded EngineAdministrative actions are not needed.

Server Errors

These errors are caused by erroneous administrative actions or client requests. They may
demand administrative actions.

Communication Errors

These errors are caused by network errors or faulty configuration of the EbitBdded
Enginesoftware. These errors demand administrative actions.

Error Codes A-1

Error Categories

Procedure Errors

These errors are caused by errors in the definition or execution of a stored procedure.
Administrative actions are not needed.

See also:

SeeAppendix C, “Data TypesindAppendix D, “SOLID SQL Syntaxfor more informa-
tion.

A-2 SOLID Administrator Guide

SOLID SQL Errors

SOLID SQL Errors

Error code

Description

SQL Error 1

SQL Error 2

SQL Error 3

SQL Error 4

SQL Error 5

SQL Error 6

SQL Error 7

SQL Error 8

SQL Error 9

SQL Error 10

Parsing error ‘syntax error’

The SQL parser could not parse the SQL string. Check
the syntax of the SQL statement and try again.

Table <table> can not be opened

You may not have privileges to access the table and its
data.

Table <table> can not be created

Table can not be created. You may not have privileges for
this operation.

lllegal type definition <column>

A column type in your CREATE TABLE statement is
illegal. Use a legal type for the column.

Table <table> can not be dropped

Table can not be dropped. Only the owner (i.e. the cre-
ator) can drop it.

lllegal value specified for column <column>

The value specified for column is invalid. Check the value
for the column.

Insert failed

The server failed to do the insertion. You may not have
INSERT privilege on the table or it may be locked.

Delete failed

The server failed to do the deletion. You may not have
DELETE privilege on the table or the row may be locked.

Row fetch failed

The server failed to fetch a row. You may not have
SELECT privilege on the table or there may be an exclu-
sive lock on the row.

View <view> can not be created

Error Codes A-3

SOLID SQL Errors

SQLErrorll

SQLErrorl2

SQLErrorl3

SQL Error 14

SQL Error 15

SQL Error 16

SQL Error 17

SQL Error 18

SQL Error 19

SQL Error 20

A-4 SOLID Administrator Guide

You cannot create this view. You may not have SELECT
privilege on one or more tables in the query-specification
of your CREATE VIEW statement.

View <view> cannot be dropped.

You cannot drop this view. Only the owner (i.e. the cre-
ator) of the view can drop it.

lllegal view definition <view>

The view definition is illegal. Check the syntax of the def-
inition.

lllegal column name <column>

Column name is illegal. Check that the name is not a
reserved name.

Call to function <function> failed

Function call to function failed. Check the arguments and
their types.

Arithmetics error

An arithmetics error occurred. Check the operators, val-
ues and types.

Update failed

The server failed to update a row. There may a lock on a
row.

View is not updatable

This view is not updatable. UPDATE, INSERT and
DELETE operations are not allowed.

Inserted row does not meet check option condition

You tried to insert a row, but one or more of the column
values do not meet column constraint definition.

Updated row does not meet check option condition

You tried to update a row, but one or more of the column
values do not meet column constraint definition.

lllegal CHECK constraint

SOLID SQL Errors

A check constraint given to the table is illegal. Check the
types of the check constraint of this table.

SQL Error 21 Insert failed because of CHECK constraint

You tried to insert a row, but the values do not meet the
check option conditions.

SQL Error 22 Update failed because of CHECK constraint

You tried to update a row, but the values do not meet the
check option conditions.

SQL Error 23 lllegal DEFAULT value
The DEFAULT value for the column given is illegal.
SQL Error 25 Duplicate columns in INSERT column list

You have included a column in column list twice.
Remove duplicate columns.

SQL Error 26 At least one column definition required in CREATE
TABLE

You need to specify at least one column definition in a
CREATE TABLE statement.

SQL Error 27 lllegal REFERENCES column list
There are wrong number of columns in your REFER-
ENCES list.

SQL Error 28 Only one PRIMARY KEY allowed in CREATE TABLE
You can use only one PRIMARY KEY in CREATE
TABLE.

SQL Error 29 GRANT failed

Granting privileges failed. You may not have privileges
for this operation.

SQL Error 30 REVOKE failed

Revoking privileges failed. You may not have privileges
for this operation.

SQL Error 31 Multiple instances of a privilege type

You tried to grant privileges to a role or a user. You have
included multiple instances of a privilege type in the list
of privileges.

Error Codes A-5

SOLID SQL Errors

SQL Error 32

SQL Error 33

SQL Error 34

SQL Error 35

SQL Error 36

SQL Error 37

SQL Error 38

SQL Error 39

SQL Error 40

SQL Error 41

SQL Error 42

A-6 SOLID Administrator Guide

lllegal constant <constant>

lllegal constant was found. Check the syntax of the state-
ment.

Column name list of illegal length

You have entered different number of columns in CRE-
ATE VIEW statement to the view and to the table.

Conversion between types failed

An expression in UPDATE statement has illegal type for a
column.

Column names not allowed in ORDER BY for UNION

You can not use column name in an ORDER BY for
UNION statement.

Nested aggregate functions

Nested aggregate functions can not be used. For exam-
ple: SUM(AVG(<column>)).

Aggregate function with no arguments

An aggregate function was entered with no arguments.
For example: SUM().

Set operation between different row types

You have tried to execute a set operation of tables with
incompatible row types. The row types in a set operation
must be compatible.

COMMIT WORK failed
Committing a transaction failed.
ROLLBACK WORK failed
Rolling back a transaction failed.
Savepoint could not be created
A savepoint could not be created.
Could not create index <index>

An index could not be created. You may not have privi-
leges for this operation. You need to be an owner of the
table or have SYS_ADMIN_ROLE to have privileges to
create index for the table.

SOLID SQL Errors

SQL Error 43

SQL Error 44

SQL Error 45

SQL Error 47

SQL Error 48

SQL Error 49

SQL Error 50

SQL Error 51

SQL Error 52

SQL Error 53

Could not drop index <index>

An index could not be dropped. You may not have privi-
leges for this operation. You need to be an owner of the
table or have SYS_ADMIN_ROLE to have privileges to
drop index from the table.

Could not create schema <schema>
A schema could not be created.

Could not drop schema <schema>
A schema could not be dropped.

You tried to use an ORDER BY column that does not
exist. Refer to an existing column in the ORDER BY
specification.

Maximum length of identifier is 31
You have exceeded the maximum length for the identifier.
Subquery returns more than one row

You have used a subquery that returns more than one row.
Only subqueries returning one row may be used in this
situation.

lllegal expression <expression>

You tried to insert or update a table using an aggregate
function (SUM, MAX, MIN or AVG) as a value. This is
not allowed.

Ambiguous column name <column>

You have referenced a column which is exists in more
than one table. Use syntax <table>.<column> to indicate
which table you want to use.

Non-existent function <function>

You tried to use a function which does not exist.
Non-existent cursor <cursor>

You tried to use a cursor which is not created.
Function call sequence error

A function was called in wrong order. Check the
sequence and success of the function calls.

Error Codes A-7

SOLID SQL Errors

SQL Error 54

SQL Error 55

SQL Error 56

SQL Error 57

SQL Error 58

SQL Error 59

SQL Error 60

SQL Error 61

SQL Error 62

SQL Error 63

A-8 SOLID Administrator Guide

lllegal use of a parameter

A parameter was used illegally. For example: SELECT *
FROM TEST WHERE ? < ?;

lllegal parameter value

A parameter has an illegal value. Check the type and
value of the parameter.

Only ANDs and simple condition predicates allowed in
UPDATE CHECK

All search condition predicates are not supported.
Opening the cursor did not succeed

Server failed to open a cursor. You may not have cursor
open at this moment.

Column <column> is not referenced in group-by-clause

You tried to group rows using <column>. All columns in
group-by-clause must be listed in your select-list. A star
(**") notation is not allowed with GROUP BY.

Comparison between incompatible types

You tried to compare values which have incompatible
types. Incompatible types are for example an integer and
a date value.

Reference to the insert table not allowed in the source
query

You have referenced in subquery a table where you are
inserting values. This is not allowed.

Reference to the update table not allowed in subquery

You have referenced in subquery a table where you are
updating values. This is not allowed.

Reference to the delete table not allowed in subquery

You have referenced in subquery a table where you are
deleting values. This is not allowed.

Subquery returns more than one column

You have used a subquery that returns more than one col-
umn. Only subqueries returning one column may be used.

SOLID SQL Errors

SQL Error 64

SQL Error 65

SQL Error 66

SQL Error 67

SQL Error 68

SQL Error 69

SQL Error 70

SQL Error 71

SQL Error 72

SQL Error 73

SQL Error 74

Cursor <cursor> not updatable
The cursor opened is not updatable.
Insert or update tried on pseudo column

You tried to update a pseudo column (ROWID,
ROWVER). Pseudo columns are not updatable.

Could not create user <user>

A user could not be created. You may not have privileges
for this operation.

Could not alter user <user >

A user could not be altered. You may not have privileges
for this operation.

Could not drop user <user >

A user could not be dropped. You may not have privi-
leges for this operation.

Could not create role <role>

A role could not be created. You may not have privileges
for this operation.

Could not drop role <role>

A role could not be dropped. You may not have privi-
leges for this operation.

Grant <role> failed

Granting role failed. You may not have privileges for this
operation.

Revoke <role> failed

Revoking role failed. You may not have privileges for this
operation.

Comparison of vectors of different length

You have tried to compare row value constructors that
have different number of dimensions. For example you
have compared (a,b,c) to (1,1).

Expression * not compatible with aggregate expression

Error Codes A-9

SOLID SQL Errors

SQL Error 75

SQL Error 76

SQL Error 77

SQL Error 78

SQL Error 79

SQL Error 80

SQL Error 81

SQL Error 82

SQL Error 83

SQL Error 84

SQL Error 85

A-10 SOLID Administrator Guide

The aggregate expression can not be used with * col-
umns. Specify columns using their names when used with
this aggregate expression. This usually happens when
GROUP BY expression is used with the * columns.

lllegal reference to table <table>

You have tried to reference a table which is not in the
FROM list. For example: SELECT T1.* FROM T2.

Ambiguous table name <table>

You have used the syntax <table>.<column name>ambig-
uously. For example: SELECT T1.* FROM T1 A, T1 B
WHERE A.F1=0;

lllegal use of aggregate expression

You tried to use aggregate expression illegally. For exam-
ple: SELECT ID FROM TEST WHERE SUM(ID) = 3;

Row fetch failed

The server failed to fetch a row. You may not have
SELECT privilege on the table or there may be an exclu-
sive lock on the row.

Subqueries not allowed in CHECK constraint
You tried to use subquery in a check constraint.
Sorting failed

External sorter is out of disk space or cache memory.
Modify parameters in configuration filolid.ini

SET syntax results in error

Improper type used with LIKE

Syntax error

Parser error <statement>

Incorrect number of values for INSERT

SOLID SQL Errors

SQL Error 86 lllegal ROWNUM constraint

Error Codes A-11

SOLID Database Errors

SOLID Database Errors

Error code

Description

Database Error 10001

Database Error 10002

Database Error 10004

Database Error 10005

Database Error 10006

Database Error 10007

Database Error 10010

A-12 SOLID Administrator Guide

Key value is not found

Internal error: a key value can not be found from the data-
base index.

Operation failed

This is an internal error indicating that the index of the
table accessed is in inconsistent state. Try to drop and cre-
ate the index again to recover the error.

Redefinition
Unexpected failure occurred in the database engine.

This error may also occur during recovery: either an
index or a view has been redefined during recovery. The
server is not able to do the recovery. Delete log files and
start the server again.

Unique constraint violation

You have violated a unique constraint. This happens when
you have tried to insert or update a column which has a
unique constraint and the value inserted or updated is not
unique.

This may also occur when you create users, tables or
roles having same names in separate transactions.

Concurrency conflict, two transactions updated or deleted
the same row

Two separate transactions have modified a same row in
the database simultaneously. This has resulted in a con-
currency conflict.

Transaction is not serializable
The transaction committed is not serialisable.
No checkpoint in database

This error occurs when the server has crashed in the mid-
dle of creating a new database. Delete the database and
log files and try to create the database again.

SOLID Database Errors

Database Error 10011

Database Error 10012

Database Error 10013

Database Error 10014

Database Error 10016

Database Error 10017

Database Error 10019

Database Error 10020

Database Error 10021

Database headers are corrupted

The headers in the database are corrupted. This may be
caused by a disk error or other system failure. Restore the
database from the backup.

Node split failed
This is an internal error.
Transaction is read-only

You have tried to write inside a transaction that is set
read-only. Remove the write operation or unset the read-
only mode in the transaction.

Resource is locked

This error occurs when you are trying to use a key value
in an index which has been concurrently dropped.

Log file is corrupted

One of the log files of the database is corrupted. You can
not use these log files. Delete them and start the server
again.

Too long key value

The maximum length of the key value has been exceeded.
The maximum value is one third of the size of the index
leaf.

Backup is active

You have tried to start a backup when a backup process is
already in progress.

Checkpoint creation is active

You have tried to start a checkpoint when a checkpoint
creation is already in progress.

Failed to delete log file

The deletion of a log file in making a backup has failed.
Reasons for the failure can be:

The log file has already been deleted from the operating
system.

The log file has a read-only attribute.

Error Codes A-13

SOLID Database Errors

Database Error 10023

Database Error 10024

Database Error 10026

Database Error 10027

Database Error 10028

Database Error 10029

Database Error 10030

Database Error 10031

Database Error 10032

Database Error 10033

A-14 SOLID Administrator Guide

Wrong log file, maybe the log file is from another data-
base

The log file in the database directory is from another
SOLID Embedded Engine database. Copy the correct log
files to the database directory.

lllegal backup directory

The backup directory is either an empty string or a dot
indicating that the backup will be created in the current
directory.

Transaction is timed out

An idle transaction has exceeded the maximum idle trans-
action time. The transaction has been aborted.

The maximum value is set in parameter AbortTimeOut in
SRV section. The default value is 120 minutes.

No active search
Internal error.
Referential integrity violation, foreign key values exist

You tried to delete a row that is referenced from a foreign
key.

Referential integrity violation, referenced column values
do not exist

The definition of a foreign key does not uniquely identify
a row in the referenced table.

Backup directory 'directory name' does not exist

Backup directory is not found. Check the name of the
backup directory.

Transaction detected a deadlock, transaction is rolled
back

Deadlock detected. If necessary, begin transaction again.
Wrong database block size specified

The block size of the database file differs from the block-
size given in the configuration fikolid.ini

Primary key unique constraint violation

SOLID Database Errors

Database Error 10034

Database Error 10035

Database Error 10036

Database Error 10037

Database Error 10038

Database Error 10040

Database Error 10041

Database Error 10042

Database Error 10043

Database Error 10044

Database Error 10046

Database Error 10047

Your primary key definition is not unique.

Sequence name <sequence> conflicts with an existing
entity

Choose a unique name for a sequence. The specified
name is already used.

Sequence does not exist
Check the name of the sequence.
Data dictionary operation is active for accessed sequence

Create or drop operation is active for the accessed
sequence. Try again.

Can not store sequence value, the target data type is ille-
gal
The valid target data types are INTEGER and BINARY.
lllegal column value for descending index

Corrupted data found in descending index. Drop the index
and create it again.

Log file write failure, probably the disk containing the log
files is full

Shut down the server and reserve more disk space for log
files.

Database is read-only

Database index check failed, the database file is corrupted

Database free block list corrupted, same block twice in
free list

Primary key can not contain blob attributes

Operation failed, data dictionary operation is active

Replicated transaction is aborted

Error Codes A-15

SOLID Database Errors

Database Error 10048 Replicated transaction contains schema changes, opera-
tion failed

Database Error 10049 Slave server not available any more, transaction aborted

Database Error 10050 Replicated row contains BLOb columns that cannot be
replicated

A-16 SOLID Administrator Guide

SOLID Utility Errors

SOLID Utility Errors

Error code

Description

System Error 11000

System Error 11001

System Error 11002

System Error 11003

System Error 11004

System Error 11005

System Error 11006

File open failure

The server is unable to open the database file. Reason for
the failure can be:

The database file has been set read-only.

You do not have rights to open the database file in write
mode.

Another SOLID Embedded Engine is using the database
file.

Correct the error and try again.
File write failure

Server is unable to write to the disk. The database files
may have a read-only attribute set or you may not have
rights to write to the disk. Add rights or unset read-only
attribute and try again.

File write failed, disk full

Server failed to write to the disk, because the disk is full.
Free disk space or move the database file to another disk.
You can also split the database file to several disks using
the FileSpec_[1-N] parameter in IndexFile section.

File write failed, configuration exceeded

Writing to the database file failed, because the maximum
database file size set in FileSpec_[1-N] parameter is
exceeded.

