
SOLID Embedded Engine
Administrator Guide

Version 3.0

Copyright © 1992-1999 Solid Information Technology Ltd, Helsinki, Finland.

All rights reserved. No portion of this product may be used in any way except as expressly authorized in writing by
Solid Information Technology Ltd.

Solid logo with the text "SOLID" is a registered trademark of Solid Information Technology Ltd.

SOLID SynchroNet™, SOLID Embedded Engine™, SOLID Intelligent Transaction™, SOLID Bonsai Tree™,
SOLID SQL Editor™, and SOLID Remote Control ™ are trademarks of Solid Information Technology Ltd.

SOLID Intelligent Transaction patent pending Solid Information Technology Ltd.

This product contains the skeleton output parser for bison ("Bison"). Copyright (c) 1984, 1989, 1990 Bob Corbett
and Richard Stallman.

For a period of three (3) years from the date of this license, Solid Information Technology, Ltd. will provide you, the
licensee, with a copy of the Bison source code upon receipt of your written request and the payment of Solid's rea-
sonable costs for providing such copy.

Document number SSAG-3.0-0399
Date: March 26, 1999

Contents

Welcome .. ix

1 Introducing SOLID Embedded Engine

About SOLID Embedded Engine... 1-1
SOLID Embedded Engine Components.. 1-3
SOLID SynchroNet... 1-6

2 Basic Administration Tasks

Installing SOLID Embedded Engine... 2-1
Starting SOLID Embedded Engine... 2-1
Creating a New Database...2-2
Connecting to SOLID Embedded Engine.. 2-3
Viewing the SOLID Embedded Engine Message Log.. 2-4
Shutting Down SOLID Embedded Engine.. 2-4

3 Database Maintenance

Making Backups ... 3-1
Restoring Backups.. 3-3
Recovering from Abnormal Shutdown... 3-4
Transaction Logging... 3-4
Creating Checkpoints...3-4
Closing the Database..3-5
Changing Database Location... 3-5
Running Several Servers on One Computer.. 3-6
Entering Timed Commands...3-6
 iii

4 Using SOLID Data Management Tools

Command Line Arguments..4-1
SOLID SpeedLoader... 4-2
SOLID Export.. 4-11
SOLID Data Dictionary.. 4-12
SOLID Remote Control (Teletype)... 4-13
SOLID SQL Editor (Teletype).. 4-16
Tools Sample: Reloading a Database.. 4-18

5 Administration with SQL Statements

About SOLID SQL Syntax...5-1
Administering the Database...5-1
Managing User Privileges and Roles... 5-2
Managing Tables... 5-5
Managing Indexes... 5-7
Primary Keys ... 5-8
Foreign Keys.. 5-8

6 Network Connections

Communication between Client and Server... 6-1
Network Names for SOLID Embedded Engine.. 6-1
Network Name for Clients..6-3
Communication Protocols..6-4
Logical Data Source Names... 6-11

7 Configuration

Configuration File and Default Settings... 7-1
Most Important Parameters .. 7-1
Managing Parameters..7-5

8 Performance Tuning

Tuning SQL Statements and Applications.. 8-1
Tuning Memory Allocation ..8-3
iv Solid Administrator Guide

Tuning I/O ... 8-4
Sorting.. 8-5
Tuning Checkpoints.. 8-5

9 Diagnostics and Troubleshooting

Observing Performance..9-2
Tracing Communication between Client and Server.. 9-8
Problem Reporting ... 9-12
Problem Categories.. 9-12

A Error Codes

Error Categories ... A-1
SOLID SQL Errors .. A-3
SOLID Database Errors... A-12
SOLID Utility Errors ... A-17
SOLID Table Errors ... A-20
SOLID Embedded Engine Errors .. A-30
SOLID Communication Errors ... A-32
SOLID Communication Warnings.. A-35
SOLID Procedure Errors ... A-36
SOLID Sorter Errors ... A-40

B Configuration Parameters

General Section... B-2
IndexFile Section... B-3
Logging Section... B-4
Communication Section...B-5
Data Sources.. B-6
Server Section.. B-6
SQL Section... B-7
Sorter Section.. B-8

C Data Types

Supported Data Types in SOLID Embedded Engine... C-1
 v

D SOLID SQL Syntax

ADMIN COMMAND ...D-2
ALTER TABLE ... D-4
ALTER USER ... D-5
CALL ... D-5
COMMIT ... D-5
CREATE EVENT ... D-6
CREATE INDEX .. D-8
CREATE PROCEDURE ..D-8
CREATE ROLE ... D-16
CREATE SEQUENCE .. D-16
CREATE TABLE ... D-17
CREATE USER.. D-18
CREATE VIEW ... D-19
DELETE ... D-19
DELETE (positioned) .. D-19
DROP EVENT.. D-20
DROP INDEX .. D-20
DROP PROCEDURE.. D-20
DROP ROLE .. D-20
DROP SEQUENCE... D-21
DROP TABLE .. D-21
DROP USER... D-21
DROP VIEW .. D-21
EXPLAIN PLAN FOR .. D-22
GRANT ... D-22
INSERT ... D-23
INSERT (Using Query) ... D-24
REVOKE (Role from User)... D-24
REVOKE (Privilege from Role or User).. D-25
ROLLBACK ... D-25
SELECT .. D-26
SET.. D-27
SET SCHEMA ... D-28
UPDATE (Positioned).. D-29
vi Solid Administrator Guide

UPDATE (Searched)... D-30
Table-reference.. D-30
Query-specification... D-31
Search-condition... D-31
Check-condition.. D-32
Expression... D-33
String Function ... D-34
Numeric Function ... D-35
Date Time Function.. D-36
System Function.. D-37
Data-type ... D-37
Date and Time Literals... D-38
Pseudo Columns.. D-38

E System Views and System Tables

F SOLID SQL API Reserved Words

G SOLID Embedded Engine Command Line Options

Glossary

Index
 vii

viii Solid Administrator Guide

m-

laris,
ny
vel
tions.

on

,

Welcome

SOLID Embedded EngineTM provides the local data storage needs required for today’s co
plex distributed systems.

SOLID Embedded Engine provides support for real-time operating systems such as
VxWorks and ChorusOS, and for preferred platforms such as Window 98/NT, Linus, So
HP-UX and other UNIX platforms. It provides the features you would expect to find in a
industrial-strength database server—multithread architecture, stored procedures, row le
transaction management—but it delivers them with the special needs of today’s applica

About This Guide
This SOLID Administrator Guide is designed to make the administration of SOLID
Embedded Engine smoother. This guide provides quick instructions on basic administrati
and maintenance, tools and utilities, and also provides reference information.

Organization
This manual contains the following chapters:

■ Chapter 1, Introduction to SOLID Embedded Engine familiarizes you with the back-
ground and components of your SOLID data management system.

■ Chapter 2, Basic Administrative Tasks covers the typical administration tasks such as
starting, connecting to, and shutting down servers.

■ Chapter 3, Database Maintenance explains how to make backups, create checkpoints
and use timed commands.

■ Chapter 4, Using SOLID Data Management Tools describes the available utilities for
handling database operations.

■ Chapter 5, Administration with SQL Statements gives readers the information they need
to manage users, tables and indexes.
 ix

-

e-
■ Chapter 6, Network Connections describes how to connect to SOLID Embedded Engine
using different communication protocols.

■ Chapter 7, Configuration describes how to set SOLID Embedded Engine parameters for
customization to meet your own environment, performance, and operation needs.

■ Chapter 8, Performance Tuning describes how to optimize SOLID Embedded Engine to
improve performance.

■ Chapter 9, Diagnostics and Troubleshooting describes tools to use for observing perfor
mance and tracing problems.

Appendixes

The Appendixes give you detailed information about error messages, configuration param
ters, and SOLID SQL functionality.

Glossary

The Glossary of Terms explains some of the terminology used in SOLID documentation.

Audience
This manual assumes general DBMS knowledge, and a familiarity with SQL.

Conventions

Product Name
In version 3.0, SOLID Server or SOLID Web Engine is now known as SOLID Embedded
Engine. This guide may still make reference to SOLID Server. Throughout this guide,
"SOLID Server" and "SOLID Embedded Engine" are used synonymously.

Typographic
This manual uses the following typographic conventions.

Format Used for

WIN.INI Uppercase letters indicate filenames, SQL
statements, macro names, and terms used
at the operating-system command level.

RETCODE SQLFetch(hdbc) This font is used for sample command
lines and program code.
x

ion

is
Other Solid Documentation
SOLID Embedded Engine documentation is distributed in an electronic format (PDF,
HTML, or Windows Help files).

Solid Online Services on our Web server offer the latest product and technical informat
free of charge. The service is located at:

http://www.solidtech.com/

Electronic Documentation
■ Read Me contains installation instructions and additional information about the spe-

cific product version. This readme.txt file is typically copied onto your system
when you install the software.

■ Release Notes contains additional information about the specific product version. Th
relnotes.txt file is typically copied onto your system when you install the soft-
ware.

■ SOLID SynchroNet Guide introduces you to synchronization concepts and architec-
ture and describes how to set up, use and administer SOLID SynchroNet.

argument Italicized words indicate information that
the user or the application must provide, or
word emphasis.

SQLTransact Bold type indicates that syntax must be
typed exactly as shown, including func-
tion names.

[] Brackets indicate optional items; if in bold
text, brackets must be included in the syn-
tax.

| A vertical bar separates two mutually
exclusive choices in a syntax line.

{} Braces delimit a set of mutually exclusive
choices in a syntax line; if in bold text,
braces must be included in the syntax.

... An ellipsis indicates that arguments can be
repeated several times.

.

.

.

A column of three dots indicates continua-
tion of previous lines of code.
 xi

■ SOLID Programmer Guide describes the interfaces (APIs and drivers) available for
accessing SOLID Embedded Engine and how to use them with an embedded engine.
xii

1
,

ire-

m-
Fur-

per-

.
e
h
Introducing SOLID Embedded Engine

This chapter introduces you to SOLID Embedded EngineTM, providing local data storage
capabilities in today’s complex distributed system environments. It describes its benefits
features, and main components.

About SOLID Embedded Engine
SOLID Embedded Engine, developed for this new era of distributed computing systems,
provides what developers need, data storage features that meet the demands and requ
ments of their application environments.

Application developers can rely on SOLID Embedded Engine’s wide range of data types,
volumes, and processing features, which include, multithreaded parallel processing, sy
metric multiprocessing (SMP), automatic roll-forward recovery, and stored procedures.
thermore, SOLID Embedded Engine’s portability and ease of deployment are ideal in
today’s internetworked environments. SOLID Embedded Engine supports operating systems
in such infrastructure platforms as Window 98/NT, Linux, ChorusOS, VxWorks, Solaris,
HP-UX and other UNIX platforms. It is fully Year 2000 Compliant.

SOLID Embedded Engine delivers performance within SQL-92, scalability, and high avail-
ability; yet it is lightweight, flexible, easy-to-use, and maintenance free with automatic o
ations.

SOLID Embedded Engine Features:
SOLID Embedded Engine is a secure, reliable, and accommodating solution to your data
storage needs. This section includes some of its unique benefits and features.

SOLID Bonsai Tree TM

SOLID Embedded Engine features a small, but efficient index, known as The Bonsai Tree
This index tree resides in the main memory and maintains multiversion information. Th
Bonsai Tree performs concurrency control, detecting if any operations conflict with eac
 Introducing SOLID Embedded Engine 1-1

About SOLID Embedded Engine

pa-
opti-

ing

n-
se

es.

is

r-

 for
hole

ereby

d for

ari-
other. This minimizes the effort needed for validating transactions. Active new data is se
rated from older, more stable data, which is transferred to a storage server as a highly-
mized batch insert, thus minimizing the hard disk load. The Bonsai Tree offers:

■ Both optimistic and pessimistic concurrency control

■ Fully serializable transactions free from phantom updates

■ Multi-versioning that allows a consistent view of the database without extra lock

■ Row-level locking is available if needed for pessimistic or mixed concurrency co
trol methods. It can be turned on table by table, and a single transactions can u
both pessimistic and optimistic concurrency control methods simultaneously.

■ Declarative referential integrity ensuring the validity of references between tabl

Wide range of data type support
SOLID Embedded Engine supports binary compatible databases across all platforms. Th
support includes:

■ Binary Large Objects (BLOBs), such as a picture, video clip, sound excerpt, or a fo
matted text object.

■ Data stored in a variable-length format.

■ Practically unlimited amount of tables, columns, keys, etc.

■ Unicode support for double-byte character sets.

Stored procedures, event alerts, and sequencer objects
SOLID Embedded Engine provides these active database objects for reduced overhead:

■ Stored procedure are used to execute part of the application logic in the server and
optimizing queries. A stored procedure can contain several SQL statements or a w
transaction for execution with a single call statement.

■ Event alerts are used with stored procedures to signal an event in the database, th
freeing the stored procedure from conducting its own database polling.

■ Sequencer objects generate number sequences for objects stored in databases.
Sequences have an advantage over separate tables. They are specifically fine-tune
fast execution and result in less overhead than normal update statements.

Easy Administration
With SOLID Embedded Engine all administrative operations, including backups are per-
formed automatically or at the administrator’s request. Built-in timers are available for v
1-2 SOLID Administrator Guide

SOLID Embedded Engine Components

l-

ctions

-
t

 defi-

 com-
e-
pter

H3-

to-
ilable
ous administrative tasks. For example, administrator’s can specify automated daily or
weekly backups.

SOLID Embedded Engine also features online concurrent backup, and automatic and rol
forward recovery. Automatic recovery returns the database to the state it was in at the
moment it encountered the error. To guarantee database integrity, all committed transa
are read from the transaction log.

SOLID Embedded Engine provides administrative tools for interactive SQL, remote admin
istration, as well as transformation tools for loading character data from character forma
data files, exporting character data to character format files, and writing data dictionary
nitions of a database. For brief description of these tools, read System Tools and Utilities in
this chapter.

SOLID Embedded Engine Components
SOLID Embedded Engine, the local data storage system for complex distributed network
environments, contains the components described in the following sections.

Programming interfaces (SQL API , ODBC, and JDBC)
SOLID SQL API is a Call Level Interface (CLI) that follows the ANSI SQL CLI and ODBC
CLI specifications. SOLID provides ODBC and JDBC APIs for programming access to
SOLID data. For more details on programming interfaces, read the SOLID Programmer
Guide.

Network Services
SOLID Embedded Engine runs on all major network types and supports all of the main
munication protocols. Developers can create distributed applications for use in heterog
neous computing environments. For more details on network communication, read Cha
6, “Network Connections” in this guide.

SQL Parser and Optimizer
The SQL syntax used is based on the ANSI X3H3-1989 Level 2 standard and ANSI X3
1992 (SQL2) extensions. SOLID Embedded Engine contains an advanced cost-based opti-
mizer, which ensures that even complex queries can be run efficiently. The optimizer au
matically maintains information about table sizes, the number of rows in tables, the ava
indices, and the statistical distribution of the index values.
 Introducing SOLID Embedded Engine 1-3

SOLID Embedded Engine Components

ta-
Engine
The SOLID engine is the core of the SOLID Embedded Engine product. It processes the data
requests submitted via SOLID SQL. The engine stores data and retrieves it from the da
base.

Figure 1–1 SOLID Embedded Engine Components

Application

Network Communication Layer

Network Communication Layer

SOLID Engine

Query Executor

SQL Parser and Optimizer

ODBC JDBC
1-4 SOLID Administrator Guide

SOLID Embedded Engine Components

-use

hich

of

cture
System Tools and Utilities
SOLID Embedded Engine also includes the following tools for data management and
administration:

SOLID Remote Control
SOLID Remote Control is a program for administration of SOLID servers. With SOLID
Remote Control, you can:

■ administer all database servers in a network from a single workstation

■ generate backups either on-line or as a timed command

■ obtain server status information

SOLID SQL Editor
SOLID SQL Editor is a tool for executing SQL queries and commands. It has an easy-to
graphical user interface. With SOLID SQL Editor, you can:

■ use either the interactive or batch mode operation

■ have multiple active connections to various servers

■ save or print query results

Tools for handling ASCII data
SOLID Embedded Engine provides the following tools for handling ASCII data:

■ SOLID Speedloader loads data from external ASCII files into a SOLID database. It is
capable of inserting character data from character format. SOLID SpeedLoader
bypasses the SQL parser and uses direct writes to the database file with loading, w
allows for fast loading speed.

■ SOLID Export writes from a SOLID database to character format files. It is capable
writing control files used by SOLID SpeedLoader to perform data unload/load opera-
tions.

■ SOLID Data Dictionary (SOLDD) writes the data dictionary of a database. This tool
produces an SQL script that contains data definition statements describing the stru
of the database.

Read Chapter 4, “Using SOLID Data Management Tools” for details.
 Introducing SOLID Embedded Engine 1-5

SOLID SynchroNet

s in

 and

ngs
y

re
SOLID SynchroNet
SOLID SynchroNet builds on the local data storage capabilities of SOLID Embedded
Engine. It provides system-wide data sharing, which is particularly suited for application
today’s internetworked systems. With SOLID SynchroNet’s asynchronous, bi-directional
data synchronization, you can store data where it makes sense and deliver data where
when you need it there.

SOLID SynchroNet’s new approach to replication addresses the data reliablity shortcomi
of traditional replication models. Its architecture builds data synchronization functionalit
inside a business application. Using SOLID SynchroNet SQL extensions and Intelligent
TransactionsTM, application developers, with minimal effort, can provide the logic to ensu
data reliability within the context of their applications.

For details on SOLID SynchroNet, read the SOLID SynchroNet Guide.

Figure 1–2 System-wide sharing with SOLID SynchroNet

Master

Replica2

Application

Replica1

SOLID

SynchroNet SynchroNet Application

SynchroNet

SOLID SOLID

NCLNCL

NCL NCL NCL

NCL = Network Communication Layer
1-6 SOLID Administrator Guide

2
base

-

Basic Administration Tasks

This chapter covers the basic SOLID Embedded Engine administrative tasks. It tells you
how to:

■ Install SOLID Embedded Engine

■ Start SOLID Embedded Engine

■ Create a new database

■ Connect to the server using SOLID Remote Control or SOLID SQL Editor

■ Shut down SOLID Embedded Engine using SOLID Remote Control or from the server
computer console

Installing SOLID Embedded Engine
If you have not yet installed SOLID Embedded Engine, refer to the ReadMe notice deliv-
ered with the software for a detailed description of the installation.

Starting SOLID Embedded Engine
When SOLID Embedded Engine is started, it checks if a database already exists in the
SOLID directory, that is, the directory where you installed SOLID executables. If a data
file is found, SOLID Embedded Engine will automatically open that database. If not, which
is the case when you start the server for the first time, a new database will be created.

Operating System To Start the Server...

UNIX Enter the command solid at the command prompt. When you
start the server for the first time, enter the command solid -
f at the command prompt to force the server to run in the fore
ground.

Novell Netware Enter the command load solid.nlm at the command prompt.
 Basic Administration Tasks 2-1

Creating a New Database

nts, if

ted.

o char-
ase let-

ID
ing

ime
ing.

Creating a New Database
If a database does not exist, SOLID Embedded Engine will automatically start creating a
new database. In the Windows environment, creating the database begins with a dialog
prompting for the database administrator's username and password. In other environme
you do not have an existing database, the following message appears:

Database does not exist. Do you want to create a new database (y/n)?

Answer y(es), and SOLID Embedded Engine will prompt for the database administrator's
username and password. When they have been accepted, a new database will be crea

The username and password are case insensitive. The username must have at least tw
acters; the password at least three. You can use lower case letters from a to z, upper c
ters from A to Z and the underscore character ‘_’, and numbers from 0 to 9.

NOTE: You must remember your username and password to be able to connect to SOL
Embedded Engine. There are no default usernames; the username you enter when creat
the database is the only username available for connecting to the new database.

After accepting the database administrator's username and password, SOLID Embedded
Engine will create a new database. By default the database will be created as one file
(solid.db) into the SOLID directory, where the current working directory is located. The t
that the database creation process takes depends on the hardware platform you are us

After the database has been created, SOLID Embedded Engine starts listening to the net-
work for client connection requests. In the Windows environment, you will see a SOLID
Embedded Engine icon, but in most environments SOLID Embedded Engine will run invisi-
bly in the background as a daemon process.

Open VMS Enter the command run solid at the command prompt.

Windows Click the icon labeled SOLID Embedded Engine in the SOLID
Embedded Engine program group.

Windows only If in the Windows environment you double-click the icon of a run-
ning server, nothing will happen. SOLID Embedded Engine is a
background process that only reacts to messages from clients
through the communication interface.

Operating System To Start the Server...
2-2 SOLID Administrator Guide

Connecting to SOLID Embedded Engine

e

LE

been

been
Connecting to SOLID Embedded Engine
After starting SOLID Embedded Engine, you can test the configuration by connecting to th
server from your workstation by using either SOLID Remote Control or SOLID SQL Editor.

NOTE: You need to have the privileges of SYS_ADMIN_ROLE or SYS_CONSOLE_RO
to be able to connect to a server using SOLID Remote Control.

Connecting with SOLID Remote Control
1. View the solmsg.out file for valid network names that you can use to connect to

SOLID Embedded Engine.

The following messages indicate what names you can use.

Listening of 'ShMem Solid' started.
Listening of 'TCP/IP 1313' started.

2. Start SOLID Remote Control and give the network name of server as a command line
parameter:

solcon "tcp hobbes 1313"

3. Enter the database administrator's user name and password when prompted.

4. After a while you will see a message indicating that a connection to the server has
established.

Connecting with SOLID SQL Editor
1. View the solmsg.out file for valid network names that can be used to connect to

SOLID Embedded Engine.

The following messages indicate what names you can use:

Listening of 'ShMem solid' started.
Listening of 'TCP/IP 1313' started.

2. Start SOLID SQL Editor and give the network name of server as a command line
parameter:

solsql "tcp hobbes 1313"

3. Enter the database administrator's user name and password when prompted.

4. After a while you will see a message indicating that a connection to the server has
established.
 Basic Administration Tasks 2-3

Viewing the SOLID Embedded Engine Message Log

og

 in

 to
ing

Viewing the SOLID Embedded Engine Message Log
SOLID Embedded Engine writes all error and info messages to a text file. This message l
file is named solmsg.out and it is located in the SOLID directory. You can view this file
using any text editor or file viewer. The error messages and their explanations are listed
Appendix A, “Error Codes” of this document.

Shutting Down SOLID Embedded Engine
You can shut down SOLID Embedded Engine in these ways:

■ Programmatically from an application using the following SQL commands: ADMIN
COMMAND 'throwout all' and ADMIN COMMAND 'shutdown'

■ Using the SOLID Remote Control program

■ Clicking the server icon and selecting Close from the menu appearing in the Windows
environment

All the shutdown mechanisms will start the same routine, which writes all buffered data
the database file, frees cache memory and finally terminates the server program. Shutt
down a server may take a while since the server must write all buffered data from main
memory to the disk.
2-4 SOLID Administrator Guide

3
ided

ost
kup

 a
Database Maintenance

This chapter gives you information on data security and database maintenance. It is div
into the following topics:

■ making backups

■ restoring backups

■ recovering from abnormal shutdown

■ logging

■ creating checkpoints

■ closing and opening the database

■ changing database location

■ running several servers on one computer

■ entering timed commands

Making Backups
Backups are made to secure the information stored in your database files. If you have l
your database files because of a system failure, you can continue working with the bac
database.

You can initiate a backup in the following ways:

■ Automate the backup using a timed command that initiates the backup according to
pre-defined schedule. Read “Entering Timed Commands” in this chapter for details.

■ Use the SQL command ADMIN COMMAND ‘backup’ from the application.

■ Start the backup from SOLID Remote Control.
 Database Maintenance 3-1

Making Backups

 for

is-

sing

ys-
must

es

ees
d. The

aram-
NOTE: Be sure to have enough disk space in the backup directory. You will need space
your database and log files.

SOLID Embedded Engine uses a multiversioning technique allowing backups to be made
on-line. You need not close the database file or shut down the server. However, it is adv
able to automate your backups to be run at non-busy hours. After completing the backup,
copy your backup files on tape using your backup software for protection against disk
crashes.

Please also note the following:

■ You can query programmatically the status of the most recently started backup by u
SQL command ADMIN COMMAND ‘status backup’. To query the list of all com-
pleted backups and their success status, use SQL command ADMIN COMMAND
‘backuplist’.

■ The backup directory you enter must be a valid path name in the server operating s
tem. For example, if the server runs on a UNIX operating system, path separators
be slashes, not backslashes.

■ The time needed for making a backup is the time that passed between the messag
Backup started and Backup completed successfully , which arrive to
your SOLID Remote Control MESSAGES page.

Before starting the backup process, a checkpoint is created automatically. This guarant
that the state of a backup database is from the moment the backup process was starte
following files will be copied to the backup directory:

■ database file(s)

■ configuration file (solid.ini)

■ log file(s) modified or created after the previous backup (parameter BackupCopyLog
is set yes by default)

The unnecessary log files are deleted from original directory after successful backup (p
eter BackupDeleteLog is set yes by default).

To Correct a Failed Backup
When SOLID Embedded Engine is performing a backup, the ADMIN COMMAND ‘status
backup’ command returns the value ‘ACTIVE’. Once the backup is completed, the com-
mand returns either ‘OK’ or ‘FAILED’. You can also query this information from SOLID
Embedded Engine using SOLID Remote Control.
3-2 SOLID Administrator Guide

Restoring Backups

ilure
n

d or
If the backup failed, you can find the error message that describes the reason for the fa
from the solmsg.out file. Correct the cause of the error and try again. The most commo
causes for failed backups are:

■ the backup media is out of disk space

■ the backup directory does not exist

■ a database directory is defined as the backup directory

Restoring Backups
There are two alternative ways to restore a backup. You can either:

■ Return to the state when backup was created, or

■ Revive a backup database to the current state by using log files to add data inserte
updated after the backup was made.

To Return to the State when the Backup was Made
1. Shut down SOLID Embedded Engine, if it is running.

2. Delete all log files from the log file directory. The default log file names are
sol00001.log , sol00002.log , etc.

3. Copy the database file(s) from the backup directory to the database file directory.

4. Start SOLID Embedded Engine.

This method will not perform any recovery because no log files exist.

To Revive a Backup Database to the Current State
1. Shut down SOLID Embedded Engine, if it is running.

2. Copy the database file(s) from the backup directory to the database file directory.

3. Copy the log files from the backup directory to the log file directory. If there are log-
files with the same file names, do not replace those log files in the log file directory
with log files from the backup directory.

4. Start SOLID Embedded Engine.

SOLID Embedded Engine will automatically use the log files to perform a roll-forward
recovery.
 Database Maintenance 3-3

Recovering from Abnormal Shutdown

s

 to

trans-

em
o a log

ete
ging

data-

. Check-
e roll-
nt.
recov-

 per-
ck-
he is

g the

al is
Recovering from Abnormal Shutdown
If the server was closed abnormally, that is, if it was not shut down using the procedure
described earlier, SOLID Embedded Engine will automatically use the log files to perform a
roll-forward recovery during the next start up. No administrative procedures are needed
start the recovery.

The message Starting roll-forward recovery appears. After the recovery has
been completed, a message will indicate how many transactions were recovered. If no
actions were made since the last checkpoint, this is indicated by the following message

Recovery successfully completed

Transaction Logging
Transaction logging guarantees that no committed operations are lost in case of a syst
failure. When an operation is executed in the server, the same operation is also saved t
file. The log file is used for recovery in case the server is shut down abnormally.

A backup operation will copy the log and database files to the backup directory and del
the log files from the database directory. You may change the default behavior by chan
the parameters BackupCopyLog and BackupDeleteLog in the General section of
parameters in solid.ini .

TIP: For both security and performance reasons, it is a good idea to keep log files and
base files on different physical disk devices. If one disk drive is damaged, you will lose
either your database files or log files but not both.

Creating Checkpoints
Checkpoints are used to store a consistent state of the database onto the database file
points are needed for speeding up the roll-forward recovery after a system failure. In th
forward recovery, the database will start recovering transactions from the last checkpoi
The longer it has been since the last checkpoint was created, the more operations are
ered from the log file(s).

To speed up recoveries, checkpoints should be created frequently; however, the server
formance is reduced during the creation of a checkpoint. Furthermore, the speed of che
point creation depends on the amount of database cache used; the more database cac
used, the longer the checkpoint creation will take. Consider these issues when decidin
frequency of checkpoints. See Appendix B, “Configuration Parameters”for a description of
the use of CacheSize parameter.

SOLID Embedded Engine has an automatic checkpoint creation daemon, which creates a
checkpoint after a certain number of writes to the log files. The default checkpoint interv
3-4 SOLID Administrator Guide

Changing Database Location

see

You

ction

point

ple,
cting

Error

ting

-

every 5000 log writes. You may change the value of the parameter CheckpointInter-
val in the General section of parameters. To learn how to change a parameter value,
Chapter 7, “Configuration” in this guide.

Before and after a database operation, you may want to create a checkpoint manually.
can do this programmatically from your application with SQL command ADMIN COM-
MAND 'makecp'. You can also force a checkpoint using a timed command. Read the se
“Entering Timed Commands” in this chapter for details.

NOTE. There can be only one checkpoint in the database at a time. When a new check
is created, the older checkpoint is automatically erased.

Closing the Database
To close the database, use SQL command ADMIN COMMAND 'close'.

In some cases you may want to prevent users from connecting to the engine. For exam
when you are shutting down an engine, you may want to prevent new users from conne
to the engine. After closing the database, only connections from SOLID Remote Control will
be accepted. Closing the database does not affect existing user connections.

When the database is closed no new connections are accepted (clients will get SOLID
Message 14506).

Changing Database Location
Changing a database location in SOLID Embedded Engine is as easy as copying a file from
one directory to another.

NOTE. To copy a database file, you need to shut down the engine to release the opera
system file locks on the database file and log files.

To Change Database Location
1. Verify that SOLID Embedded Engine is not running.

2. Copy the database and log files to the target directory.

3. Copy the solid.ini file to the target directory. Check that the database file direc-
tory, log file directory and backup directory are correctly defined in the configuration
file solid.ini .

4. Start SOLID Embedded Engine using the target directory as the current working direc
tory using the command line option -c directory-name .
 Database Maintenance 3-5

Running Several Servers on One Computer

ple,
on the

tart
data-
d in or

s

-
ckups,
sers or
Running Several Servers on One Computer
In some cases, you may want to run two or more databases on one computer. For exam
you may need a configuration with a production database and a test database running
same computer.

SOLID Embedded Engine is able to use one database per database server, but you can s
several engines each using its own database file. To make these engines use different
bases, either start the engine processes from the directories your databases are locate
give the locations of configuration files by using the command line option -c direc-
tory-name to change the working directory. Remember to use different network name
for each engine.

Entering Timed Commands
SOLID Embedded Engine has a built-in timer, which allows you to automate your adminis
trative tasks. You can use timed commands to execute system commands, to create ba
checkpoints and database status reports, to open and close databases, to disconnect u
to shut down engines.

To Enter a Timed Command
Timed commands are entered manually by editing the At parameter of the [Srv] section in
the solid.ini file. The syntax is:

At-string := timed-command[, timed-command]
timed-command := [day] HH:MM command argument
day := sun | mon | tue | wed | thu | fri | sat

If the day is not given, the command is executed daily.

Example:
[Srv]
At=20:30 makecp,21:00 backup,sun 23:00 shutdown

NOTE: The format used is HH:MM (24-hour format).
3-6 SOLID Administrator Guide

Entering Timed Commands
Arguments and the Defaults for the Different Timed Commands

Command Argument Default

backup backup directory the default backup direc-
tory that is set in the con-
figuration file

throwout user name, all no default, argument com-
pulsory

makecp no arguments no default

shutdown no arguments no default

report report file name no default, argument com-
pulsory

system system command no default

open no arguments no default

close no arguments no default
 Database Maintenance 3-7

Entering Timed Commands
3-8 SOLID Administrator Guide

4
ari-
eliv-
ID
vices

sed
ge

e

al

.
Using SOLID Data Management Tools

This chapter describes SOLID data management tools, a set of utilities for performing v
ous database tasks. Not all SOLID Tools are necessarily part of the standard product d
ery, and their availability on some platforms may be limited. For information about SOL
data management tools, contact your SOLID sales representative or SOLID Online Ser
at the Solid Web site:

http://www.solidtech.com/

Command Line Arguments
This paragraph lists and describes the available command line arguments that can be u
with all teletype SOLID Database Tools. The tool-specific options are listed with the usa
of each tool.

