
comp.sys

TCP/IP

directory server

World Wide Web

ww
Personal

IStore

Proxy

merchant system
HTML

http://www
Internet

server
security

news

URL

HTML

mail

Inter

navigator
community system

electronic commerce

JavaScript
Proxy

Mozilla

certificate

Publishing

Publishing

Chat

encryption

secure sockets layer

SSL

What’s New in
Javascript 1.2

JavaScript
Version 1.2

Netscape Communications Corporation ("Netscape") and its licensors retain all ownership rights to this document (the
"Document"). Use of the Document is governed by applicable copyright law. Netscape may revise this Document
from time to time without notice.

THIS DOCUMENT IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. IN NO EVENT SHALL NETSCAPE BE
LIABLE FOR ANY LOSS OF PROFITS, LOSS OF BUSINESS, LOSS OF USE OR DATA, INTERRUPTION OF BUSINESS,
OR FOR INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES OF ANY KIND, ARISING FROM ANY
ERROR IN THIS DOCUMENT.

The Document is copyright © 1997 Netscape Communications Corporation. All rights reserved.

Netscape and Netscape Navigator are registered trademarks of Netscape Communications Corporation in the United
States and other countries. Netscape's logos and Netscape product and service names are also trademarks of Netscape
Communications Corporation, which may be registered in other countries. Other product and brand names are
trademarks of their respective owners.

The downloading, export or reexport of Netscape software or any underlying information or technology must be in
full compliance with all United States and other applicable laws and regulations. Any provision of Netscape software
or documentation to the U.S. Government is with restricted rights as described in the license agreement
accompanying Netscape software.

.

The Team:
Engineering:
Marketing:
Publications:
Quality Assurance:
Technical Support:

Version 1.0

©Netscape Communications Corporation 1997
All Rights Reserved

Printed in USA
99 98 97 10 9 8 7 6 5 4 3 2 1

Netscape Communications Corporation 501 East Middlefield Road, Mountain View, CA 94043

Recycled and Recyclable Paper

Contents iii

Contents
Introduction ..15

Feature Summary ...15

Event Model ..15

Functions ...17

Layers ...17

Methods ...17

Objects ...21

Operators ...21

Properties ...22

Regular Expressions ..23

Signed Scripts ..23

Statements ..24

Style Sheets ..24

Miscellaneous ..24

Compatibility With Earlier Versions of Navigator ..25

Chapter 1 Event Model ...27

The event Object ...27

Details of the event object ..28

Event Capturing ...30

Example ...32

Chapter 2 Events ...33

Click (revised to include new properties) ..33

Syntax ..34

Parameters ...34

Event of ...34

Event properties used ...34

DblClick ..35

Syntax ..35

iv What’s New in JavaScript 1.2

Parameters .. 35

Event of ... 35

Event properties used .. 35

DragDrop ... 36

Syntax .. 36

Parameters .. 36

Event of ... 36

Event properties used .. 36

Description .. 36

KeyDown ... 37

Syntax .. 37

Parameters .. 37

Event of ... 37

Event properties used .. 37

Description .. 38

See also ... 38

KeyPress .. 38

Syntax .. 38

Parameters .. 38

Event of ... 38

Event properties used .. 38

Description .. 39

See also ... 39

KeyUp .. 39

Syntax .. 39

Parameters .. 39

Event of ... 40

Event properties used .. 40

MouseDown .. 40

Syntax .. 40

Parameters .. 40

Event of ... 41

Event properties used .. 41

Contents v

Description .. 41

MouseMove ... 41

Syntax .. 41

Parameters ... 42

Event of ... 42

Event properties used ... 42

Description .. 42

See Also ... 42

MouseOut (revised to include new properties) .. 42

Syntax .. 43

Parameters ... 43

Event of ... 43

Event properties used ... 43

MouseOver (revised to include new properties) .. 43

Syntax .. 43

Parameters ... 44

Event of ... 44

Event properties used ... 44

MouseUp .. 44

Syntax .. 44

Parameters ... 44

Event of ... 45

Event properties used ... 45

Description .. 45

Move .. 45

Syntax .. 46

Parameters ... 46

Event of ... 46

Event properties used ... 46

Resize ... 46

Syntax .. 46

Parameters ... 47

Event of ... 47

vi What’s New in JavaScript 1.2

Event properties used .. 47

Chapter 3 Functions .. 49

Nesting Functions Within Functions .. 49

Function Constructor .. 49

Number .. 50

Syntax .. 50

Parameter .. 50

Description .. 50

Example .. 50

String .. 50

Syntax .. 51

Parameter .. 51

Description .. 51

Example .. 51

Chapter 4 Layers .. 53

Chapter 5 Methods .. 55

Document Method .. 55

getSelection ... 55

Navigator Method .. 56

preference ... 56

Window Methods .. 57

back ... 57

disableExternalCapture ... 58

enableExternalCapture ... 58

find .. 59

forward .. 60

home ... 61

moveBy ... 61

moveTo ... 62

open (window object) ... 63

resizeBy ... 65

resizeTo ... 66

Contents vii

scrollBy .. 67

scrollTo .. 68

stop .. 68

Shared Methods ... 69

captureEvents .. 69

clearInterval .. 70

handleEvent .. 71

print ... 71

releaseEvents .. 72

routeEvent ... 72

setInterval .. 73

setTimeout .. 74

toString .. 75

Chapter 6 Objects ... 77

Creating Objects With Literal Notation .. 77

Syntax .. 78

Properties .. 78

Description .. 78

Example .. 78

arguments .. 78

Number .. 79

screen ... 80

Syntax .. 80

Parameters ... 80

Property of .. 80

Properties .. 80

Methods ... 81

Event handlers .. 81

Chapter 7 The String Object ... 83

charCodeAt .. 84

Syntax .. 84

Parameters ... 84

Method of .. 84

viii What’s New in JavaScript 1.2

Example .. 84

concat .. 85

Syntax .. 85

Parameters .. 85

Method of ... 85

Description .. 85

Example .. 85

fromCharCode ... 86

Syntax .. 86

Parameters .. 86

Method of ... 86

Description .. 86

Examples ... 86

match ... 87

Syntax .. 87

Parameters .. 87

Method of ... 87

Description .. 87

Examples ... 88

replace ... 88

Syntax .. 89

Parameters .. 89

Method of ... 89

Description .. 89

Examples ... 89

search ... 90

Syntax .. 90

Parameters .. 90

Description .. 90

Example .. 91

slice .. 91

Syntax .. 91

Parameters .. 91

Contents ix

Method of .. 92

Description .. 92

Example .. 92

split .. 92

Syntax .. 93

Parameters ... 93

Method of .. 93

Description .. 93

Examples ... 93

substr .. 94

Syntax .. 94

Parameters ... 95

Method of .. 95

Description .. 95

Example .. 95

substring .. 96

Syntax .. 96

Parameters ... 96

Method of .. 96

Description .. 96

Example .. 97

Chapter 8 The Array Object .. 99

Creating Arrays With Literal Notation .. 100

Syntax .. 100

Properties .. 100

Description .. 100

Example .. 100

Methods ... 101

concat .. 101

slice ... 102

sort ... 104

x What’s New in JavaScript 1.2

Creating Arrays Under JavaScript 1.2 ... 104

Working With Arrays and Regular Expressions .. 105

Syntax .. 105

Parameters .. 105

Properties and Elements .. 105

Description .. 106

Chapter 9 Operators ... 109

Equality Operators .. 109

Equality Operators Without LANGUAGE=JavaScript1.2 109

Equality Operators With LANGUAGE=JavaScript1.2 110

Data Conversion ... 110

delete ... 112

Syntax .. 112

Parameters .. 112

Description .. 112

Chapter 10 Properties .. 113

Function Property ... 113

arity ... 113

navigator Properties .. 114

language .. 114

platform ... 115

window Properties .. 116

innerHeight ... 116

innerWidth .. 117

locationbar .. 117

menubar .. 118

outerHeight ... 119

outerWidth .. 120

pageXOffset .. 120

pageYOffset .. 121

personalbar ... 122

scrollbars ... 123

statusbar .. 124

Contents xi

toolbar ... 125

Chapter 11 Regular Expressions .. 127

Constructing Regular Expressions .. 128

The Regular Expression Syntax ... 128

Writing a Regular Expression Pattern .. 128

Working With Regular Expressions .. 130

Using Parenthesized Substring Matches .. 131

Executing a Global Search and Ignoring Case .. 133

A Complete Example .. 133

Special Characters Used in Regular Expressions ... 135

Example Using Special Characters ... 138

Chapter 12 The RegExp Object ... 141

Syntax .. 141

Parameters ... 141

Properties .. 141

Methods ... 142

Description .. 143

Examples ... 143

Chapter 13 Regular Expression Object .. 145

Syntax .. 145

Parameters ... 146

Description .. 146

Properties .. 147

Methods ... 148

compile .. 148

Syntax .. 148

Parameters ... 148

Description .. 149

exec .. 149

Syntax .. 149

Parameters ... 149

Description .. 149

xii What’s New in JavaScript 1.2

Examples ... 151

test .. 152

Syntax .. 152

Parameters .. 152

Description .. 152

Example .. 153

Chapter 14 Signed Scripts ... 155

Recommended Reading ... 156

Signed Script Requirements .. 156

ARCHIVE attribute .. 156

ID Attribute ... 157

Request Expanded Privileges ... 158

Sign All Scripts .. 159

Re-sign Changed Scripts ... 159

Creating Signed Scripts ... 160

International Characters in Signed Scripts ... 160

Targets ... 161

JavaScript Features Requiring Privileges .. 162

Example ... 164

Accessing Expanded Privileges Without Signed Scripts 164

Risks .. 165

Activating Codebased Principles ... 165

Error Checking .. 166

Chapter 15 Statements ... 167

break .. 167

Syntax .. 167

Argument .. 167

Example .. 168

See Also .. 168

continue ... 168

Syntax .. 168

Argument .. 169

Example .. 169

Contents xiii

See Also ... 169

do while statement .. 170

Syntax .. 170

Arguments ... 170

Example .. 170

export ... 170

Syntax .. 171

Parameters ... 171

Description .. 171

See Also ... 171

import .. 171

Syntax .. 171

Parameters ... 172

Description .. 172

See Also ... 172

labeled statement .. 173

Syntax .. 173

Arguments ... 173

Example .. 173

See Also ... 173

switch statement .. 174

Syntax .. 174

Arguments ... 174

Example .. 175

Chapter 16 Style Sheets .. 177

Chapter 17 Miscellaneous Features ... 179

Activating JavaScript Commands From the Personal Toolbar 179

xiv What’s New in JavaScript 1.2

Introduction 15

Introduction

This document describes the changes and new features for JavaScript in
Navigator 4.0. These features will be included in the new JavaScript Guide at a
later date. For additional information about JavaScript, see the “JavaScript
Guide.”