File read failure

An error occurred reading a file. This may indicate a disk
error in your system.

File read beyond end of file
Internal error.

File read failed, illegal file address

Error Codes A-17

SOLID Utility Errors

System Error 11007

System Error 11008

System Error 11009

System Error 11010

System Error 11011

System Error 11012

System Error 11013

System Error 11014

System Error 11015

System Error 11016

A-18 SOLID Administrator Guide

An error occurred reading a file. This may indicate a disk
error in your system.

File lock failure

The server failed to lock the database file. This error
occurs in the Windows version, if you do not have
SHARE.EXE loaded. To correct the failure:

1. Exit Windows

2. Load SHARE.EXE

3. Delete the database file SOLID.DB and log files.

4. Start Windows and launch SOLID Embedded Engine.
File unlock failure

Server failed to unlock a file.
File free block list corrupted

Internal error.
Too long file name

Filename specified in parameter FileSpec_[1-N] is too
long. Change the name to a proper file name.

Duplicate file name specification

Filename specified in parameter FileSpec_[1-N] is not
unique. Change the name to a proper file name.

License information not found, exiting from SOLID
Embedded Engine

Check the existence of yosolid.lic file.
License information is corrupted
Your solid.lic file has been corrupted.

Database age limit of evaluation license expired

Evaluation license expired

License is for different CPU architecture

SOLID Utility Errors

System Error 11017

System Error 11018

System Error 11019

System Error 11020

System Error 11021

System Error 11022

System Error 11024

License is for different OS environment

License is for different version of this OS

License is not valid for this server version

License information is corrupted

Problem with Your license, please contact SOLID Infor-
mation Technology Ltd. immediately

Desktop license is only for local <protocol> communica-
tion, cannot use protocol <protocol> for listening

Desktop license is only for local communication, cannot
use name <name> for listening

Error Codes A-19

SOLID Table Errors

SOLID Table Errors

Error code

Description

Table Error 13001

Table Error 13002

Table Error 13003

Table Error 13004

Table Error 13005

Table Error 13006

Table Error 13007

Table Error 13009

Table Error 13011

Table Error 13013

A-20 SOLID Administrator Guide

lllegal character constant <constant>

An illegal character constant was found in the SQL state-
ment.

Type CHAR not allowed for arithmetics

You have entered a calculation having a character type
constant. Character constants are not supported in arith-
metics.

Aggregate function <function> not available for ordinary
call

Aggregate functions can not be used for ordinary func-
tion calls.

llegal aggregate function <parameter> parameter

An illegal parameter has been given to an aggregate func-
tion. Aggregate function parameters can only be column
names or numbers.

SUM and AVG not supported for CHAR type

Aggregate functions SUM and AVG are not supported for
character type parameters.

SUM or AVG not supported for DATE type

Aggregate functions SUM and AVG are not supported for
date type parameters.

Function <function> is not defined

The function you tried to use is not defined.
Division by zero

A division by zero has occurred.
Table <table> does not exist

You have referenced a table which does not exist or you
do not have REFERENCES privilege on the table.

Table name <table> conflicts with an existing entity

SOLID Table Errors

Table Error 13014

Table Error 13015

Table Error 13016

Table Error 13018

Table Error 13019

Table Error 13020

Table Error 13021

Table Error 13022

Table Error 13023

Table Error 13025

Table Error 13026

Choose a unique name for a table. The specified name is
already used.

Index <index> does not exist
You have referenced an index which does not exist.
Column <column> does not exist on table <table>

You have referenced a column in a table which does not
exist.

User does not exist
You have referenced a user which does not exist.
Join table is not supported

Joined tables are not supported in this version of SOLID
Embedded Engine.

Transaction savepoints are not supported

Transaction savepoints are not supported in this version
of SOLID Embedded Engine.

Default values are not supported

Default column values are not supported in this version of
SOLID Embedded Engine.

Foreign keys are not supported

Foreign keys are not supported in this version of SOLID
Embedded Engine.

Descending keys are not supported

Descending keys are not supported in this version of
SOLID Embedded Engine.

Schema is not supported

Schema is not supported in this version of SOLID
Embedded Engine.

Update through a cursor with no current row

You have tried to update using cursor, but you do not have
current row in the cursor.

Delete through a cursor with no current row

Error Codes A-21

SOLID Table Errors

Table Error 13028

Table Error 13029

Table Error 13030

Table Error 13031

Table Error 13032

Table Error 13033

Table Error 13034

Table Error 13035

Table Error 13036

Table Error 13037

Table Error 13038

A-22 SOLID Administrator Guide

You have tried to delete using cursor, but you do not have
current row in the cursor.

View <view> does not exist
You have referenced a view which does not exist.
View name <view> conflicts with an existing entity

Choose a unique name for a view. The specified name is
already used.

No value specified for NOT NULL column <column>

You have not specified a value for a column which is
defined NOT NULL.

Data dictionary operation is active for accessed table or
key

You can not access the table or key, because a data dictio-
nary operation is currently active. Try again after the data
dictionary operation has completed.

lllegal type <type>

You have tried to create a table with a column having an
illegal type.

lllegal parameter <parameter> for type <type>

The type of the parameter you entered is illegal in this
column.

lllegal constant <constant>
You have entered an illegal constant.
lllegal INTEGER constant <constant>

You have entered an illegal integer type constant. Check
the syntax of the statement and try again.

lllegal DECIMAL constant <constant>

You have entered an illegal decimal type constant. Check
the decimal number and try again.

lllegal DOUBLE PREC constant <constant>

You have entered an illegal double precision type con-
stant. Check the number and try again.

lllegal REAL constant <constant>

SOLID Table Errors

Table Error 13039

Table Error 13040

Table Error 13041

Table Error 13042

Table Error 13043

Table Error 13045

Table Error 13046

Table Error 13047

Table Error 13048

Table Error 13049

You have entered an illegal real type constant. Check the
real number and try again.

lllegal assignment

You have tried to assign an illegal value for a column.
Aggregate <function> function is not defined

The aggregate function you tried to use is not supported.
Type DATE not allowed for arithmetics

DATE type columns or constants are not allowed in arith-
metics.

Power arithmetic not allowed for NUMERIC and DECI-
MAL data type

Decimal and numeric data types do not support power
arithmetics.

lllegal date constant <constant>

A date constant is illegal. The correct form for date con-
stants is: YYYY-MM-DD.

Reference privileges are not supported

Reference privileges are not supported in this version of
SOLID Embedded Engine.

lllegal user name <user>

User name entered is not legal. A legal user name is at
least 2 and at most 31 characters in length. A user name
may contain characters from A to Z, numbers from 0 to 9
and underscore character * ’

No privileges for operation
You have no privileges for the attempted operation.
No privileges to grant privileges for table <table>
You have no privileges to grant privileges for the table.

Column privileges cannot be granted WITH GRANT
OPTION

Granting column privileges WITH GRANT OPTION is
not supported in this version of SOLID Embedded
Engine.

Error Codes A-23

SOLID Table Errors

Table Error 13050

Table Error 13051

Table Error 13052

Table Error 13053

Table Error 13054

Table Error 13055

Table Error 13056

Table Error 13057

Table Error 13058

Table Error 13059

A-24 SOLID Administrator Guide

Too long constraint value

Maximum constraint length has been exceeded. Maxi-
mum constraint length is 255 characters.

lllegal column name <column>

You have tried to create a table with an illegal column
name.

lllegal comparison operator <operator> for a pseudo col-
umn <column>

You have tried to use an illegal comparison operator for a
pseudo column. Legal comparison operators for pseudo
columns are: equality ‘=" and non-equality ‘<>".

lllegal data type for a pseudo column

You have tried to use an illegal data type for a pseudo col-
umn. Data type of pseudo columns is BINARY.

lllegal pseudo column data, maybe data is not received
using pseudo column

You have tried to compare pseudo column data with non-
pseudo column data. Pseudo column data can only be
compared with data received from a pseudo column.

Update not allowed on pseudo column
Updates are not allowed on pseudo columns.
Insert not allowed on pseudo column
Inserts are not allowed on pseudo columns.
Index name <index> already exists

You have tried to create an index, but an index with the
same name already exists. Use another name for the
index.

Constraint checks were not satisfied on column <col-
umn>

Column has constraint checks which were not satisfied
during an insert or update.

Reserved system name <name>

You tried to use a name which is a reserved system name
such as PUBLIC and SYS_ADMIN_ROLE.

SOLID Table Errors

Table Error 13060

Table Error 13061

Table Error 13062

Table Error 13063

Table Error 13064

Table Error 13065

Table Error 13066

Table Error 13067

Table Error 13068

Table Error 13070

Table Error 13071

User name <user> not found

You tried to reference a user name which is not created.
Role name <role> not found

You tried to reference a role name which is not created.
Admin option is not supported

Admin option is not supported in this version of SOLID
Embedded Engine.

Name <name> already exists

You tried to use a role or user which already exists. User
names and role names must all be different i.e. you can
not have a user named HOBBES and a role named HOB-
BES.

Not a valid user name <user>

You tried to create an invalid user name. A valid user
name has at least 2 characters and at most 31 characters.

Not a valid role name <role>

You tried to create an invalid role name. A valid user
name has at least 2 characters and at most 31 characters.

User <user> not found in role <role>

You tried to revoke a role from a user and the user did not
have that role.

Too short password

You have entered a too short password. Password length
must be at least 3 characters.

Shutdown is in progress

You are unable to complete this operation, because server
shutdown is in progress.

Numerical overflow

A numerical overflow has occurred. Check the values and
types of numerical variables.

Numerical underflow

A numerical underflow has occurred. Check the values
and types of numerical variables.

Error Codes A-25

SOLID Table Errors

Table Error 13072

Table Error 13073

Table Error 13074

Table Error 13075

Table Error 13076

Table Error 13077

Table Error 13078

Table Error 13079

Table Error 13080

Table Error 13081

A-26 SOLID Administrator Guide

Numerical value out of range

A numerical value is out of range. Check the values and
types of numerical variables.

Math error

A mathematical error has occurred. Check the mathemat-
ics in the statement and try again.

lllegal password
You have tried to enter an illegal password.
lllegal role name <role>

You have tried to enter an illegal role name. A legal role
name is at least 2 and at most 31 characters in length. A
user role may contain characters from A to Z, numbers
from 0 to 9 and underscore character * ’

NOT NULL must not be specified for added column
<column>

You have tried to add a column to a table using ALTER
TABLE statement. NOT NULL constraint is not allowed
in ALTER TABLE statement when the table already
includes data.

Last column can not be dropped

You have tried to drop the final column in a table. This is
not allowed; at least one column must remain in the table.

Column already exist on table

You have tried to create a column which already exists in
a table.

lllegal search constraint

Check the search engine. There may be mismatch
between data types.

Incompatible types, can not modify column <column>from

You have tried to modify column to a data type that is
incompatible with the original definition, such as VAR-

Descending keys are not supported for binary columns

SOLID Table Errors

Table Error 13082

Table Error 13083

Table Error 13084

Table Error 13085

Table Error 13086

Table Error 13087

Table Error 13090

Table Error 13091

Table Error 13092

You can not define descending key for a binary column.
Function <function>: parameter * not supported

You can not use parameter star (*) with ODBC Scalar
Functions.

Function <function>: Too few parameters

The function expects more parameters. Check the func-
tion call.

Function <function>: Too many parameters

The function expects fewer parameters. Check the func-
tion call.

Function <function>: Run-time failure

An error was detected during the execution of the func-
tion. Check the parameters.

Function <function>: type mismatch in parameter
<parameter number>

A erroneous type of parameter detected in the given posi-
tion of the function call. Check the function call.

Function <function>: illegal value in parameter <parame-
ter number>

An illegal value for a parameter detected in the given
position of the function call. Check the function call.

Foreign key column <column> data type not compatible
with referenced column data type

References specification error. Check that the column
data type are compatible between referencing and refer-
enced tables.

Foreign key does not match to the primary key or unique
constraint of the referenced table

References specification error. Check that the column
data type are compatible between referencing and refer-
enced tables and that the foreign key is unique for the ref-
erenced table.

Event name <event> conflicts with an existing entity

Error Codes A-27

SOLID Table Errors

Table Error 13093

Table Error 13094

Table Error 13095

Table Error 13096

Table Error 13097

Table Error 13098

Table Error 13099

Table Error 13100

Table Error 13101
Table Error 13102
Table Error 13103

A-28 SOLID Administrator Guide

Choose a unique name for an event. The specified name
is already used.

Event <event>does not exist

You referenced to a nonexistent event. Check the name of
event.

Duplicate column <column> in primary key definition

Duplicate columns are not allowed in a table-constraint-
definition. Remove duplicate columns from the definition.

Duplicate column <column> in unique constraint defini-
tion

Duplicate columns are not allowed in a table-constraint-
definition. Remove duplicate columns from the definition.

Duplicate column <column> in index definition

Duplicate columns are not allowed in CREATE INDEX
statement. Remove duplicate columns.

Primary key columns must be NOT NULL

Error in a column-constraint-definition. Define primary
key columns NOT NULL. For example: CREATE
TABLE DEPT (DEPTNO INTEGER NOT NULL,
DNAME VARCHAR, PRIMARY KEY(DEPTNO));

Unique constraint columns must be NOT NULL

Error in a column-constraint-definition. Define unique
columns NOT NULL. For example: CREATE TABLE
DEPT4 (DEPTNO INTEGER NOT NULL, DNAME
VARCHAR, UNIQUE(DEPTNO));

No REFERENCES privileges to referenced columns in
table <table>

You do not have privileges to reference to the table.
lllegal table mode combination

You have defined illegal combination of locking. Check
locking type of tables.

Only execute privileges can be used with procedures
Execute privileges can be used only with procedures

lllegal grant or revoke operation

SOLID Table Errors

Table Error 13104

Table Error 13105

Table Error 13106
Table Error 13107

Table Error 13108

Table Error 13109
Table Error 13110
Table Error 13111
Table Error 13112
Table Error 13113

Table Error 13114

Sequence name <sequence> conflicts with an existing
entity

Choose a unique name for a sequence. The specified
name is already used.

Sequence <sequence>does not exist

You referenced to a nonexistent sequence. Check the
name of sequence.

Foreign key reference exists to table <table>
lllegal set operation
You tried to execute a non-existent set operation.

Comparison between incompatible types <datatype> and
<datatype>

There are schema objects for this user, drop failed

NULL values given for NOT NULL column <column>
Ambiguous entity name <name>

Foreign keys are not supported with main memory tables

llegal arithmetics between types <datatype> and
<datatype>

String operations are not allowed on values stored as
BLObs or CLObs

Error Codes A-29

SOLID Embedded Engine Errors

Error code

SOLID Embedded Engine Errors

Description

Server Error 14501

Server Error 14502

Server Error 14503

Server Error 14504

Server Error 14505

Server Error 14506

Server Error 14507

Server Error 14508

Server Error 14509

Server Error 14510

Server Error 14511

A-30 SOLID Administrator Guide

Operation failed

This error occurs when a timed command fails. Check the
arguments of timed commands.

RPC parameter is invalid

A network error has occurred.
Communication error

A communication error has occurred.
Duplicate cursor name <cursor>

You have tried to declare a cursor with a cursor name
which is already in use. Use another name.

Connect failed, illegal user name or password

You have entered either a user name or a password that is
not valid.

Server is closed, no new connections allowed

You have tried to connect to a closed server. Connecting
was aborted.

Maximum number of licensed user connections exceeded

You have tried to connect to a server which has all
licenses currently in use. Connecting was aborted.

The operation has timed out
You have launched an operation that has been aborted.
Version mismatch

A version mismatch has occurred. The client and server
are different versions. Use same versions in the client and
the server.

Communication write operation failed

A write operation failed. This indicates a network prob-
lem. Check your network settings.

Communication read operation failed

SOLID Embedded Engine Errors

Server Error 14512

Server Error 14513

Server Error 14514

Server Error 14515

Server Error 14516

Server Error 14517

Server Error 14518

Server Error 14519

Server Error 14521

Server Error 14529

A read operation failed. This indicates a network prob-
lem. Check your network settings.

There are users logged to the server

You can not shutdown the server now. There are users
connected to the server.

Backup process is active

You can not shutdown the server now. The backup pro-
cess is active

Checkpoint creation is active

You can not shutdown the server now. The checkpoint
creation is active.

Invalid user id

You tried to drop a user, but the user id is not logged in to
the server.

Invalid user name

You tried to drop a user, but the user name is not logged
in to the server.

Someone has updated the at commands at the same time,
changes not saved

You tried to update timed commands at the same time
another user was doing the same. Your changes will not
be saved.

Connection to the server is broken, connection lost
Possible network error. Reconnect to the server.

The user was thrown out from the server, connection lost
Possible network error.