NOTE. When there is a contradiction in the command line, the tool gives you a list of th
possible options as a result. Please check the command line you entered.

Command Line Arguments

Argument Description

server name This network name of the SOLID server that you are connected to. Logic
Data Source Names can also be used with tools; refer to the chapter Net-
work Connections for further information. The given network name must
be enclosed in quotes.

user name This is required to identify the user and to determine which rights he has
Without appropriate rights execution is denied.

password This password given to the user for accessing the database.
 Using SOLID Data Management Tools 4-1

SOLID SpeedLoader

-
r-

s not

-

ase

xed

e
SOLID SpeedLoader
SOLID SpeedLoader is a tool for loading data from external ASCII files into a SOLID data
base. SOLID SpeedLoader can load data in a variety of formats and produce detailed info
mation of the loading process into a log file. The format of the import file, that is, the file
containing the external ASCII data, is specified in a control file.

The data is loaded into the database through the SOLID Embedded Engine program. This
enables online operation of the database during the loading. The data to be loaded doe
have to reside in the server computer.

Control File
The control file provides information on the structure of the import file. It gives the follow
ing information:

■ name of the import file

■ format of the import file

■ table and columns to be loaded

NOTE. Each import file requires a separate control file. SOLID SpeedLoader loads data into
one table at a time.

The control file format is somewhat similar to control file structures found in other datab
management systems, such as Oracle and DB/2. Please note the following:

■ The table must exist in the database in order to perform data loading.

■ Schema support is not currently available in SOLID Speedloader.

Import File
The import file must be of ASCII type. The import file may contain the data either in a fi
or a delimited format:

■ In fixed-length format data records have a fixed length, and the data fields inside th
records have a fixed position and length.

table name The name of the table accessed. * can be used with SOLID Export to export
all tables with one command line.

control file The name of the control file that defines the import file used with SOLID
SpeedLoader. A file of this type is produced by executing SOLID Export.
4-2 SOLID Administrator Guide

SOLID SpeedLoader

 is

 the

e-

file.

iled

 of
n of

LID

 to
ol-
■ In delimited format data records can be of variable length. Each data field and data
record is separated from the next with a delimiting character such as a comma (this
what SOLID Export produces). Fields containing no data are automatically set to
NULL.

Data fields within a record may be in any order specified by the control file. Please note
following:

■ Data in the import file must be of a suitable type. For example, numbers that are pr
sented in a Float format cannot be loaded into a field of Integer or Smallint type.

■ Data of Varbinary and Long Varbinary type are hexadecimal encoded in the import

Message Log File
During loading, SOLID SpeedLoader produces a log file containing the following informa-
tion:

■ the date and time of the loading

■ loading statistics such as the number of rows successfully loaded, the number of fa
rows, and the load time if it has been specified with the option

■ Any possible error messages

If the log file cannot be created, the loading process is terminated. By default the name
the log file is generated from the name of the import file by substituting the file extensio
the import file with the file extension .log . For example, my_table.ctr creates the log
file my_table.log . To specify another kind of file name, use the option -l.

Configuration File
A configuration file is not required for SOLID SpeedLoader. The configuration values for
the server parameters are included in the SOLID Embedded Engine configuration file
solid.ini .

Client copies of this file can be made to provide connection information required for SO
Speedloader. If no server name is specified in the command line, SOLID SpeedLoader will
choose the server name it will connect to from the server configuration file. For example
connect to a server using the NetBIOS protocol and with the server name SOLID, the f
lowing lines should be included in the configuration file:

[Com]
Connect=netbios SOLID
 Using SOLID Data Management Tools 4-3

SOLID SpeedLoader

e

tion

a dic-
ords
Invoking SOLID SpeedLoader
SOLID SpeedLoader is invoked with the command solload followed by various argu-
ments. If you invoke SOLID SpeedLoader with no arguments, you will see a summary of th
arguments with a brief description, i.e. their usage. The command line syntax is:

solload [options] [server-name] <user-name> <password> <control-file>

The possible options are in the following table:

Control File Syntax
The control file syntax has the following characteristics:

■ keywords must be given in capital letters

■ comments can be included using the standard SQL double-dash (--) comment nota

■ statements can continue from line to line with new lines beginning with any word

SOLID SpeedLoader reserved words must be enclosed in quotes if they are used as dat
tionary objects, that is, table or column names. The following list contains all reserved w
for the SOLID SpeedLoader control file:

Option Description

-b<records> Number of records to commit in one batch

-c<dir> Change working directory

-l<filename> Write log entries to this file

-L<filename> Append log entries to this file

-n<records> Insert array size (network version)

-t Print load time

-x emptytable Load data only if there are no rows in the table

-x errors:<count> Maximum error count

-x nointegrity No integrity checks during load (standalone version)

-x skip:<records> Number of records to skip

-? Help = Usage

AND ANSI

APPEND BINARY
4-4 SOLID Administrator Guide

SOLID SpeedLoader

hat
ally
The control file begins with the statement LOAD DATA followed by several statements t
describe the data to be loaded. Only comments or the OPTIONS statement may option
precede the LOAD DATA statement.

The following table describes the full syntax of the control file.

BLANKS BY

CHAR CHARACTERSET

DATA DATE

DECIMAL DOUBLE

ENCLOSED ERRORS

FIELDS FLOAT

IBMPC INFILE

INSERT INTEGER

INTO LOAD

LONG MSWINDOWS

NOCNV NOCONVERT

NULLIF NULLSTR

NUMERIC OPTIONALLY

OPTIONS PCOEM

POSITION PRECISION

PRESERVE REAL

REPLACE SCAND7BIT

SKIP SMALLINT

TABLE TERMINATED

TIME TIMESTAMP

TINYINT VARBIN

VARCHAR WHITESPACE

Syntax Element

control-file ::= [option-part] load-data-part into-table-part
 Using SOLID Data Management Tools 4-5

SOLID SpeedLoader

. If
The following paragraphs explain syntax elements and their use is in detail.

CHARACTERSET
The CHARACTERSET keyword is used to define the character set used in the input file
the CHARACTERSET keyword is not used or if it is used with the parameter NOCON-

option-part ::= OPTIONS (options)

options ::= option [, option]

option ::= [SKIP = 'int_literal'] | [ERRORS = 'int_literal']

load-data-part ::= LOAD [DATA] [characterset-specification] [DATE
date_mask] [TIME time_mask]
[TIMESTAMP timestamp_mask] [INFILE filename] [PRE-
SERVE BLANKS]

characterset-specification ::= CHARACTERSET
{ NOCONVERT | NOCNV | ANSI | MSWINDOWS |
PCOEM | IBMPC | SCAND7BIT }

into-table-part ::= INTO TABLE tablename [APPEND | INSERT |
REPLACE]
[FIELDS TERMINATED BY
{ WHITESPACE | hex_literal |'char']}
[FIELDS [OPTIONALLY] ENCLOSED BY
{"char'"| hex_literal} [AND "char" | hex_literal]]
(column_list)

hex_literal ::= X'hex_byte_string'

column_list ::= column [, column]

column ::= column_name datatype_spec
[POSITION ('int_literal' {: | -} 'int_literal')]
[DATE date_mask] [TIME time_mask]
[TIMESTAMP timestamp_mask]
[NULLIF BLANKS | NULLIF NULLSTR| NULLIF 'string' |
NULLIF (('int_literal' {: | -} 'int_literal') = 'string')]

datatype_spec ::= {BINARY | CHAR [length] | DATE |
DECIMAL [(precision [, scale])] | DOUBLE PRECI-
SION | FLOAT [(precision)] | INTEGER | LONG VARBI-
NARY | LONG VARCHAR | NUMERIC [(precision [,
scale])] | REAL | SMALLINT | TIME |
TIMESTAMP [(timestamp precision)] | TINYINT | VAR-
BINARY | VARCHAR [(length)] }
4-6 SOLID Administrator Guide

SOLID SpeedLoader

rac-

c-

nes

d

er:

 the

 DD
 Masks
the
M-

e data
VERT or NOCNV, no conversions are made. Use the parameter ANSI for the ANSI cha
ter set, MSWINDOWS for the MS Windows character set, PCOEM for the ordinary PC
character set, IBMPC for the IBM PC character set, and SCAND7BIT for the 7-bit chara
ter set containing Scandinavian characters.

DATE, TIME, and TIMESTAMP
These keywords can be used in two places with different functionality:

■ When one of these keywords is used as a part of the load-data-part element, it defi
the format used in the import file for inserting data into any column of that type.

■ When a keyword appears as a part of a column definition it specifies the format use
when inserting data into that column.

NOTE 1. Masks used as part of the load-data-part element must be in the following ord
DATE, TIME, and TIMESTAMP. Each is optional.

NOTE 2. Data must be of the same type in the import-file, the mask, and the column in
table into which the data is loaded.

The following table shows the available data masks:

In the above table, year masks are YYYY and YY, month masks MM and M, day masks
and D, hour masks HH and H, minute masks NN and N, and second masks SS and S.
within a date mask may be in any order, e.g., a date mask could be ‘MM-DD-YYYY’. If
date data of the import file is formatted as 1995-01-31 13:45:00, use the mask YYYY-M
DD HH:NN:SS.

PRESERVE BLANKS
The PRESERVE BLANKS keyword is used to preserve all blanks in text fields.

into-table-part
The into-table-part element is used to define the name of the table and columns that th
is inserted into.

Data Type Available Data Masks

DATE YYYY/YY-MM/M-DD/D

TIME HH/H:NN/N:SS/S

TIMESTAMP YYYY/YY-MM/M-DD/D HH/H:NN/N:SS/S
 Using SOLID Data Management Tools 4-7

SOLID SpeedLoader

 data

art

 a
ord

if
he
t of
FIELDS TERMINATED BY
The FIELDS TERMINATED BY keyword is used to define the character used to distin-
guish where fields end in the input file.

The ENCLOSED BY keyword is used to define the character that precedes and follows
in the input file.

POSITION
The POSITION keyword is used to define a field's position in the logical record. Both st
and end positions must be defined.

NULLIF
The NULLIF keyword is used to give a column a NULL value if the appropriate field has
specified value. An additional keyword specifies the value the field must have. The keyw
BLANKS sets a NULL value if the field is empty; the keyword NULL sets a NULL value
the field is a string 'NULL'; the definition 'string' sets a NULL value if the field matches t
string 'string'; the definition '((start : end) = 'string')' sets a NULL value if a specified par
the field matches the string 'string'.

Loading Fixed-format Records
Examples of the control file when loading data from a fixed-format import file:

-- EXAMPLE 1
LOAD DATA
INFILE 'EXAMP1.DAT'
INTO TABLE SUPPLIERS (
NAME POSITION(01:19) CHAR,
ADDRESS POSITION(20:40) VARCHAR,
ID POSITION(41:48) INTEGER)
-- EXAMPLE 2
OPTIONS (SKIP = 10, ERRORS = 5)
-- Skip the first ten records. Stop if
-- errorcount reaches five.
LOAD DATA
INFILE 'sample.dat'
-- import file is named sample.dat
INTO TABLE TEST1 (
ID INTEGER POSITION(1-5),
ANOTHER_ID INTEGER POSITION(8-15),
DATE1 POSITION(20:29) DATE 'YYYY-MM-DD',
4-8 SOLID Administrator Guide

SOLID SpeedLoader
DATE2 POSITION(40:49) DATE 'YYYY-MM-DD' NULLIF NULL)

Loading Variable-length Records
Examples of the control file when loading data from a variable-length import file:

-- EXAMPLE 1
LOAD DATA
INFILE 'EXAMP2.DAT'
INTO TABLE SUPPLIERS
FIELDS TERMINATED BY ','
(NAME VARCHAR, ADDRESS VARCHAR, ID INTEGER)
-- EXAMPLE 2
OPTIONS (SKIP=10, ERRORS=5)
-- Skip the first ten records. Stop if
-- errorcount reaches five.
LOAD
DATE 'YYYY-MM-DD HH:NN:SS'
-- The date format in the import file
INFILE 'sample.dat'
-- The import file
INTO TABLE TEST1
-- data is inserted into table named TEST1
FIELDS TERMINATED BY X'2C'
-- Field terminator is HEX ',' == 2C
-- This line could also be:
-- FIELDS TERMINATED BY ','
OPTIONALLY ENCLOSED BY '[' AND ')'
-- Fields may also be enclosed
-- with '[' and ')'
(
ID INTEGER,
ANOTHER_ID DECIMAL(2),
DATE1 DATE(20) DATE 'YYYY-MM-DD HH:NN:SS',
DATE2 NULLIF NULL
)
-- ID is inserted as integer
-- ANOTHER_ID is a decimal number with 2
-- digits.
-- DATE1 is inserted using the datestring
-- given above
-- The default datestring is used for DATE2.
 Using SOLID Data Management Tools 4-9

SOLID SpeedLoader

ile, use

nce:

the
-- If the column for DATE2 is 'NULL' a NULL is
-- inserted.

Running a Sample Load Using Solload

To Run a Sample Load Using Solload
1. Start SOLID Embedded Engine.

2. Create the table using the sample.sql script and your SOLID SQL Editor.

3. Start loading using the following command line:

solload "shmem solid" dba dba delim.ctr

The user name and password are assumed to be 'dba'. To use the fixed length control f
the following command line:

solload "shmem solid" dba dba fixed.ctr

The output of a successful loading using delim.ctr will be:

SOLID Speed Loader v.3.00.00xx
(C) Copyright Solid Information Technology Ltd 1992-1999
Load completed successfully, 19 rows loaded.

The output of a successful loading using fixed.ctr will be:

SOLID Speed Loader v.3.00.00xx
(C) Copyright Solid Information Technology Ltd 1992-1999
Load completed successfully, 19 rows loaded.

Hints to Speed up Loading
The following hints can be used to ensure that loading is done with maximum performa

■ It is faster not to load data over the network, that is, connect locally if possible.

■ Increasing the number of records committed in one batch speeds up the load. By
default, commit is done after each record.

■ Disable logging.

To disable logging the LogEnabled parameter needs to be used. The following lines in
solid.ini file will disable logging:

[Logging]
4-10 SOLID Administrator Guide

SOLID Export

 line

II

 on

ne
LogEnabled=no

After the loading has been completed, remember to enable logging again. The following
in the solid.ini file will enable logging:

[Logging]
LogEnabled=yes

NOTE. Running the server with logging disabled is strongly discouraged. If logs are not
written, no recovery can be made if an error occurs due to power failure, disk error etc.

SOLID Export
SOLID Export is a product for unloading data from a SOLID database to ASCII files.
SOLID Export produces both the import file, that is, the file containing the exported ASC
data, and the control file that specifies the format of the import file. SOLID SpeedLoader
can directly use these files to load data into a SOLID database.

NOTE. The user name used for performing the export operation must have select rights
the table exported. Otherwise no data is exported.

Invoking SOLID Export
SOLID Export is invoked with the command solexp . If you invoke solexp with no argu-
ments, you'll see a summary of the arguments with a brief description. The command li
syntax is:

solexp [options] [servername] <username> <password> <tablename|*>

The possible options are

Option Description

-c<dir> Change working directory

-e<sql-string> Execute SQL string for export

-f<filename> Execute SQL string from file for export

-h, -? Help = Usage

-l<filename> Write log entries to this file

-L<filename> Append log entries to this file

-o<filename> Write exported data to this file
 Using SOLID Data Management Tools 4-11

SOLID Data Dictionary

can-

D
te-
s for

t on

-

NOTE 1. The symbol * can be used to export all tables with one command. However, it
not be used as a wildcard.

NOTE 2. The -tTABLENAME (Export table) option is still supported in order to keep old
scripts valid.

SOLID Data Dictionary
SOLID Data Dictionary is a product for retrieving data definition statements from a SOLI
database. SOLID Data Dictionary produces an SQL script that contains data definition sta
ments describing the structure of the database. The generated script contains definition
tables, views, procedures, sequences, and events.

NOTE 1. User and role definitions are not listed for security reasons.

NOTE 2. The user name used for performing the export operation must have select righ
the tables. Otherwise the connection is refused.

Invoking SOLID Data Dictionary
SOLID Data Dictionary is invoked with the command soldd . If you invoke soldd with
no arguments, you'll see a summary of the arguments with a brief description. The com
mand line syntax is:

soldd [options] [servername] <username> <password> [tablename]

The possible options are:

-s<schemaname> Use only this schema for export

Option Description

-c<dir> Change working directory

-h, -? Help = Usage

-o<filename> Write data definitions to this file

-O<filename> Append data definitions to this file

-s<schemaname> List definitions from this schema only

-x indexonly List index definitions only

-x tableonly List table definitions only
4-12 SOLID Administrator Guide

SOLID Remote Control (Teletype)

om-

ts,

in

 and

efini-
Example:
soldd -odatabase.sql “tcp database_server 1313” dbadmin f1q32j4

NOTE 1. If no table name is given, all definitions are listed to which the user has rights.

NOTE 2. The -ttablename option is still supported in order to keep old scripts valid.

SOLID Remote Control (Teletype)
With SOLID Remote Control (Teletype), commands can be given at the command line, c
mand prompt, or by executing a script file that contains the commands.

NOTE. The user performing the administration operation must have administrator’s righ
or the connection will be refused.

Invoking SOLID Remote Control (Teletype)
SOLID Remote Control (Teletype) is invoked with the command solcon . On Novell Net-
ware, you start SOLID Remote Control (Teletype) with the command load solcon at the
command prompt. SOLID Remote Control (Teletype) connects to the first server specified
the Connect parameter in the solid.ini file. If you start SOLID Remote Control (Tele-
type) with no arguments, you'll be prompted for the database administrator’s user name
password. The command line syntax is:

solcon [options] [servername] [username password]

The possible options are:

You can give the connection information at the command line to override the connect d
tion in solid.ini .

Example:
solcon "spx solid"

Option Description

-c<dir> Change working directory

-e<string> Execute command string

-f<filename> Execute command string from file

-h, -? Help = Usage
 Using SOLID Data Management Tools 4-13

SOLID Remote Control (Teletype)
Also the administrator's user name and password can be given at the command line.

Example:
solcon "tcp localhost 1313" admin iohi4y

Using SOLID Remote Control (Teletype)
After the connection to the server is established, the command prompt appears.

Available commands are described in the following table:

Command Abbreviation Explanation

backup
[backup_directory]

bak Makes a backup of the database. The default
backup directory is the one defined in configu-
ration parameter General.Backup.Directory.
The backup directory may also be given as an
argument. For example, backup abc creates
backup on directory ‘abc’. All directory defini-
tions are relative to the SOLID Embedded
Engine working directory.

backuplist bls Displays a status list of last backups.

close clo Closes server from new connections; no new
connections are allowed.

errorcode
SOLID_error_code

ec Displays a description of an error code. Give
the code number as an argument. For example,
‘errorcode 10033

exit ex Exits SOLID Remote Control.

help ? Displays available commands.

makecp mcp Makes a checkpoint.

messages mes Displays server messages.

monitor {on | off}
[user username | user
id]

mon Sets server monitoring on and off. Monitoring
logs user activity and SQL calls to SOL-
TRACE.OUT file

open ope Opens server for new connections; new con-
nections are allowed.

report filename rep Generates a report of server info to a file given
as an argument.

shutdown sd Stops SOLID Embedded Engine.
4-14 SOLID Administrator Guide

SOLID Remote Control (Teletype)
status sta Displays server statistics.

status backup sta bak Displays status of the last started backup. The
status can be one of the following:

■ If the last backup was successful or any
backups have not been requested, the out-
put is 0 SUCCESS.

■ If the backup is in process; for example,
started but not ready yet, the output is
14003 ACTIVE.

■ If the last backup failed, the output is:
errorcode ERROR
where the errcode shows the reason for
the failure.

throwout {username
| userid | all

to Exits users from SOLID Embedded Engine. To
exit a specified user, give the user id as an argu-
ment. To throw out all users, use the keyword
ALL as an argument.

userlist [-l] [name |
id]

ul Displays a list of users. option -l displays more
detailed output.

version ver Displays server version info.

pid pid Returns server process id.

parameters [name] par Displays server parameter values. For example:

■ parameter used alone displays all param-
eters.

■ parameter general displays all parame-
ters from section “general.”

■ parameter general.readonly displays a
single parameter “readonly” from section
“general.”

perfmon [-c] pmon Returns performance statistics from the server.
The -c option returns all values as counter. By
default, some values are averages/second.

trace {on | off} sql |
rpc | sync

tra Sets server trace on or off. This command is
similar to the monitor command, but traces
different entities and a different levels. By
default, the output is witten to the SOL-
TRACE.OUT file.
 Using SOLID Data Management Tools 4-15

SOLID SQL Editor (Teletype)

d

corre-

c-
s-
You can execute all commands either using this interface or giving them at the comman
line with the -e option or in a text file with the -f option. Commands can be given using
either the complete command name or its abbreviation.

You can also execute all SOLID Remote Control commands programmatically from an
application using options of the SQL command “ADMIN COMMAND”. For example, you
can start a backup with the SQL command ADMIN COMMAND ‘backup’.

SOLID SQL Editor (Teletype)
With SOLID SQL Editor (Teletype), statements can be given at the command line, com-
mand prompt, or by executing a script file that contains the SQL statements.

NOTE. The user performing SQL statements must have appropriate user rights on the
sponding tables, or the connection will be refused.

Starting SOLID SQL Editor (Teletype)
SOLID SQL Editor (Teletype) is started by entering the command solsql. On Novell
Netware, you start SOLID SQL Editor (Teletype) with the command load solsql at the
command prompt. SOLID SQL Editor (Teletype) connects by default to the first server spe
ified in the Connect parameter in solid.ini file and prompts for a user name and pas
word. The command line syntax is:

solsql [options] [servername] [username] [password] [filename]

The possible options are:

Option Description

-a Auto commit every statement

-c Change working directory

-e<sql-string > Execute SQL string

-f<filename> Execute SQL string from file

-h, -? Help = Usage

-o<filename> Write result set to this file

-O<filename> Append result set to this file

-s<schemaname> Use only this schema

-t Print execution time per command

-u Expect input is in UTF-8format
4-16 SOLID Administrator Guide

SOLID SQL Editor (Teletype)

er
ile is
e and

OLID

-

NOTE: If user name and password are given as command line arguments also the serv
name must be given as a command line argument. Also if the name of the SQL script f
given as a command line argument (not with the option -f), the server name, user nam
password must also be given as command line arguments.

Using SOLID SQL Editor (Teletype)

Executing SQL Statements
After the connection to the server has been established a command prompt appears. S
SQL Editor (Teletype) executes SQL statements terminated by a semicolon.

Example:

create table testtable (value integer, name varchar);

commit work;

insert into testtable (value, name) values (31, 'Duffy Duck');
select value, name from testtable;

commit work;

drop table testtable;

commit work;

Exiting SOLID SQL Editor
To exit from SOLID SQL Editor (Teletype) enter the command:

exit;

Executing an SQL Script
To execute an SQL script from a file, the name of the script file must be given as a com
mand line parameter:

solsql server-name user-name password file-name
All statements in the script must be terminated by a semicolon. SOLID SQL Editor (Tele-
type) exits after all statements in the script file have been executed.

-x onlyresults Print only rows
 Using SOLID Data Management Tools 4-17

Tools Sample: Reloading a Database

e

his

red
ated

-

-
e.

han
Example:

solsql "tcp localhost 1313" admin iohe4y tables.sql

NOTE: Remember to commit work at the end of the SQL script or before exiting SOLID
SQL Editor (Teletype). If an SQL-string is executed with the option -e, commit can only b
done using the -a option.

Tools Sample: Reloading a Database
This example demonstrates how a SOLID Embedded Engine database can be reloaded to a
new one. At the same time the use of each SOLID tool is introduced with an example. T
reload is a useful procedure since it shrinks the size of the database file solid.db to a
minimum.

To Reload the Database:
1. Extract data definitions from the old database.

2. Extract data from the old database.

3. Replace the old database with a new one.

4. Load data definitions into a new database.

5. Load data into the new database.

Walkthrough
In this example the server name is SOLID and the protocol used for connections is Sha
Memory. Therefore, the network name is “ShMem SOLID”. The database has been cre
with the user name “dbadmin” and the password “password”.

1. Data definitions are extracted with SOLID Data Dictionary. Use the following com-
mand line to extract an SQL-script containing definitions for all tables, views, proce
dures, sequences, and events. The default for the extracted SQL-file is soldd.sql .

soldd "ShMem SOLID" dbadmin password

With this command all data definitions are listed into one file, soldd.sql (the default
name). As mentioned earlier, user and role definitions are not listed for security rea
sons. If the database contains users or roles, they need to be appended into this fil

2. All data is extracted with SOLID Export. The export results in control files (files with
the extension .ctr) and data files (files with the extension .dat). The default file name
is the same as the exported table name. In 16-bit environments, file names longer t
4-18 SOLID Administrator Guide

Tools Sample: Reloading a Database

ol

n

com-

i-

om-

able is
ym-
w
eight letters are concatenated. Use the following command line to extract the contr
and data files for all tables.

solexp "ShMem SOLID" dbadmin password *

With this command data is exported from all tables. Each table’s data is written to a
import file named table_name.dat . A separate control file table_name.ctr is
written for each table name.

3. A new database can be created to replace the old one by deleting the solid.db and all
sol####.log files from the appropriate directories. When SOLID Embedded Engine
is started for the first time after this, a new database is created.

NOTE. It is recommended that a backup is created of the old database before it is
deleted. This can be done using SOLID Remote Control (Teletype).

4. Use the following command line to create a backup using SOLID Remote Control (Tele-
type):

solcon -eBACKUP "ShMem SOLID" dbadmin password

With this command a backup is created. The option -e precedes an administration
mand.

5. Load data definitions into the new database. This can be done using SOLID SQL Editor
(Teletype). Use the following command line to execute the SQL-script created by
SOLID Data Dictionary.

solsql -fSOLDD.SQL "ShMem SOLID" dbadmin password

With this command, data definitions are loaded into the new, empty database. Defin
tions are retrieved with the option -f from the file soldd.sql . Connection parameters
are the same as in the earlier examples.

The previous two steps can be performed together by starting SOLID Embedded Engine
with the following command line. The option -x creates a new database, executes c
mands from a file, and exits. User name and password are defined as well.

solid -Udbadmin -Ppassword -x execute:soldd.sql

6. Load data into the new database. This is be done SOLID Speedloader. To load several
tables into the database a batch file containing a separate command line for each t
recommended. In Unix-based operating systems and in OS/2, using the wildcard s
bol * is possible. Use either of the following command lines to load data into the ne
database.

solload "ShMem SOLID" dbadmin password table_name.ctr
 Using SOLID Data Management Tools 4-19

Tools Sample: Reloading a Database
7. With this command data for one table is loaded. The server is online.

Batch files that can be used are:

■ Shell scripts in Unix environments

■ .com -scripts in VMS

■ .bat -scripts in Windows 95, 98 and NT
4-20 SOLID Administrator Guide

5
ing

se
les,

he

nce

y
er

D
Administration with SQL Statements

This chapter tells you how to manage the database as well as its users and schema us
SQL statements. You can use SOLID SQL Editor and many ODBC compliant tools for exe-
cuting these SQL statements.

To automate these tasks, you may want to save the SQL statements to a file. You can u
these files for rerunning your SQL statements later or as a document of your users, tab
and indexes.

About SOLID SQL Syntax
The SQL syntax is based on the ANSI X3H2-1989 level 2 standard including important
ANSI X3H2-1992 (SQL2) extensions. User and role management services missing from
previous standards are based on the ANSI SQL3 draft. For a more formal definition of t
syntax, refer to Appendix D SOLID Embedded Engine SQL Syntax of this document.

Administering the Database
SOLID Embedded Engine provides the SQL-extension ADMIN COMMAND 'com-
mand[command_args]' to perform basic administrative tasks, such as backups, performa
monitoring, and shutdown.

You can use SOLID Remote Control program to perform the command options provided b
ADMIN COMMAND. For details, read the “SOLID Remote Control (Teletype)” in Chapt
4.

You can find a short description of available commands by executing ADMIN COMMAN
'help'. For a formal definition of the syntax of these statements, refer to Appendix D,
“SOLID SQL Syntax” in this guide.
 Administration with SQL Statements 5-1

Managing User Privileges and Roles

i-
 file

an
ther

r
ny
i-

hat

Managing User Privileges and Roles
You can use SOLID SQL Editor and many ODBC compliant SQL tools to modify user priv
leges. Users and roles are created and deleted using SQL statements or commands. A
consisting of several SQL statements is called a SQL script.

In the SOLID directory, you will find an SQL script called users.sql , which gives an
example of creating users and roles. You can run it using SOLID SQL Editor. To create your
own users and roles, you can make your own script describing your user environment.

NOTE: All SQL statements must be terminated with a semicolon (;).

User Privileges
When using SOLID Embedded Engine in a multi-user environment, you may want to apply
user privileges to hide certain tables from some users. For example, you may not want
employee to see the table in which employee salaries are listed, or you may not want o
users to mess with your test tables.

SOLID Embedded Engine allows you to apply five different kinds of user privileges. A use
may be able to view, delete, insert, update or reference information in a table or view. A
combination of these privileges may also be applied. A user who has none of these priv
leges to a table is not able to use the table at all.

User Roles
Privileges can also be granted to an entity called a role. A role is a group of privileges t
can be granted to users as one unit. SOLID Embedded Engine allows you to create roles and
assign users to certain roles.

NOTE: Same string can not be used both as a user name and a role name.

The following user and role names are reserved:

Reserved name Description

PUBLIC You can use this role to grant privileges to
all users. When user privileges to a certain
table are granted to the role PUBLIC, all
current and future users have the specified
user privileges to this table. This role is
granted automatically to all users.
5-2 SOLID Administrator Guide

Managing User Privileges and Roles

rivi-

e

e

d.
Examples of SQL Statements
Below are some examples of SQL commands for administering users, roles and user p
leges.

Creating Users
CREATE USER <username> IDENTIFIED BY <password>;

Only an administrator has the privilege to execute this statement. The following exampl
creates a new user named CALVIN with the password HOBBES.

CREATE USER CALVIN IDENTIFIED BY HOBBES;

Deleting Users
DROP USER <username>;

Only an administrator has the privilege to execute this statement. The following exampl
deletes the user named CALVIN.

DROP USER CALVIN;

Changing a Password
ALTER USER <username> IDENTIFIED BY <new password>;

The user <username> and the administrator have the privilege to execute this comman
The following example changes CALVIN' s password to GUBBES.

ALTER USER CALVIN IDENTIFIED BY GUBBES;

SYS_ADMIN_ROLE This is the default role for the database
administrator. This role has administration
privileges to all tables, indexes and users.
This is also the role of the creator of the
database.

_SYSTEM This is the schema name of all system
tables and views.

SYS_CONSOLE_ROLE This role has right to use SOLID Remote
Control, but does not have other adminis-
tration privileges.
 Administration with SQL Statements 5-3

Managing User Privileges and Roles

R-
-
ot

ST
Creating Roles
CREATE ROLE <rolename>;

The following example creates a new user role named GUEST_USERS.

CREATE ROLE GUEST_USERS;

Deleting Roles
DROP ROLE <role_name>;

The following example deletes the user role named GUEST_USERS.

DROP ROLE GUEST_USERS;

Granting Privileges to a User or a Role
GRANT <user_privilege> ON <table_name> TO <username or role_name>;
The possible user privileges on tables are SELECT, INSERT, DELETE, UPDATE, REFE
ENCES and ALL. ALL will give a user or a role all five privileges mentioned above. EXE
CUTE privilege will give a user a right to execute a stored procedure. A new user has n
any privileges.

The following example grants INSERT and DELETE privileges on a table named
TEST_TABLE to the GUEST_USERS role.

GRANT INSERT, DELETE ON TEST_TABLE TO GUEST_USERS;
The following example grants EXECUTE privilege on a stored procedure named SP_TE
to user CALVIN.