• “Feature Summary” provides a summary of the new and changed features.
* indicates a change to an existing feature.

• “Compatibility With Earlier Versions of Navigator” describes how write
scripts for different versions of Navigator.

Feature Summary

Event Model

The event model has changed to include a new event object, new events, and
event capturing.

• event object — contains properties that describe a JavaScript event, such as
the event type and the cursor location at the time of the event. The object is
passed as an argument to an event handler when an event occurs.

• event capturing — enables a window, frame, or document to capture an
event before the target object (link, button, etc.) gets the event. JavaScript
implements event capturing with the following new methods:

• captureEvents — sets the window or document to capture the specified
events.

• disableExternalCapture — disables external event capturing set by the
enableExternalCapture method.

Feature Summary

16 What’s New in JavaScript 1.2

• enableExternalCapture — allows a window with frames to capture
events in pages loaded from different locations (servers).

• releaseEvents — sets the window or document to release the specified
events.

• routeEvent — routes the event from its capturer through its normal
event hierarchy.

• handleEvent — fires the event handler for the specified event.

• Events have been added or revised.

• Click* — occurs when a user clicks a link or form element.

• DblClick — occurs when a user double-clicks over a link or form
element.

• DragDrop — occurs when a user drops an object onto a Navigator
window.

• KeyDown — occurs when a user depresses a key.

• KeyPress — occurs when a user presses or holds down a key.

• KeyUp — occurs when a user releases a key.

• MouseDown — occurs when a user depresses a mouse button.

• MouseMove — occurs when a user moves the cursor.

• MouseOut* — occurs when a user moves the cursor out of an object.

• MouseOver* — occurs when a user moves the cursor over an object.

• MouseUp — occurs when a user releases a mouse button.

• Move — occurs when a user or script moves a window or frame.

• Resize — occurs when a user or script resizes a window or frame.

Introduction 17

Feature Summary

Functions

• You can nest functions within functions.

• Functions can now be created with a function constructor.

• Number — converts a specified object to a number.

• String — converts a specified object to a string.

Layers

Layers, new in Navigator 4.0, let you define overlapping layers of transparent or
solid content in a web page. Each layer in HTML has a corresponding layer
object that allows you to use JavaScript to manipulate the layer.

For information on using layers, see "Dynamic HTML in Netscape
Communicator." Note that this link takes you to a different set of documents.

Methods

Array Methods

• concat — joins two arrays and returns a new array.

• slice — extracts a section from an array and returns a new array

• sort* — now works on all platforms. It no longer converts undefined
elements to null and sorts them to the high end of the array.

Document Method

• getSelection — returns a string containing the text of the current selection.

Navigator Method

• preference — allows a script to get and set certain Navigator preferences,
such as enabling or disabling Java.

Feature Summary

18 What’s New in JavaScript 1.2

String Methods

• charCodeAt — returns a number specifying the ISO-Latin-1 codeset value of
the character at the specified index in a string object.

• concat — combines the text of two strings and returns a new string.

• fromCharCode — constructs a string from a specified sequence of numbers
that are ISO-Latin-1 codeset values.

• match — executes a search for a match between a string and a regular
expression.

• replace — executes a search for a match between a string and a regular
expression, and replaces the matched substring with a new substring.

• search — tests for a match between a string and a regular expression

• slice — extracts a section of an string and returns a new string.

• split* — includes the following new features and changes:

• It can take a regular expression argument, as well as a fixed string, by
which to split the object string.

• It can take a limit count so that it won't include trailing empty elements
in the resulting array.

• If you specify LANGUAGE="JavaScript1.2" in the <SCRIPT> tag,
string .split(" ") splits on any run of one or more white space
characters including spaces, tabs, line feeds, and carriage returns.

• substr — returns the characters in a string collecting the specified number
of characters beginning with a specified location in the string.

• substring* — no longer swaps index numbers when the first index is greater
than the second. For this behavior, LANGUAGE="JavaScript1.2" must be
specified in the <SCRIPT> tag.

Window Methods

• back — points the Navigator window to the previous URL in the current
history list.

Introduction 19

Feature Summary

• disableExternalCapture — disables external capturing of events.

• enableExternalCapture — allows a window with frames to capture events in
pages loaded from different locations.

• find — finds the specified text string in the contents of the window.

• forward — points the Navigator window to the next URL in the current
history list.

• home — points the Navigator window to the URL specified in the
preferences as the user's home page.

• moveBy — moves the window by the specified amount

• moveTo — moves the window to the specified coordinates

• open — includes the following new window features:

• alwaysLowered — forms a new window which floats below the other
screen windows, whether it is currently active or not.

• alwaysRaised — forms a new window which floats on top of the other
screen windows, whether it is currently active or not.

• dependent — creates a new window as a child of an existing window.

• hotkeys — disables most hotkeys in a new window.

• innerHeight and innerWidth — reflect the size of the Navigator
window's content area.

— replace height and width. Both are kept for backwards compatibility.

• outerHeight and outerWidth — reflect the size of the Navigator
window's outside boundary.

• screenX — the distance the new window is placed from the left side of
the screen

• screenY — the distance the new window is placed from the top of the
screen

• titlebar — creates a window with a titlebar.

Feature Summary

20 What’s New in JavaScript 1.2

• z-lock — forms a new window which does not rise above other
windows when given focus.

• resizeBy — resizes the window by the specified amount

• resizeTo — resizes the window to the specified size

• scrollBy — scrolls the window by the specified amount

• scrollTo — scrolls the window to the specified coordinates

• scrollTo extends the capabilities of scroll. scroll remains for backward
compatibility

• stop — stops the current download.

Shared Methods

• captureEvents — window and document method. Sets the window or
document to capture the specified events.

• clearInterval — window and frame method. Cancels setInterval.

• handleEvent — method of all objects with event handlers. Invokes the
handler for the specified event.

• print — window and frame method. Prints the contents of the window or
frame.

• releaseEvents — window and document. Sets the window or document to
release the specified events.

• routeEvent — window and document method. Passes a captured event
along the normal event hierarchy.

• setInterval — window and frame method. Repeatedly calls a function or
evaluates an expression after a specified number of milliseconds has
elapsed.

• setTimeout* — can now be used to either evaluate an expression or call a
function.

• toString* — converts the object or array to a literal. For this behavior,
LANGUAGE="JavaScript1.2" must be specified in the <SCRIPT> tag.

Introduction 21

Feature Summary

Objects

• You can create objects using literal notation.

• arguments — includes new properties that provide information about the
invoked function.

• Array* — includes the following new features and changes:

• Literal notation — arrays can now be created using literal notation

• Under JavaScript 1.2 — when the <SCRIPT> tag includes
LANGUAGE="JavaScript1.2," array(1) creates a new array with a[0]=1

• With regular expressions — When created as the result of a match
between a regular expression and a string, arrays have new properties
that provide information about the match

• Number* — now produces NaN rather than an error if x is a string that does
not contain a well-formed numeric literal.

• screen — contains information about the display screen resolution and
colors.

• String* — has new methods as described in String Methods.

Operators

• Equality operators* (= = and !=)

If the <SCRIPT> tag uses LANGUAGE=JavaScript1.2, the equality operators
= = and != don't try to convert operands from one type to another, and
always compare identity of like-typed operands.

• delete — deletes an object, an object's property, or an element at a
specified index in an array.

Feature Summary

22 What’s New in JavaScript 1.2

Properties

Function Property

• arity — indicates the number of arguments expected by a function.

Navigator Properties

• language — indicates what translation of the Navigator is being used. This
property is particularly useful for JAR management.

• platform — indicates the machine type for which the Navigator was
compiled. This property is particularly useful for JAR management.

Window Properties

• innerHeight — specifies the vertical dimension, in pixels, of the window's
content area.

• innerWidth — specifies the horizontal dimension, in pixels, of the window's
content area.

• locationbar — object that allows you to show or hide the location bar of the
targeted window.

• menubar — object that allows you to show or hide the menu bar of the
targeted window.

• outerHeight — specifies the vertical dimension, in pixels, of the window's
outside boundary.

• outerWidth — specifies the horizontal dimension, in pixels, of the window's
outside boundary.

• pageXOffset — specifies the x-position, in pixels, of the window's viewed
page.

• pageYOffset — specifies the y-position, in pixels, of the window's viewed
page.

• personalbar — object that allows you to show or hide the personal bar
(also known as the directories bar) of the targeted window.

Introduction 23

Feature Summary

• scrollbars — object that allows you to show or hide the scroll bar of the
targeted window.

• statusbar — object that allows you to show or hide the status bar of the
targeted window.

• toolbar — object that allows you to show or hide the tool bar of the
targeted window.

Regular Expressions

Regular Expressions are patterns used to match character combinations in
strings. In JavaScript, you create a regular expression as an object which has
methods used to execute a match against a string. You can also pass the regular
expression as arguments to the String methods match, replace, search, and split.
A global RegExp object has properties most of which are set when a match is
successful, such as lastMatch which specifies the last successful match. Finally,
the array object has new properties that provide information about a successful
match such as the input which specifies the original input string against which
the match was executed.

This section includes:

• A Description of Regular Expressions

• The Regular Expression Object

• The RegExp Object

• String Methods

• Array Properties

Signed Scripts

For additional power and functionality, scripts can now gain access to normally
restricted information. This is achieved through signed scripts that request
expanded privileges. This new functionality provides greater security than
tainting.

Feature Summary

24 What’s New in JavaScript 1.2

Statements

• The break* and continue* statements can now be used with the new labeled
statement.

• do while statement — repeats a loop until the test condition evaluates to
false.

• export — allows a signed script to provide properties, functions, and
objects to other signed or unsigned scripts.

• import — allows a script to import properties, functions, and objects from a
signed script which has exported the information.

• labeled statement — allows the program to break outside nested loops or to
continue a loop outside the current loop.

• switch statement — allows the program to test several conditions easily.

Style Sheets

Using style sheets, you gain finer control over the presentation of your web
pages. Navigator 4.0 supports two syntaxes for designing style sheets:
Cascading Style Sheets (CSS) and JavaScript style sheets. CSS is the static
approach to specifying style and JavaScript is the programmatic approach.