Failed to create a new thread for the client

The operation timed out

Error Codes A-31

SOLID Communication Errors

SOLID Communication Errors

Error code

Communication Error 21300

Communication Error 21301

Communication Error 21302

Communication Error 21303

Communication Error 21304

Communication Error 21305

Communication Error 21306

Communication Error 21307

Communication Error 21308

A-32 SOLID Administrator Guide

Description
Protocol <protocol> is not supported
Protocol is not supported.

Cannot load the dynamic link library <library> or one of
its components

The server was unable to load the dynamic link library or
a component needed by this library. Check the existence
of necessary libraries and components.

Wrong version of dynamic link library <library>

The version of this library is wrong. Update this library to
a newer version.

Network adapter card is missing or needed <protocol>
software is not running

The network adapter card is missing or not functioning.
Out of <protocol> resources

The network protocol is out of resources. Increase the
protocols resources in the operating system.

An empty or incomplete network name was specified

The network name specified is not legal. Check the net-
work name.

Server <network name> not found, connection failed

The server was not found. 1) Check that the server is run-
ning. 2) Check that the network name is valid. 3) Check
that the server is listening given network name.

Invalid connect info <network name>

The network name given as the connect info is not legal.
Check the network name.

Connection is broken (<protocol> <read/write> opera-
tion failed with code <internal code>)

SOLID Communication Errors

Communication Error 21309

Communication Error 21310

Communication Error 21311

Communication Error 21312

Communication Error 21313

Communication Error 21314

Communication Error 21315

Communication Error 21316

The connection using the protocol is broken. Either a read
or a write operation has failed with and internal error
code <internal code>.

Failed to accept a new client connection, out of <proto-
col> resources

The server was not able to establish a new client connec-
tion. The protocol is out of resources. Increase the proto-
col’s resources in the operating system.

Failed to accept a new client connection, listening of
<network name> interrupted

The server was not able to establish a new client connec-
tion. The listening has been interrupted.

Failed to start a selecting thread for <network name>
A thread selection has failed for <network name>.

Listening info <network name> already specified for this
server

A network name has already been specified for this
server. A server can not use a same network name more
than once.

Already listening with the network name <network
name>

You have tried to add a network name to a server when it
is already listening with that network name. A server can
not use a same network name more than once.

Cannot start listening, network name <network name> is
used by another process

The server can not start listening with the given network
name. Another process in this computer is using the same
network name.

Cannot start listening, invalid listening info <network
name>

The server can not start listening with the given listening
info. The given network name is invalid. Check the syn-
tax of the network name.

Cannot stop the listening of <network name>. There are
clients connected

Error Codes A-33

SOLID Communication Errors

Communication Error 21317

Communication Error 21318

Communication Error 21319

Communication Error 21320

Communication Error 21321

Communication Error 21322

Communication Error 21323

Communication Error 21324

A-34 SOLID Administrator Guide

You can not stop listening of this network name. There
are clients connected to this server using this network
name.

Failed to save the listen information into the configura-
tion file

The server failed to save this listening information to the
configuration file. Check the file access rights and format
of the configuration file.

Operation failed because of an unusual <protocol> return
code <code>

Possible network error. Create connection again.
RPC request contained an illegal version number

Either the message was corrupted or there may be a mis-
match between server and client versions.

Called RPC service is not supported in the server

There maybe a mismatch between server and client ver-
sions.

Protocol %s is not valid, try using switch "-a' for specify-
ing another adapter id instead of %d

This is returned if the NetBIOS LAN adapter id given in
listen/connect string is not valid.

The host machine given in connect info '%s' was not
found

This is returned in clients if the host machine name given
in connect info is not valid.

Protocol <protocol> can not be used for listening in this
environment.

This message is displayed if the server end communica-
tion using specified protocol is not supported.

The process does not have the privilege to create a mail-
box

SOLID Communication Warnings

SOLID Communication Warnings

Error code Description

Warning Code 21100 lllegal value <value> for configuration parameter
<parameter>, using default

An illegal value was given to the parameter <parameter>.
The server will use a default value for this parameter.

Warning Code 21101 Invalid protocol definition <protocol> in configuration
file

The protocol is defined illegally in the configuration file.
Check the syntax of the definition.

Error Codes A-35

SOLID Procedure Errors

SOLID Procedure Errors

Error code

Description

Procedure Error 23001

Procedure Error 23002

Procedure Error 23003

Procedure Error 23004

Procedure Error 23005

Procedure Error 23006

Procedure Error 23007

Procedure Error 23009

Procedure Error 23010

Procedure Error 23011

Procedure Error 23012

A-36 SOLID Administrator Guide

Undefined symbol <symbol>

You have used a symbol that has not been defined in a
procedure definition.

Undefined cursor <cursor>

You have used a cursor that has not been defined in a pro-
cedure definition.

lllegal SQL operation <operation>

Syntax error: parse error, line <line number>
Check the syntax of your procedure.

Procedure <procedure> not found

Wrong number of parameters for procedure <procedure>

Procedure name <value> conflicts with an existing entity.

Choose a unique name for a procedure. The specified
name is already used.

Event <event> does not exist, line <line number>

Incompatible event <event> parameter type, line <line
number>

Wrong number of parameter for event <event>, line <line
number>

Duplicate wait for event <event>, line <line number>

SOLID Procedure Errors

Procedure Error 23013

Procedure Error 23014

Procedure Error 23015

Procedure Error 23016

Procedure Error 23017

Procedure Error 23018

Procedure Error 23019

Procedure Error 23020

Procedure Error 23021

Procedure Error 23022

Procedure Error 23023

Procedure Error 23501

Procedure Error 23502

Undefined sequence <sequence>

Duplicate sequence name <sequence>

Sequence <sequence> not found

Incompatible variable type in call to sequence
<sequence>, line <line number>

Duplicate symbol <symbol>

You have duplicate definitions for a symbol.

Procedure owner <owner>not found

Duplicate cursor name '<cursor>'

lllegal option <option> for WHENEVER SQLERROR ...
statement

RETURN ROW not allowed in procedure with no return
type, line <line number>

SQL String variable <variable> must be of character data
type, line <line number>

Call syntax error: <syntax>, line <line number>

Cursor <cursor> is not open

lllegal number of columns in EXECUTE ... <procedure>
in cursor <cursor>

Error Codes A-37

SOLID Procedure Errors

Procedure Error 23503

Procedure Error 23504

Procedure Error 23505

Procedure Error 23506

Procedure Error 23507

Procedure Error 23508

Procedure Error 23509

Procedure Error 23510

Procedure Error 23511

Procedure Error 23512

Procedure Error 23513

A-38 SOLID Administrator Guide

Previous SQL operation <operation> failed in cursor
<cursor>

Cursor <cursor> is not executed

Cursor <cursor> is not a SELECT statement

End of table in cursor <cursor>

lllegal type conversion in cursor <cursor> from type
<data type> to type <data type>

lllegal assignment, line <line number>

In <procedure> line <line number> Stmt <statement> was
not in error state in RETURN SQLERROR OF ...

In <procedure> line <line number> Transaction cannot be
set read only, because it has written already

In <procedure> line <line number> USING part is miss-
ing for dynamic parameters for <procedure>

In <procedure> line <line number> USING list is too
short for <procedure>

In <procedure> line<line number> Comparison between
incompatible types <data type> and <data type>

SOLID Procedure Errors

Procedure Error 23514

Procedure Error 23515

Procedure Error 23516

In <procedure> line <line number> type <data type> is
illegal for logical expression

In <procedure> line <line number> assignment of param-
eter <parameter> in <list> list failed

In CALL <procedure> assignment of parameter
<parameter> failed

Error Codes A-39

SOLID Sorter Errors

SOLID Sorter Errors

Error code Description

Sorter Error 24001 Sort failed due to insufficient configured TmpDir space
Sorter Error 24002 Sort failed due to insufficient physical TmpDir space
Sorter Error 24003 Sort failed due to insufficient sort buffer space

Sorter Error 24004 Sort failed due to too long row (internal failure)

Sorter Error 24005 Sort failed due to I/O error

A-40 SOLID Administrator Guide

B

Configuration Parameters

By managing the parameters of your SOlHMbedded Engingiou can modify the envi-
ronment, performance, and operation of the server.

When SOLIDEmbedded Enginis started, it attempts to open the configuration file

solid.ini in the current directory. The configuration values for the server parameters are
included in this file. If the file does not exist, SOLEInbedded Enginwill use the default
settings for the parameters. Also, if a value for a parameter is not sesulithimi

file, SOLID Embedded Enginwill use a default value for the parameter. The default values
depend on the operating system you are using.

Generally, the default settings offer the best performance and operability, but in some spe-
cial cases modifying a parameter will improve performance. You can change the parameters
either by using the SOLIRemote Contrgbarameter page or by editing the configuration

file solid.ini

Configuration Parameters B-1

General Section

General Section

[General]

Description Default

MaxOpenFiles

BackupDirectory
BackupCopyLog

BackupDeleteLog

BackupCopyIniFile

Checkpoint
Interval

Mergelnterval

Readonly

LongSequential
SearchLimit

SearchBuffer
Limit

Transaction
HashSize

B-2 SOLID Administrator Guide

the maximum number of files kepOS depend.
concurrently open during SOLID
Embedded Engine sessions

the directory for backup files no default

if set tyes , backup operation will yes
copy log files to the backup direc-
tory

if set tges , old log files will be yes
deleted after backup operation

if set tges , solid.ini file will yes
be copied to the backup directory

the number of inserts made in the 5000
database that causes automatic
checkpoint creation

the number of index inserts made@ache size depend.
the database that causes the merge
process to start

if set tyes , database is set to no
read-only mode

the number of sequential fetches 500
after which search is treated as long
sequential search

the maximum percentage of search0
buffers from the total buffered
memory reserved for open cursors

the hash table size for incomplete Cache size depend.
transactions

IndexFile Section

IndexFile Section

[IndexFile] Description Default

FileSpec_[1-N] the file name followed with maxi- solid.db 2147483647
mum size (in bytes) of that data-
base file, for example:
c:\soll.db 2000000

This parameter also has an optional
parameter after the maxsize: physi-
cal drive number. The number
value itself is not essential, but it is
used as a hint for I/O threads on
which 1/O requests can be parallel-
ized.

This file must be stored to a local
drive using local disk names to
avoid problems with network I/O
and to achieve better performance.

BlockSize the block size of the index file in 8192
bytes; use multiple of 2 KB: mini-
mum 2048, maximum 16384

CacheSize the size of database cache mem@$ depend.
for the server in bytes; the mini-
mum 512 kb

Extendincrement the number of blocks that is allo-50

cated at one time when SOLID
Embedded Engineeeds to allo-
cate more space for the database

file

ReadAhead sets the number of prefetched index
leafs during long sequential
searches

PreFlushPercent Percentage of page buffer whichbis

kept clean by preflush thread

Configuration Parameters B-3

Logging Section

Logging Section

[Logging] Description Default
LogEnabled whether logging is enabled or not yes
BlockSize the block size of log files 2048
MinSplitSize when this file size is reached, log-1 MB

ging will be continued to the fol-
lowing log file after the next
checkpoint

FileNameTemplate the path and naming convention sol#######.log
used when creating log files; tem-
plate characters are replaced with
sequential numbering; for example:
c:\solid\log\sol#####.log

This file must be stored to a local
drive using local disk names to
avoid problems with network I/O
and to achieve better performance.

DigitTemplate the template character that will be#
Char replaced in the name template of
the log file

B-4 SOLID Administrator Guide

Communication Section

Communication Section

[Com] Description Default

Listen the network name for server; the OS depend.
protocol and name that SOLID
Embedded Engine uses when start-
ing listening to the network

Connect the network name for client; the OS depend.
protocol and name that a SOLID
Embedded Engine client uses for
server connection; in a Windows
environment ODBC Data Source
Name overrides the value of this
parameter

MaxPhysMsgLen the maximum length of a single OS depend.
physical network message in bytes;
longer network messages will be
split into smaller messages of this
size

ReadBufSize the buffer size in bytes for the da@S depend.
read from the network

WriteBufSize the buffer size in bytes for the dat®S depend.
written into the network

Trace if parameter set to yes, trace inforno
mation on network messages is
written to a file specified with the
TraceFile parameter

TraceFile if parameter Trace is set to yes, soltrace.out
trace information on network mes-
sages is written to a file specified
with this parameter

Configuration Parameters B-5

Data Sources

Data Sources

[Data Sources]

Description Default

<logical name> =
<network name>,
<Description>

Server Section

[Srv]

These parameters can be used to
give a logical name to a SOLID
Embedded Engine.

Description Default

RowsPerMessage

ConnectTimeOut

AbortTimeOut

Threads

Echo

Name

AllowConnect

MessagelLogSize

MaxOpenCursors

B-6 SOLID Administrator Guide

the number of rows returned frodD
the server in one network message

specifies the continuous idle timet80
in minutes after that an connection
is dropped; negative or zero value
means infinite

specifies the time in minutes after120
that an idle transaction is aborted;
negative or zero value means infi-
nite

the number of threads used for OS depend.
database access in SOLHMbed-
ded Engine

if set toyes, contents of no
solmsg.out file are displayed

also at the server's command win-
dow

the informal name of the server,
equivalent to the -n command line
option

if set to no only connections fromyes
Remote Control are allowed

defines the maximum size of theOS depend.
solmsg.out file in bytes. The deaf-
ult is 60 KB.

The maximum number of cursord000
that a database client can have
simultaneously open.

SQL Section

SQL Section

[SQL] Description Default

Info set the level of informational mes-0
sages [0-8] printed from the server;
information is written into file
defined by parameter InfoFile-
Name, (0=no info, 8=all info)

SQLlInfo set the level of informational no default
SQL level messages H)-
; information is written into file
defined by parameter InfoFile-
Name,

(0=no info, 8=all info)
InfoFileName default global info file name SOLTRACE.OUT

InfoFileSize maximum size of the info file. Theno default
defaultis 1 MB

InfoFileFlush if set to yes, flushes info file after yes
every write operation

SortArraySize the size of the array that SQL use3S depend.
when ordering result set; for opti-
mal performance this should be as
big as the biggest retrieved result
set that cannot be ordered by key
values; for large sorts use external

sorter

ProcedureCache the size of cache memory for 5
parsed procedures in number of
procedures

MaxNestedProcedures The maximum number of allowelb

nested procedures.

MaxBlobExpression The maximum size of LONG VAR-64
Size CHAR columns in KBs that can be
used in string functions

Configuration Parameters B-7

Sorter Section

Sorter Section

[Sorter] Description Default
MaxCacheUse maximum percentage of cache
Percent pages used for sorting; range from
10% to 50%
MaxMemPerSort maximum memory available in
bytes for one sort
MaxFilesTotal maximum number of files used for
sorting
TmpDir_[1-N] name of the directory that containsio default
temporary files created during sort-
ing

B-8 SOLID Administrator Guide

C

Data Types

Supported Data Types in SOLID Embedded Engine

The tables in this appendix list the supported data types by category. the following abbrevia-
tions are used in each table.

Abbreviation Description
DEFLEN the defined length of the column;
e.g. for CHAR(24) the precision and length is
24
DEFPREC the defined precision;
e.g. for NUMERIC(10,3) it is 10
DEFSCALE the defined scale;
e.g. for NUMERIC(10,3), itis 3
MAXLEN the maximum length of column
N/A not applicable

Data Types C-1

Supported Data Types in SOLID Embedded Engine

Character Data Types

Data type Size Precision Scale Length Display size

CHAR, 2G* DEFLEN N/A DEFLEN DEFLEN

WCHAR

VARCHAR, 2 G** DEFLEN N/A DEFLEN DEFLEN

WVARCHAR

LONG VAR- 2G MAXLEN N/A MAXLEN MAXLEN

CHAR,

LONG

WVARCHAR

* default is 1

** default is 254

Numeric Data Types

Data type Range Precision Scale Length Display size

DECIMAL +3.6e16 16 DEFSCALE 18 18

NUMERIC +3.6e16 DEFPREC DEFSCALE DEFPREMEFPREC

+2 +2

TINYINT [-128, 127] 3 0 1 (bytes) 4 (signed)
[0, 255] 3 (unsigned)

SMALLINT [-32768, 5 0 2 (bytes) 6 (signed)
32767] 5 (unsigned)
[0, 65535]

INTEGER [-2%, 281 10 0 4 (bytes) 11 (signed)
[0, 227 10 (unsigned)

REAL +1.7014117 7 N/A 4 (bytes) 13
e38

FLOAT +8.9884657 15 N/A 8 (bytes) 22
e307

DOUBLE +8.9884657 15 N/A 8 (bytes) 22

PRECISION e307

C-2 SOLID Administrator Guide

Supported Data Types in SOLID Embedded Engine

Binary Data Types

Data type Size Precision Scale Length Display size
BINARY 2G* DEFLEN N/A DEFLEN DEFLEN x 2
VARBINARY 2 G** DEFLEN N/A DEFLEN DEFLEN x 2
LONG VAR- 2G MAXLEN N/A MAXLEN MAXLEN x 2
BINARY
* default is 1
** default is 254
Date Data Type
Data type Range Precision Scale Length Display size
DATE N/A 10* N/A 6** 10*
* the number of characters in the yyyy-mm-dd format
** the size of the DATE_STRUCT structure
Time Data Type
Data type Range Precision Scale Length Display size
TIME N/A 8* N/A 6** 8*
* the number of characters in the hh:mm:ss format
** the size of the TIME_STRUCT structure
Timestamp Data Type
Data type Range Precision Scale Length Display size
16** 19/29***

TIMESTAMP N/A 19* 9

Data Types C-3

Supported Data Types in SOLID Embedded Engine

* the number of characters in the 'yyyy-mm-dd hh:mm:ss. fffffffff' format
** the size of the TIMESTAMP_STRUCT structure
*** size is 29 with a decimal fraction part

The Smallest Possible Non-zero Numbers

Data type Value
DOUBLE 2.2250738585072014e-308
REAL 1.175494351e-38

Description of Different Column Values in the Tables

The range of a numeric column refers to the minimum and maximum values the column can
store. The size of character columns refers to the maximum length of data that can be stored
in the column of that data type.