GRANT EXECUTE ON SP_TEST TO CALVIN;

Granting Privileges to a User by Giving the User a Role
GRANT <role_name> TO <username>;

The following example gives the user CALVIN the privileges that are defined for the
GUEST_USERS role.

GRANT GUEST_USERS TO CALVIN;

Revoking Privileges from a User or a Role
REVOKE <user_privilege> ON <table_name> FROM <username or role_name>;
5-4 SOLID Administrator Guide

Managing Tables

our
-

ion of

nt
The following example revokes the INSERT privilege on the table named TEST_TABLE
from the GUEST_USERS role.

REVOKE INSERT ON TEST_TABLE FROM GUEST_USERS;

Revoking Privileges by Revoking the Role of a User
REVOKE <role_name> FROM <username>;
The following example revokes the privileges that are defined for the GUEST_USERS role
from CALVIN.

REVOKE GUEST_USERS FROM CALVIN;

Granting Administrator Privileges to a User
GRANT SYS_ADMIN_ROLE TO <username>;
The following example grants administrator privileges to CALVIN, who now has all privi-
leges to all tables.

GRANT SYS_ADMIN_ROLE TO CALVIN;
NOTE. If the autocommit mode is set OFF, you need to commit your work. To commit y
work use the SQL statement COMMIT WORK;. If the autocommit mode is set ON the trans
actions are committed automatically.

Managing Tables
SOLID Embedded Engine has a dynamic data dictionary that allows you to create, delete
and alter tables on-line. SOLID Embedded Engine tables are managed using SQL com-
mands.

In the SOLID directory, you can find an SQL script named sample.sql , which gives an
example of managing tables. You can run the script using SOLID SQL Editor.

Below are some examples of SQL statements for managing tables. For a formal definit
the SOL syntax of SOLID Embedded Engine, refer to Appendix D SOLID Embedded Engine
SQL Syntax of this document.

TIP. If you want to see the names of all tables in your database, issue the SQL stateme
SELECT * FROM TABLES or use predefined command TABLES from SOLID SQL Edi-
tor. The table names can be found in the column TABLE_NAME.

Examples of SQL Statements
Below are some examples of SQL commands for administering tables.
 Administration with SQL Statements 5-5

Managing Tables

an
ate-
to-
Creating Tables
CREATE TABLE <table_name> (<column> <column type>

[,<column> <column type>]...);

All users have privileges to create tables.

The following example creates a new table named TEST with the column I of the column
type INTEGER and the column TEXT of the column type VARCHAR.

CREATE TABLE TEST (I INTEGER, TEXT VARCHAR);

Removing Tables
DROP TABLE <table_name>;

Only the creator of the particular table or users having SYS_ADMIN_ROLE have privileges
to remove tables.

The following example removes the table named TEST.

DROP TABLE TEST;

Adding Columns to a Table
ALTER TABLE <table_name> ADD COLUMN <column_name>

<column type>;

Only the creator of the particular table or users having SYS_ADMIN_ROLE have privileges
to add or delete columns in a table.

The following example adds the column C of the column type CHAR(1) to the table TEST.

ALTER TABLE TEST ADD COLUMN C CHAR(1);

Deleting Columns from a Table
ALTER TABLE <table_name> DROP COLUMN

<column_name>;

The following example statement deletes the column C from the table TEST.

ALTER TABLE TEST DROP COLUMN C;

NOTE. If the autocommit mode is set OFF, you need to commit your work before you c
modify the table you altered. To commit your work after altering a table, use the SQL st
ment COMMIT WORK;. If the autocommit mode is set ON transactions are committed au
matically.
5-6 SOLID Administrator Guide

Managing Indexes

ccess the
n-
xes
n
wn

L

ges

an

Managing Indexes
Indexes are used to speed up access to tables. The database engine uses indexes to a
rows in a table directly. Without indexes, the engine would have to search the whole co
tents of a table to find the desired row. There are two kinds of indexes: non-unique inde
and unique indexes. A unique index is an index where all key values are unique. You ca
create as many indexes as you like to a single table. However, adding indexes slows do
updates on that table.

SOLID Embedded Engine allows you to create and delete indexes using the following SQ
statements. For a formal definition of the syntax of these statements, refer to Appendix D
SOLID Embedded Engine SQL Syntax of this document.

Examples of SQL Statements
Below are some examples of SQL commands for administering indexes.

Creating an Index to a Table
CREATE INDEX <index_name> ON <table_name>

 (<column_name> [ASC | DESC]);
Only the creator of the particular table or users having SYS_ADMIN_ROLE have privile
to create or delete indexes.

The following example creates an index named X_TEST on the table TEST to the column I .

CREATE INDEX X_TEST ON TEST (I);

Creating a Unique Index to a Table
CREATE UNIQUE INDEX <index_name> ON <table_name>

 (<column_name>);
The following example creates a unique index named UX_TEST on the table TEST to the
column I .

CREATE UNIQUE INDEX UX_TEST ON TEST (I);

Deleting an Index
DROP INDEX <index_name>;

The following example deletes the index named X_TEST.

DROP INDEX X_TEST;

NOTE. If the autocommit mode is set OFF, you need to commit your work before you c
modify the table on which you altered the indexes. To commit your work after modifying
 Administration with SQL Statements 5-7

Primary Keys

in a
mary

ns in

n-
indexes, use the SQL statement COMMIT WORK;. If the autocommit mode is set ON the
transactions are committed automatically.

Primary Keys
A primary key is a column or combination of columns that uniquely identify each record
table. Primary keys like indexes speed up access to tables. The difference between pri
keys and indexes in SOLID Embedded Engine is that the primary key cluster data in the
database according to the key values.

This behavior differs from the default clustering in SOLID Embedded Engine, where the
data is clustered according to the insertion time only.

Foreign Keys
A foreign key is a column or group of columns within a table that refers to, or relates to,
some other table through its values. The foreign key must always include enough colum
its definition to uniquely identify a row in the referenced table. The main reason for defi
ing foreign keys is to ensure that rows in one table always have corresponding rows in
another table; that is, to ensure that referential integrity of data is maintained.
5-8 SOLID Administrator Guide

6
m-

at dis-

erver

e
nd

 name

fined

 or

ctions
Network Connections

Communication between Client and Server
The database server and client transfer information between each other through the co
puter network using a communication protocol.

When a database server process is started, it will publish at least one network name th
tinguishes it in the network. We say that the server starts to listen to the network using the
given network name. The network name consists of a communication protocol and an s
name.

To establish a connection from a client to to a server they both have to be able to use th
same communication protocol. The client has to know the network name of the server a
often also the location of theserver in the network. The client process uses the network
to specify which server it will connect to.

This chapter will give you information on how to administer network names.

Network Names for SOLID Embedded Engine
The network name of a server consists of a communication protocol and a server name. This
combination identifies the embedded engine in the network. The network names are de
in configuration file solid.ini in [Com] section with the Listen parameter. The
solid.ini file should be located in the embedded engine program's working directory
in the directory set by the SOLIDDIR environment variable.

A server may use an unlimited number of network names. To make establishing conne
easier all components of network names are case insensitive.

Network names are managed on the NETWORK page in SOLID Remote Control or directly
by editing the server configuration file solid.ini . An example of an entry in
solid.ini :

[Com]
 Network Connections 6-1

Network Names for SOLID Embedded Engine

ne
es pro-
ro-

starts

an-
ost,
is are

e nert-
Listen = tcpip 1313, nmpipe solid

The example contains two network names which are separated by a comma. The first o
uses the protocol TCP/IP and the service port 1313, the other one uses the Named Pip
tocol with the name ‘solid’. In our example the ‘tcpip’ and ‘nmpipe’ are communication p
tocols while ‘1313’ and ‘solid’ are server names.

If the Listen parameter is not set in the SOLID.INI file, the environment dependent
defaults as used.

NOTE 1. When a database server process is started it publishes the network names it
to listen to. This information is also written to a file named solmsg.out in the located in
the same directory as the solid.ini file.

NOTE 2. Network names must be unique within one host computer. For example, you c
not have two database servers running, both listening to the same TCP/IP port in one h
but it is possible that the same port number is in use in different hosts. Exceptions to th
the NetBIOS and IPX/SPX protocols, which require that used server names are unique
throughout the whole network.

To Add a Network Name for the Server
1. Open the solid.ini file located in the working directory of your SOLID Embedded

Engine process.

2. View the parameter Listen in the [Com] section.

3. Add a new network name to the list of network names. Use a comma (,) to separat
work names.

4. Save the changes.

You need to restart the SOLID Embedded Engine process to activate the changes.

To Modify a Network Name
1. Open the solid.ini file located in the working directory of your SOLID Embedded

Engine process.

2. View the parameter Listen in the [Com] section.

3. Edit the network name in the list of network names.

4. Save the changes.

You need to restart the SOLID Embedded Engine process to activate the changes.
6-2 SOLID Administrator Guide

Network Name for Clients

edit-

et-

h the
ally

om-

LID
To Remove a Network Name from the Server
1. Open the solid.ini file located in the working directory of your SOLID Embedded

Engine process.

2. View the parameter Listen in the [Com] section.

3. Remove the network name from the list of network names.

4. Save the changes.

You need to restart the SOLID Embedded Engine process to activate the changes.

NOTE: The modifications to network names does not become active immediately after
ing the solid.ini file.. You must restart the SOLID Embedded Engine process.

HINT: You can disable a network name using option -d after the protocol name in the n
work name:

tcp -d hobbes 1313, shmem -d solid

Network Name for Clients
The network name of a client consists of a communication protocol, an optional host com-
puter name and a server name . By this combination the client specifies the server it will
establish a connection to. The communication protocol and the server name must matc
ones that the server is using in its network listening name. Most protocols need addition
the host computer name to be specified if the client and server are running on different
machines. All components of the client’s network name are case insensitive.

The client’s network names are defined in the configuration file solid.ini in the [Com]
section with the Connect parameter. The solid.ini file should be located in the appli-
cation program's working directory or in the directory set by the SOLIDDIR environment
variable.

The following connect line in the solid.ini of the application workstation will connect
an application (client) using the TCP/IP protocol to a SOLID server running on a host c
puter named ‘spiff’ and listening with the name (port number in this case) ‘1313’.

[Com]
Connect = tcpip spiff 1313

If the Connect parameter is not found in the configuration file solid.ini the client uses
the environment dependent default instead. The defaults for the Listen and Connect
parameters are selected so that the application (client) will always connect to a local SO
server listening with a default network name. So the local communication (inside one
machine) does not necessarily need a configuration file for establishing a connection.
 Network Connections 6-3

Communication Protocols

 that
me

y

-

 the

n
r the

ory.
run-
on for

 be
NOTE 1. When the connection is requested by client program using the SQLConnect
function the network name of the server is given as a Data Source Name parameter for
function. If the given name is not an empty string, its contents are used as a network na
and the Connect parameter in the configuration file is omitted. If an empty string is
passed, the possibly existing Connect parameter is used.

NOTE 2. In the Windows (95, 98, NT) operating system, the connection can be made b
using the SOLID ODBC Driver. When a client program is using the SOLID ODBC Driver,
the network name of the server can be used as the ODBC Data Source Name and the Con-
nect parameter in the configuration file is not used.

Communication Protocols
A client process and SOLID Embedded Engine communicate with each other by using com
puter networks and network protocols. A network operating system - for example, IBM
LAN Server or Novell NetWare - is not necessarily needed. You only need a functioning
communication protocol for both ends. Supported communication protocols depend on
type of computer and network you are using.

The following paragraphs describe the supported communication protocols and commo
environments that may be used and also show the required forms of network names fo
various protocols.

Shared Memory
Usually the fastest way two processes can exchange information is to use Shared Mem
This can be used only when the embedded engine and application processes are both
ning in the same computer. The Shared Memory protocol uses a shared memory locati
moving data from one process to another.

To use the Shared Memory protocol in SOLID Embedded Engine, select ShMem from the
list of protocols in SOLID Remote Control and enter server name. The server name has to
unique only in this computer.

The Format Used in the solid.ini File
Server Listen = shmem <server name>
Client Connect = shmem <server name>

NOTE 1. Server names must be character strings less than 128 characters long.
6-4 SOLID Administrator Guide

Communication Protocols

der
t

usu-

ame

t

P/
, con-

 the

s
es can
s.
TCP/IP
The TCP/IP protocol is typically used for communicating to a server process running un
a UNIX operating system. When starting an server using the TCP/IP protocol, you mus
reserve a port number for it. You will find reserved port numbers in the /etc/services
file of your system. Select a free number greater than 1024 since smaller numbers are
ally reserved for the operating system.

To use the TCP/IP protocol, select TCP/IP in the list of protocols in SOLID Remote Con-
trol and enter a non-reserved port number.

The Format Used in the solid.ini File
Server Listen = tcpip <server port number>
Client Connect = tcpip [host computer name]
 <server port number>

NOTE 1: If the server is running in the same computer with the client program, the host
computer name need not be specified. The client computer has to have the used host n
listed in its etc/hosts file or it must be recognized by the DNS (Domain Name
Server). You can also give the host computer’s TCP/IP address in dotted decimal forma
(e.g.: 194.53.94.97) instead of its host name.

NOTE 2: On Windows 95, Windows 98, Windows NT and UNIX the TCP/IP protocol is
usually included in the operating system. On other environments (like VAX/VMS) the TC
IP software needs to be installed to the system. For a list of supported TCP/IP software
tact your SOLID Embedded Engine dealer.

NOTE 3: Using option -i<ip-address>or -i<host name> SOLID Embedded
Engine listens only to the specified IP-address or host name. For example, a server with
following setting in solid.ini

[com]
Listen = tcp -i127.0.0.1 1313

accepts connection requests only from inside the same machine, either referred by IP-
address 127.0.0.1 or with the name 'localhost', if the DNS is correctly configured.

UNIX Pipes
The UNIX domain sockets (UNIX Pipes, Named Pipes, portals) are typically used when
communicating between two processes running in the same UNIX machine. UNIX Pipe
usually have a very good throughput. They are also more secure than TCP/IP since Pip
only be accessed from applications that run on the computer where the server execute
 Network Connections 6-5

Communication Protocols

side

ated
e

D'
d
rmat.

IX

rec-

s.

y not

rk
You
re
a
When starting a server using UNIX Pipes, you must reserve a unique listening name (in
that machine) for the server, for instance, 'solid'. Because UNIX Pipes handle the UNIX
domain sockets as standard file system entries, there is always a corresponding file cre
for every listened pipe. In SOLID Embedded Engine’s case, the entries are created under th
path '/tmp'. Our example listening name 'solid' creates the directory '/tmp/solunp_SOLI
and shared files into that directory. The '/tmp/solunp_' is a constant prefix for all create
objects while the latter part ('SOLID' in this case) is the listening name in upper case fo

The Format Used in the solid.ini File
Server Listen = upipe <server name>
Client Connect = upipe <server name>

NOTE 1: Server and clientprocesses must run in the same machine in order to use UN
Pipes for communication.

NOTE 2: The server process must have a “write” permission to the directory '/tmp'.

NOTE 3: The client accessing UNIX Pipes must have an “execute” permission to the di
tory '/tmp'.

NOTE 4: The directory '/tmp' must exist.

NOTE 5: UNIX Pipes cannot be used in SCO UNIX.

NetBIOS
The NetBIOS protocol is commonly used in the Windows (95, 98, NT) operating system

To use NetBIOS protocol, select NetBIOS in the list of available protocols in SOLID
Remote Control Network page, and enter a non-reserved server name.

The Format Used in the solid.ini File
Server Listen = netbios [-aLANA_NUMBER] <server name>
Client Connect = netbios [-aLANA_NUMBER] <server name>

NOTE 1. The server name must be a character string at most 16 characters long. It ma
begin with an asterisk (*).

NOTE 2. In the above format the optional -aLANA_NUMBER is used to override the
default value of the LANA number.

NOTE 3. In Windows NT the available LANA numbers can be checked using the Netwo
Setup found in the Control Panel. The default value 0 may not be generally very good.
should choose the one(s) where the protocol stack matches the other computers you a
using. The LANA number (Network Route: Nbf->Elnk3->Elnk31) that uses NetBEUI as
6-6 SOLID Administrator Guide

Communication Protocols

nec-
 of

l-

ility

ms.

Win-

 server.
re
’s
h
 mes-

S
ave
transport usually functions quite smoothly when used for SOLID communication.

NOTE 4. The server names have to be unique in the whole network. Establishing a con
tion or starting the listener using the NetBIOS protocol may be somewhat slow because
the checks needed for uniqueness.

NOTE 5. SOLID Embedded Engine and SOLID Client versions 2.2 and newer use all avai
able LANA numbers by default. This makes it unnecessary to specify explicitly which
LANA number the application or embedded engine should use. For backward compatib
the parameter ‘-aLANA_NUMBER’ remains available.

Named Pipes
Named Pipes is a protocol commonly used in the Windows (95, 98, NT) operating syste

Windows 95 and Windows 98 support Named Pipes only in client end communication.
dows NT supports Named Pipes both in server and clint communication.

The Format Used in the solid.ini File
Server Listen = nmpipe <server name>
Client Connect = nmpipe [host computer name]
 <server name>

NOTE 1: The server names must be character strings at most 50 characters long.

NOTE 2: If the server is running in the same computer with the application program, the
host computer name should not be specified.

NOTE 3: In order to connect to the SOLID Embedded Engine for Windows NT through
Named Pipes, the user must have at least the same rights as the user, who started the
For example if an administrator starts the server only, users with administrator’s rights a
able to connect to the server through Named Pipes. Similarly if a user with normal user
rights starts theserver all users with greater rights are able to connect the server throug
Named Pipes. If a user doesn’t have proper rights, SOLID Communication Error 21306
sage will be given.

NOTE 4: It is not recommended to use the Named Pipes communication from SOLID
Remote Control. The asynchronous nature of SOLID Remote Control communication may
cause problems with Named Pipes.

DECnet
The DECnet protocol is used to connect to an embedded engine running on a OpenVM
system. To use this protocol in Windows NT, Windows 98 or Windows 95, you need to h
PATHWORKS 32 installed to your client computer.
 Network Connections 6-7

Communication Protocols

ig-
ch as

e

er

ber. If
arac-

cter

full

ork
NLM
To use the DECnet protocol, select DECnet in the list of protocols in SOLID Remote Con-
trol Network Page and enter a non-reserved server name.

The Format Used in the solid.ini File
Server Listen = decnet <server name>
Client Connect = decnet <node name> <server name>

NOTE: To establish a connection the DECnet node name of the server machine is conf
ured to your node database. The node name can be given either as a node number su
‘1.1’ or as a node name such as ‘VAX1’.

IPX/SPX
The IPX/SPX protocol is used to communicate with SOLID Embedded Engine for Novell
Netware.

SOLID Embedded Engine for Novell Netware starts listening with the default listening nam
SOLID if no listening name is specified in the configuration file solid.ini . When
SOLID Embedded Engine starts, it prints out the network and node information of the serv
machine.

The SOLID server listening name can be given as a character string or as a socket num
the given network name is a valid socket number, that is, hex number with exactly 4 ch
ters (e.g. 400F) SOLID Embedded Engine starts listening in the given port. If the network
name could not be interpreted as a socket number it is treated as a server name chara
string and is published using Novell NetWare SAP (Service Advertising Protocol).

Connecting to a SOLID Embedded Engine using SAP needs specifying only the correct
server name in Connect parameter. If the server is listening using some given port, the
NLM server info (see comment below) has to be given.

To use the IPX/SPX protocol, select IPX/SPX in the list of protocols in SOLID Remote
Control and enter a non-reserved server name.

The Format Used in the solid.ini File
Server Listen = spx {<server name> | <socket number>}
Client Connect = spx {<NLM server info> |
 <server name>}

NOTE 1. The server names must be less than 48 characters long.

NOTE 2. In the above format, <NLM server info> stands for a string containing the netw
number, the node number and the socket number separated by colons. For example, <
6-8 SOLID Administrator Guide

Communication Protocols

13.
ded

ly for

ute
d if

re
pa-

net-

ilable
server info> for network 1, node 1, socket number 1313 is 00000001:000000000001:13
You can abbreviate the information by removing the leading zeros. The previous embed
engine info could thus also be written as 1:1:1313.

<server name> stands for an alphanumeric string.

NOTE 3. The possibility to use socket numbers as the listening name is supported main
historical reasons. SAPing is intended to be the primary method.

NOTE 4. After removing a network name or shutting down SOLID Embedded Engine using
SOLID Remote Control the server name used may still remain reserved for up to one min
although everything completes successfully. The error ‘network name in use’ is displaye
SOLID Embedded Engine is restarted immediately. This is a ‘normal’ NetWare SAP featu
and happens more often if your network consists of more than one NetWare server. Pro
gating the SAP cancellation packets to every network node may take a while.

A Summary of Protocols
The following tables summarize the possible operating systems and required forms for
work names for the various communication protocols.

NOTE: The following tables contain the protocols and operating systems that were ava
when this guide was printed. For an updated list, contact your SOLID Embedded Engine
dealer.
 Network Connections 6-9

Communication Protocols
Embedded Engine Protocols and Network Names

Application Protocols and Network Names

Protocol Server OS Network name in solid.ini file

Shared

Memory

Windows 95
Windows 98
Windows NT

Listen = shmem <server>

NetBIOS Windows 95
Windows 98
Windows NT

Listen = netbios <server>

Named Pipes Windows NT Listen = nmpipe <server>

IPX/SPX Novell Netware Listen = spx <server>
Listen = spx <socket number>

TCP/IP Windows 95
Windows 98
Windows NT
UNIX

Listen = tcpip <port>

UNIX Pipes UNIX Listen = upipe <server>

Protocol Client OS Network name in solid.ini file

Shared
Memory

Windows 95
Windows 98
Windows NT

Connect = shmem <server>

NetBIOS Windows 95
Windows 98
Windows NT

Connect = netbios <server>

Named Pipes Windows 95
Windows 98
Windows NT

Connect = nmpipe [host] <server>

IPX/SPX Novell Netware
Windows 95 1

Windows 98 1

Windows NT 1

Connect = spx <server>
Connect = spx <NLM server info>

TCP/IP Windows 95
Windows 98
Windows NT
UNIX

Connect = tcpip [host] <port>
6-10 SOLID Administrator Guide

Logical Data Source Names

ng a
ays:

s,

f the

nd
ou
k-
1) requires Novell's Netware Client for Windows 95 and Windows NT

2) requires Digital PATHWORKS 32 for Windows 95 and Windows NT

Logical Data Source Names
SOLID Clients support Logical Data Source Names. These names can be used for givi
database a descriptive name. This name can be mapped to a network name in three w

1. Using the parameter settings in the application’s solid.ini file.

2. Using the Windows operating systems registry settings.

3. Using settings in a solid.ini file located in the Windows directory.

This feature is available on all supported platforms. However, on non-Windows platform
only the first method is available.

A SOLID Client attempts to open the file solid.ini first from the directory set by the
SOLIDDIR environment variable. If the file is not found from the path specified by this
variable or if the variable is not set, an attempt is made to open the file from the current
working directory.

To define a Logical Data Source Name using the solid.ini file, you need to create a
solid.ini file containing the section [Data Sources] . In that section you need to
enter the ‘logical name’ and ‘network name’ pairs that you want to define. The syntax o
parameters is the following:

[Data Sources]
<logical name> = <network name>, <Description>

In the description field, you may enter comments on the purpose of this logical name.

If, for example, you want to define a logical name for the application ‘My_application’, a
the database is located in a UNIX server that you want to connect to by using TCP/IP. Y
should include the following lines to the solid.ini file, which you need to place in the wor
ing directory of your application:

[Data Sources]
My_application = tcpip irix 1313, Sample data source

UNIX Pipes UNIX Connect = upipe <server>

DECnet Windows 95 2

Windows 98 2

Windows NT 2

Connect = decnet <host> <server>
 Network Connections 6-11

Logical Data Source Names

aps

e
s on a

n-

 nor-
When your application now calls the Data Source ‘My_application’, the SOLID Client m
this to a call to ‘tcpip irix 1313’.

On Windows platforms (Windows 95, Windows 98 and Windows NT), the registry can b
used to map Data Sources. These follow the standards of mapping ODBC Data Source
system.

In Windows 95, Windows 98 and Windows NT, a Data Source may be defined in the Wi
dows Registry. The entry is searched from the path “software\odbc\odbc.ini”

1. first under the root HKEY_CURRENT_USER and if not found,

2. under the root HKEY_LOCAL_MACHINE.

The order of resolving a Data Source name in Windows systems is the following:

1. Look for the Data Source Name from the solid.ini file in the current working direc-
tory, under the section [Data Source]

2. Look for the Data Source Name from the following registry path
HKEY_CURRENT_USER\software\odbc\odbc.ini\DSN

3. Look for the Data Source Name from the following registry path
HKEY_LOCAL_MACHINE\software\odbc\odbc.ini\DSN

In case an application uses normal ODBC Data Sources, the network name is mapped
mally using the methods that are provided in the ODBC Driver Manager.
6-12 SOLID Administrator Guide

7
p

 is

If the

ys-

odi-
Configuration

This chapter describes how to configure the SOLID Embedded Engine to meet your environ-
ment, performance, and operation needs. It includes SOLID Embedded Engine parameters
and their settings. The topic Managing Parameters in this chapter gives you step-by-ste
instructions on how to view and set the parameter values on the Parameters page in
SOLID Remote Control.

Configuration File and Default Settings
When SOLID Embedded Engine is started, it attempts to open the configuration file
solid.ini first from the directory set by SOLIDDIR environment variable. If the file is
not found from the path specified by this variable or if the variable is not set, an attempt
made to open the file from the current working directory.

The configuration values for the embedded engine parameters are included in this file.
file does not exist, SOLID Embedded Engine will use default settings for the parameters.
Also, if a value for a parameter is not set in the solid.ini file, SOLID Embedded Engine
will use a default value for the parameter. The default values depend on the operating s
tem you are using.

Generally, default settings offer good performance and operability, but in some cases m
fying some parameter values can improve performance.

Most Important Parameters
The following paragraphs will explain the most important SOLID Embedded Engine param-
eters and their default settings. See Appendix B, “Configuration Parameters” of this manual
for a description of all parameters.
 Configuration 7-1

Most Important Parameters

ro-
 in

an be

rm

ay

-
 of
[Com]
Connect
Listen
The parameter Connect in the [Com] section defines a network name for an application
program. The application program will establish a connection to an embedded engine p
gram with a similar Listen network name. The format for these parameters is explained
the chapter Communication protocols.

If the connect information is defined in the application program with the SQLConnect
function, this parameter is ignored. In the Windows operating systems the connection c
made by using SOLID ODBC driver. When an application program is using a SOLID
ODBC driver the ODBC Data Source Name is used and the Connect parameter has no
effect. The solid.ini file, which includes the Connect parameter, must be located in
the application program’s working directory or in the directory set by SOLIDDIR environ-
ment variable.

The following connect line will connect a client program using the TCP/IP protocol to a
SOLID Embedded Engine running in a computer named ‘spiff’ and server port number
‘1313’.

connect = tcpip spiff 1313

[IndexFile]
FileSpec_[1...N]

In SOLID Embedded Engine data and indexes are stored in the same logical files. The te
‘index file’ is used here as a synonym for the term ‘database file’.

The FileSpec parameter describes the location and the maximum size of the index file
(database file). You can use it to define the location and maximum value the index file m
grow to.

The FileSpec parameter accepts the following three arguments:

■ database file name

■ max filesize

■ device number (optional)

You can also use the FileSpec parameter to divide the index file into multiple files and
onto multiple disks. To do this, specify another FileSpec parameter identified by the num
ber 2. The index file will be written to the second file if it grows over the maximum value
7-2 SOLID Administrator Guide

Most Important Parameters

647

 to

ing
ust be

e. In
cal

use
r of

d-
y the

ry.

s. It
ry or

g
the first FileSpec parameter. The default value for this parameter is solid.db, 2147483
(which equals 2 GB expressed in bytes).

FileSpec_1=SOLID.DB 2147483647

In the following example, the parameters divide the index file on the disks C:, D: and E:
be split after growing larger than 1 GB (=1073741824 bytes).

FileSpec_1=c:\soldb\solid.1 1073741824 1
FileSpec_2=D:\soldb\solid.2 1073741824 2
FileSpec_3=G:\soldb\solid.3 1073741824 3

NOTE. The index file locations entered must be valid path names in the server’s operat
system. For example, if the server runs on a UNIX operating system, path separators m
slashes instead of backslashes.

Although the database files reside in different directories, the file names must be uniqu
the above example, it is assumed that C:, D: and E: partitions reside on separate physi
disks.

Splitting the index file on multiple disks will increase the performance of the server beca
multiple disk heads will access the data in your index file. There is no limit to the numbe
index files you may use.

If the database file is split into multiple physical disks, then multithreaded SOLID Embe
ded Engine is capable of assigning a separate disk I/O thread for each device. This wa
server can perform database file I/O in a parallel manner.

[General]
BackupDirectory
Backups of the database, log files and the configuration file solid.ini are copied to the
backup directory. The default directory ‘backup’ is a directory relative to your SOLID
directory. For example if the parameter is

BackupDirectory= bu
then the backup will be written to a directory that is a sub-directory of the SOLID directo
You may also specify a absolute path name for the directory. For example:

BackupDirectory=e:\backup\solid

The backup directory must exist and it must have enough disk space for the backup file
can be set to any existing directory except the database file directory, the log file directo
the working directory.

NOTE. The backup directory entered must be a valid path name in the server’s operatin
 Configuration 7-3

Most Important Parameters

ust be

g the

-
ses
 in
les

he
nected

s.
eads
st per-
system! For example if the server runs on a UNIX operating system, path separators m
slashes instead of backslashes.

[Logging]
FileNameTemplate
The transaction log files are created automatically to the directory specified and by usin
filename structure specified by the parameter FileNameTemplate in the Logging sec-
tion. For example, the following setting

FileNameTemplate = d:\logdir\sol#####.log

instructs SOLID Embedded Engine to create log files to directory d:\logdir and to name
them sequentially starting from sol00001.log .

[Sorter]
TmpDir_[1...N]
The TmpDir[1...N] parameter in the Sorter section specifies the directory (or directo
ries) that can be used for the external sorter algorithm which is used for sorting proces
that do not fit in main memory. All temporary files used by the external sort are created
this directory (or directories) and are automatically deleted. Setting this parameter enab
the use of external sorter.

[IndexFile]
CacheSize
The CacheSize parameter (the default value depends on the server operating system)
defines the amount of main memory the server allocates for the cache. Although SOLID
Embedded Engine is able to run with a small cache size, a larger cache size speeds up t
server. The cache size needed depends on the size of the index file, the number of con
users, and the nature of the operations executed against the server.

[Srv]
Threads
The Threads parameter in the [Srv] section defines the amount of threads the SOLID
Embedded Engine will use in addition to the communication, I/O and log manager thread
The default value is two threads for embedded engine use. The optimum number of thr
depends on the number of processors available. Finding the value that provides the be
formance requires experimentation. A good formula to start with is:

threads= (2 x number of processors) + 1
7-4 SOLID Administrator Guide

Managing Parameters

nd

ssi-

the

it-

 not
efault

tart

nable
s is
. Use
[SQL]
Info
The Info parameter in the [SQL] section specifies the tracing level on the SQL parser a
optimizer as an integer between 0 (no tracing) and 9 (extensive trace outputting). Trace
information will be output to the file named soltrace.out in the SOLID directory.

[Com]
Trace
TraceFile
These parameters control the outputting of network trace information vital to solving po
ble network problems. By setting the parameter Trace to the value Yes, SOLID Embed-
ded Engine starts logging trace information on network messages to the file specified in
TraceFile parameter.

Managing Parameters
SOLID Embedded Engine parameters and their values can be viewed and modified by ed
ing the solid.ini file in the SOLID directory.

To View and Set Configuration Parameter Values
1. Open the solid.ini file located in the working directory of your SOLID Embedded

Engine process.

2. View the value of the parameter

3. If necessary add the section, parameter and parameter's value.

4. Save the changes.

You need to restart the SOLID Embedded Engine process to activate the changes.