For information on using style sheets, see “Dynamic HTML in Netscape
Communicator.” Note that this link takes you to a different set of documents.

Miscellaneous

• You can add a button to the Personal Toolbar that, when clicked, activates a
JavaScript command. toolbar. See “Miscellaneous Features”.

Introduction 25

Compatibility With Earlier Versions of Navigator

Compatibility With Earlier Versions of
Navigator

As JavaScript evolves along with Navigator, its capabilities expand greatly. This
means that JavaScript written for Navigator 4.0 may work in Navigator 4.0 only.
To ensure that users of earlier versions of Navigator avoid problems when
viewing pages that use JavaScript 1.2, use the LANGUAGE attribute in the
<SCRIPT> tag to indicate which version of Javascript you're using. If you use
LANGUAGE="JavaScript1.2", you need to be aware of the equality rules
described below.

Statements within a <SCRIPT> tag are ignored if the browser does not have the
level of JavaScript support specified in the LANGUAGE attribute; for example:

• Navigator 2.0 executes code within the <SCRIPT LANGUAGE="JavaScript">
tag; it ignores code within the <SCRIPT LANGUAGE="JavaScript1.1"> and
<SCRIPT LANGUAGE="JavaScript1.2"> tags.

• Navigator 3.0 executes code within the <SCRIPT LANGUAGE="JavaScript">
and <SCRIPT LANGUAGE="JavaScript1.1"> tags; it ignores code within the
<SCRIPT LANGUAGE="JavaScript1.2"> tag.

• Navigator 4.0 executes code within the <SCRIPT LANGUAGE="JavaScript">,
<SCRIPT LANGUAGE="JavaScript1.1">, and <SCRIPT
LANGUAGE="JavaScript1.2"> tags.

By using the LANGUAGE attribute, you can write general JavaScript that
Navigator version 2.0 and higher recognize, and include additional or refined
behavior for newer versions of Navigator.

Compatibility With Earlier Versions of Navigator

26 What’s New in JavaScript 1.2

Template Revised 5/3/97 Chapter 1, Event Model 27

C h a p t e r

1
Event Model

JavaScript's event model includes several new events, an event object, and the
ability to capture and handle events before they reach their intended target.
This section contains the following information:

• The event Object

• Event Capturing

New events are described in the Events section.

The event Object
The event object contains properties that describe a JavaScript event, and is
passed as an argument to an event handler when the event occurs. In the case
of a mousedown event, for example, the event object contains the type of
event (in this case "mousedown"), the x and y position of the cursor at the time
of the event, a number representing the mouse button used, and a field
containing the modifier keys (Control, Alt, Meta, or Shift) that were depressed
at the time of the event. The properties used within the event object vary from
one type of event to another. This variation is provided in the individual event
descriptions.

JavaScript supports the following events. This document describes the new
events, the “JavaScript Guide” describes pre-Navigator 4.0 events.

The event Object

28 What’s New in JavaScript 1.2

Details of the event object

Syntax
event. propertyName

Argument of

All event handlers.

Properties

The following properties are specific to an event and are passed with the event
object. To learn which properties are used by an event, see the “Event object
properties used” section of the individual event.

Abort
Blur
Click (revised)
Change
DblClick
DragDrop
Error
Focus
KeyDown
KeyPress
KeyUp
Load

MouseDown
MouseMove
MouseOut (revised)
MouseOver (revised)
MouseUp
Move
Reset
Resize
Select
Submit
Unload

Property Description

type String representing the event type.

target String representing the object to which the event was originally
sent.

layerX Number specifying either the object width when passed with the
resize event, or the cursor's horizontal position in pixels relative
to the layer in which the event occurred.
Note that layerX is synonymous with x.

Chapter 1, Event Model 29

The event Object

Example

The following example uses the event object to provide the type of event to the
alert message.

<A HREF="http://home.netscape.com" onClick='alert("Link got an event: "

+ event.type)'>Click for link event

The following example uses the event object in an explicitly called event
handler.

<SCRIPT>

function fun1(e) {
 alert ("Document got an event: " + e.type);
 alert ("x position is " + e.layerX);
 alert ("y position is " + e.layerY);
 if (e.modifiers & Event.ALT_MASK)

 alert ("Alt key was down for event.");
 return true;

layerY Number specifying either the object height when passed with the
resize event, or the cursor's vertical position in pixels relative to
the layer in which the event occurred.
Note that layerY is synonymous with y.

pageX Number specifying the cursor's horizontal position in pixels,
relative to the page.

pageY Number specifying the cursor's vertical position in pixels relative
to the page.

screenX Number specifying the cursor's horizontal position in pixels,
relative to the screen.

screenY Number specifying the cursor's vertical position in pixels, relative
to the screen.

which Number specifying either the mouse button that was pressed or
the ASCII value of a pressed key.

modifiers String specifying the modifier keys associated with a mouse or
key event. Modifier key values are: ALT_MASK,
CONTROL_MASK, SHIFT_MASK, and META_MASK.

data Returns an array of strings containing the URLs of the dropped
objects. Passed with the dragdrop event.

Property Description

Event Capturing

30 What’s New in JavaScript 1.2

}

document.onmousedown = fun1;

</SCRIPT>

Event Capturing
You can now have a window or document capture and handle an event before
it reaches its intended target. To accomplish this, the window, document, and
layer objects have these new methods:

• captureEvents

• releaseEvents

• routeEvent

• handleEvent — not a method of the layer object

For example, suppose you wanted to capture all click events occurring in a
window.

Note If a window with frames wants to capture events in pages loaded from different
locations, you need to use captureEvents in a signed script and call
enableExternalCapture.

First, you need to set up the window to capture all Click events:

window.captureEvents(Event.CLICK);

The argument to captureEvents is a property of the event object and indicates
the type of event to capture. To capture multiple events, the argument is a list
separated by or (|). For example:

window.captureEvents(Event.CLICK | Event.MOUSEDOWN | Event.MOUSEUP)

Next, you need to define a function that handles the event. The argument e is
the event object for the event.

function clickHandler(e) {
 //What goes here depends on how you want to handle the event.
 //This is described below.

}

You have four options for handling the event:

Chapter 1, Event Model 31

Event Capturing

• Return true . In the case of a link, the link is followed and no other event
handler is checked. If the event cannot be canceled, this ends the event
handling for that event.

function clickHandler(e) {
 return true;

}

• Return false . In the case of a link, the link is not followed. If the event is
non-cancelable, this ends the event handling for that event.

function clickHandler(e) {
 return false;

}

• Call routeEvent. JavaScript looks for other event handlers for the event. If
another object is attempting to capture the event (such as the document),
JavaScript calls its event handler. If no other object is attempting to capture
the event, JavaScript looks for an event handler for the event's original
target (such as a button). The routeEvent function returns the value
returned by the event handler. The capturing object can look at this return
and decide how to proceed.

Note When routeEvent calls an event handler, the event handler is activated. If
routeEvent calls an event handler whose function is to display a new page,
the action takes place without returning to the capturing object.

function clickHandler(e) {
 var retval = routeEvent(e);
 if (retval == false) return false;
 else return true;

}

• Call the handleEvent method of an event receiver. Any object that can
register event handlers is an event receiver. This method explicitly calls the
event handler of the event receiver and bypasses the capturing hierarchy.
For example, if you wanted all Click events to go to the first link on the
page, you could use:

function clickHandler(e) {
 window.document.links[0].handleEvent(e);

}

As long as the link has an onClick handler, the link will handle any click
event it receives.

Example

32 What’s New in JavaScript 1.2

Finally, you need to register the function as the window's event handler for that
event:

window.onClick = clickHandler;

Example
In the following example, the window and document capture and release
events:

<HTML>

<SCRIPT>

function fun1(e) {
 alert ("The window got an event of type: " + e.type + " and will call routeEvent.");
 window.routeEvent(e);
 alert ("The window returned from routeEvent.");
 return true;

}

function fun2(e) {
 alert ("The document got an event of type: " + e.type);
 return false;

}

function setWindowCapture() {
 window.captureEvents(Event.CLICK);

}

function releaseWindowCapture() {
 window.releaseEvents(Event.CLICK);

}

function setDocCapture() {
 document.captureEvents(Event.CLICK);

}

function releaseDocCapture() {
 document.releaseEvents(Event.CLICK);

}

window.onclick=fun1;
document.onclick=fun2;

</SCRIPT>

...

</HTML>

Chapter 2, Events 33

C h a p t e r

2
Events

This section describes new and revised events.

All information about an event, such as its type, is now passed to its handler
through the event object. The properties passed with the event object are listed
under the heading "Event properties used." Pre-Navigator 4.0 events that aren't
listed here use the type and target property only.

In Navigator 4.0, a window or document can capture events before they reach
their intended target. For more information see “Event Capturing”.

Note Navigator 4.0 recognizes mixed-case and lower case use of events and event
handlers. For example, you can explicitly call an event handler using either
element .onclick or element .onClick.

Click (revised to include new properties)
Client-side event. Occurs when the user clicks a link or a form element (a Click
is a combination of the MouseDown and MouseUp events).

If the event handler returns false, the default action of the object is canceled as
follows:

Click (revised to include new properties)

34 What’s New in JavaScript 1.2

• Buttons — no default action; nothing is canceled

• Radio buttons and checkboxes — nothing is set

• Submit buttons — form is not submitted

• Reset buttons — form is not reset

Syntax
onClick="handlerText"

Parameters

handlerText is JavaScript code or a call to a JavaScript function.

Event of

document, Button, Checkbox, Link, Radio, Reset, and Submit objects

Event properties used

type indicates a Click event.

target indicates the object to which the event was originally sent.

When a link is clicked, layerX, layerY, pageX, pageY, screenX, and screenY
represent the cursor location at the time the Click event occurred.

When a button is clicked, layerX, layerY, pageX, pageY, screenX, and screenY
are unused.

which represents 1 for a left-mouse click and 3 for a right-mouse click.

modifiers contains the list of modifier keys held down when the Click event
occurred.

Chapter 2, Events 35

DblClick

DblClick
Client-side event. Occurs when the user double-clicks a form element or a link.

Note DblClick is not implemented on the Macintosh.

Syntax
onDblClick="handlerText"

Parameters

handlerText is JavaScript code or a call to a JavaScript function.