The precision of a numeric column refers to the maximum number of digits used by the data
type of the column. The precision of a non-numeric column refers to the defined length of
the column.

The scale of a numeric column refers to the maximum number of digits to the right of the
decimal point. Note that for the approximate floating point number columns, the scale is
undefined, since the number of digits to the right of the decimal point is not fixed.

The length of a column is the maximum number of bytes returned to the application when
data is transferred to its default C type. For character data, the length does not include the
null termination byte. Note that the length of a column may differ from the number of bytes
needed to store the data on the data source.

The display size of a column is the maximum number of bytes needed to display data in
character form.

C-4 SOLID Administrator Guide

D

SOLID SQL Syntax

The SOLIDEmbedded Engin8QL syntax is based on the ANSI X3H2-1989 level 2 stan-
dard including important ANSI X3H2-1992 (SQL2) extensions. User and role management
services missing from previous standards are based on the ANSI SQL3 draft.

This appendix presents a simplified description of the SQL statements including some exam-
ples. The same information is included in 8@LID Programmer Guide.

SOLID SQL Syntax D-1

ADMIN COMMAND

ADMIN COMMAND

ADMIN COMMAND ‘command-name’
command-name ::= BACKUP | BACKUPLIST | CLOSE |
ERRORCODE | EXIT | HELP | MAKECP | MESSAGES |
SHUTDOWN | MONITOR | OPEN | PARAMETERS |
PERFMON | PID | REPORT | SHUTDOWN | STATUS |
STATUS BACKUP | THROWOUT | TRACE | USERLIST |
VERSION

Usage
This SQL extension executes administrator commands. Syntax for the extension is:

ADMIN COMMAND ‘command-name’

wherecommand-name is a SOLIDRemote Contro(Teletype) command string. The result
set contains two columns: RC INTEGER and TEXT VARCHAR(254). Integer column RC is
a command return code (0 if success), varchar column TEXT is the command reply. The
TEXT field contains same lines that a displayed on SCRémote ControfTeletype)

screen, one line per one result row.

Note that all options of the ADMIN COMMAND are not transactional and cannot be rolled
back.

Following is a description of the syntax for each ADMIN COMMAND command option:

Option Syntax Description
ADMIN COMMAND 'backup Makes a backup of the database. The default backup direc-
[backup_directorly tory is the one defined in configuration param&en-

eral.Backup.Directory. The backup directory may also be
given as an argument. For examjfilackup abccreates
backup on directory ‘abc’. All directory definitions are rela-
tive to the SOLIDEmbedded Engineorking directory.

ADMIN COMMAND 'backuplist' Displays a status list of last backups.

ADMIN COMMAND ‘close' Closes server from new connections; no new connections
are allowed.

ADMIN COMMAND ‘errorcode Displays a description of an error code. Give the code num-

SOLID_error_code' ber as an argument. For examplerdecode 10033

ADMIN COMMAND 'help’ Displays available commands.

D-2 SOLID Administrator Guide

ADMIN COMMAND

ADMIN COMMAND 'makecp' Makes a checkpoint.

ADMIN COMMAND 'messages’ Displays server messages.

ADMIN COMMAND 'monitor {on | Sets server monitoring on and off. Monitoring logs user

off} [userusernamg user id' activity and SQL calls to SOLTRACE.OUT file

ADMIN COMMAND 'open’ Opens server for new connections; new connections are
allowed.

ADMIN COMMAND 'parameters Displays server parameter values. For example:

[namé'

« parameter used alone displays all parameters.

« parameter generd displays all parameters from sec-
tion “general.”

« parameter general.readonlydisplays a single param-
eter “readonly” from section “general.”

ADMIN COMMAND 'perfmon [-c]' Returns performance statistics from the server. The -c
option returns all values as counter. By default, some val-
ues are averages/second.

ADMIN COMMAND 'pid' Returns server process id.

ADMIN COMMAND 'reportfilename' Generates a report of server info to a file given as an argu-
ment.

ADMIN COMMAND 'shutdown' Stops SOLIEmMbedded Engine

ADMIN COMMAND 'status’ Displays server statistics.

ADMIN COMMAND 'status backup' Displays status of the last started backup. The status can be
one of the following:

« Ifthe last backup was successful or any backups have
not been requested, the output is 0 SUCCESS.

« Ifthe backup is in process; for example, started but not
ready yet, the output is 14003 ACTIVE.

« If the last backup failed, the output is:
errorcodeERROR
where theerrcodeshows the reason for the failure

ADMIN COMMAND 'throwout {user- Exits users from SOLIEEmbedded Enginfo exit a speci-
name| userid| all' fied user, give the user id as an argument. To throw out all
users, use the keyword ALL as an argument.

ADMIN COMMAND ‘trace {on |off} Sets server trace on or off. This command is similar to the

sql | rpc | sync' monitor command, but traces different entities and a differ-
ent levels. By default, the output is witten to the SOL-
TRACE.OUT file.

SOLID SQL Syntax D-3

ALTER TABLE

ADMIN COMMAND ‘userlist [-1] Displays a list of users. option -l displays more detailed
[name]id]' output.

ADMIN COMMAND 'version' Displays server version info.

Example

ADMIN COMMAND 'USERLIST

ALTER TABLE

ALTER TABLE base-table-name
{ADD [COLUMN] column-identifier data-type |
DROP [COLUMN] column-identifier |
RENAME [COLUMN]
column-identifier column-identifier |
MODIFY [COLUMN]
column-identifier data-type }|
MODIFY SCHEMA schema-name |
SET {OPTIMISTIC | PESSIMISTIC}

Usage

The structure of a table may be modified throughAh€ER TABLE statement. Within the
context of this statement, columns may be added, modified, or removed.

The owner of a table can be changed using the ALTER TABLE base-table-name MODIFY
SCHEMA schema-name statement. This statement gives all rights to the new owner of the
table including creator rights. The old owner’s access rights to the table, excluding the cre-
ator rights, are preserved.

Individual tables can be set to optimistic or pessimistic with the command ALTER TABLE
base-table-nam8ET {OPTIMISTIC | PESSIMISTIC} . By default, all tables are opti-
mistic. A database-wide default can be set inGkaeral section of the configuration file
with the parametdPessimistic = yes

Example

D-4 SOLID Administrator Guide

COMMIT

ALTER TABLE TEST ADD X INTEGER,;

ALTER TABLE TEST RENAME COLUMN XY,

ALTER TABLE TEST MODIFY COLUMN X SMALLINT;
ALTER TABLE TEST DROP COLUMN X;

ALTER USER

ALTER USER user-name IDENTIFIED BY password

Usage
The password of a user may be modified througtfAtHEER USERSstatement.

Example

ALTER USER MANAGER IDENTIFIED BY O2CPTG;

CALL
CALL procedure-name [(parameter [, parameter ...])]
Usage
Stored procedures are called with staten@itL.
Example
CALL proctest;
COMMIT

COMMIT WORK
Usage
The changes made in the database are made permar@@iiyiTstatement. It terminates

the transaction.

Example

SOLID SQL Syntax D-5

CREATE EVENT

COMMIT WORK;

CREATE EVENT

CREATE EVENT event-name
[(parameter-definition
[, parameter-definition ...])]

Usage

Event alerts are used to signal an event in the database. Events are simple objects with a
name. The use of event alerts removes resource consuming database polling from applica-
tions.

An event object is created with the SQL statement

CREATE EVENT event-name [parameter-lis]
The name can be any user-specified alphanumeric string. The parameter list specifies param-
eter names and parameter types. The parameter types are normal SQL types.

Events are dropped with the SQL statement

DROP EVENT event-name
Events are triggered and received inside stored procedures. Special stored procedure state-
ments are used to trigger and receive events.

The event is triggered with the stored procedure statement

POST EVENT event-name [parameters]
Event parameters must be local variables or parameters in the stored procedure where the
event is triggered. All clients that are waiting for the posted event will receive the event.

To make a procedure wait for an event to happerWMAET EVENT construct is used in a
stored procedure:

wait-event-statement ;.=
WAIT EVENT
[event-specification ...]
END WAIT

event-specification ::=
WHEN event-name (parameters) BEGIN
statements
END EVENT

D-6 SOLID Administrator Guide

CREATE EVENT

Each connection has its own event queue. To specify the events to be collected in the event
gueue command REGISTER EVENT event-name (parameters) is used. Events are removed
from the event queue with command UNREGISTER EVENT event-name (parameters).

Example of a procedure that waits for an event:

"‘create procedure event-wait(i1 integer)
retums (result varchar)

begin

declare i integer;

declare c char(4);

i=0;

wait event
when testl begin
result = 'eventl’,
retum;
end event

when test2(j) begin
end event

when test3(j, ¢) begin
end event
end wait

ifi<0then
result .=,
post event testl;
else
result :='else’;
post event test2(i);
post event test3(j, €);
endif
end”;

The creator of an event or the database administrator can grant and revoke access rights.

Access rights can be granted to users and roles. The select access right gives waiting acces
to an event. The insert access right gives triggering access to an event.

SOLID SQL Syntax D-7

CREATE INDEX

Example

CREATE EVENT ALERT1(I INTEGER, C CHAR(4));

CREATE INDEX

CREATE [UNIQUE] INDEX index-name
ON base-table-name
(column-identifier [ASC | DESC]
[, column-identifier [ASC | DESC]] ...)

Usage

Creates an index for a table based on the given columns. KeWh€UEspecifies that

columns being indexed must contain unique values. Keywa@andDESCspecify

whether the given columns should be indexed in ascending or descending order. If not speci-
fied ascending order is used.

Example

CREATE UNIQUE INDEX UX_TEST ON TEST (l);
CREATE INDEX X_TEST ON TEST (I, J);

CREATE PROCEDURE

CREATE PROCEDURE procedure-name
[(parameter-definition
[, parameter-definition ...])]
[RETURNS (parameter-definition
[, parameter-definition ...])]
BEGIN procedure-body END;

parameter-definition ::= parameter-name data-type

procedure-body ::= [declare-statement; ...]
procedure-statement; [procedure-statement; ...]

declare-statement ::= DECLARE variable-name

D-8 SOLID Administrator Guide

CREATE PROCEDURE

data-type

procedure-statement ::= prepare-statement |
exec-statement | fetch-statement |
control-statement | post-statement |
wait-event-statement | wait-register-statement

prepare-statement ::= EXEC SQL PREPARE
cursor-name sql-statement

SOLID SQL Syntax D-9

CREATE PROCEDURE

execute-statement ::=

EXEC SQL EXECUTE
cursor-name
[USING (variable [, variable ...])]
[INTO (variable [, variable ...])] |
EXEC SQL {CLOSE | DROP} cursor-name |
EXEC SQL {COMMIT | ROLLBACK} WORK |
EXEC SQL SET TRANSACTION {READ ONLY | READ WRITE} |
EXEC SQL WHENEVER SQLERROR {ABORT | ROLLBACK [WORK],
ABORT}
EXEC SEQUENCE sequence-name.CURRENT INTO variable |
EXEC SEQUENCE sequence-name.NEXT INTO variable |
EXEC SEQUENCE sequence-name SET VALUE USING variable

fetch-statement ::= EXEC SQL FETCH cursor-name

post-statement ::= POST EVENT event-name [parameters]

wait-event-statement ::=
WAIT EVENT
[event-specification ...]
END WAIT

event-specification ::=
WHEN event-name (parameters) BEGIN
statements
END EVENT

wait-register-statement ::=
REGISTER event-name (parameters) |
UNREGISTER event-name (parameters)

control-statement ::=
SET variable-name = value |
variable-name := value |
WHILE expression
LOOP procedure-statement... END LOOP |

D-10 SOLID Administrator Guide

CREATE PROCEDURE

LEAVE |
IF expression THEN procedure-statement ...
[ELSEIF procedure-statement ... THEN] ...
ELSE procedure-statement ... END IF |
RETURN | RETURN SQLERROR OF cursor-name | RETURN ROW

Usage

Stored procedures are simple programs, or procedures, that are executed in the server. The
user can create a procedure that contains several SQL statements or a whole transaction an
execute it with a single call statement. Usage of stored procedures reduces network traffic
and allows more strict control to access rights and database operations.

Procedures are created with the statement
CREATE PROCEDURE name body

and dropped with the statement

DROP PROCEDURE name

Procedures are called with the statement
CALL name [parameter ...]

Procedures can take several input parameters and return a single row or several rows as a
result. The result is built from specified output parameters. Procedures are thus used in
ODBC in the same way as tBQL SELECT statement.

Procedures are owned by the creator of the procedure. Specified access rights can be grante
to other users. When the procedure is run, it has the creator's access rights to database
objects.

The stored procedure syntax is a proprietary syntax modeled from SQL3 specifications and
dynamic SQL. Procedures contain control statements and SQL statements.

The following control statements are available in the procedures:

Control statement Description

setvariable = expression Assigns a value to a variable. The value
can be either a literal value (e.g., 10 or
‘text’) or another variable. Parameters are
considered as normal variables.

variable := expression Alternate syntax for assigning values to
variables.

SOLID SQL Syntax D-11

CREATE PROCEDURE

while
expr
loop
statement-list
end loop

leave

expr
then
statement-listl
else
statement-list2
end if
if
exprl
then
statement-listl
elseif
expr2
then
statement-list2
end if

return

return sglerror o€ursor-name

return row

D-12 SOLID Administrator Guide

Loops while expression is true.

Leaves the innermost while loop and con-
tinues executing the procedure from the
next statement after the keyword end loop.

Executestatements-listif expression
expris true; otherwise, executsgtement-
list2.

If exprlis true, executestatement-listlIf
expr2is true, executestatement-list2The
statement can optionally contain multiple
elseifstatements and also alsestate-
ment.

Returns the current values of output
parameters and exits the procedure. If a
procedure has a ometurn rowstatement,
return behaves likeeturn norow

Returns the sqlerror associated with the
cursor and exits the procedure.

Returns the current values of output
parameters and continues execution.

CREATE PROCEDURE

return norow Returns the end of the set and exits the
procedure.

All SQL DML and DDL statements can be used in procedures. Thus the procedure can, for
example, create tables or commit a transaction. Each SQL statement in the procedure is
atomic.

Preparing SQL Statements
The SQL statements are first prepared with the statement

EXEC SQL PREPARE cursor sql-statement

The cursor specification is a cursor name that must be given. It can be any unique cursor
name inside the transaction. Note that if the procedure is not a complete transaction, other
open cursors outside the procedure may have conflicting cursor names.

Executing Prepared SQL Statements
The SQL statemens executed with the statement

EXEC SQL EXECUTE cursor [opt-using] [opt-into]
The optionabpt-usingspecification has the syntax
USING (variable-list)

wherevariable-listcontains a list of procedure variables or parameters separated by a
comma. These variables are input parameters for the SQL statement. The SQL input parame
ters are marked with the standard question mark syntax in the prepare statement. If the SQL
statement has no input parameters, the USING specification is ignored.

The optionabpt-into specification has the syntax
INTO (variable-list)

wherevariable-listcontains the variables that the column values of the SQL SELECT state-
ment are stored into. The INTO specification is effective only for SQL SELECT statements.

After the execution of UPDATE, INSERT and DELETE statements an additional variable is
available to check the result of the statement. Variable SQLROWCOUNT contains the num-
ber of rows affected by the last statement.