The parameters displayed are the parameters currently active in the server. If you have
set a parameter value, the displayed value is the default value for the parameter. The d
values are set at start-up and depend on the operating system SOLID Embedded Engine runs
on.

NOTE 1. To force a parameter value change to take effect you must shut down and res
the SOLID Embedded Engine process.

NOTE 2. The new parameter values are not checked by the server. Setting an unreaso
value for a parameter may result in an operation failure the next time the server proces
started. Do not set a parameter to a random value unless you know what you are doing
the default parameter values as an indication on the value range.
 Configuration 7-5

Managing Parameters

not be

 creat-

 to

rt
on-
Constant Parameter Values
The values of some parameters were set when the database was created and they can
modified afterwards.

If you want to use different constant values, you have to create a new database. Before
ing a new database, set new constant values by editing the solid.ini file in the SOLID
directory.

The example below sets a new block size for the index file by adding the following lines
the solid.ini file:

[Indexfile]
Blocksize=4096

After editing and saving the solid.ini file, move the old database and log files, and sta
SOLID Embedded Engine. The server program will create a new database with the new c
stant values from the solid.ini file.
7-6 SOLID Administrator Guide

8
LID

ved,

 pro-

of

nd
Performance Tuning

This chapter discusses techniques that you can use to improve the performance of SO
Embedded Engine.

Tuning SQL Statements and Applications
Tuning the SQL statements, especially in applications where complex queries are invol
is generally the most efficient means of improving the database performance.

You should tune your application before tuning the RDBMS because:

■ during application design you have control over the SQL statements and data to be
cessed

■ you can improve performance even if you are not familiar with the internal working
the RDBMS you are going to use

■ if your application is not tuned well, it will not run well even on a well-tuned RDBMS

So, find out what data your application processes, what are the SQL statements used a
what operations the application performs on the data.

Using SOLID Server Diagnostic Tools
SOLID Embedded Engine provides the following tools that may be helpful in tuning appli-
cations:

■ the SQL info facility

■ the EXPLAIN PLAN statement

Read Chapter 9, “Diagnostics and Troubleshooting” for additional information on how to
use these tools.
 Performance Tuning 8-1

Tuning SQL Statements and Applications

ather

t is,

 a
rows.

am-
 sin-
l
y be

in
tains
a full

ated

ns
d
tion
Indexes
You can use indexes to improve the performance of queries. A query that references an
indexed column in its WHERE clause can use the index. If the query selects only the
indexed column, the query can read the indexed column value directly from the index, r
than from the table.

If a table has a primary key, SOLID Embedded Engine orders the rows on disk in the order
of the values of the primary key. Otherwise the rows are ordered using the ROWID, tha
the rows are stored on disk in the order they are inserted into the database.

Indexes improve the performance of queries that select a small percentage of rows from
table. You should consider using indexes for queries that select less than 15% of table

Full table scan
If a query does not use an index, SOLID Embedded Engine must perform a full table scan to
execute the query. This involves reading all rows of a table sequentially. Each row is ex
ined to determine whether it meets the criteria of the query’s WHERE clause. Finding a
gle row with an indexed query can be substantially faster than finding the row with a ful
table scan. On the other hand, a query that selects more than 15% of a table’s rows ma
performed faster by a full table scan than by an indexed query.

To perform a full table scan, every block in the table is read. For each block, every row
stored in the block is read. To perform an indexed query the rows are read in the order
which they appear in the index, regardless of which blocks contain them. If a block con
more than one selected row it may be read more than once. So, there are cases when
table scan requires less I/O than an indexed query.

Concatenated indexes
An index can be made up of more than one column. Such an index is called a concaten
index. It is recommended to use concatenated indexes when possible.

Whether or not a SQL statement uses a concatenated index is determined by the colum
contained in the WHERE clause of the SQL statement. A query can use a concatenate
index if it references a leading portion of the index in the WHERE clause. A leading por
of an index refers to the first column or columns specified in the CREATE INDEX state-
ment.

Example:

create index job_sal_deptno on emp(job, sal, deptno);

This index can be used by these queries:

select * from emp where job = ‘clerk’ and sal =
8-2 SOLID Administrator Guide

Tuning Memory Allocation

 and

an

,

es,

ding
 sys-
eal
800 and deptno = 20;
select * from emp where sal = 1250 and job = salesman;
select job, sal from emp where job = ‘manager’ ;

The following query does not contain the first column of the index in its WHERE clause
cannot use the index:

select * from emp where sal = 6000;

Choosing columns to index
The following list gives guidelines in choosing columns to index:

■ index columns that are used frequently in WHERE clauses

■ index columns that are used frequently to join tables

■ index columns that are used frequently in ORDER BY clauses

■ index columns that have few of the same values or unique values in the table.

■ do not index small tables (tables that use only a few blocks) because a full table sc
may be faster than an indexed query

■ if possible choose a primary key that orders the rows in the most appropriate order

■ if only one column of the concatenated index is used frequently in WHERE clauses
place that column first in the CREATE INDEX statement

■ if more than one column in concatenated index is used frequently in WHERE claus
place the most selective column first in the CREATE INDEX statement

Tuning Memory Allocation

Tuning Your Operating System
Your operating system may store information in

■ real memory

■ virtual memory

■ expanded storage

■ disk

Your operating system may also move information from one location to another. Depen
on your operating system, this movement is called paging or swapping. Many operating
tems page and swap to accommodate large amounts of information that do not fit into r
 Performance Tuning 8-3

Tuning I/O

r-
t be
r
ry allo-

satis-

ntral
con-

disk.

 and

ously.
ave
memory. However, this takes time. Excessive paging or swapping can reduce the perfo
mance of your operating system and indicates that your system’s total memory may no
large enough to hold everything for which you have allocated memory. You should eithe
increase the amount of total memory or decrease the amount of database cache memo
cated.

Database Cache
The information used by SOLID Embedded Engine is stored either in memory or on disk.
Since memory access is faster than disk access, it is desirable for data requests to be
fied by access to memory rather than access to disk.

The basic element of the database server memory management system is a pool of ce
memory buffers of equal size. The size of the memory buffers and their amount can be
figured to meet the demands of different application environments.

Database cache uses available memory to store information that is read from the hard
When an application next time requests this information, the data is read from memory
instead of from the hard disk. The default value of cache depends on the platform used
can be changed by changing the CacheSize parameter. Increasing the value is recom-
mended when there are several concurrent users.

The following values can be used as a starting point:

■ a dedicated server with 16 MB RAM: Cachesize 4 MB

■ a dedicated server with 32 MB RAM: Cachesize 10 MB

■ a dedicated server with 64 MB RAM: Cachesize 30 MB

NOTE. You should increase the value of Cachesize very carefully. Too large a value leads
to very poor performance.

Tuning I/O
The performance of many software systems is inherently limited by disk I/O. Often CPU
activity must be suspended while I/O activity completes.

Distributing I/O
Disk contention occurs when multiple processes try to access the same disk simultane
To avoid this, move files from heavily accessed disks to less active disks until they all h
roughly the same amount of I/O.

Follow these guidelines:

■ use a separate disk for log files
8-4 SOLID Administrator Guide

Tuning Checkpoints

sepa-

 con-

tly

he
een
■ divide your database into several files and place each of these database files on a
rate disk

■ consider using a separate disk for the external sorter

Sorting
SOLID Embedded Engine does all sorting by default in memory. The amount of memory
used for sorting is determined by the parameter SORTARRAYSIZE in the [SQL] section. If
the amount of data to be sorted does not fit into the allocated memory, you may want to
increase the value of the parameter SORTARRAYSIZE. If there is not enough memory to
increase the value of SORTARRAYSIZE you should activate external sort that stores inter-
mediate information to disk.

The external disk sort is activated by adding the following section and parameters in the
figuration file solid.ini :

[sorter]
TmpDir_1 = c:\tmp

Additional sort directories are added with similar definitions:

[sorter]
TmpDir_1 = c:\tmp
TmpDir_2 = d:\tmp
TmpDir_3 = e:\tmp

Defining more than one sorter temporary directory on separate physical disks significan
improves sort performance by balancing the I/O load to multiple disks.

Tuning Checkpoints
Checkpoints affect:

■ recovery time performance

■ runtime performance

Frequent checkpoints can reduce the recovery time in the event of a system failure. If t
checkpoint interval is small, then relatively few changes to the database are made betw
checkpoints and relatively few changes must be recovered.

Checkpoints cause SOLID Embedded Engine to perform I/O, so they momentarily reduce
the runtime performance. This overhead is usually small.
 Performance Tuning 8-5

Tuning Checkpoints
8-6 SOLID Administrator Guide

9
nd

 qual-

ort
Diagnostics and Troubleshooting

This chapter provides information on the following SOLID Embedded Engine diagnostic
tools:

■ SQL info facility and the EXPLAIN PLAN statement used to tune your application a
identify inefficient SQL statements in your application.

■ Network trace facility used to trace the server communication

■ Ping facility used to trace client communication

You can use these facilities to observe performance, troubleshooting, and produce high
ity problem reports.

In addition, this chapter describes how, using SOLID Embedded Engine’s diagnostic tools,
you can capture all relevant information about a problem quickly produce a problem rep
under various categories, such as SQL API, ODBC Driver, JDBC Driver, etc.
 Diagnostics and Troubleshooting 9-1

Observing Performance

QL
Observing Performance

The SQL Info Facility
Run your application with the SQL Info facility enabled. The SQL Info facility generates
information for each SQL statement processed by SOLID Embedded Engine.

SQL Info levels

The SQL Info facility is turned on by setting a non-zero value to the Info parameter in the
[SQL] section of the configuration file. The output is written to a file named sol-
trace.out in the SOLID directory.

Example:

[SQL]
info = 1

The SQL Info facility can also be turned on with the following SQL statement (this sets S
Info on only for the client that executes the statement):

SET SQL INFO ON LEVEL info-value FILE file-name

and turned off with the following SQL statement:

SET SQL INFO OFF

Info value Information

0 no output

1 table, index, and view info in SQL format

2 SQL execution graphs

3 some SQL estimate info, Solid selected
key name

4 all SQL estimate info, Solid selected key
info

5 Solid info also from discarded keys

6 Solid table level info

7 SQL info from every fetched row

8 Solid info from every fetched row
9-2 SOLID Administrator Guide

Observing Performance

zer
-

Example:

SET SQL INFO ON LEVEL 1 FILE ‘my_query.txt’

The EXPLAIN PLAN Statement
The syntax of the EXPLAIN PLAN statement is:

EXPLAIN PLAN FOR sql-statement

The EXPLAIN PLAN statement is used to show the execution plan that the SQL optimi
has selected for a given SQL statement. An execution plan is a series of primitive opera
tions, and an ordering of these operations, that SOLID Embedded Engine performs to exe-
cute the statement. Each operation in the execution plan is called a unit.

Explain Plan Table Columns
The table returned by the EXPLAIN PLAN statement contains the following columns.

Unit Description

JOIN UNIT Join unit joins two or more tables. The join
can be done by using loop join or merge
join. Note that the join unit is generated
also for queries that reference only a sin-
gle table. In that case no join is executed in
the join unit, the join unit just passes the
rows without manipulating them.

TABLE UNIT Table unit is used to fetch the data rows
from a table. Table unit is always the last
unit in the chain, since it is responsible for
fetching the actual data from the index or
table.

ORDER UNIT Order unit is used to order rows for group-
ing or to satisfy ORDER BY. The ordering
can be done in memory or using an exter-
nal disk sorter.

GROUP UNIT Group unit is used to do grouping and
aggregate calculation.

Column name Description

ID The output row number, used only to guarantee that the
rows are unique.
 Diagnostics and Troubleshooting 9-3

Observing Performance
The following texts may exist in the INFO column for different types of units.

UNIT_ID This is the internal unit id in the SQL interpreter. Each
unit has a different id. The unit id is a sparse sequence of
numbers, because the SQL interpreter generates unit ids
also for those units that are removed during the optimiza-
tion phase. If more than one row has the same unit id it
means that those rows belong to the same unit. For for-
matting reasons the info from one unit may be divided
into several different rows.

PAR_ID Parent unit id for the unit. The parent id number refers to
the id in the UNIT_ID column.

JOIN_PATH For join unit there is a join path which specifies which
tables are joined in the join unit and the join order for
tables. The join path number refers to the unit id in the
UNIT_ID column. It means that the input to the join unit
comes from that unit. The order in which the tables are
joined is the order in which the join path is listed. The
first listed table is the outermost table in a loop join.

UNIT_TYPE Unit type is the execution graph unit type.

INFO Info column gives additional info. It may contain e.g.
index usage, the database table name and constraints used
in the database engine to select rows. Note that the con-
straints listed here may not match those constraints given
in the SQL statement.

Unit type Text in Info column Description

TABLE UNIT <tablename> The table unit refers to table
<tablename>.

TABLE UNIT <constraints> The constraints that are passed
to the database engine are
listed. If for example in joins
the constraint value is not
known in advance, the con-
straint value is displayed as
NULL.

TABLE UNIT SCAN TABLE Full table scan is used to
search for rows.
9-4 SOLID Administrator Guide

Observing Performance
TABLE UNIT SCAN <indexname> Index <indexname> is used to
search for rows. If all selected
columns are found from an
index, sometimes it is faster to
scan the index instead of the
clustering key because the
index has fewer disk blocks.

TABLE UNIT PRIMARY KEY The primary key is used to
search rows. This differs from
SCAN in that the whole table
is not scanned because there is
a limiting constraint to the pri-
mary key attributes.

TABLE UNIT INDEX <indexname> Index <indexname> is used to
search for rows. For every
matching index row, the actual
data row is fetched separately.

TABLE UNIT INDEX ONLY <indexname> Index <indexname> is used to
search for rows. All selected
columns are found from the
index, so the actual data rows
are not fetched separately.

JOIN UNIT MERGE JOIN Merge join is used to join the
tables.

JOIN UNIT LOOP JOIN Loop join is used to join the
tables.

ORDER UNIT NO ORDERING REQUIRED No ordering is required, the
rows are retrieved in correct
order from the database
engine.

ORDER UNIT EXTERNAL SORT External sorter is used to sort
the rows. To enable external
sorter, the temporary direc-
tory name must be specified in
the Sorter section of the con-
figuration file.
 Diagnostics and Troubleshooting 9-5

Observing Performance

I
Example 1
EXPLAIN PLAN FOR SELECT * FROM TENKTUP1 WHERE UNIQUE2_NI BETWEEN 0 AND
99;

Execution graph:
JOIN UNIT 2 gets input from TABLE UNIT 3

TABLE UNIT 3 for table TENKTUP1 does a full table scan with constraints UNIQUE2_N
<= 99 and UNIQUE2_NI >= 0

ORDER UNIT FIELD <n> USED AS PARTIAL
ORDER

Internal sorter (in-memory
sorter) is used for sorting and
the rows retrieved from the
database engine are partially
sorted with column number
<n>. The partial ordering
helps the internal sorter to
avoid multiple passes over the
data.

ORDER UNIT NO PARTIAL SORT Internal sorter is used for sort-
ing and the rows are retrieved
in random order from the data-
base engine.

ID UNIT_ID PAR_ID
JOIN_
PATH

UNIT_
TYPE INFO

1 2 1 3 JOIN UNIT

2 3 2 0 TABLE UNIT TENKTUP1

3 3 2 0 FULL SCAN

4 3 2 0 UNIQUE2_NI
<= 99

5 3 2 0 UNIQUE2_NI
>= 0

6 3 2 0
9-6 SOLID Administrator Guide

Observing Performance
Example 1. Execution graph

Example 2
EXPLAIN PLAN FOR SELECT * FROM TENKTUP1, TENKTUP2 WHERE TENKTUP1.UNIQUE2
> 4000 AND TENKTUP1.UNIQUE2 < 4500 AND TENKTUP1.UNIQUE2 =
TENKTUP2.UNIQUE2;

ID UNIT_ID PAR_ID
JOIN_
PATH

UNIT_
TYPE INFO

1 6 1 9 JOIN UNIT MERGE JOIN

2 6 1 10

3 9 6 0 ORDER UNIT NO ORDER-
ING
REQUIRED

4 8 9 0 TABLE UNIT TENKTUP2

5 8 9 0 PRIMARY
KEY

6 8 9 0 UNIQUE2 <
4500

7 8 9 0 UNIQUE2 >
4000

8 8 9 0

9 10 6 0 ORDER UNIT NO ORDER-
ING
REQUIRED

10 7 10 0 TABLE UNIT TENKTUP1

JOIN UNIT 2

TABLE UNIT 3

JOIN_PATH 3
 Diagnostics and Troubleshooting 9-7

Tracing Communication between Client and Server

-

r-

Execution graph:
JOIN UNIT 6 the input from order units 9 and 10 are joined using merge join algorithm

ORDER UNIT 9 orders the input from TABLE UNIT 8. Since the data is retrieved in cor
rect order, no real ordering is needed

ORDER UNIT 10 orders the input from TABLE UNIT 7. Since the data is retrieved in co
rect order, no real ordering is needed

TABLE UNIT 8: rows are fetched from table TENKTUP2 using primary key. Constraints
UNIQUE2 < 4500 and UNIQUE2 > 4000 are used to select the rows

TABLE UNIT 7: rows are fetched from table TENKTUP1 using primary key. Constraints
UNIQUE2 < 4500 and UNIQUE2 > 4000 are used to select the rows

Example 2. Execution graph

Tracing Communication between Client and Server
SOLID Embedded Engine provides following tools for observing the communication
between an application and an embedded engine:

■ the Network Trace facility

11 7 10 0 PRIMARY
KEY

12 7 10 0 UNIQUE2 <
4500

13 7 10 0 UNIQUE2 >
4000

14 7 10 0

JOIN UNIT 6

ORDER UNIT 9

JOIN_PATH 9

ORDER UNIT 10

JOIN_PATH 10

TABLE UNIT 8 TABLE UNIT 7
9-8 SOLID Administrator Guide

Tracing Communication between Client and Server

ica-
t to
sed
d

m-
trace

r-
ted.

e
■ the Ping facility

You can use these tools to analyze the functionality of the networking between an appl
tion and an embedded engine. The network trace facility should be used when you wan
know why a connection is not established to an embedded engine. The ping facility is u
to determine how fast packets are transferred between an application and an embedde
engine.

The Network Trace Facility
Network tracing can be done on the embedded engine computer, on the application co
puter or on both computers concurrently. The trace information is written to the default
file or file specified in the TraceFile parameter.

The default name of the output file is SOLTRACE.OUT. This file will be written to the cu
rent working directory of the server or client depending on which end the tracing is star

The file contains information about:

■ loaded DLLs

■ network addresses

■ possible errors

The Network Trace facility is turned on by editing the configuration file

[Com]
Trace ={Yes|No}
; default No
TraceFile = file-name
; default soltrace.out

or by using the environment variables SOLTRACE and SOLTRACEFILE to override the def-
initions in the configuration file. Setting of SOLTRACE and SOLTRACEFILE environment
variables have the same effect as the parameters Trace and TraceFile in the configura-
tion file.

NOTE: Defining the TraceFile configuration parameter or the SOLTRACEFILE envi-
ronment variable automatically turns on the Network trace facility.

A third alternative to turn on the Network trace facility is to use the option -t and/or -ofile-
name as a part of the network name. The option -t turns on the Network trace facility. Th
option -o turns on the facility and defines the name of the trace output file.
 Diagnostics and Troubleshooting 9-9

Tracing Communication between Client and Server

g.
k

if the
Example 1. Defining Parameter Trace in the Configuration File
[Com]
Connect = nmp SOLID
Listen = nmp SOLID
Trace = Yes

Example 2. Defining Environment Variables
set SOLTRACE = Yes

or

set SOLTRACEFILE = trace.out

Example 3. Using Network Name Options
[Com]
Connect = nmp -t solid
Listen = nmp -t solid

or

[Com]
Connect = nmp -oclient.out solid
Listen = nmp -oserver.out solid

The Ping Facility
The Ping facility can be used to test the performance and functionality of the networkin
The Ping facility is built in all SOLID client applications and is turned on with the networ
name option -plevel.

The output file will be written to the current working directory of the computer where the
parameter is given. The default name of the output file is SOLTRACE.OUT.

Clients can always use the Ping facility at level 1. Levels 2, 3, 4 or 5 may only be used
server is set to use the Ping facility at least at the same level.

The Ping facility levels are:

Setting Function Description

0 no operation do nothing, default
9-10 SOLID Administrator Guide

Tracing Communication between Client and Server

cks

 may
L
Example 1
The client turns on the Ping facility by using the following network name:

nmp -p1 -oping.out SOLID

This runs the Ping facility at the level 1 into a file named SOLTRACE.OUT. This test che
if the server is alive and exchanges one 100 byte message to the server.

After the Ping facility has been run, the client exits with the following message:

SOLID Communication return code xxx: Ping test successful/failed,
results are in file FFF.XX

Example 2
If the server is using the following listen parameter

[Com]
Listen = nmp -p3 SOLID

clients can run the Ping facility at levels 1, 2 and 3, but not 4 and 5.

NOTE. Ping clients running at level greater than 3 may cause heavy network traffic and
cause slowness of application using the network. They will also slow down ordinary SQ
clients connected to the same SOLID Embedded Engine.

1 check that server is alive exchange one 100 byte
message

2 basic functional test exchange messages of
sizes 0.1K, 1K, 2K..30K,
increment 1K

3 basic speed test exchange 100 messages of
sizes 0.1K, 1K, 8K and
display each sub-result
and total time

4 heavy speed test exchange 100 messages of
sizes 0.1K, 1K, 2K, 4K,
8K, 16K and display each
sub-result and total time

5 heavy functional test exchange messages of
sizes 1..30K, increment 1
byte
 Diagnostics and Troubleshooting 9-11

Problem Reporting

g
 all

r
Problem Reporting
SOLID Embedded Engine offers sophisticated diagnostic tools and methods for producin
high quality problem reports with very limited effort. Use the diagnostic tools to capture
the relevant information about the problem.

All problem reports should contain the following files and information:

■ solid.ini

■ license number

■ solmsg.out

■ solerror.out

■ soltrace.out

■ problem description

■ steps to reproduce the problem

■ all error messages and codes

■ contact information, preferably email address of the contact person

Problem Categories
Most problems can be divided into the following categories:

■ SOLID SQL API

■ SOLID ODBC Driver

■ UNIFACE driver for SOLID Embedded Engine

■ Communication problems between the application and SOLID Embedded Engine

The following pages include a detailed instructions to produce proper problem report fo
each problem type. Please follow the guidelines carefully.

SOLID SQL API Problems
If the problem concerns the performance of SOLID SQL API or a specific SQL statement,
you should run SQL info facility at level 4 and include the generated soltrace.out file
into your problem report. This file contains the following information:

■ create table statements

■ create view statements
9-12 SOLID Administrator Guide

Problem Categories

llow-

lem

p-

ow-
■ create index statements

■ SQL statement(s)

SOLID ODBC Driver Problems
If the problem concerns the performance of SOLID ODBC Driver, please include the fo
ing information:

■ SOLID ODBC Driver name, version, and size

■ ODBC Driver Manager version and size

If the problem concerns the cooperation of SOLID Embedded Engine and any third party
standard software package, please include the following information:

■ Full name of the software

■ Version and language

■ Manufacturer

■ Error messages from the third party software package

Use ODBC trace option to get a log of the ODBC statements and include it to your prob
report.

SOLID JDBC Driver Problems
If the problem is related to the SOLID JDBC Driver, please include the following informa-
tion into your problem report:

■ Exact version of JDK used

■ Size and date of the SOLIDDriver class package

■ Contents of DriverManager.setLogStream(someOutputStream) output, if available

■ Call stack (that is, Exception.printStackTract() output) of the application, if an Exce
tion has occurred n the application

UNIFACE Driver for SOLID Embedded Engine Problems
If the problem concerns the performance of SOLID UNIFACE Driver, please include foll
ing information:

■ SOLID UNIFACE Driver version and size

■ UNIFACE version and platform
 Diagnostics and Troubleshooting 9-13

Problem Categories

rver
port.
■ Contents of the UNIFACE message frame

■ Error codes from the driver, $STATUS, $ERROR

■ All necessary files to reproduce the problem (TRXs, SQL scripts, USYS.ASN etc.)

Communication between a Client and Server
If the problem concerns the performance of the communication between a client and se
use the Network trace facility and include the generated trace files into your problem re
Please include the following information:

■ SOLID communication DLLs used: version and size

■ other communication DLLs used: version and size

■ description of the network configuration
9-14 SOLID Administrator Guide

A

 SQL

ay
Error Codes

Error Categories

SQL Errors
These errors are caused by erroneous SQL statements and are detected by the SOLID
Parser. Administrative actions are not needed.

Database Errors
These errors are detected by the SOLID Embedded Engine and may demand administrative
actions.

System Errors
These errors are detected by the operating system and demand administrative actions.

Table Errors
These errors are caused by erroneous SQL statements and detected by the SOLID Embed-
ded Engine. Administrative actions are not needed.

Server Errors
These errors are caused by erroneous administrative actions or client requests. They m
demand administrative actions.

Communication Errors
These errors are caused by network errors or faulty configuration of the SOLID Embedded
Engine software. These errors demand administrative actions.
 Error Codes A-1

Error Categories
Procedure Errors
These errors are caused by errors in the definition or execution of a stored procedure.
Administrative actions are not needed.

See also:

See Appendix C, “Data Types”and Appendix D, “SOLID SQL Syntax” for more informa-
tion.
A-2 SOLID Administrator Guide

SOLID SQL Errors
SOLID SQL Errors

Error code Description

SQL Error 1 Parsing error ‘syntax error’

The SQL parser could not parse the SQL string. Check
the syntax of the SQL statement and try again.

SQL Error 2 Table <table> can not be opened

You may not have privileges to access the table and its
data.

SQL Error 3 Table <table> can not be created

Table can not be created. You may not have privileges for
this operation.

SQL Error 4 Illegal type definition <column>

A column type in your CREATE TABLE statement is
illegal. Use a legal type for the column.

SQL Error 5 Table <table> can not be dropped

Table can not be dropped. Only the owner (i.e. the cre-
ator) can drop it.

SQL Error 6 Illegal value specified for column <column>

The value specified for column is invalid. Check the value
for the column.

SQL Error 7 Insert failed

The server failed to do the insertion. You may not have
INSERT privilege on the table or it may be locked.

SQL Error 8 Delete failed

The server failed to do the deletion. You may not have
DELETE privilege on the table or the row may be locked.

SQL Error 9 Row fetch failed

The server failed to fetch a row. You may not have
SELECT privilege on the table or there may be an exclu-
sive lock on the row.

SQL Error 10 View <view> can not be created
 Error Codes A-3

SOLID SQL Errors
You cannot create this view. You may not have SELECT
privilege on one or more tables in the query-specification
of your CREATE VIEW statement.

SQLError11 View <view> cannot be dropped.

You cannot drop this view. Only the owner (i.e. the cre-
ator) of the view can drop it.

SQLError12 Illegal view definition <view>

The view definition is illegal. Check the syntax of the def-
inition.

SQLError13 Illegal column name <column>

Column name is illegal. Check that the name is not a
reserved name.

SQL Error 14 Call to function <function> failed

Function call to function failed. Check the arguments and
their types.

SQL Error 15 Arithmetics error

An arithmetics error occurred. Check the operators, val-
ues and types.

SQL Error 16 Update failed

The server failed to update a row. There may a lock on a
row.

SQL Error 17 View is not updatable

This view is not updatable. UPDATE, INSERT and
DELETE operations are not allowed.

SQL Error 18 Inserted row does not meet check option condition

You tried to insert a row, but one or more of the column
values do not meet column constraint definition.

SQL Error 19 Updated row does not meet check option condition

You tried to update a row, but one or more of the column
values do not meet column constraint definition.

SQL Error 20 Illegal CHECK constraint
A-4 SOLID Administrator Guide

SOLID SQL Errors
A check constraint given to the table is illegal. Check the
types of the check constraint of this table.

SQL Error 21 Insert failed because of CHECK constraint

You tried to insert a row, but the values do not meet the
check option conditions.

SQL Error 22 Update failed because of CHECK constraint

You tried to update a row, but the values do not meet the
check option conditions.

SQL Error 23 Illegal DEFAULT value

The DEFAULT value for the column given is illegal.

SQL Error 25 Duplicate columns in INSERT column list

You have included a column in column list twice.
Remove duplicate columns.

SQL Error 26 At least one column definition required in CREATE
TABLE

You need to specify at least one column definition in a
CREATE TABLE statement.

SQL Error 27 Illegal REFERENCES column list

There are wrong number of columns in your REFER-
ENCES list.

SQL Error 28 Only one PRIMARY KEY allowed in CREATE TABLE

You can use only one PRIMARY KEY in CREATE
TABLE.

SQL Error 29 GRANT failed

Granting privileges failed. You may not have privileges
for this operation.

SQL Error 30 REVOKE failed

Revoking privileges failed. You may not have privileges
for this operation.

SQL Error 31 Multiple instances of a privilege type

You tried to grant privileges to a role or a user. You have
included multiple instances of a privilege type in the list
of privileges.
 Error Codes A-5

SOLID SQL Errors
SQL Error 32 Illegal constant <constant>

Illegal constant was found. Check the syntax of the state-
ment.

SQL Error 33 Column name list of illegal length

You have entered different number of columns in CRE-
ATE VIEW statement to the view and to the table.

SQL Error 34 Conversion between types failed

An expression in UPDATE statement has illegal type for a
column.

SQL Error 35 Column names not allowed in ORDER BY for UNION

You can not use column name in an ORDER BY for
UNION statement.

SQL Error 36 Nested aggregate functions

Nested aggregate functions can not be used. For exam-
ple: SUM(AVG(<column>)).

SQL Error 37 Aggregate function with no arguments

An aggregate function was entered with no arguments.
For example: SUM().

SQL Error 38 Set operation between different row types

You have tried to execute a set operation of tables with
incompatible row types. The row types in a set operation
must be compatible.

SQL Error 39 COMMIT WORK failed

Committing a transaction failed.

SQL Error 40 ROLLBACK WORK failed

Rolling back a transaction failed.

SQL Error 41 Savepoint could not be created

A savepoint could not be created.

SQL Error 42 Could not create index <index>

An index could not be created. You may not have privi-
leges for this operation. You need to be an owner of the
table or have SYS_ADMIN_ROLE to have privileges to
create index for the table.
A-6 SOLID Administrator Guide

SOLID SQL Errors
SQL Error 43 Could not drop index <index>

An index could not be dropped. You may not have privi-
leges for this operation. You need to be an owner of the
table or have SYS_ADMIN_ROLE to have privileges to
drop index from the table.

SQL Error 44 Could not create schema <schema>

A schema could not be created.

SQL Error 45 Could not drop schema <schema>

A schema could not be dropped.

You tried to use an ORDER BY column that does not
exist. Refer to an existing column in the ORDER BY
specification.

SQL Error 47 Maximum length of identifier is 31

You have exceeded the maximum length for the identifier.

SQL Error 48 Subquery returns more than one row

You have used a subquery that returns more than one row.
Only subqueries returning one row may be used in this
situation.

SQL Error 49 Illegal expression <expression>

You tried to insert or update a table using an aggregate
function (SUM, MAX, MIN or AVG) as a value. This is
not allowed.

SQL Error 50 Ambiguous column name <column>

You have referenced a column which is exists in more
than one table. Use syntax <table>.<column> to indicate
which table you want to use.

SQL Error 51 Non-existent function <function>

You tried to use a function which does not exist.

SQL Error 52 Non-existent cursor <cursor>

You tried to use a cursor which is not created.

SQL Error 53 Function call sequence error

A function was called in wrong order. Check the
sequence and success of the function calls.
 Error Codes A-7

SOLID SQL Errors
SQL Error 54 Illegal use of a parameter

A parameter was used illegally. For example: SELECT *
FROM TEST WHERE ? < ?;

SQL Error 55 Illegal parameter value

A parameter has an illegal value. Check the type and
value of the parameter.

SQL Error 56 Only ANDs and simple condition predicates allowed in
UPDATE CHECK

All search condition predicates are not supported.

SQL Error 57 Opening the cursor did not succeed

Server failed to open a cursor. You may not have cursor
open at this moment.