Event of

document, area, link object

Event properties used

type indicates a DblClick event.

target indicates the object to which the event was originally sent.

layerX, layerY, pageX, pageY, screenX, and screenY represent the cursor
location at the time the DblClick event occurred.

which represents 1 for a left-mouse double-click and 3 for a right-mouse
double-click.

modifiers contains the list of modifier keys held down when the DblClick event
occurred.

DragDrop

36 What’s New in JavaScript 1.2

DragDrop
Client-side event. Occurs when the user drops an object onto the Navigator
window, such as dropping a file on the Navigator window.

Syntax
onDragDrop="handlerText"

Parameters

handlerText is JavaScript code or a call to a JavaScript function.

Event of

window object

Event properties used

type indicates a DragDrop event.

target indicates the object to which the event was originally sent.

data returns an Array of Strings containing the URLs of the dropped objects.

Description

The DragDrop event is fired whenever a system item (file, shortcut, etc.) is
dropped onto the Navigator window via the native system's drag and drop
mechanism. The normal response for the Navigator is to attempt to load the
item into the browser window. If the event handler for the DragDrop event
returns true, the browser will load the item normally. If the event handler
returns false, the drag and drop is canceled.

Chapter 2, Events 37

KeyDown

KeyDown
Event. Occurs when the user depresses a key.

Syntax
onKeyDown="handlerText"

Parameters

handlerText is JavaScript code or a call to a JavaScript function.

Event of

document, Image, Link, and Textarea objects

Event properties used

type indicates a KeyDown event.

target indicates the object to which the event was originally sent.

layerX, layerY, pageX, pageY, screenX, and screenY represent the cursor
location at the time the KeyDown event occurred.

which represents the ASCII value of the key pressed. To get the actual letter,
number, or symbol of the pressed key, use the fromCharCode method. To set
this property when the ASCII value is unknown, use the charCodeAt method.

modifiers contains the list of modifier keys held down when the KeyDown
event occurred.

KeyPress

38 What’s New in JavaScript 1.2

Description

A KeyDown event always occurs before a KeyPress event. If onKeyDown
returns false , no KeyPress events occur. This prevents KeyPress events
occurring due to the user holding down a key.

See also

KeyPress and KeyUp events

KeyPress
Client-side event. Occurs when the user presses or holds down a key.

Syntax
onKeyPress="handlerText"

Parameters

handlerText is JavaScript code or a call to a JavaScript function.

Event of

document, Image, Link, and Textarea objects

Event properties used

type indicates a KeyPress event.

target indicates the object to which the event was originally sent.

Chapter 2, Events 39

KeyUp

layerX, layerY, pageX, pageY, screenX, and screenY represent the cursor
location at the time the KeyPress event occurred.

which represents the ASCII value of the key pressed. To get the actual letter,
number, or symbol of the pressed key, use the fromCharCode method. To set
this property when the ASCII value is unknown, use the charCodeAt method.

modifiers contains the list of modifier keys held down when the KeyPress event
occurred.

Description

A KeyPress event occurs immediately after a KeyDown event only if
onKeyDown returns something other than false . A KeyPress event repeatedly
occurs until the user releases the key. You can cancel individual KeyPress
events.

See also

KeyDown and KeyUp events

KeyUp
Event. Occurs when the user releases a key.

Syntax
onKeyUp="handlerText"

Parameters

handlerText is JavaScript code or a call to a JavaScript function.

MouseDown

40 What’s New in JavaScript 1.2

Event of

document, Image, Link, and Textarea objects

Event properties used

type indicates a KeyUp event.

target indicates the object to which the event was originally sent.

layerX, layerY, pageX, pageY, screenX, and screenY represent the cursor
location at the time the KeyUp event occurred.

which represents the ASCII value of the key pressed. To get the actual letter,
number, or symbol of the pressed key, use the fromCharCode method. To set
this property when the ASCII value is unknown, use the charCodeAt method.

modifiers contains the list of modifier keys held down when the KeyUp event
occurred.

MouseDown
Client-side event. Occurs when the user depresses a mouse button.

Syntax
onMouseDown="handlerText"

Parameters

handlerText is JavaScript code or a call to a JavaScript function.

Chapter 2, Events 41

MouseMove

Event of

Button, document, and Link objects

Event properties used

type indicates a MouseDown event.

target indicates the object to which the event was originally sent.

layerX, layerY, pageX, pageY, screenX, and screenY represent the cursor
location at the time the MouseDown event occurred.

which represents 1 for a left-mouse-button down and 3 for a right-mouse-
button down.

modifiers contains the list of modifier keys held down when the MouseDown
event occurred.

Description

If onMouseDown returns false , the default action (entering drag mode,
entering selection mode, or arming a link) is canceled.

Note Arming is caused by a MouseDown over a link. When a link is armed it
changes color to represent its new state.

MouseMove
Client-side event. Occurs when the user moves the cursor.

Syntax
onMouseMove="handlerText"

MouseOut (revised to include new properties)

42 What’s New in JavaScript 1.2

Parameters

handlerText is JavaScript code or a call to a JavaScript function.

Event of

None

Event properties used

type indicates a MouseMove event.

target indicates the object to which the event was originally sent.

layerX, layerY, pageX, pageY, screenX, and screenY represent the cursor
location at the time the MouseMove event occurred.

Description

The MouseMove event is sent only when a capture of the event is requested by
an object (see “Event Capturing”).

See Also

captureEvents method

MouseOut (revised to include new properties)
Client-side event. Occurs when the user moves the cursor out of an object.

Chapter 2, Events 43

MouseOver (revised to include new properties)

Syntax
onMouseOut="handlerText"

Parameters

handlerText is JavaScript code or a call to a JavaScript function.

Event of

Area, Layer, and Link objects

Event properties used

type indicates a MouseOut event.

target indicates the object to which the event was originally sent.

layerX, layerY, pageX, pageY, screenX, and screenY represent the cursor
location at the time the MouseOut event occurred.

MouseOver (revised to include new
properties)

Client-side event. Occurs when the user moves the cursor over an object.

Syntax
onMouseOver="handlerText"

MouseUp

44 What’s New in JavaScript 1.2

Parameters

handlerText is JavaScript code or a call to a JavaScript function.

Event of

Area, Layer, and Link objects

Event properties used

type indicates a MouseOver event.

target indicates the object to which the event was originally sent.

layerX, layerY, pageX, pageY, screenX, and screenY represent the cursor
location at the time the MouseOver event occurred.

MouseUp
Client-side event. Occurs when the user releases a mouse button.

Syntax
onMouseUp="handlerText"

Parameters

handlerText is JavaScript code or a call to a JavaScript function.

Chapter 2, Events 45

Move

Event of

Button, document, and Link objects

Event properties used

type indicates a MouseUp event.

target indicates the object to which the event was originally sent.

layerX, layerY, pageX, pageY, screenX, and screenY represent the cursor
location at the time the MouseUp event occurred.

which represents 1 for a left-mouse-button up and 3 for a right-mouse-button
up.

modifiers contains the list of modifier keys held down when the MouseUp
event occurred.

Description

If onMouseUp returns false , the default action is canceled. For example, if
onMouseUp returns false over an armed link, the link is not triggered. Also, if
MouseUp occurs over an unarmed link (possibly due to onMouseDown
returning false), the link is not triggered.

Note Arming is caused by a MouseDown over a link. When a link is armed it
changes color to represent its new state.

Move
Client-side event. Occurs when the user or script moves a window or frame.

Resize

46 What’s New in JavaScript 1.2

Syntax
onMove="handlerText"

Parameters

handlerText is JavaScript code or a call to a JavaScript function.

Event of

window and Frame objects

Event properties used

type indicates a Move event.

target indicates the object to which the event was originally sent.

screenX and screenY represent the position of the top-left corner of the
window or frame.

Resize
Client-side event. Occurs when a user or script resizes a window or frame.

Syntax
onResize="handlerText"

Chapter 2, Events 47

Resize

Parameters

handlerText is JavaScript code or a call to a JavaScript function.

Event of

window and Frame objects

Event properties used

type indicates a Resize event.

target indicates the object to which the event was originally sent.

width and height represent the width and height of the window or frame.

Resize

48 What’s New in JavaScript 1.2

Chapter 3, Functions 49

C h a p t e r

3
Functions

This section describes the following new functions and features of
functions:

• Nested Functions

• Function Constructor

• Number

• String

Nesting Functions Within Functions
You can nest a function within a function. The nested function can use the
arguments and variables of the outer function. The outer function cannot use
the arguments and variables of the nested function. The nested function is
unknown outside of the outer function and cannot be called independently.

Function Constructor
You can now create a function using a constructor function. For example:

var f = new Function('x', 'y', "return x * y")

Number

50 What’s New in JavaScript 1.2

Number
Core function. Converts the specified object to a number.

Syntax
Number(x)

Parameter

x is any object.

Description

When the object is a Date object, Number returns a value in milliseconds
measured from 01 January, 1970 UTC (GMT), positive after this date, negative
before.

Example

The following example converts the Date object to a numerical value:

<SCRIPT>

d = new Date ("December 17, 1995 03:24:00");
document.write (Number(d) + "
");

</SCRIPT>

This prints "819199440000."

String
Core function. Converts the specified object to a string.

Chapter 3, Functions 51

String

Syntax
String(x)

Parameter

x is any object.

Description

When the object is a Date object, String returns a string representation of the
date. Its format is: Thu Aug 18 04:37:43 Pacific Daylight Time 1983.

Example

The following example converts the Date object to a readable string.

<SCRIPT>

D = new Date (430054663215);
document.write (String(D) +"
");

</SCRIPT>

This prints "Thu Aug 18 04:37:43 Pacific Daylight Time 1983."

String

52 What’s New in JavaScript 1.2

Chapter 4, Layers 53

C h a p t e r

4
Layers

54 What’s New in JavaScript 1.2

Chapter 5, Methods 55

C h a p t e r

5
Methods

This section describes the new and revised methods for the following objects:

• Array (links to a different page)

• Document

• Navigator

• String (links to a different page)

• Window

In addition, Shared Methods describes methods used by several objects.

Document Method

getSelection

Client-side method. Returns a string containing the text of the current selection.

Syntax
document.getSelection()

Navigator Method

56 What’s New in JavaScript 1.2

Method of

document object

Navigator Method

preference

Client-side method. Allows a signed script to get and set certain Navigator
preferences.

Note This method must be called in a signed script.

Syntax

To set a preference:

navigator.preference(prefName)

To set a preference:

navigator.preference(prefName , setValue)

Parameters

prefName is the name of the preference you want to get or set. Description lists
the allowed preferences.

setValue is the value you want to assign to the preference. This can be a string,
number, or Boolean.