Fetching Results
Rows are fetched with the statement

EXEC SQL FETCH cursor

SOLID SQL Syntax D-13

CREATE PROCEDURE

If the fetch completed successfully, the column values are stored into the variables defined in
the opt-into specification.

Checking for Errors

The result of each EXEC SQL statement executed inside a procedure body is stored into the
variable SQLSUCCESS. This variable is automatically generated for every procedure. If the
previous SQL statement was successful, a value one is stored into SQLSUCCESS. After a
failed SQL statement, a value zero is stored into SQLSUCCESS.

EXEC SQL WHENEVER SQLERROR {ABORT | [ROLLBACK [WORK], ABORT}

is used to decrease the need for IF NOT SQLSUCCESS THEN tests after every executed
SQL statement in a procedure. When this statement is included in a stored procedure all
return values of executed statements are checked for errors. If statement execution returns an
error, the procedure is automatically aborted. Optionally the transaction can be rolled back.

The error string of latest failed SQL statement is stored into variable SQLERRSTR.

Using Transactions
EXEC SQL {COMMIT | ROLLBACK} WORK

is used to terminate transactions.
EXEC SQL SET TRANSACTION {READ ONLY | READ WRITE}

is used to control the type of transactions.

Using Sequencer Objects and Event Alerts
Refer to the usage of the CREATE SEQUENCE and CREATE EVENT statements.

Procedure Stack Functions

The following functions may be used to analyze the current contents of the procedure stack:
PROC_COUNT(), PROC_NAME(N), PROC_SCHEMA(N).

PROC_COUNT() returns the number of procedures in the procedure stack. This includes the
current procedure.

PROC_NAME(N) returns the Nth procedure name is the stack. First procedure position is
zero.

PROC_SCHEMA(N) returns the schema name of the Nth procedure in procedure stack.

Example 1
"create procedure test2(tableid integer)

D-14 SOLID Administrator Guide

CREATE PROCEDURE

retums (cntinteger)
begin
exec sql prepare c1 select count(*) from
sys_tableswhereid>?;
exec sgl execute ¢l using (tableid) into
(ent);
exec sqlfetch cl;
end";

Example 2

— This procedure can only be used with SOLID Embedded Engine —
— version 2.2 or later. -
"create procedure retum_tables
retums (name varchar)
begin
exec sgl whenever sglerror rollback, abort;
exec sql prepare c1 selecttable_name
fromsys tables;
exec sl execute cl into (name);
while sglsuccess loop
exec sqlfetch cl;
if not sglsuccess
then leave;
end if
retum row;
end loop;
exec sql close cl,;
end";

SOLID SQL Syntax D-15

CREATE ROLE

CREATE ROLE

CREATE ROLE role-name

Usage
Creates a new user role.

Example
CREATE ROLE GUEST_USERS;

CREATE SEQUENCE

CREATE [DENSE] SEQUENCE sequence-name

Usage
Sequencer objects are objects that are used to get sequence numbers.

Using a dense sequence guarantees that there are no holes in the sequence numbers. The
sequence number allocation is bound to the current transaction. If the transaction rolls back,
also the sequence number allocations are rolled back. The drawback of dense sequences is
that the sequence is locked out from other transactions until the current transaction ends.

Using a sparse sequence guarantees unigueness of the returned values, but they are not
bound to the current transaction. If a transaction allocates a sparse sequence number and
later rolls back, the sequence number is simply lost.

The advantage of using a sequencer object instead of a separate table is that the sequencer
object is specifically fine-tuned for fast execution and requires less overhead than normal
update statements.

Sequence values can be incremented and used within SQL statements. These constructs can
be used in SQL:

sequence-name.CURRVAL
sequence-name.NEXTVAL

Sequences can also be used inside stored procedures. The current sequence value can be
retrieved using the following stored procedure statement:

EXEC SEQUENCE sequence-name.CURRENT INTO variable

The new sequence value can be retrieved using the following stored procedure statement:

D-16 SOLID Administrator Guide

CREATE TABLE

EXEC SEQUENCE sequence-name.NEXT INTO variable
Sequence values can be set with the following stored procedure statement:
EXEC SEQUENCE sequence-name SET VALUE USING variable

Select access rights are required to retrieve the current sequence value. Update access righ
are required to allocate new sequence values. These access rights are granted and revoked
the same way as table access rights.

Examples
CREATE DENSE SEQUENCE SEQ1;

INSERT INTO ORDER (id) VALUES (order_sequence NEXTVAL);

CREATE TABLE

CREATE TABLE base-table-name
(column-element [, column-element] ...)

base-table-name ::= base-table-identifier |
schema-name.base-table-identifier

column-element ::= column-definition |
table-constraint-definition

column-definition ::= column-identifier
data-type
[column-constraint-definition
[column-constraint-definition] ...]

column-constraint-definition ::=
NOT NULL | NOT NULL UNIQUE |
NOT NULL PRIMARY KEY | CHECK (check-condition)

table-constraint-definition ::=
UNIQUE (column-identifier
[, column-identifier] ...) |
PRIMARY KEY (column-identifier
[, column-identifier] ...) |
CHECK (check-condition)|

SOLID SQL Syntax D-17

CREATE USER

FOREIGN KEY (column-identifier
[, column-identifier] ...)
REFERENCES table-name
(column-identifier [, column-identifier] ...)

Usage

Tables are created through tBREATE TABLEstatement. ThEREATE TABLEstate-

ment requires a list of the columns created, the data types, and, if applicable, sizes of values
within each column, in addition to other related alternatives (such as whether or not null val-
ues are permitted).

Example
CREATE TABLE DEPT (DEPTNO INTEGER NOT NULL, DNAME VARCHAR, PRIMARY
KEY(DEPTNO));

CREATE TABLE DEPT2 (DEPTNO INTEGER NOT NULL PRIMARY KEY, DNAME VARCHAR);
CREATE TABLE DEPT3 (DEPTNO INTEGER NOT NULL UNIQUE, DNAME VARCHARY);

CREATE TABLE DEPT4 (DEPTNO INTEGER NOT NULL, DNAME VARCHAR,
UNIQUE(DEPTNO));

CREATE TABLE EMP (DEPTNO INTEGER, ENAME VARCHAR, FOREIGN KEY (DEPTNO)
REFERENCES DEPT (DEPTNO));

CREATE TABLE EMP2 (DEPTNO INTEGER, ENAME VARCHAR, CHECK (ENAME IS NOT
NULL), FOREIGN KEY (DEPTNO) REFERENCES DEPT (DEPTNO));

CREATE USER

CREATE USER user-name IDENTIFIED BY password

Usage
Creates a new user with a given password.

Example
CREATE USER HOBBES IDENTIFIED BY CALVIN,;

D-18 SOLID Administrator Guide

DELETE (positioned)

CREATE VIEW

CREATE VIEW viewed-table-name
[(column-identifier
[, column-identifier]...)]
AS query-specification

Usage
A view can be viewed as a virtual table; that is, a table that does not physically exist, but
rather is formed by a query specification against one or more tables.

Example

CREATE VIEW TEST_VIEW
(VIEW_I, VIEW_C, VIEW_ID)
AS SELECT |, C, ID FROM TEST;

DELETE

DELETE FROM table-name
[WHERE search-condition]

Usage
Depending on your search condition the specified row(s) will be deleted from a given table.

Example

DELETE FROM TEST WHERE ID = 5;
DELETE FROM TEST,

DELETE (positioned)

DELETE FROMtable-name WHERE CURRENT OF cursor-name

Usage
The positioned DELETE statement deletes the current row of the cursor.

Example
DELETE FROM TEST WHERE CURRENT OF MY_CURSOR;

SOLID SQL Syntax D-19

DROP EVENT

DROP EVENT

DROP EVENT event-name

Usage
The DROP EVENT statement removes the specified event from the database.

Example
DROP EVENT EVENT-TEST;

DROP INDEX

DROP INDEX index-name

Usage
The DROP INDEXstatement removes the specified index from the database.

Example
DROP INDEXUX_TEST;

DROP PROCEDURE

DROP PROCEDURE procedure-name

Usage
The DROP PROCEDURiatement removes the specified procedure from the database.

Example
DROP PROCEDURE PROCTEST;

DROP ROLE

DROP ROLE role-name

Usage
The DROP ROLEstatement removes the specified role from the database.

D-20 SOLID Administrator Guide

DROP VIEW

Example
DROP ROLE GUEST_USERS;

DROP SEQUENCE

DROP SEQUENCE sequence-name

Usage
TheDROP SEQUENCS&atement removes the specified sequence from the database.

Example
DROP SEQUENCE SEQZ,;

DROP TABLE

DROP TABLE base-table-name

Usage
The DROP TABLEstatement removes the specified table from the database.

Example
DROP TABLE TEST;

DROP USER

DROP USER user-name

Usage
The DROP USERstatement removes the specified user from the database.

Example
DROP USER HOBBES;

DROP VIEW

DROP VIEW viewed-table-name

SOLID SQL Syntax D-21

EXPLAIN PLAN FOR

Usage
The DROP VIEWSstatement removes the specified view from the database.

Example
DROP VIEW TEST_VIEW;

EXPLAIN PLAN FOR

EXPLAIN PLAN FOR sql-statement

Usage

The EXPLAIN PLAN FOR statement shows the selected search plan for the specified SQL
statement.

Example
EXPLAIN PLAN FOR select * from tables;

GRANT

GRANT {ALL | grant-privilege
[, grant-privilege]...}
ON table-name
TO {PUBLIC | user-name [, user-name]... |
role-name [, role-name]... }
[WITH GRANT OPTION]

GRANT role-name TO user-name

grant-privilege ;= DELETE | INSERT | SELECT |
UPDATE [(column-identifier
[, column-identifier]... N

REFERENCES [(column-identifier

[, column-identifier]...)
GRANT EXECUTE ON procedure-name
TO {PUBLIC | user-name [, user-name]... |
role-name [, role-name]... }

D-22 SOLID Administrator Guide

INSERT

INSERT

GRANT {SELECT | INSERT} ON event-name
TO {PUBLIC | user-name [, user-name]... |
role-name [, role-name]... }

GRANT {SELECT | UPDATE} ON sequence-name
TO {PUBLIC | user-name [, user-name]... |
role-name [, role-name]... }

Usage
The GRANTstatement is

1. used to grant privileges to the specified user or role.
2. used to grant privileges to the specified user by giving
the user the privileges of the specified role.

If you do use the option&/ITH GRANT OPTION you give permission for the user(s) to
whom you are granting the privilege to pass it on to other users.

Example

GRANT GUEST_USERS TO CALVIN,;
GRANT INSERT, DELETE ON TEST TO GUEST_USERS,

INSERT INTO table-name [(column-identifier
[, column-identifier]...)]
VALUES (insert-value[, insert-value]...)

Usage

There are several variations of INSERT statement. In the simplest instance, a value is
provided for each column of the new row in the order specified at the time the table was
defined (or altered). In the preferable form of INSERT statement the columns are speci-

fied as part of the statement and they needn’t to be in any specific order as long as the order
of the column and value lists match with one another.

Example

INSERT INTOTEST (C, ID) VALUES (0.22, 5);
INSERT INTO TEST VALUES (0.35, 9);

SOLID SQL Syntax D-23

INSERT (Using Query)

INSERT (Using Query)

INSERT INTO table-name [(column-identifier
[, column-identifier]...)]
query-specification

Usage

The query specification creates a virtual table. UsingNISE=RT statement the rows of cre-
ated virtual table are inserted into the specified table (the degree and data types of the vir-
tual table and inserted columns must match).

Example
INSERT INTO TEST (C, ID) SELECT A, B FROM INPUT_TO_TEST;

REVOKE (Role from User)

REVOKE {role-name [, role-name]... }
FROM {PUBLIC | user-name [, user-name]... }

Usage
The REVOKEstatement is used to take a role away from users.

Example
REVOKE GUEST_USERS FROM HOBBES;

D-24 SOLID Administrator Guide

ROLLBACK

REVOKE (Privilege from Role or User)

REVOKE
{revoke-privilege [, revoke-privilege]... }
ON table-name
FROM {PUBLIC | user-name [, user-name]... |
role-name [, role-name]... }

revoke-privilege ::= DELETE | INSERT |
SELECT |
UPDATE [(column-identifier
[, column-identifier]... N
REFERENCES

REVOKE EXECUTE ON procedure-name
FROM {PUBLIC | user-name [, user-name]... |
role-name [, role-name]... }

REVOKE {SELECT | INSERT} ON event-name FROM
{PUBLIC | user-name [, user-namel]... |
role-name [, role-name]... }

REVOKE {SELECT | INSERT} ON sequence-name
FROM {PUBLIC | user-name [, user-name]... |

role-name [, role-name]... }

Usage
The REVOKEstatement is used to take privileges away from users and roles.

Example
REVOKE INSERT ON TEST FROM GUEST_USERS;

ROLLBACK

ROLLBACK WORK

SOLID SQL Syntax D-25

SELECT

Usage

The changes made in the database are discarde@blyBACkKstatement. It terminates the
transaction.

Example
ROLLBACK WORK;

SELECT

SELECT [ALL | DISTINCT] select-list

FROM table-reference-list

[WHERE search-condition]

[GROUP BY column-name [, column-namel]...]

[HAVING search-condition]

[[UNION | INTERSECT | EXCEPT] [ALL]
select-statement]...

[ORDER BY {unsigned integer | column-name}
[ASC|DESC]]

Usage
TheSELECT statement is used to retrieve information.

IMPORTANT NOTE:

SOLID provides a consistent view of data within one transaction; that is, it sees the database
as it was at the moment it was started. This is implemented by the multiversion SOLID Bon-
sai Tree that stores the active data, that is, data that has been written to the database since the
beginning of the oldest active transaction in central memory. ARBLECT begins a new
transaction and if not committed or rolled back, it remains active thus causing the Bonsai

Tree to grow.

New data is merged to the main storage tree as soon as no transaction needs to see the old
versions of the rows. To ensure the efficient operation of the Bonsai Tree, also commit read-
only transactions as soon as all rows are retrieved. This releases the read level and allows the
merge process to keep the Bonsai Tree smaller.

UsingAUTOCOMMITdoes not help. This is because SOLID cannot immediately commit
SELECTSs since the rows need to be retrieved by the client application fild.TI®@COM-

MIT mode, the next SQL statement processing triggers the commit for pr&EQECT
statement. But if that next statement never comes, the transaction is left open until the con-
nection timout expires.

D-26 SOLID Administrator Guide

SET

SET

Example

SELECT ID FROM TEST;

SELECT DISTINCT ID, CFROM TEST WHERE ID =5;

SELECT DISTINCT ID FROM TEST ORDER BY ID ASC,

SELECT NAME, ADDRESS FROM CUSTOMERS UNION SELECT NAME, DEP FROM
PERSONNEL,

SET SQL INFO {ON | OFF} [FILE {file-name
"file-name" | ‘file-name'}]
[LEVEL info-level]
SET SQL SORTARRAYSIZE {array-size | DEFAULT}
SET SQL JOINPATHSPAN {path-span | DEFAULT}

SET SQL CONVERTORSTOUNIONS
{YES [COUNT value] | NO | DEFAULT}

SET LOCK TIMEOUT timeout-in-seconds

SET STATEMENT MAXTIME minutes

SET TRANSACTION READ ONLY

SET TRANSACTION READ WRITE

SET TRANSACTION CHECK WRITESET

SET TRANSACTION CHECK READSET

SET TRANSACTION ISOLATION LEVEL READ COMMITTED

SET TRANSACTION ISOLATION LEVEL
REPEATABLE READ

SET TRANSACTION ISOLATION LEVEL SERIALIZABLE

SOLID SQL Syntax D-27

SET SCHEMA

Usage
All the settings are read per user session unlike the settingsdalithéni file which
are automatically read each time SOLID Embedded Engine is started.

In SQL INFO the default file is a globaloltrace.out shared by all users. If the file

name is given, all futurtNFO ON settings will use that file unless a new file is set. It is rec-
ommended that the file name is given in single quotes, because otherwise the file name is
converted to uppercase. The info output is appended to the file and the file is never trun-
cated, so after the info file is not needed anymore, the user must manually delete the file. If
the file open fails, the info output is silently discarded.

The defaultSQL INFO LEVEL is4. A good way to generate useful info output is to set
info on with a new file name and then execute the SQL statement&MsRIGAIN PLAN
FORsyntax. This method gives all necessary estimator information but does not generate
output from the fetches which may generate a huge output file.

The sort array is used for in memory sorts in the SQL interpreter. The minimum value for
SORTARRAYSIZEs 100. If a smaller value is given, minimum value 100 will be used. If
large sorts are needed, it is recommended that the external sorter facility is used (in Sorter
section in solid.ini) instead on using very laB@RTARRAYSIZE

The COUNTparameter irsQL CONVERTORSTOUNIONSIs how many ors are converted
to unions. The default is 10 which should be enough in most cases.