SQL Error 58 Column <column> is not referenced in group-by-clause

You tried to group rows using <column>. All columns in
group-by-clause must be listed in your select-list. A star
(‘*’) notation is not allowed with GROUP BY.

SQL Error 59 Comparison between incompatible types

You tried to compare values which have incompatible
types. Incompatible types are for example an integer and
a date value.

SQL Error 60 Reference to the insert table not allowed in the source
query

You have referenced in subquery a table where you are
inserting values. This is not allowed.

SQL Error 61 Reference to the update table not allowed in subquery

You have referenced in subquery a table where you are
updating values. This is not allowed.

SQL Error 62 Reference to the delete table not allowed in subquery

You have referenced in subquery a table where you are
deleting values. This is not allowed.

SQL Error 63 Subquery returns more than one column

You have used a subquery that returns more than one col-
umn. Only subqueries returning one column may be used.
A-8 SOLID Administrator Guide

SOLID SQL Errors
SQL Error 64 Cursor <cursor> not updatable

The cursor opened is not updatable.

SQL Error 65 Insert or update tried on pseudo column

You tried to update a pseudo column (ROWID,
ROWVER). Pseudo columns are not updatable.

SQL Error 66 Could not create user <user>

A user could not be created. You may not have privileges
for this operation.

SQL Error 67 Could not alter user <user >

A user could not be altered. You may not have privileges
for this operation.

SQL Error 68 Could not drop user <user >

A user could not be dropped. You may not have privi-
leges for this operation.

SQL Error 69 Could not create role <role>

A role could not be created. You may not have privileges
for this operation.

SQL Error 70 Could not drop role <role>

A role could not be dropped. You may not have privi-
leges for this operation.

SQL Error 71 Grant <role> failed

Granting role failed. You may not have privileges for this
operation.

SQL Error 72 Revoke <role> failed

Revoking role failed. You may not have privileges for this
operation.

SQL Error 73 Comparison of vectors of different length

You have tried to compare row value constructors that
have different number of dimensions. For example you
have compared (a,b,c) to (1,1).

SQL Error 74 Expression * not compatible with aggregate expression
 Error Codes A-9

SOLID SQL Errors
The aggregate expression can not be used with * col-
umns. Specify columns using their names when used with
this aggregate expression. This usually happens when
GROUP BY expression is used with the * columns.

SQL Error 75 Illegal reference to table <table>

You have tried to reference a table which is not in the
FROM list. For example: SELECT T1.* FROM T2.

SQL Error 76 Ambiguous table name <table>

You have used the syntax <table>.<column name>ambig-
uously. For example: SELECT T1.* FROM T1 A,T1 B
WHERE A.F1=0;

SQL Error 77 Illegal use of aggregate expression

You tried to use aggregate expression illegally. For exam-
ple: SELECT ID FROM TEST WHERE SUM(ID) = 3;

SQL Error 78 Row fetch failed

The server failed to fetch a row. You may not have
SELECT privilege on the table or there may be an exclu-
sive lock on the row.

SQL Error 79 Subqueries not allowed in CHECK constraint

You tried to use subquery in a check constraint.

SQL Error 80 Sorting failed

External sorter is out of disk space or cache memory.
Modify parameters in configuration file solid.ini .

SQL Error 81 SET syntax results in error

SQL Error 82 Improper type used with LIKE

SQL Error 83 Syntax error

SQL Error 84 Parser error <statement>

SQL Error 85 Incorrect number of values for INSERT
A-10 SOLID Administrator Guide

SOLID SQL Errors
SQL Error 86 Illegal ROWNUM constraint
 Error Codes A-11

SOLID Database Errors
SOLID Database Errors

Error code Description

Database Error 10001 Key value is not found

Internal error: a key value can not be found from the data-
base index.

Database Error 10002 Operation failed

This is an internal error indicating that the index of the
table accessed is in inconsistent state. Try to drop and cre-
ate the index again to recover the error.

Database Error 10004 Redefinition

Unexpected failure occurred in the database engine.

This error may also occur during recovery: either an
index or a view has been redefined during recovery. The
server is not able to do the recovery. Delete log files and
start the server again.

Database Error 10005 Unique constraint violation

You have violated a unique constraint. This happens when
you have tried to insert or update a column which has a
unique constraint and the value inserted or updated is not
unique.

This may also occur when you create users, tables or
roles having same names in separate transactions.

Database Error 10006 Concurrency conflict, two transactions updated or deleted
the same row

Two separate transactions have modified a same row in
the database simultaneously. This has resulted in a con-
currency conflict.

Database Error 10007 Transaction is not serializable

The transaction committed is not serialisable.

Database Error 10010 No checkpoint in database

This error occurs when the server has crashed in the mid-
dle of creating a new database. Delete the database and
log files and try to create the database again.
A-12 SOLID Administrator Guide

SOLID Database Errors
Database Error 10011 Database headers are corrupted

The headers in the database are corrupted. This may be
caused by a disk error or other system failure. Restore the
database from the backup.

Database Error 10012 Node split failed

This is an internal error.

Database Error 10013 Transaction is read-only

You have tried to write inside a transaction that is set
read-only. Remove the write operation or unset the read-
only mode in the transaction.

Database Error 10014 Resource is locked

This error occurs when you are trying to use a key value
in an index which has been concurrently dropped.

Database Error 10016 Log file is corrupted

One of the log files of the database is corrupted. You can
not use these log files. Delete them and start the server
again.

Database Error 10017 Too long key value

The maximum length of the key value has been exceeded.
The maximum value is one third of the size of the index
leaf.

Database Error 10019 Backup is active

You have tried to start a backup when a backup process is
already in progress.

Database Error 10020 Checkpoint creation is active

You have tried to start a checkpoint when a checkpoint
creation is already in progress.

Database Error 10021 Failed to delete log file

The deletion of a log file in making a backup has failed.
Reasons for the failure can be:

The log file has already been deleted from the operating
system.

The log file has a read-only attribute.
 Error Codes A-13

SOLID Database Errors
Database Error 10023 Wrong log file, maybe the log file is from another data-
base

The log file in the database directory is from another
SOLID Embedded Engine database. Copy the correct log
files to the database directory.

Database Error 10024 Illegal backup directory

The backup directory is either an empty string or a dot
indicating that the backup will be created in the current
directory.

Database Error 10026 Transaction is timed out

An idle transaction has exceeded the maximum idle trans-
action time. The transaction has been aborted.

The maximum value is set in parameter AbortTimeOut in
SRV section. The default value is 120 minutes.

Database Error 10027 No active search

Internal error.

Database Error 10028 Referential integrity violation, foreign key values exist

You tried to delete a row that is referenced from a foreign
key.

Database Error 10029 Referential integrity violation, referenced column values
do not exist

The definition of a foreign key does not uniquely identify
a row in the referenced table.

Database Error 10030 Backup directory 'directory name' does not exist

Backup directory is not found. Check the name of the
backup directory.

Database Error 10031 Transaction detected a deadlock, transaction is rolled
back

Deadlock detected. If necessary, begin transaction again.

Database Error 10032 Wrong database block size specified

The block size of the database file differs from the block-
size given in the configuration file solid.ini .

Database Error 10033 Primary key unique constraint violation
A-14 SOLID Administrator Guide

SOLID Database Errors
Your primary key definition is not unique.

Database Error 10034 Sequence name <sequence> conflicts with an existing
entity

Choose a unique name for a sequence. The specified
name is already used.

Database Error 10035 Sequence does not exist

Check the name of the sequence.

Database Error 10036 Data dictionary operation is active for accessed sequence

Create or drop operation is active for the accessed
sequence. Try again.

Database Error 10037 Can not store sequence value, the target data type is ille-
gal

The valid target data types are INTEGER and BINARY.

Database Error 10038 Illegal column value for descending index

Corrupted data found in descending index. Drop the index
and create it again.

Database Error 10040 Log file write failure, probably the disk containing the log
files is full

Shut down the server and reserve more disk space for log
files.

Database Error 10041 Database is read-only

Database Error 10042 Database index check failed, the database file is corrupted

Database Error 10043 Database free block list corrupted, same block twice in
free list

Database Error 10044 Primary key can not contain blob attributes

Database Error 10046 Operation failed, data dictionary operation is active

Database Error 10047 Replicated transaction is aborted
 Error Codes A-15

SOLID Database Errors
Database Error 10048 Replicated transaction contains schema changes, opera-
tion failed

Database Error 10049 Slave server not available any more, transaction aborted

Database Error 10050 Replicated row contains BLOb columns that cannot be
replicated
A-16 SOLID Administrator Guide

SOLID Utility Errors
SOLID Utility Errors

Error code Description

System Error 11000 File open failure

The server is unable to open the database file. Reason for
the failure can be:

The database file has been set read-only.

You do not have rights to open the database file in write
mode.

Another SOLID Embedded Engine is using the database
file.

Correct the error and try again.

System Error 11001 File write failure

Server is unable to write to the disk. The database files
may have a read-only attribute set or you may not have
rights to write to the disk. Add rights or unset read-only
attribute and try again.

System Error 11002 File write failed, disk full

Server failed to write to the disk, because the disk is full.
Free disk space or move the database file to another disk.
You can also split the database file to several disks using
the FileSpec_[1-N] parameter in IndexFile section.

System Error 11003 File write failed, configuration exceeded

Writing to the database file failed, because the maximum
database file size set in FileSpec_[1-N] parameter is
exceeded.

System Error 11004 File read failure

An error occurred reading a file. This may indicate a disk
error in your system.

System Error 11005 File read beyond end of file

Internal error.

System Error 11006 File read failed, illegal file address
 Error Codes A-17

SOLID Utility Errors
An error occurred reading a file. This may indicate a disk
error in your system.

System Error 11007 File lock failure

The server failed to lock the database file. This error
occurs in the Windows version, if you do not have
SHARE.EXE loaded. To correct the failure:

1. Exit Windows

2. Load SHARE.EXE

3. Delete the database file SOLID.DB and log files.

4. Start Windows and launch SOLID Embedded Engine.

System Error 11008 File unlock failure

Server failed to unlock a file.

System Error 11009 File free block list corrupted

Internal error.

System Error 11010 Too long file name

Filename specified in parameter FileSpec_[1-N] is too
long. Change the name to a proper file name.

System Error 11011 Duplicate file name specification

Filename specified in parameter FileSpec_[1-N] is not
unique. Change the name to a proper file name.

System Error 11012 License information not found, exiting from SOLID
Embedded Engine

Check the existence of your solid.lic file.

System Error 11013 License information is corrupted

Your solid.lic file has been corrupted.

System Error 11014 Database age limit of evaluation license expired

System Error 11015 Evaluation license expired

System Error 11016 License is for different CPU architecture
A-18 SOLID Administrator Guide

SOLID Utility Errors
System Error 11017 License is for different OS environment

System Error 11018 License is for different version of this OS

System Error 11019 License is not valid for this server version

System Error 11020 License information is corrupted

System Error 11021 Problem with Your license, please contact SOLID Infor-
mation Technology Ltd. immediately

System Error 11022 Desktop license is only for local <protocol> communica-
tion, cannot use protocol <protocol> for listening

System Error 11024 Desktop license is only for local communication, cannot
use name <name> for listening
 Error Codes A-19

SOLID Table Errors
SOLID Table Errors

Error code Description

Table Error 13001 Illegal character constant <constant>

An illegal character constant was found in the SQL state-
ment.

Table Error 13002 Type CHAR not allowed for arithmetics

You have entered a calculation having a character type
constant. Character constants are not supported in arith-
metics.

Table Error 13003 Aggregate function <function> not available for ordinary
call

Aggregate functions can not be used for ordinary func-
tion calls.

Table Error 13004 Illegal aggregate function <parameter> parameter

An illegal parameter has been given to an aggregate func-
tion. Aggregate function parameters can only be column
names or numbers.

Table Error 13005 SUM and AVG not supported for CHAR type

Aggregate functions SUM and AVG are not supported for
character type parameters.

Table Error 13006 SUM or AVG not supported for DATE type

Aggregate functions SUM and AVG are not supported for
date type parameters.

Table Error 13007 Function <function> is not defined

The function you tried to use is not defined.

Table Error 13009 Division by zero

A division by zero has occurred.

Table Error 13011 Table <table> does not exist

You have referenced a table which does not exist or you
do not have REFERENCES privilege on the table.

Table Error 13013 Table name <table> conflicts with an existing entity
A-20 SOLID Administrator Guide

SOLID Table Errors
Choose a unique name for a table. The specified name is
already used.

Table Error 13014 Index <index> does not exist

You have referenced an index which does not exist.

Table Error 13015 Column <column> does not exist on table <table>

You have referenced a column in a table which does not
exist.

Table Error 13016 User does not exist

You have referenced a user which does not exist.

Table Error 13018 Join table is not supported

Joined tables are not supported in this version of SOLID
Embedded Engine.

Table Error 13019 Transaction savepoints are not supported

Transaction savepoints are not supported in this version
of SOLID Embedded Engine.

Table Error 13020 Default values are not supported

Default column values are not supported in this version of
SOLID Embedded Engine.

Table Error 13021 Foreign keys are not supported

Foreign keys are not supported in this version of SOLID
Embedded Engine.

Table Error 13022 Descending keys are not supported

Descending keys are not supported in this version of
SOLID Embedded Engine.

Table Error 13023 Schema is not supported

Schema is not supported in this version of SOLID
Embedded Engine.

Table Error 13025 Update through a cursor with no current row

You have tried to update using cursor, but you do not have
current row in the cursor.

Table Error 13026 Delete through a cursor with no current row
 Error Codes A-21

SOLID Table Errors
You have tried to delete using cursor, but you do not have
current row in the cursor.

Table Error 13028 View <view> does not exist

You have referenced a view which does not exist.

Table Error 13029 View name <view> conflicts with an existing entity

Choose a unique name for a view. The specified name is
already used.

Table Error 13030 No value specified for NOT NULL column <column>

You have not specified a value for a column which is
defined NOT NULL.

Table Error 13031 Data dictionary operation is active for accessed table or
key

You can not access the table or key, because a data dictio-
nary operation is currently active. Try again after the data
dictionary operation has completed.

Table Error 13032 Illegal type <type>

You have tried to create a table with a column having an
illegal type.

Table Error 13033 Illegal parameter <parameter> for type <type>

The type of the parameter you entered is illegal in this
column.

Table Error 13034 Illegal constant <constant>

You have entered an illegal constant.

Table Error 13035 Illegal INTEGER constant <constant>

You have entered an illegal integer type constant. Check
the syntax of the statement and try again.

Table Error 13036 Illegal DECIMAL constant <constant>

You have entered an illegal decimal type constant. Check
the decimal number and try again.

Table Error 13037 Illegal DOUBLE PREC constant <constant>

You have entered an illegal double precision type con-
stant. Check the number and try again.

Table Error 13038 Illegal REAL constant <constant>
A-22 SOLID Administrator Guide

SOLID Table Errors
You have entered an illegal real type constant. Check the
real number and try again.

Table Error 13039 Illegal assignment

You have tried to assign an illegal value for a column.

Table Error 13040 Aggregate <function> function is not defined

The aggregate function you tried to use is not supported.

Table Error 13041 Type DATE not allowed for arithmetics

DATE type columns or constants are not allowed in arith-
metics.

Table Error 13042 Power arithmetic not allowed for NUMERIC and DECI-
MAL data type

Decimal and numeric data types do not support power
arithmetics.

Table Error 13043 Illegal date constant <constant>

A date constant is illegal. The correct form for date con-
stants is: YYYY-MM-DD.

Table Error 13045 Reference privileges are not supported

Reference privileges are not supported in this version of
SOLID Embedded Engine.

Table Error 13046 Illegal user name <user>

User name entered is not legal. A legal user name is at
least 2 and at most 31 characters in length. A user name
may contain characters from A to Z, numbers from 0 to 9
and underscore character ‘_’.

Table Error 13047 No privileges for operation

You have no privileges for the attempted operation.

Table Error 13048 No privileges to grant privileges for table <table>

You have no privileges to grant privileges for the table.

Table Error 13049 Column privileges cannot be granted WITH GRANT
OPTION

Granting column privileges WITH GRANT OPTION is
not supported in this version of SOLID Embedded
Engine.
 Error Codes A-23

SOLID Table Errors
Table Error 13050 Too long constraint value

Maximum constraint length has been exceeded. Maxi-
mum constraint length is 255 characters.

Table Error 13051 Illegal column name <column>

You have tried to create a table with an illegal column
name.

Table Error 13052 Illegal comparison operator <operator> for a pseudo col-
umn <column>

You have tried to use an illegal comparison operator for a
pseudo column. Legal comparison operators for pseudo
columns are: equality ‘=‘ and non-equality ‘<>‘.

Table Error 13053 Illegal data type for a pseudo column

You have tried to use an illegal data type for a pseudo col-
umn. Data type of pseudo columns is BINARY.

Table Error 13054 Illegal pseudo column data, maybe data is not received
using pseudo column

You have tried to compare pseudo column data with non-
pseudo column data. Pseudo column data can only be
compared with data received from a pseudo column.

Table Error 13055 Update not allowed on pseudo column

Updates are not allowed on pseudo columns.

Table Error 13056 Insert not allowed on pseudo column

Inserts are not allowed on pseudo columns.

Table Error 13057 Index name <index> already exists

You have tried to create an index, but an index with the
same name already exists. Use another name for the
index.

Table Error 13058 Constraint checks were not satisfied on column <col-
umn>

Column has constraint checks which were not satisfied
during an insert or update.

Table Error 13059 Reserved system name <name>

You tried to use a name which is a reserved system name
such as PUBLIC and SYS_ADMIN_ROLE.
A-24 SOLID Administrator Guide

SOLID Table Errors
Table Error 13060 User name <user> not found

You tried to reference a user name which is not created.

Table Error 13061 Role name <role> not found

You tried to reference a role name which is not created.

Table Error 13062 Admin option is not supported

Admin option is not supported in this version of SOLID
Embedded Engine.

Table Error 13063 Name <name> already exists

You tried to use a role or user which already exists. User
names and role names must all be different i.e. you can
not have a user named HOBBES and a role named HOB-
BES.

Table Error 13064 Not a valid user name <user>

You tried to create an invalid user name. A valid user
name has at least 2 characters and at most 31 characters.

Table Error 13065 Not a valid role name <role>

You tried to create an invalid role name. A valid user
name has at least 2 characters and at most 31 characters.

Table Error 13066 User <user> not found in role <role>

You tried to revoke a role from a user and the user did not
have that role.

Table Error 13067 Too short password

You have entered a too short password. Password length
must be at least 3 characters.

Table Error 13068 Shutdown is in progress

You are unable to complete this operation, because server
shutdown is in progress.

Table Error 13070 Numerical overflow

A numerical overflow has occurred. Check the values and
types of numerical variables.

Table Error 13071 Numerical underflow

A numerical underflow has occurred. Check the values
and types of numerical variables.
 Error Codes A-25

SOLID Table Errors
Table Error 13072 Numerical value out of range

A numerical value is out of range. Check the values and
types of numerical variables.

Table Error 13073 Math error

A mathematical error has occurred. Check the mathemat-
ics in the statement and try again.

Table Error 13074 Illegal password

You have tried to enter an illegal password.

Table Error 13075 Illegal role name <role>

You have tried to enter an illegal role name. A legal role
name is at least 2 and at most 31 characters in length. A
user role may contain characters from A to Z, numbers
from 0 to 9 and underscore character ‘_’.

Table Error 13076 NOT NULL must not be specified for added column
<column>

You have tried to add a column to a table using ALTER
TABLE statement. NOT NULL constraint is not allowed
in ALTER TABLE statement when the table already
includes data.

Table Error 13077 Last column can not be dropped

You have tried to drop the final column in a table. This is
not allowed; at least one column must remain in the table.

Table Error 13078 Column already exist on table

You have tried to create a column which already exists in
a table.

Table Error 13079 Illegal search constraint

Check the search engine. There may be mismatch
between data types.

Table Error 13080 Incompatible types, can not modify column <column> from

You have tried to modify column to a data type that is
incompatible with the original definition, such as VAR-

Table Error 13081 Descending keys are not supported for binary columns
A-26 SOLID Administrator Guide

SOLID Table Errors
You can not define descending key for a binary column.

Table Error 13082 Function <function>: parameter * not supported

You can not use parameter star (*) with ODBC Scalar
Functions.

Table Error 13083 Function <function>: Too few parameters

The function expects more parameters. Check the func-
tion call.

Table Error 13084 Function <function>: Too many parameters

The function expects fewer parameters. Check the func-
tion call.

Table Error 13085 Function <function>: Run-time failure

An error was detected during the execution of the func-
tion. Check the parameters.

Table Error 13086 Function <function>: type mismatch in parameter
<parameter number>

A erroneous type of parameter detected in the given posi-
tion of the function call. Check the function call.

Table Error 13087 Function <function>: illegal value in parameter <parame-
ter number>

An illegal value for a parameter detected in the given
position of the function call. Check the function call.

Table Error 13090 Foreign key column <column> data type not compatible
with referenced column data type

References specification error. Check that the column
data type are compatible between referencing and refer-
enced tables.

Table Error 13091 Foreign key does not match to the primary key or unique
constraint of the referenced table

References specification error. Check that the column
data type are compatible between referencing and refer-
enced tables and that the foreign key is unique for the ref-
erenced table.

Table Error 13092 Event name <event> conflicts with an existing entity
 Error Codes A-27

SOLID Table Errors
Choose a unique name for an event. The specified name
is already used.

Table Error 13093 Event <event>does not exist

You referenced to a nonexistent event. Check the name of
event.

Table Error 13094 Duplicate column <column> in primary key definition

Duplicate columns are not allowed in a table-constraint-
definition. Remove duplicate columns from the definition.

Table Error 13095 Duplicate column <column> in unique constraint defini-
tion

Duplicate columns are not allowed in a table-constraint-
definition. Remove duplicate columns from the definition.

Table Error 13096 Duplicate column <column> in index definition

Duplicate columns are not allowed in CREATE INDEX
statement. Remove duplicate columns.

Table Error 13097 Primary key columns must be NOT NULL

Error in a column-constraint-definition. Define primary
key columns NOT NULL. For example: CREATE
TABLE DEPT (DEPTNO INTEGER NOT NULL,
DNAME VARCHAR, PRIMARY KEY(DEPTNO));

Table Error 13098 Unique constraint columns must be NOT NULL

Error in a column-constraint-definition. Define unique
columns NOT NULL. For example: CREATE TABLE
DEPT4 (DEPTNO INTEGER NOT NULL, DNAME
VARCHAR, UNIQUE(DEPTNO));

Table Error 13099 No REFERENCES privileges to referenced columns in
table <table>

You do not have privileges to reference to the table.

Table Error 13100 Illegal table mode combination

You have defined illegal combination of locking. Check
locking type of tables.

Table Error 13101 Only execute privileges can be used with procedures

Table Error 13102 Execute privileges can be used only with procedures

Table Error 13103 Illegal grant or revoke operation
A-28 SOLID Administrator Guide

SOLID Table Errors
Table Error 13104 Sequence name <sequence> conflicts with an existing
entity

Choose a unique name for a sequence. The specified
name is already used.

Table Error 13105 Sequence <sequence>does not exist

You referenced to a nonexistent sequence. Check the
name of sequence.

Table Error 13106 Foreign key reference exists to table <table>

Table Error 13107 Illegal set operation

You tried to execute a non-existent set operation.

Table Error 13108 Comparison between incompatible types <datatype> and
<datatype>

Table Error 13109 There are schema objects for this user, drop failed

Table Error 13110 NULL values given for NOT NULL column <column>

Table Error 13111 Ambiguous entity name <name>

Table Error 13112 Foreign keys are not supported with main memory tables

Table Error 13113 Illegal arithmetics between types <datatype> and
<datatype>

Table Error 13114 String operations are not allowed on values stored as
BLObs or CLObs
 Error Codes A-29

SOLID Embedded Engine Errors
SOLID Embedded Engine Errors

Error code Description

Server Error 14501 Operation failed

This error occurs when a timed command fails. Check the
arguments of timed commands.

Server Error 14502 RPC parameter is invalid

A network error has occurred.

Server Error 14503 Communication error

A communication error has occurred.

Server Error 14504 Duplicate cursor name <cursor>

You have tried to declare a cursor with a cursor name
which is already in use. Use another name.

Server Error 14505 Connect failed, illegal user name or password

You have entered either a user name or a password that is
not valid.

Server Error 14506 Server is closed, no new connections allowed

You have tried to connect to a closed server. Connecting
was aborted.

Server Error 14507 Maximum number of licensed user connections exceeded

You have tried to connect to a server which has all
licenses currently in use. Connecting was aborted.

Server Error 14508 The operation has timed out

You have launched an operation that has been aborted.

Server Error 14509 Version mismatch

A version mismatch has occurred. The client and server
are different versions. Use same versions in the client and
the server.

Server Error 14510 Communication write operation failed

A write operation failed. This indicates a network prob-
lem. Check your network settings.

Server Error 14511 Communication read operation failed
A-30 SOLID Administrator Guide

SOLID Embedded Engine Errors
A read operation failed. This indicates a network prob-
lem. Check your network settings.

Server Error 14512 There are users logged to the server

You can not shutdown the server now. There are users
connected to the server.

Server Error 14513 Backup process is active

You can not shutdown the server now. The backup pro-
cess is active

Server Error 14514 Checkpoint creation is active

You can not shutdown the server now. The checkpoint
creation is active.

Server Error 14515 Invalid user id

You tried to drop a user, but the user id is not logged in to
the server.

Server Error 14516 Invalid user name

You tried to drop a user, but the user name is not logged
in to the server.

Server Error 14517 Someone has updated the at commands at the same time,
changes not saved

You tried to update timed commands at the same time
another user was doing the same. Your changes will not
be saved.

Server Error 14518 Connection to the server is broken, connection lost

Possible network error. Reconnect to the server.

Server Error 14519 The user was thrown out from the server, connection lost

Possible network error.

Server Error 14521 Failed to create a new thread for the client

Server Error 14529 The operation timed out
 Error Codes A-31

SOLID Communication Errors
SOLID Communication Errors

Error code Description

Communication Error 21300 Protocol <protocol> is not supported

Protocol is not supported.

Communication Error 21301 Cannot load the dynamic link library <library> or one of
its components

The server was unable to load the dynamic link library or
a component needed by this library. Check the existence
of necessary libraries and components.

Communication Error 21302 Wrong version of dynamic link library <library>

The version of this library is wrong. Update this library to
a newer version.

Communication Error 21303 Network adapter card is missing or needed <protocol>
software is not running

The network adapter card is missing or not functioning.

Communication Error 21304 Out of <protocol> resources

The network protocol is out of resources. Increase the
protocols resources in the operating system.

Communication Error 21305 An empty or incomplete network name was specified

The network name specified is not legal. Check the net-
work name.

Communication Error 21306 Server <network name> not found, connection failed

The server was not found. 1) Check that the server is run-
ning. 2) Check that the network name is valid. 3) Check
that the server is listening given network name.

Communication Error 21307 Invalid connect info <network name>

The network name given as the connect info is not legal.
Check the network name.

Communication Error 21308 Connection is broken (<protocol> <read/write> opera-
tion failed with code <internal code>)
A-32 SOLID Administrator Guide

SOLID Communication Errors
The connection using the protocol is broken. Either a read
or a write operation has failed with and internal error
code <internal code>.

Communication Error 21309 Failed to accept a new client connection, out of <proto-
col> resources

The server was not able to establish a new client connec-
tion. The protocol is out of resources. Increase the proto-
col’s resources in the operating system.

Communication Error 21310 Failed to accept a new client connection, listening of
<network name> interrupted

The server was not able to establish a new client connec-
tion. The listening has been interrupted.

Communication Error 21311 Failed to start a selecting thread for <network name>

A thread selection has failed for <network name>.

Communication Error 21312 Listening info <network name> already specified for this
server

A network name has already been specified for this
server. A server can not use a same network name more
than once.

Communication Error 21313 Already listening with the network name <network
name>

You have tried to add a network name to a server when it
is already listening with that network name. A server can
not use a same network name more than once.

Communication Error 21314 Cannot start listening, network name <network name> is
used by another process

The server can not start listening with the given network
name. Another process in this computer is using the same
network name.

Communication Error 21315 Cannot start listening, invalid listening info <network
name>

The server can not start listening with the given listening
info. The given network name is invalid. Check the syn-
tax of the network name.

Communication Error 21316 Cannot stop the listening of <network name>. There are
clients connected
 Error Codes A-33

SOLID Communication Errors
You can not stop listening of this network name. There
are clients connected to this server using this network
name.

Communication Error 21317 Failed to save the listen information into the configura-
tion file

The server failed to save this listening information to the
configuration file. Check the file access rights and format
of the configuration file.

Communication Error 21318 Operation failed because of an unusual <protocol> return
code <code>

Possible network error. Create connection again.

Communication Error 21319 RPC request contained an illegal version number

Either the message was corrupted or there may be a mis-
match between server and client versions.

Communication Error 21320 Called RPC service is not supported in the server

There maybe a mismatch between server and client ver-
sions.

Communication Error 21321 Protocol %s is not valid, try using switch '-a' for specify-
ing another adapter id instead of %d

This is returned if the NetBIOS LAN adapter id given in
listen/connect string is not valid.

Communication Error 21322 The host machine given in connect info '%s' was not
found

This is returned in clients if the host machine name given
in connect info is not valid.

Communication Error 21323 Protocol <protocol> can not be used for listening in this
environment.

This message is displayed if the server end communica-
tion using specified protocol is not supported.

Communication Error 21324 The process does not have the privilege to create a mail-
box
A-34 SOLID Administrator Guide

SOLID Communication Warnings
SOLID Communication Warnings

Error code Description

Warning Code 21100 Illegal value <value> for configuration parameter
<parameter>, using default

An illegal value was given to the parameter <parameter>.
The server will use a default value for this parameter.

Warning Code 21101 Invalid protocol definition <protocol> in configuration
file

The protocol is defined illegally in the configuration file.
Check the syntax of the definition.
 Error Codes A-35

SOLID Procedure Errors
SOLID Procedure Errors

Error code Description

Procedure Error 23001 Undefined symbol <symbol>

You have used a symbol that has not been defined in a
procedure definition.

Procedure Error 23002 Undefined cursor <cursor>

You have used a cursor that has not been defined in a pro-
cedure definition.

Procedure Error 23003 Illegal SQL operation <operation>

Procedure Error 23004 Syntax error: parse error, line <line number>

Check the syntax of your procedure.

Procedure Error 23005 Procedure <procedure> not found

Procedure Error 23006 Wrong number of parameters for procedure <procedure>

Procedure Error 23007 Procedure name <value> conflicts with an existing entity.

Choose a unique name for a procedure. The specified
name is already used.

Procedure Error 23009 Event <event> does not exist, line <line number>

Procedure Error 23010 Incompatible event <event> parameter type, line <line
number>

Procedure Error 23011 Wrong number of parameter for event <event>, line <line
number>

Procedure Error 23012 Duplicate wait for event <event>, line <line number>
A-36 SOLID Administrator Guide

SOLID Procedure Errors
Procedure Error 23013 Undefined sequence <sequence>

Procedure Error 23014 Duplicate sequence name <sequence>

Procedure Error 23015 Sequence <sequence> not found

Procedure Error 23016 Incompatible variable type in call to sequence
<sequence>, line <line number>

Procedure Error 23017 Duplicate symbol <symbol>

You have duplicate definitions for a symbol.

Procedure Error 23018 Procedure owner <owner>not found

Procedure Error 23019 Duplicate cursor name '<cursor>'

Procedure Error 23020 Illegal option <option> for WHENEVER SQLERROR …
statement

Procedure Error 23021 RETURN ROW not allowed in procedure with no return
type, line <line number>

Procedure Error 23022 SQL String variable <variable> must be of character data
type, line <line number>

Procedure Error 23023 Call syntax error: <syntax>, line <line number>

Procedure Error 23501 Cursor <cursor> is not open

Procedure Error 23502 Illegal number of columns in EXECUTE ... <procedure>
in cursor <cursor>
 Error Codes A-37

SOLID Procedure Errors
Procedure Error 23503 Previous SQL operation <operation> failed in cursor
<cursor>

Procedure Error 23504 Cursor <cursor> is not executed

Procedure Error 23505 Cursor <cursor> is not a SELECT statement

Procedure Error 23506 End of table in cursor <cursor>

Procedure Error 23507 Illegal type conversion in cursor <cursor> from type
<data type> to type <data type>

Procedure Error 23508 Illegal assignment, line <line number>

Procedure Error 23509 In <procedure> line <line number> Stmt <statement> was
not in error state in RETURN SQLERROR OF ...