Method of

navigator object

Description

This method must be used in a signed script that has UniversalPreferencesRead
or UniversalPreferencesWrite permission.

Chapter 5, Methods 57

Window Methods

With permission, you can get and set the following preferences (additional
preferences will be included in future documentation):

Window Methods

back

Client-side method. Points the Navigator to the previous URL in the current
history list; equivalent to the user pressing the Navigator Back button.

Syntax
windowReference.back ()

Parameters

windowReference is the name of a window object.

Task from Navigator
Advanced Preferences

Preference Value

Automatically load images general.always_load_images true or false

Enable Java security.enable_java true or false

Enable JavaScript javascript.enabled true or false

Enable style sheets browser.enable_style_sheets true or false

Enable autoinstall autoupdate.enabled true or false

Accept all cookies network.cookie.cookieBehavior 0

Accept only cookies that get
sent back to the originating server

network.cookie.cookieBehavior 1

Disable cookies network.cookie.cookieBehavior 2

Warn before accepting cookie network.cookie.warnAboutCookies true or false

Window Methods

58 What’s New in JavaScript 1.2

Method of

window object

disableExternalCapture

Client-side method. Disables external event capturing set by the
enableExternalCapture method.

Syntax
disableExternalCapture()

Method of

window object

Description

See the description for enableExternalCapture method.

enableExternalCapture

Client-side method. Allows a window with frames to capture events in pages
loaded from different locations (servers).

Syntax
enableExternalCapture()

Method of

window object

Chapter 5, Methods 59

Window Methods

Description

Use this method in a signed script requesting UniversalBrowserWrite privileges,
and use it before calling the captureEvents method.

If additional scripts are seen by Communicator that cause the set of principals
in effect for the container to be downgraded, external capture of events will be
disabled. Additional calls to enableExternalCapture (after acquiring the
UniversalBrowserWrite privilege under the reduced set of principals) can be
made to enable external capture again.

Example

In the following example, the window is able to capture all Click events that
occur across its frames.

<SCRIPT ARCHIVE="myArchive.jar" ID="2">

...

function captureClicks() {
 netscape.security.PrivilegeManager.enablePrivilege("UniversalBrowserWrite");
 enableExternalCapture();
 captureEvents(Event.CLICK);
 ...

}

...

</SCRIPT>

See also

disableExternalCapture method and captureEvents method

find

Client-side method. Finds the specified text string in the contents of the
specified window.

Syntax
windowReference.find(["string"][,true|false][,true|false])

Window Methods

60 What’s New in JavaScript 1.2

Parameters

windowReference is the name of a window object.

string is the text string for which to search.

Returns

true if the string is found; otherwise false .

Method of

window object

Description

When a string is specified, the browser performs a case-insensitive, forward
search. If a string is not specified, the method displays the Find dialog box,
allowing the user to enter the search string.

The two optional Boolean parameters allow you to specify search options. The
first parameter, if true, specifies a case-sensitive search. The second parameter,
if true, specifies a backward search. To use either parameter, both must be
specified.

forward

Client-side method. Points the Navigator to the next URL in the current history
list; equivalent to the user pressing the Navigator Forward button.

Syntax
windowReference.forward ()

Parameters

windowReference is the name of a window object.

Chapter 5, Methods 61

Window Methods

Method of

window object

home

Client-side method. Points the Navigator to the URL specified in preferences as
the user's home page; equivalent to the user pressing the Navigator Home
button.

Syntax
windowReference.home ()

Parameters

windowReference is the name of a window object.

Method of

window object

moveBy

Client-side method. Moves the window by the specified amounts.

Syntax
windowReference.moveBy(horizontal, vertical)

Parameters

windowReference is a valid way of referring to a window.

horizontal is an integer representing the number of pixels by which to move
the window horizontally.

Window Methods

62 What’s New in JavaScript 1.2

vertical is an integer representing the number of pixels by which to move the
window vertically.

Method of

window object

Description

To move a window offscreen, call this method in a signed script.

See Also

moveTo method

moveTo

Client-side method. Moves the top-left corner of the window to the specified
screen coordinates.

Syntax
windowReference.moveTo(x-coordinate, y-coordinate)

Parameters

windowReference is a valid way of referring to a window.

x-coordinate is an integer representing the left edge of the window in screen
coordinates.

y-coordinate is an integer representing the top edge of the window in screen
coordinates.

Method of

window object

Chapter 5, Methods 63

Window Methods

Description

To move a window offscreen, call this method in a signed script.

See Also

moveBy method

open (window object)

Client-side method. Opens a new web browser window. The following
provides a description of the open method and the new window features. For
a complete description of open, see open (window object) in the “JavaScript
Guide.”

Syntax
[windowVar =][window].open("URL", " windowName", [" windowFeatures "])

Parameters

windowVar is the name of a new window. Use this variable when referring to a
window's properties, methods, and containership.

URL specifies the URL to open in the new window.

windowName is the window name to use in the TARGET attribute of a FORM
or <A> tag. windowName can contain only alphanumeric or underscore (_)
characters.

windowFeatures is a comma-separated list of any of the following options and
values:

alwaysLowered [=yes|no]|[=1|0]

alwaysRaised [=yes|no]|[=1|0]

dependent [=yes|no]|[=1|0]

hotkeys [=yes|no]|[=1|0]

innerWidth=pixels replaces width

innerHeight=pixels replaces height

outerWidth=pixels

outerHeight=pixels

Window Methods

64 What’s New in JavaScript 1.2

screenX=pixels

screenY=pixels

titlebar [=yes|no]|[=1|0]

z-lock [=yes|no]|[=1|0]

Note Several of these features require the use of signed scripts. This is stated in the
feature's description.

Not specifying a chrome part is equivalent to setting the property to no (except
for hotkeys and titlebar which are set to true by default).

alwaysRaised if true, creates a new window that floats on top of other
windows, whether it is active or not. This is a secure feature and must be set in
signed scripts.

Note How this feature behaves depends on the windowing hierarchy of the platform.
For example, on Windows, an alwaysRaised Navigator window is on top of all
windows in all open applications. On Macintosh, an alwaysRaised Navigator
window is on top of all Navigator windows, but not necessarily on top of
windows in other open applications.

alwaysLowered if true, creates a new window that floats below other windows,
whether it is active or not. This is a secure feature and must be set in signed
scripts.

Note How this feature behaves depends on the windowing hierarchy of the platform.
For example, on Windows, an alwaysLowered Navigator window is below all
windows in all open applications. On Macintosh, an alwaysLowered Navigator
window is below all Navigator windows, but not necessarily below windows in
other open applications.

dependent if true, creates a new window as a child of the current window. A
dependent window closes when its parent window closes. On Windows
platforms, a dependent window does not show on the taskbar.

hotkeys if true, disables most hotkeys in a new window that has no menu bar.
The security and quit hotkeys remain enabled.

innerWidth specifies the width, in pixels, of the window's content area. To
create a window smaller than 100 x 100 pixels, set this feature in a signed
script.

Note Replaces width. width remains for backwards compatibility.

Chapter 5, Methods 65

Window Methods

innerHeight specifies the height, in pixels, of the window's content area. To
create a window smaller than 100 x 100 pixels, set this feature in a signed
script.

Note Replaces height. height remains for backwards compatibility.

outerWidth specifies the horizontal dimension, in pixels, of the window's
outside boundary. To create a window smaller than 100 x 100 pixels, set this
feature in a signed script.

outerHeight specifies the vertical dimension, in pixels, of the outside boundary
of the window. To create a window smaller than 100 x 100 pixels, set this
feature in a signed script.

screenX is the distance the new window is placed from the left side of the
screen. To place a window offscreen, set this feature in a signed scripts.

screenY is the distance the new window is placed from the top of the screen.
To place a window offscreen, set this feature in a signed scripts.

titlebar if true, creates a window with a title bar. To set the titlebar to false, set
this feature in a signed script.

z-lock if true, creates a new window that does not rise above other windows
when activated. This is a secure feature and must be set in signed scripts.

Note How this feature behaves depends on the windowing hierarchy of the platform.
For example, on Windows, a z-locked Navigator window is below all windows
in all open applications. On Macintosh, a z-locked Navigator window is below
all Navigator windows, but not necessarily below windows in other open
applications.

Method of

window object

resizeBy

Client-side method. Resizes the entire window by moving the window's
bottom-right corner by the specified amount.

Window Methods

66 What’s New in JavaScript 1.2

Syntax
windowReference.resizeBy(horizontal, vertical)

Parameters

windowReference is a valid way of referring to a window.

horizontal is an integer representing the number of pixels by which to resize
the window horizontally.

vertical is an integer representing the number of pixels by which to resize the
window vertically.

Method of

window object

Description

To resize a window below a minimum size of 100 x 100 pixels, call this method
in a signed script.

See Also

resizeTo method

resizeTo

Client-side method. Resizes the entire window to the specified outer height and
width.

Syntax
windowReference.resizeTo(outerwidth, outerheight)

Parameters

windowReference is a valid way of referring to a window.

Chapter 5, Methods 67

Window Methods

outerwidth is an integer representing the window's width in pixels.

outerheight is an integer representing the window's height in pixels.

Method of

window object

Description

To resize a window below a minimum size of 100 x 100 pixels, call this method
in a signed script.

See Also

resizeBy method

scrollBy

Client-side method. Scrolls the viewing area of the window by the given
amount.

Syntax
windowReference.scrollBy(horizontal, vertical)

Parameters

windowReference is a valid way of referring to a window.

horizontal is an integer representing the number of pixels by which to scroll
the viewing area horizontally.

vertical is an integer representing the number of pixels by which to scroll the
viewing area vertically.

Method of

window object

Window Methods

68 What’s New in JavaScript 1.2

See Also

scrollTo method

scrollTo

Client-side method. Scrolls the viewing area of the window to the specified
coordinates, such that the point (x, y) becomes the top-left corner.

Note scrollTo extends the capabilities of scroll. scroll remains for backward
compatibility.

Syntax
windowReference.scrollTo(x-coordinate, y-coordinate)

Parameters

windowReference is a valid way of referring to a window.

x-coordinate is an integer representing the x-coordinate of the viewing area in
pixels.

y-coordinate is an integer representing the y-coordinate of the viewing area in
pixels.

Method of

window object

See Also

scrollBy method

stop

Client-side method. Stops the current download; equivalent to the user pressing
the Navigator Stop button.