SET STATEMENT MAXTIME sets connection specific maximum execution time in min-
utes. Setting is effective until a new maximum time if set. Zero time means no maximum
time, which is also the default.

The SET TRANSACTIONSsettings are borrowed from ANSI SQL. It sets the transaction
isolation level.

Example
SET SQL INFO ON FILE 'sglinfo.txt LEVEL 5

SET SCHEMA

SET SCHEMA {USER | 'user-name'}

Usage

From version 2.2 SOLIEmMbedded Enginsupports SQL89 style schemas for database

entity name qualifying. All created database entities belong to a schema, and different sche-
mas may contain entities with same name.

D-28 SOLID Administrator Guide

UPDATE (Positioned)

The default schema can be changed wittsthé SCHEMAstatement. Schema can be
change to the current user name by using the SET SCHEMA USER statement. Alternatively
schema can be set to ‘user-name’ which must be a valid user name in the database.

The algorithm to resolve entity namieshema-name.]table-identifier is the

following:

1. If schema-name is given therable-identifier is searched only from that
schema.

2. If schema-name is not given, then

a. Firsttable-identifier is searched from default schema. Default schema is
initially the same as user name, but can be changedEThSCHEM/Astatement

b. Thentable-identifier is searched from all schemas in the database. If more
than one entity with santable-identifier and type (table, procedure, ...) is
found, a new error code 13110 (Ambiguous entity neahke-identifier)
is returned.

The SET SCHEM/Astatement effects only to default entity name resolution and it does
not change any access rights to database entities. It sets the default schema name for
unqualified names in statements that are prepared in the current session by an execute
immediate statement or a prepare statement.

Example
SET SCHEMA 'CUSTOMERS'

UPDATE (Positioned)

UPDATE table-name

SET[table-name.]column-identifier ={ expression |
NULL}

LI table-name.]column-identifier = { expression |
NULLY}]...

WHERE CURRENT OF cursor-name
Usage

The positionedJPDATEstatement updates the current row of the cursor. The name of the
cursor is defined using ODBC API function nan®&gLSetCursorName .

SOLID SQL Syntax D-29

UPDATE (Searched)

Example

UPDATE TEST SET C =0.33
WHERE CURRENT OF MYCURSOR

UPDATE (Searched)

UPDATE table-name

SET[table-name.]column-identifier ={ expression |
NULL}

L[table-name.]column-identifier = { expression |
NULL}]...

[WHERE search-condition]
Usage
The UPDATEstatement is used to modify the values of one or more columns in one or more

rows, according the search conditions.

Example
UPDATE TEST SET C=044 WHERE ID=5

Table-reference

Table-reference

table-reference-list ::= table-reference [, table-reference ...]

table-reference ::= table-name [[AS] correlation-name] |
derived-table [[AS] correlation-name

[(derived-column-list)]] | joined-table

table-name ::= table-identifier | schema-name.table-identifier
derived-table = subquery

derived-column-list ::= column-name-list

joined-table := cross-join | qualified-join | (joined-table)
Cross-join ::= table-reference CROSS JOIN table-reference

D-30 SOLID Administrator Guide

Search-condition

qualified-join

join-type
outer-join-type
join-specification
join-condition
named-columns-join

column-name-list

Query-specification

Query-specification

.:= table-reference [NATURAL] [join-type] JOIN
table-reference [join-specification]

::= INNER | outer-join-type [OUTER] | UNION
©=LEFT | RIGHT | FULL
::= join-condition | named-columns-join
::= ON search-condition
== USING (column-name-list)

::= column-identifier [{, column-identifier} ...]

query-specification

select-list

select-sublist

derived-column

table-expression

Search-condition

Search-condition

= SELECT [DISTINCT | ALL] select-list
table-expression

1=*| select-sublist
[{, select-sublist} ...]

::= derived-column |
[table-name | table-identifier].*

::= expression [[AS] column-alias]]

::= FROM table-reference-list
[WHERE search-condition]
[GROUP BY column-name-list
[[UNION | INTERSECT | EXCEPT] [ALL] [CORRE-
SPONDING [BY (column-name-list)]
guery-specification]
[HAVING search-condition]

search-condition

::= search-item | search-item { AND | OR }
search-item

SOLID SQL Syntax D-31

Check-condition

search-item

search-test

comparison-test

between-test

like-test

null-test

set-test

guantified-test

existence-test

subquery

Check-condition

Check-condition

::= [NOT] { search-test |
(search-condition) }

::= comparison-test | between-test |
like-test | null-test | set-test |
guantified-test | existence-test

n=expression {=|<>|<|<=|>]|>=}
{ expression | subquery }

::= column-identifier NOT] BETWEEN
expression AND expression

::= column-identifier [NOT] LIKE value
[ESCAPE value]

::= column-identifier IS [NOT] NULL

= expression [NOT] IN ({ value
[value]... | subquery })

n=expression{=|<>|<|<=|>]|>=}
[ALL | ANY | SOME] subquery

= EXISTS subquery

:= (query-specification)

check-condition

check-item

check-test

comparison-test

between-test

like-test

D-32 SOLID Administrator Guide

::= check-item | check-item { AND | OR }
check-item

= [NOT] { check-test |
(check-condition) }

= comparison-test | between-test |
like-test | null-test | list-test

n=expression{=|<>|<|<=|>]|>=}
{ expression | subquery }

::= column-identifier NOT] BETWEEN
expression AND expression

::= column-identifier [NOT] LIKE value
[ESCAPE value]

Expression

null-test ::= column-identifier IS [NOT] NULL

list-test = expression [NOT] IN ({ value
[value]...})

Expression

Expression

expression = expression-item | expression-item
{+]-]*|/}expression-item

expression-item i=[+|-1{value | column-identifier | function | case-
expression | cast-expression | (expression) }

value ::=literal | USER | variable

function ::= set-function | null-function | string-function | numeric-
function |
datetime-function | system-function | datatypeconversion-
function

set-function = COUNT (*) |

{ AVG | MAX | MIN | SUM | COUNT }

({ALL | DISTINCT } expression)
null-function = { NULLVAL_CHAR() | NULLVAL_INT() }

datatypeconversion-function ::= CONVERT_CHAR(value-exp) |
CONVERT_DATE(value-exp) |
CONVERT_DECIMAL (value-exp) |
CONVERT_DOUBLE(value-exp) |
CONVERT_FLOAT (value-exp) |
CONVERT_INTEGER(value-exp) |
CONVERT_LONGVARCHAR(value-exp) |
CONVERT_NUMERIC(value-exp) |
CONVERT_REAL (value-exp) |
CONVERT_SMALLINT(value-exp) |
CONVERT_TIME(value-exp) |
CONVERT_TIMESTAMP(value-exp) |
CONVERT_TINYINT(value-exp) |
CONVERT_VARCHAR(value-exp)

case-expression ::= case-abbreviation | case-specification

SOLID SQL Syntax D-33

String Function

case-abbreviation = NULLIF(value-exp, value-exp) |
COALESCE(value-exp {, value-exp}...)

case-specification ::= CASE value-exp
WHEN value-exp
THEN {value-exp}
[WHEN value-exp
THEN {value-exp} ...]
ELSE {value-exp}

END

cast-expression = CAST (value-exp AS -data-type)
String Function

Function Purpose

ASCII(str) Returns the integer equivalent of string str

CHAR(code) Returns the character equivalent of code

CONCAT(str1, str2) Concatenates str2 to strl

strl {+]|} str2 Concatenates str2 to strl

INSERT((strl, start, length, Merges strings by deleting length characters from strl and

str2) inserting str2

LCASE(str) Converts string str to lowercase

LEFT(str, count) Returns leftmost count characters of string str

LENGTH(str) Returns the number of characters in str

LOCATE(strl, str2 [, start]) Returns starting position of strl within str2

LTRIM(str) Removes leading spaces of str
POSITION (strl IN str2) Returns starting position of strl within str2
REPEAT(str, count) Returns characters of str repeated count times

REPLACE(str1, str2, str3) Replaces occurrences of str2 in strl with str3

RIGHT(str, count) Replaces the rightmost count characters of string str
RTRIM(str) Removes trailing spaces in str
SPACE(count) Returns a string str of count spaces

D-34 SOLID Administrator Guide

Numeric Function

SUBSTRING(str, start, Derives substring from str beginning at start
length)
UCASE(str) Converts str to uppercase

Numeric Function

Function Purpose

ABS(numeric) Absolute value of numeric

ACOS(float) Arccosine of float

ASIN(float) Arcsine of float

ATAN(float) Arctangent of float

ATANZ2(floatl, float2) Arctangent of the x and y coordinates, specified by floatl
and float2, respectively, as an angle, expressed in radians

CEILING(numeric) Smallest integer greater than or equal to numeric

COS(float) Cosine of float

COT(float) Cotangent of float

DEGREES(numeric) Converts numeric radians to degrees

EXP(float) Exponential value of float

FLOOR(numeric) Largest integer less than or equal to numeric

LOG(float) Natural logarithm of float

LOG10(float) Base 10 log of float

MOD(integerl, integer2) Modulus of integerl divided by integer2

PI1() Pi as a floating point number

POWER(numeric, integer) Value of numeric raised to the power of integer

RADIANS(numeric) Number of radians converted from numeric

ROUND(numeric, integer) Numeric rounded to integer

SIGN(numeric) Sign of numeric

SQRT(float) Square root of float

TAN(float) Tangent of float

TRUNCATE(numeric, integer) Numeric truncated to integer

SOLID SQL Syntax D-35

Date Time Function

Date Time Function

Function Purpose

CURDATE() Returns the current date

CURTIME() Returns the current time

DAYNAME(date) Returns a string with the day of the week

DAYOFMONTH(date) Returns the day of the month as an integer between 1 and 31

DAYOFWEEK(date) Returns the day of the week as an integer between 1 and 7,
where 1 represents Sunday

DAYOFYEAR(date) Returns the day of the year as an integer between 1 and 366

EXTRACT (date field FROM Isolates a single field of a datetime or a interval and con-

date-exp) verts it to a number.

HOUR(time-exp)
MINUTE(time-exp)
MONTH(date)
MONTHNAME(date)
NOW()
QUARTER(date)
SECOND(time-exp)

TIMESTAMPADD(interval,
integer-exp, timestamp-exp)

D-36 SOLID Administrator Guide

Returns the hour as an integer between 0 and 23
Returns the minute as an integer between 0 and 59
Returns the month as an integer between 1 and 12
Returns the month name as a string

Returns the current date and time as a timestamp
Returns the quarter as an integer between 1 and 4
Returns the second as an integer between 0 and 59

Calculates a timetamp by adding integer-exp intervals of
type interval to timestamp-exp

Keywords used to express valid TIMESTAMPADD interval
values are:

SQL_TSI_FRAC_SECOND
SQL_TSI_SECOND
SQL_TSI_MINUTE
SQL_TSI_HOUR
SQL_TSI_DAY
SQL_TSI_WEEK
SQL_TSI_MONTH
SQL_TSI_QUARTER
SQL_TSI_YEAR

Data-type

TIMESTAMPDIFF(interval, Returns the integer number of intervals by which timestamp-
timestamp-expl, timestamp- exp2 is greater than timestamp-expl

exp2) Keywords used to express valid TIMESTAMPDIFF interval
values are:

SQL_TSI_FRAC_SECOND
SQL_TSI_SECOND
SQL_TSI_MINUTE
SQL_TSI_HOUR
SQL_TSI_DAY
SQL_TSI_WEEK
SQL_TSI_MONTH
SQL_TSI_QUARTER
SQL_TSI_YEAR

WEEK((date) Returns the week of the year as an integer between 1 and 52

YEAR(date) Returns the year as an integer

System Function

Function Purpose

IFNULL(exp, value) If exp is null, returns value; if not, returns exp

USER() Returns the user authorization name

UIC() Returns the connection id associated with the connection
Data-type

Data-type

SOLID SQL Syntax D-37

Date and Time Literals

data-type = {BINARY |
CHAR [length]| DATE |
DECIMAL [(precision [, scale])]|
DOUBLE PRECISION |
FLOAT [(precision)]|
INTEGER |
LONG VARBINARY |
LONG VARCHAR |
LONG WVARCHAR |
NUMERIC [(precision [, scale])]|
REAL |
SMALLINT |
TIME |
TIMESTAMP [(timestamp precision)] |
TINYINT | VARBINARY |
VARCHAR [(length)1}
WCHAR |
WVARCHAR [length]

Date and Time Literals

Date/time literal

date-literal “YYYY-MM-DD’
time-literal "HH:MM:SS’
timestamp-literal “YYYY-MM-DD HH:MM:SS’

Pseudo Columns

The following pseudo columns may also be used in the select-list of a SELECT statement:

Pseudo column Type Explanation

ROWVER VARBINARY (254) Version of the row in a table.

ROWID VARBINARY(10) Persistent id for a row in a
table.

D-38 SOLID Administrator Guide

Pseudo Columns

ROWNUM DECIMAL(16,2) Row number indicates the
sequence in which a row was
selected from a table or set of
joined rows. The first row
selected has a ROWNUM of
1, the second row has 2, etc.
ROWNUM is chiefly useful
for limiting the number of
rows returned by a query
(e.g., WHERE ROWNUM <
10).

NOTE! Since ROWID and ROWVER refer to a single row, they may only be used with que-
ries that return rows from a single table.

SOLID SQL Syntax D-39

Pseudo Columns

D-40 SOLID Administrator Guide

E

System Views and System Tables

System Views

SOLID Embedded Enginsupports views specified in the X/Open SQL Standard.

COLUMNS

The COLUMNS system view identifies the columns which are accessible to the current user.

Column name Data type Description

TABLE_CATALOG VARCHAR reserved for future use

TABLE_SCHEMA VARCHAR the name of the schema contain-
ing TABLE_NAME

TABLE_NAME VARCHAR the name of the table or view

COLUMN_NAME VARCHAR the name of the column of the
specified table or view

DATA_TYPE VARCHAR the data type of the column

SQL_DATA TYPE_NUM SMALLINT ODBC compliant data type
number

CHAR_MAX_LENGTH INTEGER maximum length for a character

data type column; for others
NULL

System Views and System Tables

E-1

System Views

NUMERIC_PRECISION INTEGER the number of digits of mantissa
precision of the column, if
DATA_TYPE is approximate
numeric data type,
NUMERIC_PREC_RADIX
indicates the units of measure-
ment; for other numeric types
contains the total number of dec-
imal digits allowed in the col-
umn; for character data types
NULL

NUMERIC_PREC_RADIX SMALLINT the radix of numeric precision if
DATA_TYPE is one of the
approximate numeric data types;
otherwise NULL

NUMERIC_SCALE SMALLINT total number of significant dig-
its to the right of the decimal
point; for INTEGER and
SMALLINT 0; for others NULL

NULLABLE CHAR if column is known to be not
nullable 'NO'; otherwise 'YES'

NULLABLE_ODBC SMALLINT ODBGC, if column is known to be
not nullable '0"; otherwise '1'

REMARKS LONG VARCHAR reserved for future use

SERVER_INFO

The SERVER_INFO system view provides attributes of the current database system or

server.

Column name Data type Description

SERVER_ATTRIBUTE VARCHAR identifies an attribute of the
server

ATTRIBUTE_VALUE VARCHAR the value of the attribute

TABLES

The TABLES system view identifies the tables accessible to the current user.

E-2 SOLID Administrator Guide

System Tables

Column name Data type Description

TABLE_CATALOG VARCHAR reserved for future use

TABLE_SCHEMA VARCHAR the name of the schema contain-
ing TABLE_NAME

TABLE_NAME VARCHAR the name of the table or view

TABLE_TYPE VARCHAR the type of the table

REMARKS LONG VARCHAR reserved for future use

System Tables

SQL_LANGUAGES
The SQL_LANGUAGES system table lists the SQL standards and SQL dialects which are

supported.