Procedure Error 23510 In <procedure> line <line number> Transaction cannot be
set read only, because it has written already

Procedure Error 23511 In <procedure> line <line number> USING part is miss-
ing for dynamic parameters for <procedure>

Procedure Error 23512 In <procedure> line <line number> USING list is too
short for <procedure>

Procedure Error 23513 In <procedure> line<line number> Comparison between
incompatible types <data type> and <data type>
A-38 SOLID Administrator Guide

SOLID Procedure Errors
Procedure Error 23514 In <procedure> line <line number> type <data type> is
illegal for logical expression

Procedure Error 23515 In <procedure> line <line number> assignment of param-
eter <parameter> in <list> list failed

Procedure Error 23516 In CALL <procedure> assignment of parameter
<parameter> failed
 Error Codes A-39

SOLID Sorter Errors
SOLID Sorter Errors

Error code Description

Sorter Error 24001 Sort failed due to insufficient configured TmpDir space

Sorter Error 24002 Sort failed due to insufficient physical TmpDir space

Sorter Error 24003 Sort failed due to insufficient sort buffer space

Sorter Error 24004 Sort failed due to too long row (internal failure)

Sorter Error 24005 Sort failed due to I/O error
A-40 SOLID Administrator Guide

B

 are

es

pe-
eters
Configuration Parameters

By managing the parameters of your SOLID Embedded Engine, you can modify the envi-
ronment, performance, and operation of the server.

When SOLID Embedded Engine is started, it attempts to open the configuration file
solid.ini in the current directory. The configuration values for the server parameters
included in this file. If the file does not exist, SOLID Embedded Engine will use the default
settings for the parameters. Also, if a value for a parameter is not set in the solid.ini
file, SOLID Embedded Engine will use a default value for the parameter. The default valu
depend on the operating system you are using.

Generally, the default settings offer the best performance and operability, but in some s
cial cases modifying a parameter will improve performance. You can change the param
either by using the SOLID Remote Control parameter page or by editing the configuration
file solid.ini .
 Configuration Parameters B-1

General Section
General Section
[General] Description Default

MaxOpenFiles the maximum number of files kept
concurrently open during SOLID
Embedded Engine sessions

OS depend.

BackupDirectory the directory for backup files no default

BackupCopyLog if set to yes , backup operation will
copy log files to the backup direc-
tory

yes

BackupDeleteLog if set to yes , old log files will be
deleted after backup operation

yes

BackupCopyIniFile if set to yes , solid.ini file will
be copied to the backup directory

yes

Checkpoint
Interval

the number of inserts made in the
database that causes automatic
checkpoint creation

5000

MergeInterval the number of index inserts made in
the database that causes the merge
process to start

Cache size depend.

Readonly if set to yes , database is set to
read-only mode

no

LongSequential
SearchLimit

the number of sequential fetches
after which search is treated as long
sequential search

500

SearchBuffer
Limit

the maximum percentage of search
buffers from the total buffered
memory reserved for open cursors

50

Transaction
HashSize

the hash table size for incomplete
transactions

Cache size depend.
B-2 SOLID Administrator Guide

IndexFile Section
IndexFile Section
[IndexFile] Description Default

FileSpec_[1-N] the file name followed with maxi-
mum size (in bytes) of that data-
base file, for example:
c:\sol1.db 2000000

This parameter also has an optional
parameter after the maxsize: physi-
cal drive number. The number
value itself is not essential, but it is
used as a hint for I/O threads on
which I/O requests can be parallel-
ized.

This file must be stored to a local
drive using local disk names to
avoid problems with network I/O
and to achieve better performance.

solid.db 2147483647

BlockSize the block size of the index file in
bytes; use multiple of 2 KB: mini-
mum 2048, maximum 16384

8192

CacheSize the size of database cache memory
for the server in bytes; the mini-
mum 512 kb

OS depend.

ExtendIncrement the number of blocks that is allo-
cated at one time when SOLID
Embedded Engine needs to allo-
cate more space for the database
file

50

ReadAhead sets the number of prefetched index
leafs during long sequential
searches

4

PreFlushPercent Percentage of page buffer which is
kept clean by preflush thread

5

 Configuration Parameters B-3

Logging Section
Logging Section
[Logging] Description Default

LogEnabled whether logging is enabled or not yes

BlockSize the block size of log files 2048

MinSplitSize when this file size is reached, log-
ging will be continued to the fol-
lowing log file after the next
checkpoint

1 MB

FileNameTemplate the path and naming convention
used when creating log files; tem-
plate characters are replaced with
sequential numbering; for example:
c:\solid\log\sol#####.log

This file must be stored to a local
drive using local disk names to
avoid problems with network I/O
and to achieve better performance.

sol#####.log

DigitTemplate
Char

the template character that will be
replaced in the name template of
the log file

#

B-4 SOLID Administrator Guide

Communication Section
Communication Section
[Com] Description Default

Listen the network name for server; the
protocol and name that SOLID
Embedded Engine uses when start-
ing listening to the network

OS depend.

Connect the network name for client; the
protocol and name that a SOLID
Embedded Engine client uses for
server connection; in a Windows
environment ODBC Data Source
Name overrides the value of this
parameter

OS depend.

MaxPhysMsgLen the maximum length of a single
physical network message in bytes;
longer network messages will be
split into smaller messages of this
size

OS depend.

ReadBufSize the buffer size in bytes for the data
read from the network

OS depend.

WriteBufSize the buffer size in bytes for the data
written into the network

OS depend.

Trace if parameter set to yes, trace infor-
mation on network messages is
written to a file specified with the
TraceFile parameter

no

TraceFile if parameter Trace is set to yes,
trace information on network mes-
sages is written to a file specified
with this parameter

soltrace.out
 Configuration Parameters B-5

Data Sources
Data Sources

Server Section

[Data Sources] Description Default

<logical name> =
<network name>,
<Description>

These parameters can be used to
give a logical name to a SOLID
Embedded Engine.

[Srv] Description Default

RowsPerMessage the number of rows returned from
the server in one network message

10

ConnectTimeOut specifies the continuous idle time
in minutes after that an connection
is dropped; negative or zero value
means infinite

480

AbortTimeOut specifies the time in minutes after
that an idle transaction is aborted;
negative or zero value means infi-
nite

120

Threads the number of threads used for
database access in SOLID Embed-
ded Engine.

OS depend.

Echo if set to yes, contents of
solmsg.out file are displayed
also at the server’s command win-
dow

no

Name the informal name of the server,
equivalent to the -n command line
option

AllowConnect if set to no only connections from
Remote Control are allowed

yes

MessageLogSize defines the maximum size of the
solmsg.out file in bytes. The deaf-
ult is 60 KB.

OS depend.

MaxOpenCursors The maximum number of cursors
that a database client can have
simultaneously open.

1000
B-6 SOLID Administrator Guide

SQL Section
SQL Section
[SQL] Description Default

Info set the level of informational mes-
sages [0-8] printed from the server;
information is written into file
defined by parameter InfoFile-
Name, (0=no info, 8=all info)

0

SQLInfo set the level of informational
SQL level messages [0-8]
; information is written into file
defined by parameter InfoFile-
Name,

(0=no info, 8=all info)

no default

InfoFileName default global info file name SOLTRACE.OUT

InfoFileSize maximum size of the info file. The
default is 1 MB

no default

InfoFileFlush if set to yes, flushes info file after
every write operation

yes

SortArraySize the size of the array that SQL uses
when ordering result set; for opti-
mal performance this should be as
big as the biggest retrieved result
set that cannot be ordered by key
values; for large sorts use external
sorter

OS depend.

ProcedureCache the size of cache memory for
parsed procedures in number of
procedures

5

MaxNestedProcedures The maximum number of allowed
nested procedures.

16

MaxBlobExpression
Size

The maximum size of LONG VAR-
CHAR columns in KBs that can be
used in string functions

64
 Configuration Parameters B-7

Sorter Section
Sorter Section
[Sorter] Description Default

MaxCacheUse
Percent

maximum percentage of cache
pages used for sorting; range from
10% to 50%

MaxMemPerSort maximum memory available in
bytes for one sort

MaxFilesTotal maximum number of files used for
sorting

TmpDir_[1-N] name of the directory that contains
temporary files created during sort-
ing

no default
B-8 SOLID Administrator Guide

C

evia-
Data Types

Supported Data Types in SOLID Embedded Engine
The tables in this appendix list the supported data types by category. the following abbr
tions are used in each table.

Abbreviation Description

DEFLEN the defined length of the column;
e.g. for CHAR(24) the precision and length is
24

DEFPREC the defined precision;
e.g. for NUMERIC(10,3) it is 10

DEFSCALE the defined scale;
e.g. for NUMERIC(10,3), it is 3

MAXLEN the maximum length of column

N/A not applicable
 Data Types C-1

Supported Data Types in SOLID Embedded Engine
Character Data Types

Numeric Data Types

Data type Size Precision Scale Length Display size

CHAR,
WCHAR

2 G* DEFLEN N/A DEFLEN DEFLEN

VARCHAR,

WVARCHAR

2 G** DEFLEN N/A DEFLEN DEFLEN

LONG VAR-
CHAR,

LONG
WVARCHAR

2 G MAXLEN N/A MAXLEN MAXLEN

* default is 1

** default is 254

Data type Range Precision Scale Length Display size

DECIMAL ±3.6e16 16 DEFSCALE 18 18

NUMERIC ±3.6e16 DEFPREC DEFSCALE DEFPREC
+2

DEFPREC
+2

TINYINT [-128, 127]
[0, 255]

3 0 1 (bytes) 4 (signed)
3 (unsigned)

SMALLINT [-32768,
32767]
[0, 65535]

5 0 2 (bytes) 6 (signed)
5 (unsigned)

INTEGER [-231, 231-1]
[0, 232-1]

10 0 4 (bytes) 11 (signed)
10 (unsigned)

REAL ±1.7014117
e38

7 N/A 4 (bytes) 13

FLOAT ±8.9884657
e307

15 N/A 8 (bytes) 22

DOUBLE
PRECISION

±8.9884657
e307

15 N/A 8 (bytes) 22
C-2 SOLID Administrator Guide

Supported Data Types in SOLID Embedded Engine
Binary Data Types

Date Data Type

Time Data Type

Timestamp Data Type

Data type Size Precision Scale Length Display size

BINARY 2 G* DEFLEN N/A DEFLEN DEFLEN x 2

VARBINARY 2 G** DEFLEN N/A DEFLEN DEFLEN x 2

LONG VAR-
BINARY

2 G MAXLEN N/A MAXLEN MAXLEN x 2

* default is 1

** default is 254

Data type Range Precision Scale Length Display size

DATE N/A 10* N/A 6** 10*

* the number of characters in the yyyy-mm-dd format
** the size of the DATE_STRUCT structure

Data type Range Precision Scale Length Display size

TIME N/A 8* N/A 6** 8*

* the number of characters in the hh:mm:ss format
** the size of the TIME_STRUCT structure

Data type Range Precision Scale Length Display size

TIMESTAMP N/A 19* 9 16** 19/29***
 Data Types C-3

Supported Data Types in SOLID Embedded Engine

 can
stored

 data
 of

e

en
the
tes

n
The Smallest Possible Non-zero Numbers

Description of Different Column Values in the Tables
The range of a numeric column refers to the minimum and maximum values the column
store. The size of character columns refers to the maximum length of data that can be
in the column of that data type.

The precision of a numeric column refers to the maximum number of digits used by the
type of the column. The precision of a non-numeric column refers to the defined length
the column.

The scale of a numeric column refers to the maximum number of digits to the right of th
decimal point. Note that for the approximate floating point number columns, the scale is
undefined, since the number of digits to the right of the decimal point is not fixed.

The length of a column is the maximum number of bytes returned to the application wh
data is transferred to its default C type. For character data, the length does not include
null termination byte. Note that the length of a column may differ from the number of by
needed to store the data on the data source.

The display size of a column is the maximum number of bytes needed to display data i
character form.

* the number of characters in the 'yyyy-mm-dd hh:mm:ss.fffffffff' format

** the size of the TIMESTAMP_STRUCT structure

*** size is 29 with a decimal fraction part

Data type Value

DOUBLE 2.2250738585072014e-308

REAL 1.175494351e-38
C-4 SOLID Administrator Guide

D

ent

exam-
SOLID SQL Syntax

The SOLID Embedded Engine SQL syntax is based on the ANSI X3H2-1989 level 2 stan-
dard including important ANSI X3H2-1992 (SQL2) extensions. User and role managem
services missing from previous standards are based on the ANSI SQL3 draft.

This appendix presents a simplified description of the SQL statements including some
ples. The same information is included in the SOLID Programmer Guide.
 SOLID SQL Syntax D-1

ADMIN COMMAND

 is

e

ed

-

-

ADMIN COMMAND

ADMIN COMMAND 'command-name'

command-name ::= BACKUP | BACKUPLIST | CLOSE |

ERRORCODE | EXIT | HELP | MAKECP | MESSAGES |

SHUTDOWN | MONITOR | OPEN | PARAMETERS |

PERFMON | PID | REPORT | SHUTDOWN | STATUS |

STATUS BACKUP | THROWOUT | TRACE | USERLIST |

 VERSION

Usage
This SQL extension executes administrator commands. Syntax for the extension is:

ADMIN COMMAND 'command-name'

where command-name is a SOLID Remote Control (Teletype) command string. The result
set contains two columns: RC INTEGER and TEXT VARCHAR(254). Integer column RC
a command return code (0 if success), varchar column TEXT is the command reply. Th
TEXT field contains same lines that a displayed on SOLID Remote Control (Teletype)
screen, one line per one result row.

Note that all options of the ADMIN COMMAND are not transactional and cannot be roll
back.

Following is a description of the syntax for each ADMIN COMMAND command option:

Option Syntax Description

ADMIN COMMAND 'backup
[backup_directory]'

Makes a backup of the database. The default backup direc
tory is the one defined in configuration parameter Gen-
eral.Backup.Directory. The backup directory may also be
given as an argument. For example, backup abc creates
backup on directory ‘abc’. All directory definitions are rela-
tive to the SOLID Embedded Engine working directory.

ADMIN COMMAND 'backuplist' Displays a status list of last backups.

ADMIN COMMAND 'close' Closes server from new connections; no new connections
are allowed.

ADMIN COMMAND 'errorcode
SOLID_error_code'

Displays a description of an error code. Give the code num
ber as an argument. For example, ‘errorcode 10033

ADMIN COMMAND 'help' Displays available commands.
D-2 SOLID Administrator Guide

ADMIN COMMAND

 be

t
ADMIN COMMAND 'makecp' Makes a checkpoint.

ADMIN COMMAND 'messages' Displays server messages.

ADMIN COMMAND 'monitor {on |
off} [user username | user id]'

Sets server monitoring on and off. Monitoring logs user
activity and SQL calls to SOLTRACE.OUT file

ADMIN COMMAND 'open' Opens server for new connections; new connections are
allowed.

ADMIN COMMAND 'parameters
[name]'

Displays server parameter values. For example:

■ parameter used alone displays all parameters.

■ parameter general displays all parameters from sec-
tion “general.”

■ parameter general.readonly displays a single param-
eter “readonly” from section “general.”

ADMIN COMMAND 'perfmon [-c]' Returns performance statistics from the server. The -c
option returns all values as counter. By default, some val-
ues are averages/second.

ADMIN COMMAND 'pid' Returns server process id.

ADMIN COMMAND 'report filename' Generates a report of server info to a file given as an argu-
ment.

ADMIN COMMAND 'shutdown' Stops SOLID Embedded Engine.

ADMIN COMMAND 'status' Displays server statistics.

ADMIN COMMAND 'status backup' Displays status of the last started backup. The status can
one of the following:

■ If the last backup was successful or any backups have
not been requested, the output is 0 SUCCESS.

■ If the backup is in process; for example, started but no
ready yet, the output is 14003 ACTIVE.

■ If the last backup failed, the output is:
errorcode ERROR
where the errcode shows the reason for the failure

ADMIN COMMAND 'throwout {user-
name | userid | all'

Exits users from SOLID Embedded Engine. To exit a speci-
fied user, give the user id as an argument. To throw out all
users, use the keyword ALL as an argument.

ADMIN COMMAND 'trace {on | off}
sql | rpc | sync'

Sets server trace on or off. This command is similar to the
monitor command, but traces different entities and a differ-
ent levels. By default, the output is witten to the SOL-
TRACE.OUT file.
 SOLID SQL Syntax D-3

ALTER TABLE

IFY
 the
cre-

E
Example

ADMIN COMMAND 'USERLIST';

ALTER TABLE

ALTER TABLE base-table-name

 {ADD [COLUMN] column-identifier data-type |

 DROP [COLUMN] column-identifier |

 RENAME [COLUMN]

 column-identifier column-identifier |

 MODIFY [COLUMN]

 column-identifier data-type } |

 MODIFY SCHEMA schema-name |

 SET {OPTIMISTIC | PESSIMISTIC}

Usage
The structure of a table may be modified through the ALTER TABLE statement. Within the
context of this statement, columns may be added, modified, or removed.

The owner of a table can be changed using the ALTER TABLE base-table-name MOD
SCHEMA schema-name statement. This statement gives all rights to the new owner of
table including creator rights. The old owner’s access rights to the table, excluding the
ator rights, are preserved.

Individual tables can be set to optimistic or pessimistic with the command ALTER TABL
base-table-name SET {OPTIMISTIC | PESSIMISTIC} . By default, all tables are opti-
mistic. A database-wide default can be set in the General section of the configuration file
with the parameter Pessimistic = yes .

Example

ADMIN COMMAND 'userlist [-l]
[name | id]'

Displays a list of users. option -l displays more detailed
output.

ADMIN COMMAND 'version' Displays server version info.
D-4 SOLID Administrator Guide

COMMIT
ALTER TABLE TEST ADD X INTEGER;

ALTER TABLE TEST RENAME COLUMN X Y;

ALTER TABLE TEST MODIFY COLUMN X SMALLINT;

ALTER TABLE TEST DROP COLUMN X;

ALTER USER
ALTER USER user-name IDENTIFIED BY password

Usage
The password of a user may be modified through the ALTER USER statement.

Example

ALTER USER MANAGER IDENTIFIED BY O2CPTG;

CALL
CALL procedure-name [(parameter [, parameter ...])]

Usage
Stored procedures are called with statement CALL.

Example

CALL proctest;

COMMIT
COMMIT WORK

Usage
The changes made in the database are made permanent by COMMIT statement. It terminates
the transaction.

Example
 SOLID SQL Syntax D-5

CREATE EVENT

 a
lica-

param-

state-

 the
COMMIT WORK;

CREATE EVENT

CREATE EVENT event-name

 [(parameter-definition

 [, parameter-definition ...])]

Usage
Event alerts are used to signal an event in the database. Events are simple objects with
name. The use of event alerts removes resource consuming database polling from app
tions.

An event object is created with the SQL statement

CREATE EVENT event-name [parameter-list]
The name can be any user-specified alphanumeric string. The parameter list specifies
eter names and parameter types. The parameter types are normal SQL types.

Events are dropped with the SQL statement

DROP EVENT event-name
Events are triggered and received inside stored procedures. Special stored procedure
ments are used to trigger and receive events.

The event is triggered with the stored procedure statement

POST EVENT event-name [parameters]
Event parameters must be local variables or parameters in the stored procedure where
event is triggered. All clients that are waiting for the posted event will receive the event.

To make a procedure wait for an event to happen, the WAIT EVENT construct is used in a
stored procedure:

wait-event-statement ::=
 WAIT EVENT
 [event-specification ...]
 END WAIT

event-specification ::=
 WHEN event-name (parameters) BEGIN
 statements
 END EVENT
D-6 SOLID Administrator Guide

CREATE EVENT

vent
oved

ts.
access
Each connection has its own event queue. To specify the events to be collected in the e
queue command REGISTER EVENT event-name (parameters) is used. Events are rem
from the event queue with command UNREGISTER EVENT event-name (parameters).

Example of a procedure that waits for an event:

"create procedure event-wait(i1 integer)
returns (result varchar)
begin
declare i integer;
declare c char(4);

i := 0;

wait event
 when test1 begin
 result := 'event1';
 return;
 end event

 when test2(i) begin
 end event

 when test3(i, c) begin
 end event
end wait

if i <> 0 then
 result := 'if';
 post event test1;
else
 result := 'else';
 post event test2(i);
 post event test3(i, c);
end if
end";

The creator of an event or the database administrator can grant and revoke access righ
Access rights can be granted to users and roles. The select access right gives waiting
to an event. The insert access right gives triggering access to an event.
 SOLID SQL Syntax D-7

CREATE INDEX

speci-
Example

CREATE EVENT ALERT1(I INTEGER, C CHAR(4));

CREATE INDEX

CREATE [UNIQUE] INDEX index-name

 ON base-table-name

 (column-identifier [ASC | DESC]

 [, column-identifier [ASC | DESC]] ...)

Usage
Creates an index for a table based on the given columns. Keyword UNIQUE specifies that
columns being indexed must contain unique values. Keywords ASC and DESC specify
whether the given columns should be indexed in ascending or descending order. If not
fied ascending order is used.

Example
CREATE UNIQUE INDEX UX_TEST ON TEST (I);
CREATE INDEX X_TEST ON TEST (I, J);

CREATE PROCEDURE
CREATE PROCEDURE procedure-name

 [(parameter-definition

 [, parameter-definition ...])]

 [RETURNS (parameter-definition

 [, parameter-definition ...])]

 BEGIN procedure-body END;

parameter-definition ::= parameter-name data-type

procedure-body ::= [declare-statement; ...]

 procedure-statement; [procedure-statement; ...]

declare-statement ::= DECLARE variable-name
D-8 SOLID Administrator Guide

CREATE PROCEDURE
 data-type

procedure-statement ::= prepare-statement |

 exec-statement | fetch-statement |

 control-statement | post-statement |

 wait-event-statement | wait-register-statement

prepare-statement ::= EXEC SQL PREPARE

 cursor-name sql-statement
 SOLID SQL Syntax D-9

CREATE PROCEDURE
execute-statement ::=

 EXEC SQL EXECUTE

 cursor-name

 [USING (variable [, variable ...])]

 [INTO (variable [, variable ...])] |

 EXEC SQL {CLOSE | DROP} cursor-name |

 EXEC SQL {COMMIT | ROLLBACK} WORK |

 EXEC SQL SET TRANSACTION {READ ONLY | READ WRITE} |

 EXEC SQL WHENEVER SQLERROR {ABORT | ROLLBACK [WORK],

ABORT}

 EXEC SEQUENCE sequence-name.CURRENT INTO variable |

 EXEC SEQUENCE sequence-name.NEXT INTO variable |

 EXEC SEQUENCE sequence-name SET VALUE USING variable

fetch-statement ::= EXEC SQL FETCH cursor-name

post-statement ::= POST EVENT event-name [parameters]

wait-event-statement ::=

 WAIT EVENT

 [event-specification ...]

 END WAIT

event-specification ::=

 WHEN event-name (parameters) BEGIN

 statements

 END EVENT

wait-register-statement ::=

 REGISTER event-name (parameters) |

 UNREGISTER event-name (parameters)

control-statement ::=

 SET variable-name = value |

 variable-name := value |

 WHILE expression

 LOOP procedure-statement... END LOOP |
D-10 SOLID Administrator Guide

CREATE PROCEDURE

. The
on and
affic

s a

granted
e

 and
 LEAVE |

 IF expression THEN procedure-statement ...

 [ELSEIF procedure-statement ... THEN] ...

 ELSE procedure-statement ... END IF |

 RETURN | RETURN SQLERROR OF cursor-name | RETURN ROW

Usage
Stored procedures are simple programs, or procedures, that are executed in the server
user can create a procedure that contains several SQL statements or a whole transacti
execute it with a single call statement. Usage of stored procedures reduces network tr
and allows more strict control to access rights and database operations.

Procedures are created with the statement

CREATE PROCEDURE name body

and dropped with the statement

DROP PROCEDURE name

Procedures are called with the statement

CALL name [parameter ...]

Procedures can take several input parameters and return a single row or several rows a
result. The result is built from specified output parameters. Procedures are thus used in
ODBC in the same way as the SQL SELECT statement.

Procedures are owned by the creator of the procedure. Specified access rights can be
to other users. When the procedure is run, it has the creator's access rights to databas
objects.

The stored procedure syntax is a proprietary syntax modeled from SQL3 specifications
dynamic SQL. Procedures contain control statements and SQL statements.

The following control statements are available in the procedures:

Control statement Description

set variable = expression Assigns a value to a variable. The value
can be either a literal value (e.g., 10 or
'text') or another variable. Parameters are
considered as normal variables.

variable := expression Alternate syntax for assigning values to
variables.
 SOLID SQL Syntax D-11

CREATE PROCEDURE
while

 expr

loop

 statement-list

end loop

Loops while expression is true.

leave Leaves the innermost while loop and con-
tinues executing the procedure from the
next statement after the keyword end loop.

if

 expr

then

 statement-list1

else

 statement-list2

end if

Executes statements-list1 if expression
expr is true; otherwise, executes statement-
list2.

if

 expr1

then

 statement-list1

elseif

 expr2

then

 statement-list2

end if

If expr1 is true, executes statement-list1. If
expr2 is true, executes statement-list2. The
statement can optionally contain multiple
elseif statements and also an else state-
ment.

return Returns the current values of output
parameters and exits the procedure. If a
procedure has a one return row statement,
return behaves like return norow.

return sqlerror of cursor-name Returns the sqlerror associated with the
cursor and exits the procedure.

return row Returns the current values of output
parameters and continues execution.
D-12 SOLID Administrator Guide

CREATE PROCEDURE

, for
is

r
ther

arame-
 SQL

te-
nts.

e is
um-
All SQL DML and DDL statements can be used in procedures. Thus the procedure can
example, create tables or commit a transaction. Each SQL statement in the procedure
atomic.

Preparing SQL Statements
The SQL statements are first prepared with the statement

EXEC SQL PREPARE cursor sql-statement

The cursor specification is a cursor name that must be given. It can be any unique curso
name inside the transaction. Note that if the procedure is not a complete transaction, o
open cursors outside the procedure may have conflicting cursor names.

Executing Prepared SQL Statements
The SQL statement is executed with the statement

EXEC SQL EXECUTE cursor [opt-using] [opt-into]

The optional opt-using specification has the syntax

USING (variable-list)

where variable-list contains a list of procedure variables or parameters separated by a
comma. These variables are input parameters for the SQL statement. The SQL input p
ters are marked with the standard question mark syntax in the prepare statement. If the
statement has no input parameters, the USING specification is ignored.

The optional opt-into specification has the syntax

INTO (variable-list)

where variable-list contains the variables that the column values of the SQL SELECT sta
ment are stored into. The INTO specification is effective only for SQL SELECT stateme

After the execution of UPDATE, INSERT and DELETE statements an additional variabl
available to check the result of the statement. Variable SQLROWCOUNT contains the n
ber of rows affected by the last statement.

Fetching Results
Rows are fetched with the statement

EXEC SQL FETCH cursor

return norow Returns the end of the set and exits the
procedure.
 SOLID SQL Syntax D-13

CREATE PROCEDURE

ed in

to the
If the
er a

ted
ll
rns an

ack.

tack:

s the

 is

.

If the fetch completed successfully, the column values are stored into the variables defin
the opt-into specification.

Checking for Errors
The result of each EXEC SQL statement executed inside a procedure body is stored in
variable SQLSUCCESS. This variable is automatically generated for every procedure.
previous SQL statement was successful, a value one is stored into SQLSUCCESS. Aft
failed SQL statement, a value zero is stored into SQLSUCCESS.

EXEC SQL WHENEVER SQLERROR {ABORT | [ROLLBACK [WORK], ABORT}

is used to decrease the need for IF NOT SQLSUCCESS THEN tests after every execu
SQL statement in a procedure. When this statement is included in a stored procedure a
return values of executed statements are checked for errors. If statement execution retu
error, the procedure is automatically aborted. Optionally the transaction can be rolled b

The error string of latest failed SQL statement is stored into variable SQLERRSTR.

Using Transactions
EXEC SQL {COMMIT | ROLLBACK} WORK

is used to terminate transactions.

EXEC SQL SET TRANSACTION {READ ONLY | READ WRITE}

is used to control the type of transactions.

Using Sequencer Objects and Event Alerts
Refer to the usage of the CREATE SEQUENCE and CREATE EVENT statements.

Procedure Stack Functions
The following functions may be used to analyze the current contents of the procedure s
PROC_COUNT(), PROC_NAME(N), PROC_SCHEMA(N).

PROC_COUNT() returns the number of procedures in the procedure stack. This include
current procedure.

PROC_NAME(N) returns the Nth procedure name is the stack. First procedure position
zero.

PROC_SCHEMA(N) returns the schema name of the Nth procedure in procedure stack

Example 1
"create procedure test2(tableid integer)
D-14 SOLID Administrator Guide

CREATE PROCEDURE
 returns (cnt integer)
begin
 exec sql prepare c1 select count(*) from
 sys_tables where id > ?;
 exec sql execute c1 using (tableid) into
 (cnt);
 exec sql fetch c1;
end";

Example 2
-- This procedure can only be used with SOLID Embedded Engine --
-- version 2.2 or later. --
"create procedure return_tables
returns (name varchar)
begin
 exec sql whenever sqlerror rollback, abort;
 exec sql prepare c1 select table_name
 from sys_tables;
 exec sql execute c1 into (name);
 while sqlsuccess loop
 exec sql fetch c1;
 if not sqlsuccess
 then leave;
 end if
 return row;
 end loop;
 exec sql close c1;
end";
 SOLID SQL Syntax D-15

CREATE ROLE

 The
back,
es is
s.

ot
and

encer
al

cts can

n be

nt:
CREATE ROLE
CREATE ROLE role-name

Usage
Creates a new user role.

Example
CREATE ROLE GUEST_USERS;

CREATE SEQUENCE
CREATE [DENSE] SEQUENCE sequence-name

Usage
Sequencer objects are objects that are used to get sequence numbers.

Using a dense sequence guarantees that there are no holes in the sequence numbers.
sequence number allocation is bound to the current transaction. If the transaction rolls
also the sequence number allocations are rolled back. The drawback of dense sequenc
that the sequence is locked out from other transactions until the current transaction end

Using a sparse sequence guarantees uniqueness of the returned values, but they are n
bound to the current transaction. If a transaction allocates a sparse sequence number
later rolls back, the sequence number is simply lost.

The advantage of using a sequencer object instead of a separate table is that the sequ
object is specifically fine-tuned for fast execution and requires less overhead than norm
update statements.

Sequence values can be incremented and used within SQL statements. These constru
be used in SQL:

sequence-name.CURRVAL

sequence-name.NEXTVAL

Sequences can also be used inside stored procedures. The current sequence value ca
retrieved using the following stored procedure statement:

EXEC SEQUENCE sequence-name.CURRENT INTO variable

The new sequence value can be retrieved using the following stored procedure stateme
D-16 SOLID Administrator Guide

CREATE TABLE

s rights
oked in
EXEC SEQUENCE sequence-name.NEXT INTO variable

Sequence values can be set with the following stored procedure statement:

EXEC SEQUENCE sequence-name SET VALUE USING variable

Select access rights are required to retrieve the current sequence value. Update acces
are required to allocate new sequence values. These access rights are granted and rev
the same way as table access rights.