Chapter 5, Methods 69

Shared Methods

Syntax
windowReference.stop ()

Parameters

windowReference is the name of a window object.

Method of

window object

Shared Methods

captureEvents

Client-side method. Sets the window or document to capture all events of the
specified type.

Syntax
objectReference.captureEvents(eventType)

Parameters

objectReference is the name of a window or document object.

eventType is the type of event to be captured. The available event types are
listed with the event object.

Method of

window, document, and layer objects

Shared Methods

70 What’s New in JavaScript 1.2

Description

When a window with frames wants to capture events in pages loaded from
different locations (servers), you need to use captureEvents in a signed script
and precede it with enableExternalCapture. For more information and an
example, see “enableExternalCapture”.

captureEvents works in tandem with releaseEvents, routeEvent, and
handleEvent. For more information, see “Event Capturing”.

clearInterval

Client-side method. Cancels a timeout set with the setInterval method.

Syntax
clearInterval(intervalID)

Parameters

intervalID is a timeout setting that was returned by a previous call to the
setInterval method.

Method of

Frame object, window object

Description

See the description for setInterval method.

See Also

setInterval method

Chapter 5, Methods 71

Shared Methods

handleEvent

Client-side method. Invokes the handler for the specified event.

Syntax
objectReference.handleEvent(event)

Parameters

objectReference is the name of an object.

event is the name of an event for which the specified object has an event
handler.

Method of

objects with event handlers

Description

handleEvent works in tandem with captureEvents, releaseEvents, and
routeEvent. For more information, see Event Capturing.

print

Client-side method. Prints the contents of the window or frame; equivalent to
the user pressing the Navigator Print button.

Syntax
windowReference.print ()

frameReference.print ()

Parameters

windowReference is the name of a window object.

Shared Methods

72 What’s New in JavaScript 1.2

frameReference is the name of a frame object.

Method of

window and Frame objects

releaseEvents

Client-side method. Sets the window or document to release captured events of
the specified type, sending the event to objects further along the event
hierarchy.

Note If the original target of the event is a window, the window receives the event
even if it is set to release that type of event.

Syntax
objectReference.releaseEvents(eventType)

Parameters

objectReference is the name of a window, document, or layer object.

eventType is the type of event to be captured.

Method of

window, document, and layer objects

Description

releaseEvents works in tandem with captureEvents, routeEvent, and
handleEvent. For more information, see “Event Capturing”.

routeEvent

Client-side method. Passes a captured event along the normal event hierarchy.

Chapter 5, Methods 73

Shared Methods

Syntax
objectReference.routeEvent(event)

Parameters

objectReference is the name of a window, document, or layer object.

event is the name of the event to be routed.

Method of

window, document, and layer objects

Description

If a sub-object (document or layer) is also capturing the event, the event is sent
to that object. Otherwise, it is sent to its original target.

routeEvents works in tandem with captureEvents, releaseEvents, and
handleEvent. For more information, see “Event Capturing”.

setInterval

Client-side method. Repeatedly calls a function or evaluates an expression after
a specified number of milliseconds has elapsed.

The timeouts continue to fire until the associated window or frame is destroyed
or the interval is canceled using the clearInterval method.

Syntax

Used to call a function:

intervalID=setInterval(function, msec, [arg1, ..., argn])

Used to evaluate an expression:

intervalID=setInterval(expression, msec)

Shared Methods

74 What’s New in JavaScript 1.2

Parameters

intervalID is an identifier that is used only to cancel the function call with the
clearInterval method.

function is any function.

expression is a string expression or a property of an existing object. The
expression must be quoted; otherwise, setInterval calls it immediately. For
example setInterval("calcnum(3, 2)", 25) .

msec is a numeric value, numeric string, or a property of an existing object in
millisecond units.

arg1, ..., argn are the arguments, if any, passed to function.

Method of

Frame object, window object

See Also

clearInterval and setTimeout methods

setTimeout

Client-side method. Calls a function or evaluates an expression after a specified
number of milliseconds has elapsed.

The setTimeout method calls a function after a specified amount of time. It
does not call the function repeatedly. For example, if a setTimeout method
specifies five seconds, the function is evaluated after five seconds, not every
five seconds. For repetitive timeouts, use the setInterval method.

setTimeout does not stall the script. The script continues immediately (not
waiting for the timeout to expire). The call simply schedules an additional
future event.

Syntax

Used to call a function:

Chapter 5, Methods 75

Shared Methods

timeoutID=setTimeout("function " , msec, [arg1, ..., argn])

Used to evaluate an expression:

timeoutID=setTimeout(expression, msec)

Parameters

timeoutID is an identifier that is used only to cancel the evaluation with the
clearTimeout method.

function is any function.

expression is a string expression or a property of an existing object. The
expression must be quoted; otherwise, setTimeout calls it immediately. For
example setTimeout("calcnum(3, 2)", 25) .

msec is a numeric value, numeric string, or a property of an existing object in
millisecond units.

arg1, ..., argn are the arguments, if any, passed to function.

Method of

Frame object, window object

See Also

clearTimeout in the "JavaScript Guide" and setInterval methods

toString

Client-side method. If you specify LANGUAGE="JavaScript1.2" in the script tag,
using the toString method converts objects and arrays to literals. An object
literal has the form {property1:value1, property2:value2, ...}. An array literal has
the form [element0, element1, ...].

Converting to literals allows you to capture a persistent form of the object for
debugging or as source for another JavaScript program.

Shared Methods

76 What’s New in JavaScript 1.2

Example

The following example converts myHonda to a literal.

<SCRIPT LANGUAGE="JavaScript1.2">
myHonda = new Object();
myHonda.color = "red";
myHonda.wheels = 4;
document.write(myHonda.toString());
</SCRIPT>

Prints {color:"red", wheels:4}

Without LANGUAGE="JavaScript1.2" in the <SCRIPT> tag, this prints [object
Object]

Chapter 6, Objects 77

C h a p t e r

6
Objects

This section describes the following new objects and changes to existing
objects:

• arguments

• event

• Array (links to a different page)

• Number

• the regular expression object

• RegExp

• screen

• String (links to a different page)

In addition, objects can now be creating using literal notation.

Creating Objects With Literal Notation
In addition to creating an object using its constructor function, you can create it
using literal notation.

arguments

78 What’s New in JavaScript 1.2

Syntax
objectName = { property1 : value1 , property2 : value2 ,..., propertyn : valuen }

Properties

objectName is the name of the new object

propertyn is a property.

valuen is the value assigned to the propertyn.

Description

JavaScript interprets objects created through literal notation once only, when
the HTML page is loaded.

Example

The following example creates myHonda with three properties. Note that the
engine property is also an object with its own properties.

myHonda = {color:"red",wheels:4,engine:{cylinders:4,size:2.2}}

arguments
Core object. The arguments array object provides information about a function
at the time the function is invoked. In previous JavaScript versions, arguments
provided a list of indexed elements and a length property. In JavaScript 1.2,
arguments includes these additional properties:

• formal arguments — each formal argument of a function is a property of the
arguments array.

• local variables — each local variable of a function is a property of the
arguments array.

Chapter 6, Objects 79

Number

• caller — a property whose value is the arguments array of the outer
function. If there is no outer function, the value is undefined.

• callee — a property whose value is the function reference.

For example, the following script demonstrates several of the arguments
properties;

<SCRIPT>

function b(z) {
document.write(arguments.z + "
")
document.write (arguments.caller.x + "
")
return 99

}

function a(x, y) {
return b(534)

}

document.write (a(2,3) + "
")

</SCRIPT>

This writes:

534
2
99

534 is the actual parameter to b, so it is the value of arguments.z

2 is a's actual x parameter, so (viewed within b) it is the value of
arguments.caller.x.

99 is what a(2,3) returns.

Number
Core object. Number(x) now produces NaN rather than an error if x is a string
that does not contain a well-formed numeric literal. For example,

x=Number("three");

document.write(x + "
");

prints NaN

screen

80 What’s New in JavaScript 1.2

screen
Client-side object. Contains information about the display screen resolution and
colors.

Syntax
screen. propertyName

Parameters

propertyName is one of the properties listed below.

Property of

None

Properties

Property Description

availHeight Specifies the height of the screen, in pixels, minus permanent or
semi-permanent user interface features displayed by the operating
system, such as the Taskbar on Windows.

availWidth Specifies the width of the screen, in pixels, minus permanent or
semi-permanent user interface features displayed by the operating
system, such as the Taskbar on Windows.

height Specifies the height of the screen in pixels.

width Specifies the width of the screen in pixels.

Chapter 6, Objects 81

screen

Methods

None

Event handlers

None

pixelDepth Specifies the number of bits per pixel in the display.

colorDepth Specifies the number of colors possible to display. The number of
colors is found using the color palette if one is available, or using
the pixel depth.

Property Description

screen

82 What’s New in JavaScript 1.2

Chapter 7, The String Object 83

C h a p t e r

7
The String Object

This section describes the new methods for strings. * indicates a change to an
existing method.

• charCodeAt — returns a number indicating the ISO-Latin-1 codeset value of
the character at the given index.

• concat — combines the text of two strings and returns a new string.

• fromCharCode — constructs a string from the specified sequence of
numbers that are ISO-Latin-1 codeset values.

• match — used to match a regular expression against a string

• replace — used to find a match in a string, and replace the matched
substring with a replacement substring.

• search — used to test for a match in a string.

• slice — extracts a section of an string and returns a new string.

• split* — uses a regular expression or a fixed string as its argument to split a
string.

• substr — returns the characters in a string collecting the specified number
of characters beginning with a specified location in the string.

charCodeAt

84 What’s New in JavaScript 1.2

• substring* — When the <SCRIPT> tag includes LANGUAGE="JavaScript1.2",
substring(x,y) no longer swaps x and y.

charCodeAt
Core method. Returns a number indicating the ISO-Latin-1 codeset value of the
character at the given index.

Syntax
string .charCodeAt([index])

Parameters

string is any string.

index, an optional argument, is any integer from zero to string.length -1, or a
property of an existing object. The default value is 0.

Method of

String object

Description

The ISO-Latin-1 codeset ranges from 0 to 255. The first 0 to 127 are a direct
match of the ASCII character set.

Example

The following example returns the ISO-Latin-1 codeset value of 65.

"ABC".charCodeAt(0)

Chapter 7, The String Object 85

concat

concat
Core method. Combines the text of two strings and returns a new string.

Syntax
string1 .concat(string2)

Parameters

string1 is the first string.

string2 is the second string.