Column name Data type Description

SOURCE VARCHAR the organization that defined this
specific SQL version

SOURCE_YEAR VARCHAR the year the relevant standard
was approved

CONFORMANCE VARCHAR the conformance level at which
conformance to the relevant
standard

INTEGRITY VARCHAR indicates whether the Integrity
Enhancement Feature is sup-
ported

IMPLEMENTATION VARCHAR identifies uniquely the vendor's
SQL language; NULL if
SOURCE is 'ISO'

BINDING_STYLE VARCHAR the binding style 'DIRECT’,
*EMBED' or 'MODULE'

PROGRAMMING_LANG VARCHAR the host language used

System Views and System Tables E-3

System Tables

SYS_ATTAUTH

Column name Data type Description
REL_ID INTEGER table id
UR_ID INTEGER user or role id
ATTR_ID INTEGER column id
PRIV INTEGER privilege info
GRANT_ID INTEGER grantor id
GRANT_TIM TIMESTAMP grant time

SYS_CARDINAL

Column name Data type Description

REL_ID INTEGER the relation id as in
SYS_TABLES

CARDIN INTEGER the number of rows in the table

SIZE INTEGER the size of the data in the table

LAST_UPD TIMESTAMP the timestamp of the last update
in the table

SYS_COLUMNS

Column name Data type Description
ID INTEGER unique column identifier
REL_ID INTEGER the relation id as in
SYS_TABLES
COLUMN_NAME VARCHAR the name of the column
COLUMN_NUMBER INTEGER the number of the column in the
table (in creation order)
DATA_TYPE VARCHAR the data type of the column
SQL_DATA_TYPE_NUM SMALLINT ODBC compliant data type
number

E-4 SOLID Administrator Guide

System Tables

DATA_TYPE_NUMBER INTEGER internal data type number

CHAR_MAX_LENGTH INTEGER maximum length for a CHAR
field

NUMERIC_PRECISION INTEGER numeric precision

NUMERIC_PREC_RADIX SMALLINT numeric precision radix

NUMERIC_SCALE SMALLINT numeric scale

NULLABLE CHAR are NULL values allowed (Yes,
No)

NULLABLE_ODBC SMALLINT ODBC, are NULL values
allowed (1,0)

FORMAT VARCHAR reserved for future use

DEFAULT_VAL VARBINARY reserved for future use

ATTR_TYPE INTEGER user defined (0) or internal (>0)

REMARKS LONG VARCHAR reserved for future use

SYS_EVENTS

Column name Data type Description

ID INTEGER unique event identifier

EVENT_NAME VARCHAR the name of the event

EVENT_PARAMCOUNT INTEGER number of parameters

EVENT_PARAMTYPES LONG VARBINARY types of parameters

EVENT_TEXT VARCHAR the body of the event

EVENT_SCHEMA VARCHAR the owner of the event

CREATIME TIMESTAMP creation time

TYPE INTEGER reserved for future use

System Views and System Tables E-5

System Tables

SYS_FORKEYPARTS

SYS_FORKEYS

SYS_INFO

Column name Data type Description

ID INTEGER foreign key identifier

KEYP_NO INTEGER keypart number

ATTR_NO INTEGER column number

ATTR_ID INTEGER column identifier

ATTR_TYPE INTEGER column type

CONST_VALUE VARBINARY possible internal constant value;
otherwise NULL

Column name Data type Description

ID INTEGER foreign key identifier

REF_REL_ID INTEGER referenced table identifier

CREATE_REL_ID INTEGER creator table identifier

REF_KEY_ID INTEGER referenced key identifier

REF_TYPE INTEGER reference type

KEY_SCHEMA VARCHAR creator name

KEY_NREF INTEGER number of referenced key parts

Column name Data type Description

PROPERTY VARCHAR the name of the property

VALUE_STR VARCHAR value as a string

VALUE_INT INTEGER value as an integer

E-6 SOLID Administrator Guide

System Tables

SYS_KEYPARTS

Column name Data type Description

ID INTEGER unique key identifier

REL_ID INTEGER the relation id as in
SYS_TABLES

KEYP_NO INTEGER keypart identifier

ATTR_ID INTEGER column identifier

ATTR_NO INTEGER the number of the column in the
table (in creation order)

ATTR_TYPE INTEGER the type of the column

CONST_VALUE VARBINARY constant value or NULL

ASCENDING CHAR is the key ascending (Yes) or

descending (No)

SYS_KEYS

Column name Data type Description

ID INTEGER unique key identifier

REL_ID INTEGER the relation id as in
SYS_TABLES

KEY_NAME VARCHAR the name of the key

KEY_UNIQUE CHAR is the key unique (Yes, No)

KEY_NONUNIQUE_ODBC SMALLINT ODBC, is the key NOT unique
(1,0

KEY_CLUSTERING CHAR is the key a clustering key (Yes,
No)

KEY_PRIMARY CHAR is the key a primary key (Yes,
No)

KEY_PREJOINED CHAR reserved for future use

KEY_SCHEMA VARCHAR the owner of the key

System Views and System Tables E-7

System Tables

KEY_NREF INTEGER internal system specific informa-
tion

SYS_PROCEDURES

Column name Data type Description

ID INTEGER unique procedure identifier
PROCEDURE_NAME VARCHAR procedure name
PROCEDURE_TEXT LONG VARCHAR procedure body
PROCEDURE_BIN LONG VARBINARY compiled form of the procedure
PROCEDURE_SCHEMA VARCHAR the owner

CREATIME TIMESTAMP creation time

TYPE INTEGER reserved for future use

SYS_RELAUTH

Column name Data type Description
REL_ID INTEGER relation id
UR_ID INTEGER user or role id
PRIV INTEGER privilege info
GRANT_ID INTEGER grantor id
GRANT_TIM TIMESTAMP grant time
GRANT_OPT CHAR grant option info

SYS_SEQUENCES

Column name Data type Description

SEQUENCE_NAME VARCHAR sequence name

ID INTEGER unique id

DENSE CHAR is the sequence dense or sparse

E-8 SOLID Administrator Guide

System Tables

SYS_SYNONYM

SYS_TABLEMODES

SYS_TABLES

SEQUENCE_SCHEMA VARCHAR the schema name

CREATIME TIMESTAMP creation time

Column name Data type Description

TARGET_ID INTEGER reserved for future use

SYNON INTEGER reserved for future use

Column name Data type Description

ID INTEGER relation id

MODE VARCHAR special mode info

MODIFY_TIME TIMESTAMP last modify time

MODIFY_USER VARCHAR last user that modified

Column name Data type Description

ID INTEGER unique table identifier

TABLE_NAME VARCHAR the name of the table

TABLE_TYPE VARCHAR the type of the table (BASE
TABLE or VIEW)

TABLE_SCHEMA VARCHAR the owner of the table

TABLE_CATALOG VARCHAR reserved for future use

CREATIME TIMESTAMP the creation time of the table

CHECKSTRING

REMARKS

LONG VARCHAR

LONG VARCHAR

possible check option defined
for the table

reserved for future use

System Views and System Tables E-9

System Tables

SYS_TYPES
Column name Data type Description
TYPE_NAME VARCHAR the name of the data type
DATA_TYPE SMALLINT ODBC, data type number
PRECISION INTEGER ODBC, the precision of the data
type
LITERAL_PREFIX VARCHAR ODBC, possible prefix for lit-
eral values
LITERAL_SUFFIX VARCHAR ODBC, possible sulffix for lit-
eral values
CREATE_PARAMS VARCHAR ODBC, the parameters needed to
create a column of the data type
NULLABLE SMALLINT ODBC, can the data type con-
tain NULL values
CASE_SENSITIVE SMALLINT ODBC, is the data type case sen-
sitive
SEARCHABLE SMALLINT ODBC, the supported search
operations
UNSIGNED_ATTRIBUTE SMALLINT ODBC, is the data type unsigned
MONEY SMALLINT ODBC, whether the data is a
money data type
AUTO_INCREMENT SMALLINT ODBC, whether the data type is
autoincrementing
LOCAL_TYPE_NAME VARCHAR ODBC, has the data type another
implementation defined name
MINIMUM_SCALE SMALLINT ODBC, the minimum scale of
the data type
MAXIMUM_SCALE SMALLINT ODBC, the maximum scale of

SYS_UROLE, SYS_USERS

the data type

These tables are for the system’s internal use only.

E-10 SOLID Administrator Guide

System Tables

SYS_VIEWS
Column name Data type Description
V_ID INTEGER unique identifier for this view
TEXT LONG VARCHAR view definition
CHECKSTRING LONG VARCHAR possible CHECK OPTION
defined for the view
REMARKS LONG VARCHAR reserved for future use

System Views and System Tables E-11

System Tables

E-12 SOLID Administrator Guide

-

SOLID SQL API Reserved Words

The following words are reserved in several SQL standards: ODBC 2.1, X/Open
and SQL Access Group SQL CAE specification, Database Language - SQL: ANSI
X3H2 (SQL-92). Some words are used by SOLID SQL. Applications should avoid
using any of these keywords for other purposes. The following table contains also
potential reserved words; these markings are enclosed in parenthesis.

Reserved word ODBC X/Open SQL ANSI| SQL2 SOLID SQL

ABSOLUTE

ACTION

ADA

ADD

ADMIN

AFTER ()

ALIAS Q)]

ALL

ALLOCATE

ALTER

AND

ANY

ARE

SOLID SQL API Reserved Words F-1

AS

ASC

ASSERTION

ASYNC

AT

AUTHORIZATION

AVG

BEFORE

BEGIN

BETWEEN

BINARY

BIT

BIT_LENGTH

BOOLEAN

BOTH

BREADTH

BY

CALL

CASCADE

CASCADED

CASE

CAST

CATALOG

CHAR

CHAR_LENGTH

F-2 SOLID Administrator Guide

CHARACTER

CHARACTER_LENGTH

CHECK

CLOSE

COALESCE

COBOL

COLLATE

COLLATION

COLUMN

COMMIT

COMMITTED

COMPLETION

CONNECT

CONNECTION

CONSTRAINT

CONSTRAINTS

CONTINUE

CONVERT

CORRESPONDING

COUNT

CREATE

CROSS

CURRENT

CURRENT_DATE

CURRENT_TIME

SOLID SQL API Reserved Words F-3

CURRENT_TIMESTAMP

CURRENT_USER

CURSOR

CYCLE

)

DATA

)

DATE

DAY

DEALLOCATE

DEC

DECIMAL

DECLARE

DEFAULT

DEFERRABLE

DEFERRED

DELETE

DEPTH

DESC

DESCRIBE

DESCRIPTOR

DIAGNOSTICS

DICTIONARY

)

DISCONNECT

DISPLACEMENT

DISTINCT

DOMAIN

F-4 SOLID Administrator Guide

DOUBLE

DROP o . . .
EACH O]

ELSE o . .
ELSEIF ©) .
END
END-EXEC . .

EQUALS ©)

ESCAPE . B .
EVENT .
EXCEPT . . .
EXCEPTION . . .

EXEC . . B .
EXECUTE . . B .
EXISTS o . . .
EXPLAIN .
EXTERNAL o .

EXTRACT . .

FALSE . .

FETCH o . . .
FIRST o .

FLOAT . . B .
FOR o . . .
FOREIGN
FORTRAN .

SOLID SQL API Reserved Words F-5

FOUND

FROM

FULL

GENERAL

GET

GLOBAL

GO

GOTO

GRANT

GROUP

HAVING

HOUR

IDENTIFIED

IDENTITY

IF

IGNORE

IMMEDIATE

IN

INCLUDE

INDEX

INDICATOR

INITIALLY

INNER

INPUT

INSENSITIVE

F-6 SOLID Administrator Guide

INSERT

INT o . .
INTEGER . . B .
INTERSECT . . .
INTERVAL . .

INTO
IS . . B .
ISOLATION . . .
JOIN . . .
KEY o . . .
LANGUAGE . .

LAST D .

LEADING .

LEAVE *) .
LEFT D . .
LESS)

LEVEL . . .
LIKE o . . .
LIMIT ()

LOCAL D .

LOCK .
LONG .
LOOP O] .
LOWER . .

MAINMEMORY .

SOLID SQL API Reserved Words F-7

MATCH

MAX

MIN

MINUTE

MODIFY

MODULE

MONTH

MUMPS

NAMES

NATIONAL

NATURAL

NCHAR

NEW

NEXT

NO

NONE

NOT

NULL

NULLIF

NUMERIC

OBJECT

OCTET_LENGTH

OF

OFF

(o]]]

F-8 SOLID Administrator Guide

OLD

ON

ONLY

OPEN

OPERATION

OPERATORS

OPTIMISTIC

OPTION

OR

ORDER

OTHERS

OUTER

OUTPUT

OVERLAPS

PARAMETERS

PARTIAL

PASCAL

PENDANT

PESSIMISTIC

PLAN

PLI

POSITION

POST

PRECISION

PREORDER

)

SOLID SQL API Reserved Words F-9

PREPARE

PRESERVE

PRIMARY

PRIOR

PRIVATE

PRIVILEGES

PROCEDURE

PROTECTED

PUBLIC

READ

REAL

RECURSIVE

REF

REFERENCES

REFERENCING

REGISTER

RELATIVE

RENAME

REPEATABLE

REPLACE

RESIGNAL

RESTRICT

RETURN

RETURNS

REVOKE

F-10 SOLID Administrator Guide

RIGHT .

ROLE ©) .
ROLLBACK . . .
ROUTINE ©)

ROW O]

ROWID .
ROWNUM .
ROWVER .
ROWS . .

SAVEPOINT ¢) .
SCHEMA . . .
SCROLL . .

SEARCH ©)

SECOND . .

SECTION . .

SELECT . . .
SENSITIVE ¢)

SEQUENCE .) .

SERIALIZABLE

SESSION

SESSION_USER

SET . . .
SIGNAL O]

SIMILAR ¢)

SIZE . .

SOLID SQL API Reserved Words F-11

SMALLINT

SOME

SPACE

SQL

SQLCA

SQLCODE

SQLERROR

SQLEXCEPTION

SQLSTATE

SQLWARNING

START

STRUCTURE

SUBSTRING

SUM

SYSTEM

SYSTEM_USER

TABLE

TEMPORARY

TEST

)

THEN

THERE

)

TIME

TIMEOUT

TIMESTAMP

TIMEZONE_HOUR

F-12 SOLID Administrator Guide

TIMEZONE_MINUTE

TINYINT

TO

TRAILING

TRANSACTION

TRANSLATE

TRANSLATION

TRIGGER

TRIM

TRUE

TYPE

UNDER

UNION

UNIQUE

UNKNOWN

UNREGISTER

UPDATE

UPPER

USAGE

USER

USING

VALUE

VALUES

VARBINARY

VARCHAR

SOLID SQL API Reserved Words F-13

VARIABLE

VARYING . . .
VIEW . . .
VIRTUAL *)
VISIBLE *)
WAIT)
WHEN . .
WHENEVER . . .
WHERE . . .
WHILE)
WITH . . .
WITHOUT)
WORK . . .
WRITE .
WCHAR

WVARCHAR

YEAR . .
ZONE .

F-14 SOLID Administrator Guide

G

SOLID Embedded Engine Command Line

Options

General Options

Option

Description Examples

-c<dir>

-n<name>

Changes working directory.

Starts server in foreground.

Displays help.

Monitors users’ messages and SQL statements.
Sets server name.

The Windows NT version of SOLIEmbed- SOLID.EXE -s"install,SOLID,

s{start|installrem ded Engineés by default an icon exe version. D:\SOLID\SOLID.EXE -sstart -

ove}, name, Using the option -sstart, SOLID Embedded cD:\SOLID"
fullexepath, Engine can be started as a service executable
[autostart] and started and stopped from the service man-

ager. If SOLIDEmbedded Enginis started ~ SOLID.EXE -s"install,SOLID,

without the-sstart option, it starts as an icon D:\SOLID\SOLID.EXE

exe like the w16 and w95 versions. The ser--sstart -Cd:\SOLID,autostart"

vice version of SOLIDEmbedded Enginean-

not interact with the display and cannot create

a new database. The service version writes SOLID.EXE
warning and error messages also to the NT -S"remove,SOLID"
event log. SOLICEmbedded Enginean also

install and remove services using this com-

mand line option.

SOLID Embedded Engine Command Line Options

G-1

General Options

-U<username>

-P<password>

-X autoconvert

-X convert

-X exe-
cute:<input file>

-X exit

-x forcerecovery
-X hide

-X ignoreerrors
-X testblocks

-X testindex

-?

See option -x execute or -x exit. If used with-
out the -x option, specifies the username for
the database being created.

See option -x execute or -x exit. If used with-
out the -x option, specifies the given password
for the database being created.

Converts database format to version 3.0 and
starts server process

Converts database format to version 3.0 and
exists

Prompts for the database administrator's usesolid.exe -x execute:init.sql

name and password, creates a new database, ;. L
. Solid.exe -x execute:init.sql

executes SQL statements from afile, and 4 5qpa

exists. The options -U and -P can be used to

give the database the administrator's user

name and password.

Prompts for the database administrator's usesolid.exe -x exit

name and password, creates a hew databas%blid.exe x exit -Udba -Pdba

and exists. Options -U and -P can be used to
give the database administrator's user name
and password.

Does a forced roll-forward recovery.
Hides server icon.

Ignores index errors.

Tests database blocks.

Tests database index.

Help = Usage.

G-2 SOLID Administrator Guide

Glossary

This glossary gives you a description of the terminology used in SOLID documentation.