Examples
CREATE DENSE SEQUENCE SEQ1;

INSERT INTO ORDER (id) VALUES (order_sequence.NEXTVAL);

CREATE TABLE
CREATE TABLE base-table-name

 (column-element [, column-element] ...)

base-table-name ::= base-table-identifier |

 schema-name.base-table-identifier

column-element ::= column-definition |

 table-constraint-definition

column-definition ::= column-identifier

 data-type

 [column-constraint-definition

 [column-constraint-definition] ...]

column-constraint-definition ::=

 NOT NULL | NOT NULL UNIQUE |

 NOT NULL PRIMARY KEY | CHECK (check-condition)

table-constraint-definition ::=

 UNIQUE (column-identifier

 [, column-identifier] ...) |

 PRIMARY KEY (column-identifier

 [, column-identifier] ...) |

 CHECK (check-condition) |
 SOLID SQL Syntax D-17

CREATE USER

alues
l val-
 FOREIGN KEY (column-identifier

 [, column-identifier] ...)

 REFERENCES table-name
 (column-identifier [, column-identifier] ...)

Usage
Tables are created through the CREATE TABLE statement. The CREATE TABLE state-
ment requires a list of the columns created, the data types, and, if applicable, sizes of v
within each column, in addition to other related alternatives (such as whether or not nul
ues are permitted).

Example
CREATE TABLE DEPT (DEPTNO INTEGER NOT NULL, DNAME VARCHAR, PRIMARY
KEY(DEPTNO));

CREATE TABLE DEPT2 (DEPTNO INTEGER NOT NULL PRIMARY KEY, DNAME VARCHAR);

CREATE TABLE DEPT3 (DEPTNO INTEGER NOT NULL UNIQUE, DNAME VARCHAR);

CREATE TABLE DEPT4 (DEPTNO INTEGER NOT NULL, DNAME VARCHAR,
UNIQUE(DEPTNO));

CREATE TABLE EMP (DEPTNO INTEGER, ENAME VARCHAR, FOREIGN KEY (DEPTNO)
REFERENCES DEPT (DEPTNO));

CREATE TABLE EMP2 (DEPTNO INTEGER, ENAME VARCHAR, CHECK (ENAME IS NOT
NULL), FOREIGN KEY (DEPTNO) REFERENCES DEPT (DEPTNO));

CREATE USER
CREATE USER user-name IDENTIFIED BY password

Usage
Creates a new user with a given password.

Example
CREATE USER HOBBES IDENTIFIED BY CALVIN;
D-18 SOLID Administrator Guide

DELETE (positioned)

t

ble.
CREATE VIEW
CREATE VIEW viewed-table-name

 [(column-identifier

 [, column-identifier]...)]

 AS query-specification

Usage
A view can be viewed as a virtual table; that is, a table that does not physically exist, bu
rather is formed by a query specification against one or more tables.

Example
CREATE VIEW TEST_VIEW
 (VIEW_I, VIEW_C, VIEW_ID)
 AS SELECT I, C, ID FROM TEST;

DELETE
DELETE FROM table-name
 [WHERE search-condition]

Usage
Depending on your search condition the specified row(s) will be deleted from a given ta

Example
DELETE FROM TEST WHERE ID = 5;

DELETE FROM TEST;

DELETE (positioned)
DELETE FROM table-name WHERE CURRENT OF cursor-name

Usage
The positioned DELETE statement deletes the current row of the cursor.

Example
DELETE FROM TEST WHERE CURRENT OF MY_CURSOR;
 SOLID SQL Syntax D-19

DROP EVENT
DROP EVENT
DROP EVENT event-name

Usage
The DROP EVENT statement removes the specified event from the database.

Example
DROP EVENT EVENT-TEST;

DROP INDEX
DROP INDEX index-name

Usage
The DROP INDEX statement removes the specified index from the database.

Example
DROP INDEX UX_TEST;

DROP PROCEDURE
DROP PROCEDURE procedure-name

Usage
The DROP PROCEDURE statement removes the specified procedure from the database.

Example
DROP PROCEDURE PROCTEST;

DROP ROLE
DROP ROLE role-name

Usage
The DROP ROLE statement removes the specified role from the database.
D-20 SOLID Administrator Guide

DROP VIEW
Example
DROP ROLE GUEST_USERS;

DROP SEQUENCE
DROP SEQUENCE sequence-name

Usage
The DROP SEQUENCE statement removes the specified sequence from the database.

Example
DROP SEQUENCE SEQ1;

DROP TABLE
DROP TABLE base-table-name

Usage
The DROP TABLE statement removes the specified table from the database.

Example
DROP TABLE TEST;

DROP USER
DROP USER user-name

Usage
The DROP USER statement removes the specified user from the database.

Example
DROP USER HOBBES;

DROP VIEW
DROP VIEW viewed-table-name
 SOLID SQL Syntax D-21

EXPLAIN PLAN FOR

QL
Usage
The DROP VIEW statement removes the specified view from the database.

Example
DROP VIEW TEST_VIEW;

EXPLAIN PLAN FOR
EXPLAIN PLAN FOR sql-statement

Usage
The EXPLAIN PLAN FOR statement shows the selected search plan for the specified S
statement.

Example
EXPLAIN PLAN FOR select * from tables;

GRANT
GRANT {ALL | grant-privilege

 [, grant-privilege]...}

 ON table-name
 TO {PUBLIC | user-name [, user-name]... |

 role-name [, role-name]... }

 [WITH GRANT OPTION]

GRANT role-name TO user-name

grant-privilege ::= DELETE | INSERT | SELECT |

 UPDATE [(column-identifier

 [, column-identifier]...)] |

 REFERENCES [(column-identifier

 [, column-identifier]...)]

GRANT EXECUTE ON procedure-name

 TO {PUBLIC | user-name [, user-name]... |

 role-name [, role-name]... }
D-22 SOLID Administrator Guide

INSERT

 orders
GRANT {SELECT | INSERT} ON event-name

 TO {PUBLIC | user-name [, user-name]... |

 role-name [, role-name]... }

GRANT {SELECT | UPDATE} ON sequence-name

 TO {PUBLIC | user-name [, user-name]... |

 role-name [, role-name]... }

Usage
The GRANT statement is

1. used to grant privileges to the specified user or role.

2. used to grant privileges to the specified user by giving

the user the privileges of the specified role.

If you do use the optional WITH GRANT OPTION, you give permission for the user(s) to
whom you are granting the privilege to pass it on to other users.

Example
GRANT GUEST_USERS TO CALVIN;
GRANT INSERT, DELETE ON TEST TO GUEST_USERS;

INSERT
INSERT INTO table-name [(column-identifier

 [, column-identifier]...)]

 VALUES (insert-value[, insert-value]...)

Usage
There are several variations of the INSERT statement. In the simplest instance, a value is
provided for each column of the new row in the order specified at the time the table was
defined (or altered). In the preferable form of the INSERT statement the columns are speci-
fied as part of the statement and they needn’t to be in any specific order as long as the
of the column and value lists match with one another.

Example
INSERT INTO TEST (C, ID) VALUES (0.22, 5);
INSERT INTO TEST VALUES (0.35, 9);
 SOLID SQL Syntax D-23

INSERT (Using Query)

vir-
INSERT (Using Query)
INSERT INTO table-name [(column-identifier

 [, column-identifier]...)]

 query-specification

Usage
The query specification creates a virtual table. Using the INSERT statement the rows of cre-
ated virtual table are inserted into the specified table (the degree and data types of the
tual table and inserted columns must match).

Example
INSERT INTO TEST (C, ID) SELECT A, B FROM INPUT_TO_TEST;

REVOKE (Role from User)
REVOKE {role-name [, role-name]... }

 FROM {PUBLIC | user-name [, user-name]... }

Usage
The REVOKE statement is used to take a role away from users.

Example
REVOKE GUEST_USERS FROM HOBBES;
D-24 SOLID Administrator Guide

ROLLBACK
REVOKE (Privilege from Role or User)
REVOKE

 {revoke-privilege [, revoke-privilege]... }

 ON table-name
 FROM {PUBLIC | user-name [, user-name]... |

 role-name [, role-name]... }

revoke-privilege ::= DELETE | INSERT |

 SELECT |

 UPDATE [(column-identifier

 [, column-identifier]...)] |

 REFERENCES

REVOKE EXECUTE ON procedure-name

 FROM {PUBLIC | user-name [, user-name]... |

 role-name [, role-name]... }

REVOKE {SELECT | INSERT} ON event-name FROM

 {PUBLIC | user-name [, user-name]... |

 role-name [, role-name]... }

REVOKE {SELECT | INSERT} ON sequence-name

 FROM {PUBLIC | user-name [, user-name]... |

 role-name [, role-name]... }

Usage
The REVOKE statement is used to take privileges away from users and roles.

Example
REVOKE INSERT ON TEST FROM GUEST_USERS;

ROLLBACK
ROLLBACK WORK
 SOLID SQL Syntax D-25

SELECT

abase
Bon-
ince the

ai

e old
read-
ws the

t

con-
Usage
The changes made in the database are discarded by ROLLBACK statement. It terminates the
transaction.

Example
ROLLBACK WORK;

SELECT
SELECT [ALL | DISTINCT] select-list
 FROM table-reference-list
 [WHERE search-condition]

 [GROUP BY column-name [, column-name]...]

 [HAVING search-condition]

 [[UNION | INTERSECT | EXCEPT] [ALL]

 select-statement]...

 [ORDER BY {unsigned integer | column-name}

 [ASC|DESC]]

Usage
The SELECT statement is used to retrieve information.

IMPORTANT NOTE:
SOLID provides a consistent view of data within one transaction; that is, it sees the dat
as it was at the moment it was started. This is implemented by the multiversion SOLID
sai Tree that stores the active data, that is, data that has been written to the database s
beginning of the oldest active transaction in central memory. Also a SELECT begins a new
transaction and if not committed or rolled back, it remains active thus causing the Bons
Tree to grow.

New data is merged to the main storage tree as soon as no transaction needs to see th
versions of the rows. To ensure the efficient operation of the Bonsai Tree, also commit
only transactions as soon as all rows are retrieved. This releases the read level and allo
merge process to keep the Bonsai Tree smaller.

Using AUTOCOMMIT does not help. This is because SOLID cannot immediately commi
SELECTs since the rows need to be retrieved by the client application first. In AUTOCOM-
MIT mode, the next SQL statement processing triggers the commit for previous SELECT
statement. But if that next statement never comes, the transaction is left open until the
nection timout expires.
D-26 SOLID Administrator Guide

SET
Example
SELECT ID FROM TEST;
SELECT DISTINCT ID, C FROM TEST WHERE ID = 5;
SELECT DISTINCT ID FROM TEST ORDER BY ID ASC;
SELECT NAME, ADDRESS FROM CUSTOMERS UNION SELECT NAME, DEP FROM
PERSONNEL;

SET
SET SQL INFO {ON | OFF} [FILE {file-name |

 "file-name" | 'file-name'}]

 [LEVEL info-level]

SET SQL SORTARRAYSIZE {array-size | DEFAULT}

SET SQL JOINPATHSPAN {path-span | DEFAULT}

SET SQL CONVERTORSTOUNIONS

 {YES [COUNT value] | NO | DEFAULT}

SET LOCK TIMEOUT timeout-in-seconds

SET STATEMENT MAXTIME minutes

SET TRANSACTION READ ONLY

SET TRANSACTION READ WRITE

SET TRANSACTION CHECK WRITESET

SET TRANSACTION CHECK READSET

SET TRANSACTION ISOLATION LEVEL READ COMMITTED

SET TRANSACTION ISOLATION LEVEL

 REPEATABLE READ

SET TRANSACTION ISOLATION LEVEL SERIALIZABLE
 SOLID SQL Syntax D-27

SET SCHEMA

c-
 is
-

le. If

te

r

rter

 sche-
Usage
All the settings are read per user session unlike the settings in the solid.ini file which
are automatically read each time SOLID Embedded Engine is started.

In SQL INFO the default file is a global soltrace.out shared by all users. If the file
name is given, all future INFO ON settings will use that file unless a new file is set. It is re
ommended that the file name is given in single quotes, because otherwise the file name
converted to uppercase. The info output is appended to the file and the file is never trun
cated, so after the info file is not needed anymore, the user must manually delete the fi
the file open fails, the info output is silently discarded.

The default SQL INFO LEVEL is 4. A good way to generate useful info output is to set
info on with a new file name and then execute the SQL statement using EXPLAIN PLAN
FOR syntax. This method gives all necessary estimator information but does not genera
output from the fetches which may generate a huge output file.

The sort array is used for in memory sorts in the SQL interpreter. The minimum value fo
SORTARRAYSIZE is 100 . If a smaller value is given, minimum value 100 will be used. If
large sorts are needed, it is recommended that the external sorter facility is used (in So
section in solid.ini) instead on using very large SORTARRAYSIZE.

The COUNT parameter in SQL CONVERTORSTOUNIONS tells how many ors are converted
to unions. The default is 10 which should be enough in most cases.

SET STATEMENT MAXTIME sets connection specific maximum execution time in min-
utes. Setting is effective until a new maximum time if set. Zero time means no maximum
time, which is also the default.

The SET TRANSACTION settings are borrowed from ANSI SQL. It sets the transaction
isolation level.

Example
SET SQL INFO ON FILE 'sqlinfo.txt' LEVEL 5

SET SCHEMA
SET SCHEMA {USER | 'user-name'}

Usage
From version 2.2 SOLID Embedded Engine supports SQL89 style schemas for database
entity name qualifying. All created database entities belong to a schema, and different
mas may contain entities with same name.
D-28 SOLID Administrator Guide

UPDATE (Positioned)

tively

s

re

es
 for
cute

e
The default schema can be changed with the SET SCHEMA statement. Schema can be
change to the current user name by using the SET SCHEMA USER statement. Alterna
schema can be set to ‘user-name’ which must be a valid user name in the database.

The algorithm to resolve entity names [schema-name.]table-identifier is the
following:

1. If schema-name is given then table-identifier is searched only from that
schema.

2. If schema-name is not given, then

a. First table-identifier is searched from default schema. Default schema i
initially the same as user name, but can be changed with SET SCHEMA statement

b. Then table-identifier is searched from all schemas in the database. If mo
than one entity with same table-identifier and type (table, procedure, ...) is
found, a new error code 13110 (Ambiguous entity name table-identifier)
is returned.

The SET SCHEMA statement effects only to default entity name resolution and it do
not change any access rights to database entities. It sets the default schema name
unqualified names in statements that are prepared in the current session by an exe
immediate statement or a prepare statement.

Example
SET SCHEMA 'CUSTOMERS'

UPDATE (Positioned)
UPDATE table-name
 SET [table-name.]column-identifier = { expression |

 NULL}

 [, [table-name.]column-identifier = { expression |

 NULL}]...

 WHERE CURRENT OF cursor-name

Usage
The positioned UPDATE statement updates the current row of the cursor. The name of th
cursor is defined using ODBC API function named SQLSetCursorName .
 SOLID SQL Syntax D-29

UPDATE (Searched)

ore
Example
UPDATE TEST SET C = 0.33

WHERE CURRENT OF MYCURSOR

UPDATE (Searched)
UPDATE table-name
 SET [table-name.]column-identifier = { expression |

 NULL}

 [, [table-name.]column-identifier = { expression |

 NULL}]...

 [WHERE search-condition]

Usage
The UPDATE statement is used to modify the values of one or more columns in one or m
rows, according the search conditions.

Example
UPDATE TEST SET C = 0.44 WHERE ID = 5

Table-reference

Table-reference

table-reference-list ::= table-reference [, table-reference …]

table-reference ::= table-name [[AS] correlation-name] |
derived-table [[AS] correlation-name

[(derived-column-list)]] | joined-table

table-name ::= table-identifier | schema-name.table-identifier

derived-table ::= subquery

derived-column-list ::= column-name-list

joined-table ::= cross-join | qualified-join | (joined-table)

cross-join ::= table-reference CROSS JOIN table-reference
D-30 SOLID Administrator Guide

Search-condition
Query-specification

Search-condition

qualified-join ::= table-reference [NATURAL] [join-type] JOIN
table-reference [join-specification]

join-type ::= INNER | outer-join-type [OUTER] | UNION

outer-join-type ::= LEFT | RIGHT | FULL

join-specification ::= join-condition | named-columns-join

join-condition ::= ON search-condition

named-columns-join ::= USING (column-name-list)

column-name-list ::= column-identifier [{ , column-identifier} …]

Query-specification

query-specification ::= SELECT [DISTINCT | ALL] select-list
table-expression

select-list ::= * | select-sublist
[{, select-sublist} ...]

select-sublist ::= derived-column |
[table-name | table-identifier].*

derived-column ::= expression [[AS] column-alias]]

table-expression ::= FROM table-reference-list
[WHERE search-condition]
[GROUP BY column-name-list
[[UNION | INTERSECT | EXCEPT] [ALL] [CORRE-
SPONDING [BY (column-name-list)]]
query-specification]
[HAVING search-condition]

Search-condition

search-condition ::= search-item | search-item { AND | OR }
search-item
 SOLID SQL Syntax D-31

Check-condition
Check-condition

search-item ::= [NOT] { search-test |
(search-condition) }

search-test ::= comparison-test | between-test |
like-test | null-test | set-test |
quantified-test | existence-test

comparison-test ::= expression { = | <> | < | <= | > | >= }
{ expression | subquery }

between-test ::= column-identifier [NOT] BETWEEN
expression AND expression

like-test ::= column-identifier [NOT] LIKE value
[ESCAPE value]

null-test ::= column-identifier IS [NOT] NULL

set-test ::= expression [NOT] IN ({ value
[,value]... | subquery })

quantified-test ::= expression { = | <> | < | <= | > | >= }
[ALL | ANY | SOME] subquery

existence-test ::= EXISTS subquery

subquery ::= (query-specification)

Check-condition

check-condition ::= check-item | check-item { AND | OR }
check-item

check-item ::= [NOT] { check-test |
(check-condition) }

check-test ::= comparison-test | between-test |
like-test | null-test | list-test

comparison-test ::= expression { = | <> | < | <= | > | >= }
{ expression | subquery }

between-test ::= column-identifier [NOT] BETWEEN
expression AND expression

like-test ::= column-identifier [NOT] LIKE value
[ESCAPE value]
D-32 SOLID Administrator Guide

Expression
Expression

null-test ::= column-identifier IS [NOT] NULL

list-test ::= expression [NOT] IN ({ value
[,value]...})

Expression

expression ::= expression-item | expression-item
{ + | - | * | / } expression-item

expression-item ::= [+ | -] { value | column-identifier | function | case-
expression | cast-expression | (expression) }

value ::= literal | USER | variable

function ::= set-function | null-function | string-function | numeric-
function |
datetime-function | system-function | datatypeconversion-
function

set-function ::= COUNT (*) |
{ AVG | MAX | MIN | SUM | COUNT }

({ ALL | DISTINCT } expression)

null-function ::= { NULLVAL_CHAR() | NULLVAL_INT() }

datatypeconversion-function ::= CONVERT_CHAR(value-exp) |
CONVERT_DATE(value-exp) |
CONVERT_DECIMAL(value-exp) |
CONVERT_DOUBLE(value-exp) |
CONVERT_FLOAT(value-exp) |
CONVERT_INTEGER(value-exp) |
CONVERT_LONGVARCHAR(value-exp) |
CONVERT_NUMERIC(value-exp) |
CONVERT_REAL(value-exp) |
CONVERT_SMALLINT(value-exp) |
CONVERT_TIME(value-exp) |
CONVERT_TIMESTAMP(value-exp) |
CONVERT_TINYINT(value-exp) |
CONVERT_VARCHAR(value-exp)

case-expression ::= case-abbreviation | case-specification
 SOLID SQL Syntax D-33

String Function
String Function

case-abbreviation ::= NULLIF(value-exp, value-exp) |
COALESCE(value-exp {, value-exp}…)

case-specification ::= CASE value-exp
 WHEN value-exp
 THEN {value-exp}
 [WHEN value-exp
 THEN {value-exp} …]
 ELSE {value-exp}
END

cast-expression ::= CAST (value-exp AS -data-type)

Function Purpose

ASCII(str) Returns the integer equivalent of string str

CHAR(code) Returns the character equivalent of code

CONCAT(str1, str2) Concatenates str2 to str1

str1 { + | || } str2 Concatenates str2 to str1

INSERT(str1, start, length,
str2)

Merges strings by deleting length characters from str1 and
inserting str2

LCASE(str) Converts string str to lowercase

LEFT(str, count) Returns leftmost count characters of string str

LENGTH(str) Returns the number of characters in str

LOCATE(str1, str2 [, start]) Returns starting position of str1 within str2

LTRIM(str) Removes leading spaces of str

POSITION (str1 IN str2) Returns starting position of str1 within str2

REPEAT(str, count) Returns characters of str repeated count times

REPLACE(str1, str2, str3) Replaces occurrences of str2 in str1 with str3

RIGHT(str, count) Replaces the rightmost count characters of string str

RTRIM(str) Removes trailing spaces in str

SPACE(count) Returns a string str of count spaces
D-34 SOLID Administrator Guide

Numeric Function
Numeric Function

SUBSTRING(str, start,
length)

Derives substring from str beginning at start

UCASE(str) Converts str to uppercase

Function Purpose

ABS(numeric) Absolute value of numeric

ACOS(float) Arccosine of float

ASIN(float) Arcsine of float

ATAN(float) Arctangent of float

ATAN2(float1, float2) Arctangent of the x and y coordinates, specified by float1
and float2, respectively, as an angle, expressed in radians

CEILING(numeric) Smallest integer greater than or equal to numeric

COS(float) Cosine of float

COT(float) Cotangent of float

DEGREES(numeric) Converts numeric radians to degrees

EXP(float) Exponential value of float

FLOOR(numeric) Largest integer less than or equal to numeric

LOG(float) Natural logarithm of float

LOG10(float) Base 10 log of float

MOD(integer1, integer2) Modulus of integer1 divided by integer2

PI() Pi as a floating point number

POWER(numeric, integer) Value of numeric raised to the power of integer

RADIANS(numeric) Number of radians converted from numeric

ROUND(numeric, integer) Numeric rounded to integer

SIGN(numeric) Sign of numeric

SQRT(float) Square root of float

TAN(float) Tangent of float

TRUNCATE(numeric, integer) Numeric truncated to integer
 SOLID SQL Syntax D-35

Date Time Function
Date Time Function

Function Purpose

CURDATE() Returns the current date

CURTIME() Returns the current time

DAYNAME(date) Returns a string with the day of the week

DAYOFMONTH(date) Returns the day of the month as an integer between 1 and 31

DAYOFWEEK(date) Returns the day of the week as an integer between 1 and 7,
where 1 represents Sunday

DAYOFYEAR(date) Returns the day of the year as an integer between 1 and 366

EXTRACT (date field FROM
date-exp)

Isolates a single field of a datetime or a interval and con-
verts it to a number.

HOUR(time-exp) Returns the hour as an integer between 0 and 23

MINUTE(time-exp) Returns the minute as an integer between 0 and 59

MONTH(date) Returns the month as an integer between 1 and 12

MONTHNAME(date) Returns the month name as a string

NOW() Returns the current date and time as a timestamp

QUARTER(date) Returns the quarter as an integer between 1 and 4

SECOND(time-exp) Returns the second as an integer between 0 and 59

TIMESTAMPADD(interval,
integer-exp, timestamp-exp)

Calculates a timetamp by adding integer-exp intervals of
type interval to timestamp-exp

Keywords used to express valid TIMESTAMPADD interval
values are:

SQL_TSI_FRAC_SECOND
SQL_TSI_SECOND
SQL_TSI_MINUTE
SQL_TSI_HOUR
SQL_TSI_DAY
SQL_TSI_WEEK
SQL_TSI_MONTH
SQL_TSI_QUARTER
SQL_TSI_YEAR
D-36 SOLID Administrator Guide

Data-type
System Function

Data-type

TIMESTAMPDIFF(interval,
timestamp-exp1, timestamp-
exp2)

Returns the integer number of intervals by which timestamp-
exp2 is greater than timestamp-exp1

Keywords used to express valid TIMESTAMPDIFF interval
values are:

SQL_TSI_FRAC_SECOND
SQL_TSI_SECOND
SQL_TSI_MINUTE
SQL_TSI_HOUR
SQL_TSI_DAY
SQL_TSI_WEEK
SQL_TSI_MONTH
SQL_TSI_QUARTER
SQL_TSI_YEAR

WEEK(date) Returns the week of the year as an integer between 1 and 52

YEAR(date) Returns the year as an integer

Function Purpose

IFNULL(exp, value) If exp is null, returns value; if not, returns exp

USER() Returns the user authorization name

UIC() Returns the connection id associated with the connection

Data-type
 SOLID SQL Syntax D-37

Date and Time Literals

nt:
Date and Time Literals

Pseudo Columns
The following pseudo columns may also be used in the select-list of a SELECT stateme

data-type ::= {BINARY |
 CHAR [length] | DATE |
 DECIMAL [(precision [, scale])] |
 DOUBLE PRECISION |
 FLOAT [(precision)] |
 INTEGER |
 LONG VARBINARY |
 LONG VARCHAR |
 LONG WVARCHAR |
 NUMERIC [(precision [, scale])] |
 REAL |
 SMALLINT |
 TIME |
 TIMESTAMP [(timestamp precision)] |
 TINYINT | VARBINARY |
 VARCHAR [(length)] } |
 WCHAR |
 WVARCHAR [length]

Date/time literal

date-literal ´YYYY-MM-DD´

time-literal ´HH:MM:SS´

timestamp-literal ´YYYY-MM-DD HH:MM:SS´

Pseudo column Type Explanation

ROWVER VARBINARY(254) Version of the row in a table.

ROWID VARBINARY(10) Persistent id for a row in a
table.
D-38 SOLID Administrator Guide

Pseudo Columns

ue-
NOTE! Since ROWID and ROWVER refer to a single row, they may only be used with q
ries that return rows from a single table.

ROWNUM DECIMAL(16,2) Row number indicates the
sequence in which a row was
selected from a table or set of
joined rows. The first row
selected has a ROWNUM of
1, the second row has 2, etc.
ROWNUM is chiefly useful
for limiting the number of
rows returned by a query
(e.g., WHERE ROWNUM <
10).
 SOLID SQL Syntax D-39

Pseudo Columns
D-40 SOLID Administrator Guide

E

 user.
System Views and System Tables

System Views
SOLID Embedded Engine supports views specified in the X/Open SQL Standard.

COLUMNS
The COLUMNS system view identifies the columns which are accessible to the current

Column name Data type Description

TABLE_CATALOG VARCHAR reserved for future use

TABLE_SCHEMA VARCHAR the name of the schema contain-
ing TABLE_NAME

TABLE_NAME VARCHAR the name of the table or view

COLUMN_NAME VARCHAR the name of the column of the
specified table or view

DATA_TYPE VARCHAR the data type of the column

SQL_DATA_TYPE_NUM SMALLINT ODBC compliant data type
number

CHAR_MAX_LENGTH INTEGER maximum length for a character
data type column; for others
NULL
 System Views and System Tables E-1

System Views

SERVER_INFO
The SERVER_INFO system view provides attributes of the current database system or
server.

TABLES
The TABLES system view identifies the tables accessible to the current user.

NUMERIC_PRECISION INTEGER the number of digits of mantissa
precision of the column, if
DATA_TYPE is approximate
numeric data type,
NUMERIC_PREC_RADIX
indicates the units of measure-
ment; for other numeric types
contains the total number of dec-
imal digits allowed in the col-
umn; for character data types
NULL

NUMERIC_PREC_RADIX SMALLINT the radix of numeric precision if
DATA_TYPE is one of the
approximate numeric data types;
otherwise NULL

NUMERIC_SCALE SMALLINT total number of significant dig-
its to the right of the decimal
point; for INTEGER and
SMALLINT 0; for others NULL

NULLABLE CHAR if column is known to be not
nullable 'NO'; otherwise 'YES'

NULLABLE_ODBC SMALLINT ODBC, if column is known to be
not nullable '0'; otherwise '1'

REMARKS LONG VARCHAR reserved for future use

Column name Data type Description

SERVER_ATTRIBUTE VARCHAR identifies an attribute of the
server

ATTRIBUTE_VALUE VARCHAR the value of the attribute
E-2 SOLID Administrator Guide

System Tables

are
System Tables

SQL_LANGUAGES
The SQL_LANGUAGES system table lists the SQL standards and SQL dialects which
supported.

Column name Data type Description

TABLE_CATALOG VARCHAR reserved for future use

TABLE_SCHEMA VARCHAR the name of the schema contain-
ing TABLE_NAME

TABLE_NAME VARCHAR the name of the table or view

TABLE_TYPE VARCHAR the type of the table

REMARKS LONG VARCHAR reserved for future use

Column name Data type Description

SOURCE VARCHAR the organization that defined this
specific SQL version

SOURCE_YEAR VARCHAR the year the relevant standard
was approved

CONFORMANCE VARCHAR the conformance level at which
conformance to the relevant
standard

INTEGRITY VARCHAR indicates whether the Integrity
Enhancement Feature is sup-
ported

IMPLEMENTATION VARCHAR identifies uniquely the vendor's
SQL language; NULL if
SOURCE is 'ISO'

BINDING_STYLE VARCHAR the binding style 'DIRECT',
*EMBED' or 'MODULE'

PROGRAMMING_LANG VARCHAR the host language used
 System Views and System Tables E-3

System Tables
SYS_ATTAUTH

SYS_CARDINAL

SYS_COLUMNS

Column name Data type Description

REL_ID INTEGER table id

UR_ID INTEGER user or role id

ATTR_ID INTEGER column id

PRIV INTEGER privilege info

GRANT_ID INTEGER grantor id

GRANT_TIM TIMESTAMP grant time

Column name Data type Description

REL_ID INTEGER the relation id as in
SYS_TABLES

CARDIN INTEGER the number of rows in the table

SIZE INTEGER the size of the data in the table

LAST_UPD TIMESTAMP the timestamp of the last update
in the table

Column name Data type Description

ID INTEGER unique column identifier

REL_ID INTEGER the relation id as in
SYS_TABLES

COLUMN_NAME VARCHAR the name of the column

COLUMN_NUMBER INTEGER the number of the column in the
table (in creation order)

DATA_TYPE VARCHAR the data type of the column

SQL_DATA_TYPE_NUM SMALLINT ODBC compliant data type
number
E-4 SOLID Administrator Guide

System Tables
SYS_EVENTS

DATA_TYPE_NUMBER INTEGER internal data type number

CHAR_MAX_LENGTH INTEGER maximum length for a CHAR
field

NUMERIC_PRECISION INTEGER numeric precision

NUMERIC_PREC_RADIX SMALLINT numeric precision radix

NUMERIC_SCALE SMALLINT numeric scale

NULLABLE CHAR are NULL values allowed (Yes,
No)

NULLABLE_ODBC SMALLINT ODBC, are NULL values
allowed (1,0)

FORMAT VARCHAR reserved for future use

DEFAULT_VAL VARBINARY reserved for future use

ATTR_TYPE INTEGER user defined (0) or internal (>0)

REMARKS LONG VARCHAR reserved for future use

Column name Data type Description

ID INTEGER unique event identifier

EVENT_NAME VARCHAR the name of the event

EVENT_PARAMCOUNT INTEGER number of parameters

EVENT_PARAMTYPES LONG VARBINARY types of parameters

EVENT_TEXT VARCHAR the body of the event

EVENT_SCHEMA VARCHAR the owner of the event

CREATIME TIMESTAMP creation time

TYPE INTEGER reserved for future use
 System Views and System Tables E-5

System Tables
SYS_FORKEYPARTS

SYS_FORKEYS

SYS_INFO

Column name Data type Description

ID INTEGER foreign key identifier

KEYP_NO INTEGER keypart number

ATTR_NO INTEGER column number

ATTR_ID INTEGER column identifier

ATTR_TYPE INTEGER column type

CONST_VALUE VARBINARY possible internal constant value;
otherwise NULL

Column name Data type Description

ID INTEGER foreign key identifier

REF_REL_ID INTEGER referenced table identifier

CREATE_REL_ID INTEGER creator table identifier

REF_KEY_ID INTEGER referenced key identifier

REF_TYPE INTEGER reference type

KEY_SCHEMA VARCHAR creator name

KEY_NREF INTEGER number of referenced key parts

Column name Data type Description

PROPERTY VARCHAR the name of the property

VALUE_STR VARCHAR value as a string

VALUE_INT INTEGER value as an integer
E-6 SOLID Administrator Guide

System Tables
SYS_KEYPARTS

SYS_KEYS

Column name Data type Description

ID INTEGER unique key identifier

REL_ID INTEGER the relation id as in
SYS_TABLES

KEYP_NO INTEGER keypart identifier

ATTR_ID INTEGER column identifier

ATTR_NO INTEGER the number of the column in the
table (in creation order)

ATTR_TYPE INTEGER the type of the column

CONST_VALUE VARBINARY constant value or NULL

ASCENDING CHAR is the key ascending (Yes) or
descending (No)

Column name Data type Description

ID INTEGER unique key identifier

REL_ID INTEGER the relation id as in
SYS_TABLES

KEY_NAME VARCHAR the name of the key

KEY_UNIQUE CHAR is the key unique (Yes, No)

KEY_NONUNIQUE_ODBC SMALLINT ODBC, is the key NOT unique
(1, 0)

KEY_CLUSTERING CHAR is the key a clustering key (Yes,
No)

KEY_PRIMARY CHAR is the key a primary key (Yes,
No)

KEY_PREJOINED CHAR reserved for future use

KEY_SCHEMA VARCHAR the owner of the key
 System Views and System Tables E-7

System Tables
SYS_PROCEDURES

SYS_RELAUTH

SYS_SEQUENCES

KEY_NREF INTEGER internal system specific informa-
tion

Column name Data type Description

ID INTEGER unique procedure identifier

PROCEDURE_NAME VARCHAR procedure name

PROCEDURE_TEXT LONG VARCHAR procedure body

PROCEDURE_BIN LONG VARBINARY compiled form of the procedure

PROCEDURE_SCHEMA VARCHAR the owner

CREATIME TIMESTAMP creation time

TYPE INTEGER reserved for future use

Column name Data type Description

REL_ID INTEGER relation id

UR_ID INTEGER user or role id

PRIV INTEGER privilege info

GRANT_ID INTEGER grantor id

GRANT_TIM TIMESTAMP grant time

GRANT_OPT CHAR grant option info

Column name Data type Description

SEQUENCE_NAME VARCHAR sequence name

ID INTEGER unique id

DENSE CHAR is the sequence dense or sparse
E-8 SOLID Administrator Guide

System Tables
SYS_SYNONYM

SYS_TABLEMODES

SYS_TABLES

SEQUENCE_SCHEMA VARCHAR the schema name

CREATIME TIMESTAMP creation time

Column name Data type Description

TARGET_ID INTEGER reserved for future use

SYNON INTEGER reserved for future use

Column name Data type Description

ID INTEGER relation id

MODE VARCHAR special mode info

MODIFY_TIME TIMESTAMP last modify time

MODIFY_USER VARCHAR last user that modified

Column name Data type Description

ID INTEGER unique table identifier

TABLE_NAME VARCHAR the name of the table

TABLE_TYPE VARCHAR the type of the table (BASE
TABLE or VIEW)

TABLE_SCHEMA VARCHAR the owner of the table

TABLE_CATALOG VARCHAR reserved for future use

CREATIME TIMESTAMP the creation time of the table

CHECKSTRING LONG VARCHAR possible check option defined
for the table

REMARKS LONG VARCHAR reserved for future use
 System Views and System Tables E-9

System Tables
SYS_TYPES

SYS_UROLE, SYS_USERS
These tables are for the system’s internal use only.