Method of

String object

Description

concat combines the text from two strings and returns a new string. Changes to
the text in one string do not affect the other string.

Example

The following example combines two strings into a new string.

<SCRIPT>
str1="The morning is upon us. "
str2="The sun is bright."
str3=str1.concat(str2)
document.write(str3)
</SCRIPT>

This writes:

fromCharCode

86 What’s New in JavaScript 1.2

The morning is upon us. The sun is bright.

fromCharCode
Core method. Returns a string from the specified sequence of numbers that are
ISO-Latin-1 codeset values.

Syntax
String.fromCharCode(num1, num2, ..., numn)

Parameters

numn is a sequence of numbers that are ISO-Latin-1 codeset values.

Method of

String object

Description

This method returns a string and not a String object.

Examples

Example 1. The following example returns the string "ABC".

String.fromCharCode(65,66,67)

Chapter 7, The String Object 87

match

Example 2. The which property of the KeyDown, KeyPress, and KeyUp events
contains the ASCII value of the key pressed at the time the event occurred. If
you want to get the actual letter, number, or symbol of the key, you can use
fromCharCode. The following example returns the letter, number, or symbol
of the KeyPress event's which property.

String.fromCharCode(KeyPress.which)

match
Core method. Used to match a regular expression against a string.

Syntax
string .match(regexp)

Parameters

string is any string.

regexp is the name of the regular expression. It can be a variable name or a
literal.

Method of

String object

Description

If you want to execute a global match, or a case insensitive match, include the
g (for global) and i (for ignore case) flags in the regular expression. These can
be included separately or together. The following two examples below show
how to use these flags with match.

replace

88 What’s New in JavaScript 1.2

Note If you are executing a match simply to find true or false , use search or the
regular expression test method.

Examples

Example 1. In the following example, match is used to find 'Chapter'
followed by one or more numeric characters followed by a decimal point and
numeric character zero or more times. The regular expression includes the i
flag so that case will be ignored.

<SCRIPT>
str = "For more information, see Chapter 3.4.5.1";
re = /(chapter \d+(\.\d)*)/i;
found = str.match(re);
document.write(found);
</SCRIPT >

This returns the array containing

Chapter 3.4.5.1,Chapter 3.4.5.1,.1

'Chapter 3.4.5.1' is the first match and the first value remembered from
(Chapter \d+(\.\d)*). '.1' is the second value remembered from (\.\d).

Example 2. The following example demonstrates the use of the global and
ignore case flags with match.

<SCRIPT>
str = "abcDdcba";
newArray = str.match(/d/gi);
document.write(newArray);
</SCRIPT >

The returned array contains D, d.

replace
Core method. Used to find a match between a regular expression and a string,
and to replace the matched substring with a new substring.

Chapter 7, The String Object 89

replace

Syntax
string .replace(regexp , newSubStr)

Parameters

string is any string.

regexp is the name of the regular expression. It can be a variable name or a
literal.

newSubStr is the string to replace the string found with regexp.

Method of

String object

Description

If you want to execute a global search and replace, or a case insensitive search,
include the g (for global) and i (for ignore case) flags in the regular
expression. These can be included separately or together. The following two
examples below show how to use these flags with replace.

Examples

Example 1. In the following example, the regular expression includes the
global and ignore case flags which permits replace to replace each occurrence
of 'apples' in the string with 'oranges.'

<SCRIPT>
re = /apples/gi;
str = "Apples are round, and apples are juicy.";
newstr=str.replace(re, "oranges");
document.write(newstr)
</SCRIPT>

search

90 What’s New in JavaScript 1.2

This prints "Oranges are round, and oranges are juicy."

Example 2. In the following example, the regular expression is defined in
replace and includes the ignore case flag.

<SCRIPT>
str = "Twas the night before Xmas...";
newstr=str.replace(/xmas/i, "Christmas");
document.write(newstr)
</SCRIPT>

This prints "Twas the night before Christmas..."

search
Core method. Executes the search for a match between a regular expression
and a specified string.

Syntax
string .search(regexp)

Parameters

string is any string.

regexp is the name of the regular expression. It can be a variable name or a
literal.

Description

When you want to know whether a pattern is found in a string use search
(similar to the regular expression test method); for more information (but
slower execution) use match (similar to the regular expression exec method).

Chapter 7, The String Object 91

slice

Example

The following example prints a message which depends on the success of the
test.

function testinput(re, str){
 if (str.search(re))

 midstring = " contains ";
 else

 midstring = " does not contain ";
 document.write (str + midstring + re.source);

}

slice
Core method. Extracts a section of an string and returns a new string.

Syntax
string .slice(beginslice ,[endSlice])

Parameters

string is a string.

beginSlice is the zero-based index at which to begin extraction.

endSlice is the zero-based index at which to end extraction.

• slice extracts up to but not including endSlice. string .slice(1,4)
extracts the second character through the fourth character (characters
indexed 1, 2, and 3)

• As a negative index, endSlice indicates an offset from the end of the string.
string .slice(2,-1) extracts the third character through the second to
last character in the string.

• If endSlice is omitted, slice extracts to the end of the string.

split

92 What’s New in JavaScript 1.2

Method of

String object

Description

slice extracts the text from one string and returns a new string. Changes to the
text in one string do not affect the other string.

Example

The following example uses slice to create a new string.

<SCRIPT>

str1="The morning is upon us. "

str2=str1.slice(3,-5)

document.write(str2)

</SCRIPT>

This writes:

morning is upon

split
Core method. split has the following additions:

• It can take a regular expression argument, as well as a fixed string, by
which to split the object string.

• It can take a limit count so that it won't include trailing empty elements in
the resulting array.

• If you specify LANGUAGE="JavaScript1.2" in the <SCRIPT> tag,
string .split(" ") splits on any run of one or more white space
characters including spaces, tabs, line feeds, and carriage returns.

Chapter 7, The String Object 93

split

Syntax
string .split([separator], [limit])

Parameters

string is any string.

separator specifies the character or regular expression to use for separating the
string.

limit is an optional integer that specifies a limit on the number of splits to be
found.

Method of

String object

Description

When found, separator is removed from the string and the substrings are
returned in an array. If separator is omitted, the array contains one element
consisting of the entire string.

If separator is a regular expression, any included parenthesis cause submatches
to be included in the returned array.

Using the optional limit argument, you can avoid including trailing empty
elements in the returned array.

Examples

Example 1. Using LANGUAGE="JavaScript1.2", the following script produces
["She", "sells", "seashells", "by", "the", "seashore"] .

<SCRIPT LANGUAGE="JavaScript1.2">

substr

94 What’s New in JavaScript 1.2

str="She sells seashells \nby the\n seashore"
document.write(str + "
")
a=str.split(" ")
document.write(a)
</SCRIPT>

Without LANGUAGE="JavaScript1.2", the above script splits only on single
space characters, producing

She,sells,,,,seashells, by,,,the ,seashore

Example 2. In the following example, split looks for zero to many spaces
followed by a semi-colon followed by zero to many spaces and, when found,
removes them from the string. nameList is the array returned as a result of
split.

<SCRIPT>
names = "Harry Trump ;Fred Barney; Helen Rigby ; Bill Abel ;Chris Hand ";
document.write (names + "
" + "
");
re = /\s*;\s*/;
nameList = names.split (re);
document.write(nameList);
</SCRIPT>

This prints two lines; the first line prints the original string, and the second line
prints the resulting array.

Harry Trump ;Fred Barney; Helen Rigby ; Bill Abel ;Chris Hand

Harry Trump,Fred Barney,Helen Rigby,Bill Abel,Chris Hand

substr
Core method. Returns the characters in a string beginning at the specified
location through the specified number of characters.

Syntax
string .substr(start , [length])

Chapter 7, The String Object 95

substr

Parameters

string is any string.

start is the location at which to begin extracting characters.

length, an optional argument, is the number of characters to extract.

Method of

String object

Description

start is a character index. The index of the first character is zero, and the index
of the last character is stringName.length -1. substr begins extracting characters
at start and collects length number of characters.

If length is 0 or negative, no string is extracted.

If length is omitted, start extracts characters to the end of the string.

Example

The following example collects 4 characters beginning with b, and returns
"bean".

<SCRIPT>
str = "jellybeans";
newstr = str.substr(5,4);
document.write(newstr);
</SCRIPT>

substring

96 What’s New in JavaScript 1.2

substring
If you specify LANGUAGE="JavaScript1.2" in the script tag, substring(x,y)
no longer swaps x and y.

Syntax
string .substring(indexA , [indexB])

Parameters

string is any string.

indexA is any integer from zero to stringName.length - 1.

indexB, an optional argument, is any integer from zero to stringName.length.

Method of

String object

Description

substring behaves as follows:

• It extracts characters from indexA up to but not including indexB.

• If indexA is less than zero, indexA is treated as if it were 0.

• If indexB is greater than stringName.length, indexB is treated as if it were
stringName.length.

• If indexA equals indexB, substring returns an empty string.

• If indexB is omitted, indexA extracts characters to the end of the string.

Using LANGUAGE="JavaScript1.2" in the <SCRIPT> tag,

Chapter 7, The String Object 97

substring

• If indexA is greater than indexB, JavaScript produces a runtime error (out of
memory).

Without LANGUAGE="JavaScript1.2" ,

• If indexA is greater than indexB, JavaScript returns a substring beginning
with indexB and ending with indexA -1.

Example

Using LANGUAGE="JavaScript1.2", the following script produces a runtime
error (out of memory).

<SCRIPT LANGUAGE="JavaScript1.2">

str="Netscape"

document.write(str.substring(0,3);

document.write(str.substring(3,0);

</SCRIPT>

Without LANGUAGE="JavaScript1.2", the above script prints

Net Net

In the second write, the index numbers are swapped.

substring

98 What’s New in JavaScript 1.2

Chapter 8, The Array Object 99

C h a p t e r

8
The Array Object

This section describes the new features and changes for arrays.

• Literal notation – arrays can now be created using literal notation

• Methods –

• concat joins two arrays and returns a new array.

• slice extracts a section from an array and returns a new array

• sort now works on all platforms, no longer converts undefined
elements to null , and sorts undefined elements to the high end of the
array

• Under JavaScript 1.2 – when the <SCRIPT> tag includes
LANGUAGE="JavaScript1.2," array(1) creates a new array with a[0]=1

• With regular expressions – When created as the result of a match between
a regular expression and a string, arrays have new properties that provide
information about the match

Creating Arrays With Literal Notation

100 What’s New in JavaScript 1.2

Creating Arrays With Literal Notation
In addition to creating an array using its constructor function, you can create it
using literal notation.