Binary Large Object (BLODb)

A BLOb is a large block of binary information such as a picture, video clip, sound excerpt,
or a formatted text document. BLObs can be saved to and retrieved from E@ib&dded
Engine

Checkpoint

Checkpoints are used to store a consistent state of the database quickly onto the disk. After
system crash, the database will start recovering transactions from the latest checkpoint. The
more frequently checkpoints are made, the fewer transactions need to be recovered from the
log file.

Client/server computing

Client/server computing divides a large piece of software into modules that need not all be
executed within the same memory space nor on the same processor. The calling module
becomes the ‘client’ that requests services, and the called module becomes the ‘server’ that
provides services. Client and server processes exchange information by sending messages
through a computer network. They may run on different hardware and software platforms as
appropriate for their special functions.

Two basic client/server architecture types are called two-tier and three-tier application archi-
tectures.
Communication protocol

A communication protocol is a set of rules and conventions used in the communication
between servers and clients. The server and client have to use the same communication pro
tocol in order to establish a connection.

Glossary-1

Database administrator
The database administrator is a person responsible for tasks such as:

« Mmanaging users, tables, and indices
« backing up data

« allocating disk space for the database files

Database management system (DBMS)

A DBMS is a system that stores information in and retrieves information from a database. A
DBMS typically consists of a database server, administration utilities, an application inter-
face, and development tools.

Database procedures (Stored procedures)

Database procedures allow programmers to split the application logic between the client and
the server. These procedures are stored in the database, and they accept parameters in the
activation call from the client application. This arrangement is beneficial especially in the
case of heavy updates that first require extensive queries and that can be initiated with a
small amount of parameter information. In these cases, the network traffic is significantly
reduced, and much better performance can be achieved.

Event Alerts

Events are objects with a name and parameters. Event alerts are used to signal an event in
the database. The signal is sent from an application usirRfA8& EVENTcommand. The
signal is received by one or more client applications waiting for the event. The use of event
alerts removes resource consuming database polling from applications.

Log file (Transaction log)

This file holds a log of all committed operations executed by the database server. If a system
crash occurs, the database server uses this log to recover all data inserted or modified after
the latest checkpoint.

Network name

The network name of a server consists of a communication protocol and a server name. This
combination identifies the server in the network.

SOLID Clients support Logical Data Source Names. These names can be used to give a
database a descriptive name. This hame is mapped to a network name using either parame-

Glossary-2 SOLID Administrator Guide

ter settings in the cliensolid.ini file or in Windows operating systems’ registry set-
tings.

Open Database Connectivity (ODBC)

ODBC is a programming interface standard for SQL database programs. &@iti&ided
Engineoffers a native ODBC programming interface.

Relational database management system (RDBMS)

SOLID Embedded Engins an RDBMS, which stores and retrieves information that is orga-

nized into two-dimensional tables. This name derives from the relational theory that formal-
izes the data manipulation requests as set operations and allows mathematical analysis of
these sets. RDBMSs typically support the SQL language for data manipulation requests.

SQL Access Group’s Call Level Interface (SAG CLI)

SAG CLlI is a programming interface standard that defines the functions that are used to sub
mit dynamic SQL clauses to a database server for execution. The ODBC interface is also
based on SAG CLI. The SOLIBQL APIconforms to the SAG CLI standard.

Schema

All tables are contained in a higher level construct called schema. It is a place where tables
and related objects are gathered together under one qualifying name. For each schema ther
are zero or more tables, and for each table, there is exactly one schema to which it belongs.
The relationship between a schema and its tables is similar to that of an operating system
directory and the files contained within that directory.

Table schemas allow several logical databases to reside in the same physical database. A ty
ical use could be to have a similar table structure for each customer in the database of an
accounting firm. All the data would still be stored in a single physical database, which

allows sharing the common parameter information.

SOLID directory
The default directory for storing SOLID DBMS database files. This is the server program’s
working directory.

Structured Query Language (SQL)

SQL is a standardized query language designed for handling database requests and adminis
tration. The SQL syntax used in SOLENbedded Enginis based on the ANSI X3H2-

1989 Level 2 standard including important ANSI X3H2-1992 (SQL2) extensions. For a

more formal definition of the syntax, referAppendix D SOLID SQL SyntakSOLID
Administrator Guide.

Glossary-3

Three-tier client/server architecture model

Compared to the two-tier architecture the three-tier architecture has an additional layer or
layers of application servers. This allows splitting the application logic between client pro-
cesses to a specialized application server process handling the resources management, other
I/O, or calculation intensive tasks.

Instead of sending small SQL statements the client application sends whole procedures for
the application server to be processed. This reduces the number of messages thus minimiz-
ing the network load. The application logic is often more easily managed because several
applications use centrally maintained procedures.

Two-tier client/server architecture model

Generally, the two-tier architecture refers to a client/server system, where a client applica-
tion containing all the business logic is running on a workstation and a database server is
taking care of data management.

Glossary-4 SOLID Administrator Guide

Index

A
arguments for timed commands, 3-7
automating administrative tasks, 3-6

B
backup directory, 7-3
backups
automating, 3-6
failed, 3-2
making manually, 3-1
online, 3-2
C
cache

database, 8-4
changing database location, 3-5
checkpoints, 3-4
automatic daemon, 3-4
automating, 3-6
erasing automatically, 3-5
frequency, 3-4
closing SOLID Server, 2-4
cluster, 5-8
columns
adding to a table, 5-6
deleting from a table, 5-6
committing work
after altering table, 5-6, 5-8
after altering users and roles, 5-5
communication
between client and server, 6-1
selecting a protocol, 6-4
tracing problems, 9-8

communication protocols, 6-4

DECnet, 6-7

IPX/SPX, 6-8

Named Pipes, 6-7

NetBIOS, 6-6

selecting, 6-4

Shared Memory, 6-4

summary, 6-9

TCP/IP, 6-5

UNIX Pipes, 6-5
concatenated indexes, 8-2
configuration file, B-1
connecting to SOLIENnbedded Engine 2-3
control file

SOLID SpeedLoader 4-2
control file syntax

SOLID SpeedLoader 4-4
creating reports

automating, 3-6

D
data source name, 6-4
Data Sources, 6-11
defining in solid.ini, 6-11
database
changing location, 3-5
closing, 3-5
automating, 3-6
creating, 2-2
opening
automating, 3-6
recovery, 3-4
several databases on one computer, 3-6

Index-1

database. See also index file, 7-2
DECnet, 6-7
documentation

electronic, xi

E

executing system commands
automating, 3-6

EXPLAIN PLAN statement, 9-3

external sorting, 8-5

=
FileSpec, 7-2

I
import file

SOLID SpeedLoader 4-2
index file

changing block size, 7-6

location, 7-2

maximum size, 7-2

splitting to multiple disks, 7-2
indexes, 8-2

creating, 5-7

creating a unique index, 5-7

deleting, 5-7

foreign key, 5-8

managing, 5-7
ini file

SOLID SpeedLoader 4-3
installing SOLIDEmbedded Engine 2-1
IPX/SPX, 6-8

L
listen name, 6-1, 6-3
log file, 3-4
SOLID SpeedLoader 4-3
logon. See connecting to SOLEmMbedded Engine 2-3

M

multi-column indexes, 8-2

Index-2 SOLID Administrator Guide

N
Named Pipes, 6-7
NetBIOS, 6-6

network names, 6-1, 6-3

activating modifications,

adding, 6-2

clients, 6-3
DECnet, 6-8
modifying, 6-2
Named Pipes, 6-7
NetBIOS, 6-6
removing, 6-3
Shared Memory, 6-4
TCP/IP, 6-5

UNIX Pipes, 6-6

6-3

network names IPX/SPX, 6-8

Network trace facility, 9-9
non-graphical user interfaces
2-2

creating new database,

O
ODBC

data source name, 6-4

P
parameters, B-1
BackupCopyLog, 3-4

BackupDeleteLog, 3-4

BackupDirectory, 7-3
CacheSize, 7-4

Checkpointinterval, 3-5

Connect, 7-2
default settings, 7-1

FileNameTemplate, 7-4

FileSpec_]1...N], 7-2
Info, 7-5

Listen, 7-2
managing, 7-5
Threads, 7-4
TmpFile, 7-4
Trace, 7-5
TraceFile, 7-5
with constant values,

passwords

7-6

criteria, 2-2

entering, 5-3
performance
indexes, 8-2

Ping facility, 9-10

R

recovery, 3-4

referential integrity, 5-8
running several servers, 3-6

S

server names. See network names, 6-1

Shared Memory, 6-4

shutting down SOLICEmbedded Engine 2-4
automating, 3-6

SOLDD, 4-12
options, 4-12
SOLEXP, 4-11

SOLID Remote Contrgl 1-5

SOLID Remote Contro{Teletype)
commands, 4-14
options, 4-13
starting, 4-13

SOLID Embedded Engine
background, 1-1
closing, 2-4
connecting to, 2-3
features, 1-1
installing, 2-1
introduction, ix
starting, 2-1

SOLID SpeedLoader
control file, 4-2
control file syntax, 4-4
import file, 4-2
ini file, 4-3
log file, 4-3

SOLID SQL Editor 1-5

SOLID SQL Editor(Teletype), 4-16
commands, 4-17

options, 4-16
SOLLOAD, 4-4
options, 4-4

sorting, 8-5

SQL Info facility, 9-2

SQL scripts, 5-2
sample.sqgl, 5-5
users.sql, 5-2

SQL statements, 5-1
examples for administering indexes, 5-7
examples for managing indexes, 5-7
examples for managing tables, 5-5
examples for managing users and roles, 5-3
tuning, 8-1

starting SOLIDRemote ControfTeletype), 4-13

starting SOLIDEmbedded Engine 2-1

T
tables
adding columns to, 5-6
committing work after altering, 5-6, 5-8
creating, 5-6
deleting columns from, 5-6
managing, 5-5
removing, 5-6
TCP/IP, 6-5
throwing out users
automating, 3-6
timed commands, 3-6
tracing communication, 9-8
tuning SQL statements, 8-1

U
UNIX Pipes, 6-5
user and roles
committing work after altering, 5-5
user names
reserved names, 5-2
user privileges, 5-2

granting, 5-4
granting administrator privileges, 5-5
revoking, 5-4

user roles, 5-2
administrator role, 5-3, 5-5
creating, 5-4
deleting, 5-4
giving a user arole, 5-4

Index-3

granting privileges to, 5-4

reserved role names, 5-2

revoking privileges from, 5-4

revoking the role of a user, 5-5

system console role, 5-3
usernames

criteria, 2-2

default, 2-2
users

creating, 5-3

deleting, 5-3

throwing out, 3-6

\Y,

viewing Message Log, 2-4

W
Windows registry
data sources, 6-12

Index-4 SOLID Administrator Guide

	Administrator Guide
	Welcome
	1 Introducing SOLID Embedded Engine
	About SOLID Embedded Engine
	SOLID Embedded Engine Features:
	SOLID Bonsai TreeTM
	Wide range of data type support
	Stored procedures, event alerts, and sequencer objects
	Easy Administration

	SOLID Embedded Engine Components
	Programming interfaces (SQL API, ODBC, and JDBC)
	Network Services
	SQL Parser and Optimizer
	Engine
	System Tools and Utilities
	SOLID Remote Control
	SOLID SQL Editor
	Tools for handling ASCII data

	SOLID SynchroNet

	2 Basic Administration Tasks
	Installing SOLID Embedded Engine
	Starting SOLID Embedded Engine
	Creating a New Database
	Connecting to SOLID Embedded Engine
	Connecting with SOLID Remote Control
	Connecting with SOLID SQL Editor

	Viewing the SOLID Embedded Engine Message Log
	Shutting Down SOLID Embedded Engine

	3 Database Maintenance
	Making Backups
	To Correct a Failed Backup

	Restoring Backups
	Recovering from Abnormal Shutdown
	Transaction Logging
	Creating Checkpoints
	Closing the Database
	Changing Database Location
	Running Several Servers on One Computer
	Entering Timed Commands

	4 Using SOLID Data Management Tools
	Command Line Arguments
	SOLID SpeedLoader
	Control File
	Message Log File
	Configuration File
	Invoking SOLID SpeedLoader
	Control File Syntax

	Loading Fixed-format Records
	Loading Variable-length Records
	Running a Sample Load Using Solload
	Hints to Speed up Loading

	SOLID Export
	Invoking SOLID Export

	SOLID Data Dictionary
	Invoking SOLID Data Dictionary

	SOLID Remote Control (Teletype)
	Invoking SOLID Remote Control (Teletype)
	Using SOLID Remote Control (Teletype)

	SOLID SQL Editor (Teletype)
	Starting SOLID SQL Editor (Teletype)
	Using SOLID SQL Editor (Teletype)
	Executing SQL Statements
	Exiting SOLID SQL Editor
	Executing an SQL Script

	Tools Sample: Reloading a Database

	5 Administration with SQL Statements
	About SOLID SQL Syntax
	Administering the Database
	Managing User Privileges and Roles
	User Privileges
	User Roles

	Managing Tables
	Managing Indexes
	Primary Keys
	Foreign Keys

	6 Network Connections
	Communication between Client and Server
	Network Names for SOLID Embedded Engine
	Network Name for Clients
	Communication Protocols
	Shared Memory
	TCP/IP
	UNIX Pipes
	NetBIOS
	Named Pipes
	DECnet
	IPX/SPX
	A Summary of Protocols

	Logical Data Source Names

	7 Configuration
	Configuration File and Default Settings
	Most Important Parameters
	Managing Parameters
	Constant Parameter Values

	8 Performance Tuning
	Tuning SQL Statements and Applications
	Using SOLID Server Diagnostic Tools
	Indexes
	Full table scan
	Concatenated indexes

	Tuning Memory Allocation
	Tuning Your Operating System
	Database Cache

	Tuning I/O
	Distributing I/O

	Sorting
	Tuning Checkpoints

	9 Diagnostics and Troubleshooting
	Observing Performance
	The EXPLAIN PLAN Statement

	Tracing Communication between Client and Server
	The Network Trace Facility
	The Ping Facility

	Problem Reporting
	Problem Categories
	SOLID SQL API Problems
	SOLID ODBC Driver Problems
	SOLID JDBC Driver Problems
	UNIFACE Driver for SOLID Embedded Engine Problems
	Communication between a Client and Server

	AError Codes
	Error Categories
	SOLID SQL Errors
	SOLID Database Errors
	SOLID Utility Errors
	SOLID Table Errors
	SOLID Embedded Engine Errors
	SOLID Communication Errors
	SOLID Communication Warnings
	SOLID Procedure Errors
	SOLID Sorter Errors

	B Configuration Parameters
	General Section
	IndexFile Section
	Logging Section
	Communication Section
	Data Sources
	Server Section
	SQL Section
	Sorter Section

	C Data Types
	Supported Data Types in SOLID Embedded Engine
	Character Data Types
	Numeric Data Types
	Binary Data Types
	Date Data Type
	Time Data Type
	Timestamp Data Type
	The Smallest Possible Non-zero Numbers

	D SOLID SQL Syntax
	ADMIN COMMAND
	ALTER TABLE
	ALTER USER
	CALL
	COMMIT
	CREATE EVENT
	CREATE INDEX
	CREATE PROCEDURE
	CREATE ROLE
	CREATE SEQUENCE
	CREATE TABLE
	CREATE USER
	CREATE VIEW
	DELETE
	DELETE (positioned)
	DROP EVENT
	DROP INDEX
	DROP PROCEDURE
	DROP ROLE
	DROP SEQUENCE
	DROP TABLE
	DROP USER
	DROP VIEW
	EXPLAIN PLAN FOR
	GRANT
	INSERT
	INSERT (Using Query)
	REVOKE (Role from User)
	REVOKE (Privilege from Role or User)
	ROLLBACK
	SELECT
	SET
	SET SCHEMA
	UPDATE (Positioned)
	UPDATE (Searched)
	Table-reference
	Query-specification
	Search-condition
	Check-condition
	Expression
	String Function
	Numeric Function
	Date Time Function
	System Function
	Data-type
	Date and Time Literals
	Pseudo Columns

	E System Views and System Tables
	System Views
	COLUMNS
	SERVER_INFO
	TABLES

	System Tables
	SQL_LANGUAGES
	SYS_ATTAUTH
	SYS_CARDINAL
	SYS_COLUMNS
	SYS_EVENTS
	SYS_FORKEYPARTS
	SYS_FORKEYS
	SYS_INFO
	SYS_KEYPARTS
	SYS_KEYS
	SYS_PROCEDURES
	SYS_RELAUTH
	SYS_SEQUENCES
	SYS_SYNONYM
	SYS_TABLEMODES
	SYS_TABLES
	SYS_TYPES
	SYS_UROLE, SYS_USERS
	SYS_VIEWS

	F SOLID SQL API Reserved Words
	G SOLID Embedded Engine Command Line Options
	General Options

	Glossary
	Index