Column name Data type Description

TYPE_NAME VARCHAR the name of the data type

DATA_TYPE SMALLINT ODBC, data type number

PRECISION INTEGER ODBC, the precision of the data
type

LITERAL_PREFIX VARCHAR ODBC, possible prefix for lit-
eral values

LITERAL_SUFFIX VARCHAR ODBC, possible suffix for lit-
eral values

CREATE_PARAMS VARCHAR ODBC, the parameters needed to
create a column of the data type

NULLABLE SMALLINT ODBC, can the data type con-
tain NULL values

CASE_SENSITIVE SMALLINT ODBC, is the data type case sen-
sitive

SEARCHABLE SMALLINT ODBC, the supported search
operations

UNSIGNED_ATTRIBUTE SMALLINT ODBC, is the data type unsigned

MONEY SMALLINT ODBC, whether the data is a
money data type

AUTO_INCREMENT SMALLINT ODBC, whether the data type is
autoincrementing

LOCAL_TYPE_NAME VARCHAR ODBC, has the data type another
implementation defined name

MINIMUM_SCALE SMALLINT ODBC, the minimum scale of
the data type

MAXIMUM_SCALE SMALLINT ODBC, the maximum scale of
the data type
E-10 SOLID Administrator Guide

System Tables
SYS_VIEWS

Column name Data type Description

V_ID INTEGER unique identifier for this view

TEXT LONG VARCHAR view definition

CHECKSTRING LONG VARCHAR possible CHECK OPTION
defined for the view

REMARKS LONG VARCHAR reserved for future use
 System Views and System Tables E-11

System Tables
E-12 SOLID Administrator Guide

F

n
SI
id

lso
SOLID SQL API Reserved Words

The following words are reserved in several SQL standards: ODBC 2.1, X/Ope
and SQL Access Group SQL CAE specification, Database Language - SQL: AN
X3H2 (SQL-92). Some words are used by SOLID SQL. Applications should avo
using any of these keywords for other purposes. The following table contains a
potential reserved words; these markings are enclosed in parenthesis.

Reserved word ODBC X/Open SQL ANSI SQL2 SOLID SQL

ABSOLUTE • •

ACTION •

ADA •

ADD • • • •

ADMIN •

AFTER (•) •

ALIAS (•)

ALL • • • •

ALLOCATE • • •

ALTER • • • •

AND • • • •

ANY • • • •

ARE • •
 SOLID SQL API Reserved Words F-1

AS • • • •

ASC • • • •

ASSERTION • •

ASYNC (•) •

AT • •

AUTHORIZATION • • •

AVG • • •

BEFORE (•) •

BEGIN • • • •

BETWEEN • • • •

BINARY •

BIT • •

BIT_LENGTH • •

BOOLEAN (•)

BOTH •

BREADTH (•)

BY • • • •

CALL (•) •

CASCADE • • • •

CASCADED • •

CASE • •

CAST • •

CATALOG • •

CHAR • • • •

CHAR_LENGTH • •
F-2 SOLID Administrator Guide

CHARACTER • • •

CHARACTER_LENGTH • •

CHECK • • • •

CLOSE • • • •

COALESCE • •

COBOL •

COLLATE • •

COLLATION • •

COLUMN • • •

COMMIT • • • •

COMMITTED •

COMPLETION (•)

CONNECT • • •

CONNECTION • • •

CONSTRAINT • •

CONSTRAINTS • •

CONTINUE • • •

CONVERT • •

CORRESPONDING • •

COUNT • • •

CREATE • • • •

CROSS •

CURRENT • • •

CURRENT_DATE • •

CURRENT_TIME • •
 SOLID SQL API Reserved Words F-3

CURRENT_TIMESTAMP • •

CURRENT_USER •

CURSOR • • • •

CYCLE (•)

DATA (•)

DATE • • •

DAY • •

DEALLOCATE • • •

DEC • • •

DECIMAL • • • •

DECLARE • • •

DEFAULT • • •

DEFERRABLE • •

DEFERRED • •

DELETE • • • •

DEPTH (•)

DESC • • • •

DESCRIBE • • •

DESCRIPTOR • • •

DIAGNOSTICS • • •

DICTIONARY • (•)

DISCONNECT • • •

DISPLACEMENT •

DISTINCT • • • •

DOMAIN • •
F-4 SOLID Administrator Guide

DOUBLE • • • •

DROP • • • •

EACH (•)

ELSE • • •

ELSEIF (•) •

END • • • •

END-EXEC • •

EQUALS (•)

ESCAPE • • •

EVENT •

EXCEPT • • •

EXCEPTION • • •

EXEC • • • •

EXECUTE • • • •

EXISTS • • • •

EXPLAIN •

EXTERNAL • •

EXTRACT • •

FALSE • •

FETCH • • • •

FIRST • •

FLOAT • • • •

FOR • • • •

FOREIGN • • • •

FORTRAN •
 SOLID SQL API Reserved Words F-5

FOUND • • •

FROM • • • •

FULL • •

GENERAL (•)

GET • • •

GLOBAL • •

GO • •

GOTO • • •

GRANT • • • •

GROUP • • • •

HAVING • • • •

HOUR • •

IDENTIFIED •

IDENTITY • •

IF (•) •

IGNORE • (•)

IMMEDIATE • • •

IN • • • •

INCLUDE • •

INDEX • • •

INDICATOR • •

INITIALLY • •

INNER • • •

INPUT • •

INSENSITIVE • •
F-6 SOLID Administrator Guide

INSERT • • • •

INT • • •

INTEGER • • • •

INTERSECT • • •

INTERVAL • •

INTO • • • •

IS • • • •

ISOLATION • • •

JOIN • • •

KEY • • • •

LANGUAGE • •

LAST • •

LEADING •

LEAVE (•) •

LEFT • • •

LESS (•)

LEVEL • • •

LIKE • • • •

LIMIT (•)

LOCAL • •

LOCK •

LONG •

LOOP (•) •

LOWER • •

MAINMEMORY •
 SOLID SQL API Reserved Words F-7

MATCH • •

MAX • • •

MIN • • •

MINUTE • •

MODIFY (•) •

MODULE • •

MONTH • •

MUMPS •

NAMES • •

NATIONAL • •

NATURAL •

NCHAR • •

NEW (•) •

NEXT • • •

NO •

NONE • (•)

NOT • • • •

NULL • • • •

NULLIF • •

NUMERIC • • • •

OBJECT (•)

OCTET_LENGTH • •

OF • • • •

OFF • (•)

OID (•)
F-8 SOLID Administrator Guide

OLD (•)

ON • • • •

ONLY • • •

OPEN • • •

OPERATION (•)

OPERATORS (•)

OPTIMISTIC •

OPTION • • •

OR • • • •

ORDER • • • •

OTHERS (•)

OUTER • • •

OUTPUT • •

OVERLAPS • •

PARAMETERS (•)

PARTIAL • •

PASCAL •

PENDANT (•)

PESSIMISTIC •

PLAN •

PLI •

POSITION • •

POST •

PRECISION • • • •

PREORDER (•)
 SOLID SQL API Reserved Words F-9

PREPARE • • • •

PRESERVE • •

PRIMARY • • • •

PRIOR • •

PRIVATE (•)

PRIVILEGES • • •

PROCEDURE • • •

PROTECTED (•)

PUBLIC • • • •

READ • •

REAL • • •

RECURSIVE (•)

REF (•)

REFERENCES • • •

REFERENCING (•) •

REGISTER •

RELATIVE •

RENAME •

REPEATABLE •

REPLACE (•)

RESIGNAL (•)

RESTRICT • • • •

RETURN (•) •

RETURNS (•) •

REVOKE • • • •
F-10 SOLID Administrator Guide

RIGHT • •

ROLE (•) •

ROLLBACK • • • •

ROUTINE (•)

ROW (•)

ROWID •

ROWNUM •

ROWVER •

ROWS • •

SAVEPOINT (•) •

SCHEMA • • •

SCROLL • •

SEARCH (•)

SECOND • •

SECTION • • •

SELECT • • • •

SENSITIVE (•)

SEQUENCE • (•) •

SERIALIZABLE •

SESSION •

SESSION_USER •

SET • • • •

SIGNAL (•)

SIMILAR (•)

SIZE • •
 SOLID SQL API Reserved Words F-11

SMALLINT • • • •

SOME • • •

SPACE

SQL • • • •

SQLCA • •

SQLCODE • •

SQLERROR • • • •

SQLEXCEPTION (•)

SQLSTATE • •

SQLWARNING • • (•)

START •

STRUCTURE (•)

SUBSTRING • •

SUM • • •

SYSTEM •

SYSTEM_USER •

TABLE • • • •

TEMPORARY • •

TEST (•)

THEN • • •

THERE (•)

TIME • • •

TIMEOUT •

TIMESTAMP • • •

TIMEZONE_HOUR • •
F-12 SOLID Administrator Guide

TIMEZONE_MINUTE • •

TINYINT •

TO • • • •

TRAILING •

TRANSACTION • • •

TRANSLATE • •

TRANSLATION • •

TRIGGER (•) •

TRIM •

TRUE • •

TYPE (•)

UNDER (•)

UNION • • • •

UNIQUE • • • •

UNKNOWN • •

UNREGISTER •

UPDATE • • • •

UPPER • •

USAGE • •

USER • • • •

USING • • • •

VALUE • • •

VALUES • • • •

VARBINARY •

VARCHAR • • • •
 SOLID SQL API Reserved Words F-13

VARIABLE (•)

VARYING • • •

VIEW • • • •

VIRTUAL (•)

VISIBLE (•)

WAIT (•) •

WHEN • • •

WHENEVER • • •

WHERE • • • •

WHILE (•) •

WITH • • • •

WITHOUT (•)

WORK • • • •

WRITE • •

WCHAR •

WVARCHAR •

YEAR • •

ZONE •
F-14 SOLID Administrator Guide

G

SOLID Embedded Engine Command Line
Options

General Options

Option Description Examples

-c<dir> Changes working directory.

-f Starts server in foreground.

-h Displays help.

-m Monitors users’ messages and SQL statements.

-n<name> Sets server name.

-
s{start|install|rem
ove}, name,
fullexepath,
[autostart]

The Windows NT version of SOLID Embed-
ded Engine is by default an icon exe version.
Using the option -sstart, SOLID Embedded
Engine can be started as a service executable
and started and stopped from the service man-
ager. If SOLID Embedded Engine is started
without the-sstart option, it starts as an icon
exe like the w16 and w95 versions. The ser-
vice version of SOLID Embedded Engine can-
not interact with the display and cannot create
a new database. The service version writes
warning and error messages also to the NT
event log. SOLID Embedded Engine can also
install and remove services using this com-
mand line option.

SOLID.EXE -s"install,SOLID,
D:\SOLID\SOLID.EXE -sstart -
cD:\SOLID"

SOLID.EXE -s"install,SOLID,
D:\SOLID\SOLID.EXE
-sstart -Cd:\SOLID,autostart"

SOLID.EXE
-s"remove,SOLID"
 SOLID Embedded Engine Command Line Options G-1

General Options
-U<username> See option -x execute or -x exit. If used with-
out the -x option, specifies the username for
the database being created.

-P<password> See option -x execute or -x exit. If used with-
out the -x option, specifies the given password
for the database being created.

-x autoconvert Converts database format to version 3.0 and
starts server process

-x convert Converts database format to version 3.0 and
exists

-x exe-
cute:<input file>

Prompts for the database administrator's user
name and password, creates a new database,
executes SQL statements from a file, and
exists. The options -U and -P can be used to
give the database the administrator's user
name and password.

solid.exe -x execute:init.sql

solid.exe -x execute:init.sql
-Udba -Pdba

-x exit Prompts for the database administrator's user
name and password, creates a new database,
and exists. Options -U and -P can be used to
give the database administrator's user name
and password.

solid.exe -x exit

solid.exe -x exit -Udba -Pdba

-x forcerecovery Does a forced roll-forward recovery.

-x hide Hides server icon.

-x ignoreerrors Ignores index errors.

-x testblocks Tests database blocks.

-x testindex Tests database index.

-? Help = Usage.
G-2 SOLID Administrator Guide

.

pt,

After a
. The
m the

 be
le
’ that
ages
s as

rchi-

n pro-
Glossary

This glossary gives you a description of the terminology used in SOLID documentation

Binary Large Object (BLOb)

A BLOb is a large block of binary information such as a picture, video clip, sound excer
or a formatted text document. BLObs can be saved to and retrieved from SOLID Embedded
Engine.

Checkpoint

Checkpoints are used to store a consistent state of the database quickly onto the disk.
system crash, the database will start recovering transactions from the latest checkpoint
more frequently checkpoints are made, the fewer transactions need to be recovered fro
log file.

Client/server computing

Client/server computing divides a large piece of software into modules that need not all
executed within the same memory space nor on the same processor. The calling modu
becomes the ‘client’ that requests services, and the called module becomes the ‘server
provides services. Client and server processes exchange information by sending mess
through a computer network. They may run on different hardware and software platform
appropriate for their special functions.

Two basic client/server architecture types are called two-tier and three-tier application a
tectures.

Communication protocol

A communication protocol is a set of rules and conventions used in the communication
between servers and clients. The server and client have to use the same communicatio
tocol in order to establish a connection.
 Glossary-1

e. A
er-

t and
n the
e
 a
ly

nt in

ent

ystem
 after

. This

 a
rame-
Database administrator

The database administrator is a person responsible for tasks such as:

■ managing users, tables, and indices

■ backing up data

■ allocating disk space for the database files

Database management system (DBMS)

A DBMS is a system that stores information in and retrieves information from a databas
DBMS typically consists of a database server, administration utilities, an application int
face, and development tools.

Database procedures (Stored procedures)

Database procedures allow programmers to split the application logic between the clien
the server. These procedures are stored in the database, and they accept parameters i
activation call from the client application. This arrangement is beneficial especially in th
case of heavy updates that first require extensive queries and that can be initiated with
small amount of parameter information. In these cases, the network traffic is significant
reduced, and much better performance can be achieved.

Event Alerts

Events are objects with a name and parameters. Event alerts are used to signal an eve
the database. The signal is sent from an application using the POST EVENT command. The
signal is received by one or more client applications waiting for the event. The use of ev
alerts removes resource consuming database polling from applications.

Log file (Transaction log)

This file holds a log of all committed operations executed by the database server. If a s
crash occurs, the database server uses this log to recover all data inserted or modified
the latest checkpoint.

Network name

The network name of a server consists of a communication protocol and a server name
combination identifies the server in the network.

SOLID Clients support Logical Data Source Names. These names can be used to give
database a descriptive name. This name is mapped to a network name using either pa
Glossary-2 SOLID Administrator Guide

ga-
mal-
s of
s.

o sub-
so

bles
 there

ongs.
em

. A typ-
an

’s

dminis-
ter settings in the clients solid.ini file or in Windows operating systems’ registry set-
tings.

Open Database Connectivity (ODBC)

ODBC is a programming interface standard for SQL database programs. SOLID Embedded
Engine offers a native ODBC programming interface.

Relational database management system (RDBMS)

SOLID Embedded Engine is an RDBMS, which stores and retrieves information that is or
nized into two-dimensional tables. This name derives from the relational theory that for
izes the data manipulation requests as set operations and allows mathematical analysi
these sets. RDBMSs typically support the SQL language for data manipulation request

SQL Access Group’s Call Level Interface (SAG CLI)

SAG CLI is a programming interface standard that defines the functions that are used t
mit dynamic SQL clauses to a database server for execution. The ODBC interface is al
based on SAG CLI. The SOLID SQL API conforms to the SAG CLI standard.

Schema

All tables are contained in a higher level construct called schema. It is a place where ta
and related objects are gathered together under one qualifying name. For each schema
are zero or more tables, and for each table, there is exactly one schema to which it bel
The relationship between a schema and its tables is similar to that of an operating syst
directory and the files contained within that directory.

Table schemas allow several logical databases to reside in the same physical database
ical use could be to have a similar table structure for each customer in the database of
accounting firm. All the data would still be stored in a single physical database, which
allows sharing the common parameter information.

SOLID directory

The default directory for storing SOLID DBMS database files. This is the server program
working directory.

Structured Query Language (SQL)

SQL is a standardized query language designed for handling database requests and a
tration. The SQL syntax used in SOLID Embedded Engine is based on the ANSI X3H2-
1989 Level 2 standard including important ANSI X3H2-1992 (SQL2) extensions. For a
more formal definition of the syntax, refer to Appendix D SOLID SQL Syntax of SOLID
Administrator Guide.
 Glossary-3

 or
o-
t, other

s for
imiz-
ral

ca-
 is
Three-tier client/server architecture model

Compared to the two-tier architecture the three-tier architecture has an additional layer
layers of application servers. This allows splitting the application logic between client pr
cesses to a specialized application server process handling the resources managemen
I/O, or calculation intensive tasks.

Instead of sending small SQL statements the client application sends whole procedure
the application server to be processed. This reduces the number of messages thus min
ing the network load. The application logic is often more easily managed because seve
applications use centrally maintained procedures.

Two-tier client/server architecture model

Generally, the two-tier architecture refers to a client/server system, where a client appli
tion containing all the business logic is running on a workstation and a database server
taking care of data management.
Glossary-4 SOLID Administrator Guide

Index
A
arguments for timed commands, 3-7
automating administrative tasks, 3-6

B
backup directory, 7-3
backups

automating, 3-6
failed, 3-2
making manually, 3-1
online, 3-2

C
cache

database, 8-4
changing database location, 3-5
checkpoints, 3-4

automatic daemon, 3-4
automating, 3-6
erasing automatically, 3-5
frequency, 3-4

closing SOLID Server, 2-4
cluster, 5-8
columns

adding to a table, 5-6
deleting from a table, 5-6

committing work
after altering table, 5-6, 5-8
after altering users and roles, 5-5

communication
between client and server, 6-1
selecting a protocol, 6-4
tracing problems, 9-8

communication protocols, 6-4
DECnet, 6-7
IPX/SPX, 6-8
Named Pipes, 6-7
NetBIOS, 6-6
selecting, 6-4
Shared Memory, 6-4
summary, 6-9
TCP/IP, 6-5
UNIX Pipes, 6-5

concatenated indexes, 8-2
configuration file, B-1
connecting to SOLID Enbedded Engine, 2-3
control file

SOLID SpeedLoader, 4-2
control file syntax

SOLID SpeedLoader, 4-4
creating reports

automating, 3-6

D
data source name, 6-4
Data Sources, 6-11

defining in solid.ini, 6-11
database

changing location, 3-5
closing, 3-5

automating, 3-6
creating, 2-2
opening

automating, 3-6
recovery, 3-4
several databases on one computer, 3-6
 Index -1

database. See also index file, 7-2
DECnet, 6-7
documentation

electronic, xi

E
executing system commands

automating, 3-6
EXPLAIN PLAN statement, 9-3
external sorting, 8-5

F
FileSpec, 7-2

I
import file

SOLID SpeedLoader, 4-2
index file

changing block size, 7-6
location, 7-2
maximum size, 7-2
splitting to multiple disks, 7-2

indexes, 8-2
creating, 5-7
creating a unique index, 5-7
deleting, 5-7
foreign key, 5-8
managing, 5-7

ini file
SOLID SpeedLoader, 4-3

installing SOLID Embedded Engine, 2-1
IPX/SPX, 6-8

L
listen name, 6-1, 6-3
log file, 3-4

SOLID SpeedLoader, 4-3
logon. See connecting to SOLID Embedded Engine, 2-3

M
multi-column indexes, 8-2

N
Named Pipes, 6-7
NetBIOS, 6-6
network names, 6-1, 6-3

activating modifications, 6-3
adding, 6-2
clients, 6-3
DECnet, 6-8
modifying, 6-2
Named Pipes, 6-7
NetBIOS, 6-6
removing, 6-3
Shared Memory, 6-4
TCP/IP, 6-5
UNIX Pipes, 6-6

network names IPX/SPX, 6-8
Network trace facility, 9-9
non-graphical user interfaces

creating new database, 2-2

O
ODBC

data source name, 6-4

P
parameters, B-1

BackupCopyLog, 3-4
BackupDeleteLog, 3-4
BackupDirectory, 7-3
CacheSize, 7-4
CheckpointInterval, 3-5
Connect, 7-2
default settings, 7-1
FileNameTemplate, 7-4
FileSpec_]1...N], 7-2
Info, 7-5
Listen, 7-2
managing, 7-5
Threads, 7-4
TmpFile, 7-4
Trace, 7-5
TraceFile, 7-5
with constant values, 7-6

passwords
Index -2 SOLID Administrator Guide

criteria, 2-2
entering, 5-3

performance
indexes, 8-2

Ping facility, 9-10

R
recovery, 3-4
referential integrity, 5-8
running several servers, 3-6

S
server names. See network names, 6-1
Shared Memory, 6-4
shutting down SOLID Embedded Engine, 2-4

automating, 3-6
SOLDD, 4-12

options, 4-12
SOLEXP, 4-11
SOLID Remote Control, 1-5
SOLID Remote Control (Teletype)

commands, 4-14
options, 4-13
starting, 4-13

SOLID Embedded Engine
background, 1-1
closing, 2-4
connecting to, 2-3
features, 1-1
installing, 2-1
introduction, ix
starting, 2-1

SOLID SpeedLoader
control file, 4-2
control file syntax, 4-4
import file, 4-2
ini file, 4-3
log file, 4-3

SOLID SQL Editor, 1-5
SOLID SQL Editor (Teletype), 4-16

commands, 4-17
options, 4-16

SOLLOAD, 4-4
options, 4-4

sorting, 8-5
SQL Info facility, 9-2
SQL scripts, 5-2

sample.sql, 5-5
users.sql, 5-2

SQL statements, 5-1
examples for administering indexes, 5-7
examples for managing indexes, 5-7
examples for managing tables, 5-5
examples for managing users and roles, 5-3
tuning, 8-1

starting SOLID Remote Control (Teletype), 4-13
starting SOLID Embedded Engine, 2-1

T
tables

adding columns to, 5-6
committing work after altering, 5-6, 5-8
creating, 5-6
deleting columns from, 5-6
managing, 5-5
removing, 5-6

TCP/IP, 6-5
throwing out users

automating, 3-6
timed commands, 3-6
tracing communication, 9-8
tuning SQL statements, 8-1

U
UNIX Pipes, 6-5
user and roles

committing work after altering, 5-5
user names

reserved names, 5-2
user privileges, 5-2

granting, 5-4
granting administrator privileges, 5-5
revoking, 5-4

user roles, 5-2
administrator role, 5-3, 5-5
creating, 5-4
deleting, 5-4
giving a user a role, 5-4
 Index -3

granting privileges to, 5-4
reserved role names, 5-2
revoking privileges from, 5-4
revoking the role of a user, 5-5
system console role, 5-3

usernames
criteria, 2-2
default, 2-2

users
creating, 5-3
deleting, 5-3
throwing out, 3-6

V
viewing Message Log, 2-4

W
Windows registry

data sources, 6-12
Index -4 SOLID Administrator Guide

	Administrator Guide
	Welcome
	1 Introducing SOLID Embedded Engine
	About SOLID Embedded Engine
	SOLID Embedded Engine Features:
	SOLID Bonsai TreeTM
	Wide range of data type support
	Stored procedures, event alerts, and sequencer objects
	Easy Administration

	SOLID Embedded Engine Components
	Programming interfaces (SQL API, ODBC, and JDBC)
	Network Services
	SQL Parser and Optimizer
	Engine
	System Tools and Utilities
	SOLID Remote Control
	SOLID SQL Editor
	Tools for handling ASCII data

	SOLID SynchroNet

	2 Basic Administration Tasks
	Installing SOLID Embedded Engine
	Starting SOLID Embedded Engine
	Creating a New Database
	Connecting to SOLID Embedded Engine
	Connecting with SOLID Remote Control
	Connecting with SOLID SQL Editor

	Viewing the SOLID Embedded Engine Message Log
	Shutting Down SOLID Embedded Engine

	3 Database Maintenance
	Making Backups
	To Correct a Failed Backup

	Restoring Backups
	Recovering from Abnormal Shutdown
	Transaction Logging
	Creating Checkpoints
	Closing the Database
	Changing Database Location
	Running Several Servers on One Computer
	Entering Timed Commands

	4 Using SOLID Data Management Tools
	Command Line Arguments
	SOLID SpeedLoader
	Control File
	Message Log File
	Configuration File
	Invoking SOLID SpeedLoader
	Control File Syntax

	Loading Fixed-format Records
	Loading Variable-length Records
	Running a Sample Load Using Solload
	Hints to Speed up Loading

	SOLID Export
	Invoking SOLID Export

	SOLID Data Dictionary
	Invoking SOLID Data Dictionary

	SOLID Remote Control (Teletype)
	Invoking SOLID Remote Control (Teletype)
	Using SOLID Remote Control (Teletype)

	SOLID SQL Editor (Teletype)
	Starting SOLID SQL Editor (Teletype)
	Using SOLID SQL Editor (Teletype)
	Executing SQL Statements
	Exiting SOLID SQL Editor
	Executing an SQL Script

	Tools Sample: Reloading a Database

	5 Administration with SQL Statements
	About SOLID SQL Syntax
	Administering the Database
	Managing User Privileges and Roles
	User Privileges
	User Roles

	Managing Tables
	Managing Indexes
	Primary Keys
	Foreign Keys

	6 Network Connections
	Communication between Client and Server
	Network Names for SOLID Embedded Engine
	Network Name for Clients
	Communication Protocols
	Shared Memory
	TCP/IP
	UNIX Pipes
	NetBIOS
	Named Pipes
	DECnet
	IPX/SPX
	A Summary of Protocols

	Logical Data Source Names

	7 Configuration
	Configuration File and Default Settings
	Most Important Parameters
	Managing Parameters
	Constant Parameter Values

	8 Performance Tuning
	Tuning SQL Statements and Applications
	Using SOLID Server Diagnostic Tools
	Indexes
	Full table scan
	Concatenated indexes

	Tuning Memory Allocation
	Tuning Your Operating System
	Database Cache

	Tuning I/O
	Distributing I/O

	Sorting
	Tuning Checkpoints

	9 Diagnostics and Troubleshooting
	Observing Performance
	The EXPLAIN PLAN Statement

	Tracing Communication between Client and Server
	The Network Trace Facility
	The Ping Facility

	Problem Reporting
	Problem Categories
	SOLID SQL API Problems
	SOLID ODBC Driver Problems
	SOLID JDBC Driver Problems
	UNIFACE Driver for SOLID Embedded Engine Problems
	Communication between a Client and Server

	AError Codes
	Error Categories
	SOLID SQL Errors
	SOLID Database Errors
	SOLID Utility Errors
	SOLID Table Errors
	SOLID Embedded Engine Errors
	SOLID Communication Errors
	SOLID Communication Warnings
	SOLID Procedure Errors
	SOLID Sorter Errors

	B Configuration Parameters
	General Section
	IndexFile Section
	Logging Section
	Communication Section
	Data Sources
	Server Section
	SQL Section
	Sorter Section

	C Data Types
	Supported Data Types in SOLID Embedded Engine
	Character Data Types
	Numeric Data Types
	Binary Data Types
	Date Data Type
	Time Data Type
	Timestamp Data Type
	The Smallest Possible Non-zero Numbers

	D SOLID SQL Syntax
	ADMIN COMMAND
	ALTER TABLE
	ALTER USER
	CALL
	COMMIT
	CREATE EVENT
	CREATE INDEX
	CREATE PROCEDURE
	CREATE ROLE
	CREATE SEQUENCE
	CREATE TABLE
	CREATE USER
	CREATE VIEW
	DELETE
	DELETE (positioned)
	DROP EVENT
	DROP INDEX
	DROP PROCEDURE
	DROP ROLE
	DROP SEQUENCE
	DROP TABLE
	DROP USER
	DROP VIEW
	EXPLAIN PLAN FOR
	GRANT
	INSERT
	INSERT (Using Query)
	REVOKE (Role from User)
	REVOKE (Privilege from Role or User)
	ROLLBACK
	SELECT
	SET
	SET SCHEMA
	UPDATE (Positioned)
	UPDATE (Searched)
	Table-reference
	Query-specification
	Search-condition
	Check-condition
	Expression
	String Function
	Numeric Function
	Date Time Function
	System Function
	Data-type
	Date and Time Literals
	Pseudo Columns

	E System Views and System Tables
	System Views
	COLUMNS
	SERVER_INFO
	TABLES

	System Tables
	SQL_LANGUAGES
	SYS_ATTAUTH
	SYS_CARDINAL
	SYS_COLUMNS
	SYS_EVENTS
	SYS_FORKEYPARTS
	SYS_FORKEYS
	SYS_INFO
	SYS_KEYPARTS
	SYS_KEYS
	SYS_PROCEDURES
	SYS_RELAUTH
	SYS_SEQUENCES
	SYS_SYNONYM
	SYS_TABLEMODES
	SYS_TABLES
	SYS_TYPES
	SYS_UROLE, SYS_USERS
	SYS_VIEWS

	F SOLID SQL API Reserved Words
	G SOLID Embedded Engine Command Line Options
	General Options

	Glossary
	Index