Syntax
arrayName = [element0 , element1 , ..., elementn]

Properties

arrayName is the name of the new array.

elementn is a list of values for the array's elements. When this form is specified,
the array is initialized with the specified values as its elements, and the array's
length is set to the number of arguments.

Description

JavaScript initializes arrays created through literal notation, when the HTML
page is loaded.

Example

The following example creates the coffees array with three elements and a
length of three.

coffees = ["French Roast", "Columbian", "Kona"]

Chapter 8, The Array Object 101

Methods

Methods

concat

Core method. Joins two arrays and returns a new array.

Syntax
arrayName1.concat(arrayName2)

Parameters

arrayName1 is the name of the first array.

arrayName2 is the name of the second array.

Method of

Array object

Description

concat does not alter the original arrays, but returns a "one level deep" copy
that contains copies of the same elements combined from the original arrays.
Elements of the original arrays are copied into the new array as follows:

• Object references (and not the actual object) – concat copies object
references into the new array. Both the original and new array refer to the
same object. If a referenced object changes, the changes are visible to both
the new and original arrays.

• Strings and numbers (not String and Number objects)– concat copies
strings and numbers into the new array. Changes to the string or number in
one array does not affect the other arrays.

If a new element is added to either array, the other array is not affected.

Methods

102 What’s New in JavaScript 1.2

slice

Core method. Extracts a section of an array and returns a new array.

Syntax
arrayName.slice(beginSlice,[endSlice])

Parameters

arrayName is the name of an array.

beginSlice is the zero-based index at which to begin extraction.

endSlice is the zero-based index at which to end extraction.

• slice extracts up to but not including endSlice. arrayName .slice(1,4)
extracts the second element through the fourth element (elements indexed
1, 2, and 3)

• As a negative index, endSlice indicates an offset from the end of the
sequence. arrayName .slice(2,-1) extracts the third element through
the second to last element in the sequence.

• If endSlice is omitted, slice extracts to the end of the sequence.

Method of

Array object

Description

slice does not alter the original array, but returns a new "one level deep" copy
that contains copies of the elements sliced from the original array. Elements of
the original array are copied into the new array as follows:

• Object references (and not the actual object) – slice copies object
references into the new array. Both the original and new array refer to the
same object. If a referenced object changes, the changes are visible to both
the new and original arrays.

Chapter 8, The Array Object 103

Methods

• Strings and numbers (not String and Number objects) – slice copies strings
and numbers into the new array. Changes to the string or number in one
array does not affect the other array.

If a new element is added to either array, the other array is not affected.

Example

In the following example slice creates a new array, newCar, from myCar. Both
include a reference to the object myHonda. When the color of myHonda is
changed to purple, both arrays are aware of the change.

<SCRIPT LANGUAGE="JavaScript1.2">

//Using slice, create newCar from myCar.

myHonda = {color:"red",wheels:4,engine:{cylinders:4,size:2.2}}
myCar = [myHonda, 2, "cherry condition", "purchased 1997"]
newCar = myCar.slice(0,2)

//Write the values of myCar, newCar, and the color of myHonda
//referenced from both arrays.
document.write("myCar = " + myCar + "
")
document.write("newCar = " + newCar + "
")
document.write("myCar[0].color = " + myCar[0].color + "
")
document.write("newCar[0].color = " + newCar[0].color + "

")

//Change the color of myHonda
myHonda.color = "purple"
document.write("The new color of my Honda is " + myHonda.color + "

")

//Write the color of myHonda referenced from both arrays.
document.write("myCar[0].color = " + myCar[0].color + "
")
document.write("newCar[0].color = " + newCar[0].color + "
")

</SCRIPT>

This writes:

myCar = [{color:"red", wheels:4, engine:{cylinders:4, size:2.2}}, 2, "cherry
condition", "purchased 1997"]
newCar = [{color:"red", wheels:4, engine:{cylinders:4, size:2.2}}, 2]
myCar[0].color = red newCar[0].color = red

The new color of my Honda is purple

myCar[0].color = purple
newCar[0].color = purple

Creating Arrays Under JavaScript 1.2

104 What’s New in JavaScript 1.2

sort

Core method. sort now works on all platforms. It no longer converts undefined
elements to null , and it sorts them to the high end of the array. For example:

<SCRIPT>
a = new Array();
a[0] = "Ant";
a[5] = "Zebra";

function writeArray(x) {
 for (i = 0; i < x.length; i++) {

 document.write(x[i]);
 if (i < x.length-1) document.write(", ");

 }
}

writeArray(a);
a.sort();
document.write("

");
writeArray(a);
</SCRIPT>

JavaScript in Navigator 3 prints:

ant, null, null, null, null, zebra

ant, null, null, null, null, zebra

JavaScript in Navigator 4 prints:

ant, undefined, undefined, undefined, undefined, zebra

ant, zebra, undefined, undefined, undefined, undefined

Creating Arrays Under JavaScript 1.2
If you specify LANGUAGE="JavaScript1.2" in the script tag, using new
Array(1) creates a new array with a[0]=1 .

Without the LANGUAGE="JavaScript1.2" specification, new Array(1) sets the
array's length to 1 and a[0] to undefined .

Chapter 8, The Array Object 105

Working With Arrays and Regular Expressions

Example

The following example prints 1. Without LANGUAGE="JavaScript1.2", it prints
undefined .

<SCRIPT LANGUAGE="JavaScript1.2">
a=new Array(1);
document.write(a[0] + "
");
</SCRIPT>

Working With Arrays and Regular
Expressions

When an array is the result of a match between a regular expression and a
string, the array returns properties and elements that provide information about
the match. An array is the return value of regexp.exec , string.match ,
and string.replace .

Syntax
arrayName.propertyName

arrayName [element0,..., elementn]

Parameters

arrayName is the name of the array.

propertyName is one of the properties listed below.

elementn is one of the elements listed below.

Properties and Elements

To help explain the properties and elements, look at the following example
and then refer to the table below:

Working With Arrays and Regular Expressions

106 What’s New in JavaScript 1.2

<SCRIPT>
//Match one d followed by one or more b's followed by one d
//Remember matched b's and the following d
//Ignore case

myRe=/d(b+)(d)/i;
myArray = myRe.exec("cdbBdbsbz");

</SCRIPT>

The properties and elements returned from a match between a regular
expression and a string are as follows (the examples are a result of the above
script):

Description

The returned array varies depending on the type of match that was executed.
The following lists shows what is returned if the match is successful. (regexp is
a regular expression, str is a string, and replaceText is the replacement text for
the replace method.

regexp.exec(str) returns:

Property/Element Description Example

input A read-only property that reflects
the original string against which
the regular expression was
matched.

cdbBdbsbz

index A read-only property that is the
zero-based index of the match in
the string.

1

[0] A read-only element that specifies
the last matched characters.

dbBd

[1], ...[n] Read-only elements that specify
the parenthesized substring
matches, if included in the regular
expression. The number of
possible parenthesized substrings
is unlimited.

[1]=bB
[2]=d

Chapter 8, The Array Object 107

Working With Arrays and Regular Expressions

An array containing the match string, any parenthesized substring matches,
and the input and index properties as described above.

str .match(regexp) returns:

An array containing the match string, the last parenthesized substring match
(if included), and the input and index properties as described above.

str .match(regexp) where regexp includes the global flag (e.g. /abc/g)
returns:

An array of all matches and the last parenthesized substring match (if
included). input and index are undefined.

str .match(regexp) where regexp includes the global and ignore case flags
(e.g. /abc/gi) returns:

An array of all matches. input and index are undefined.

str .replace(regexp , " replaceText ") returns:

A string with the regular expression match replaced by replaceText. input
and index are undefined.

Working With Arrays and Regular Expressions

108 What’s New in JavaScript 1.2

Chapter 9, Operators 109

C h a p t e r

9
Operators

This section provides information about changes to the equality operators and
the new delete operator.

Equality Operators
If the <SCRIPT> tag uses LANGUAGE=JavaScript1.2, the equality operators (==
and !=) work differently. This section describes how the equality operators
work without LANGUAGE=JavaScript1.2 and how they work with
LANGUAGE=JavaScript1.2. For instructions on writing code to convert strings
and numbers, see “Data Conversion”.

Equality Operators Without
LANGUAGE=JavaScript1.2

The following describes how the equality operators (= = and !=) worked in
previous versions of JavaScript and how they work in JavaScript 1.2 when
LANGUAGE=JavaScript1.2 is not used in the <SCRIPT> tag. Note that if
LANGUAGE=JavaScript, and LANGUAGE=JavaScript1.1 are used, the equality
operators maintain their previous behavior.

Equality Operators

110 What’s New in JavaScript 1.2

• If both operands are objects, compare object references.

• If either operand is null, convert the other operand to an object and
compare references.

• If one operand is a string and the other is an object, convert the object to a
string and compare string characters.

• Otherwise, convert both operands to numbers and compare numeric
identity.

Equality Operators With
LANGUAGE=JavaScript1.2

If LANGUAGE=JavaScript1.2 is used in the <SCRIPT> tag, the equality operators
(= = and !=) behave as follows:

• They never attempt to convert operands from one type to another. To
convert operands, do the following:

• They always compare identity of like-typed operands. If the operands do
not have like type, they are not equal.

This approach avoids errors, maintains transitivity, and simplifies the language.

Data Conversion

To write JavaScript code that converts strings to numbers and numbers to
strings in the different versions of Navigator, follow these guidelines:

• When writing for all versions of Navigator:

• To convert x to a string, use " " + x. For example,

(("" + 3)=="3")

• To convert x to a number, use (x - 0). For example,

(("3"-0)==3)

• When writing for Navigator 4.0 only:

Chapter 9, Operators 111

Equality Operators

• To convert x to a string, in addition to " " + x, you can use String(x). For
example,

var x = 3

String(x) = "3"

• To convert x to a number, in addition to (x - 0), you can use Number(x).
For example,

var x = "3"

Number(x) = 3

Example

The following example demonstrates the = = operator with different <SCRIPT>
tags.

<HTML>

<SCRIPT>
document.write("3" == 3);
</SCRIPT>

<SCRIPT>
document.write(("3"-0) == 3);
</SCRIPT>

<SCRIPT LANGUAGE="JavaScript">
document.write("3" == 3);
</SCRIPT>

<SCRIPT LANGUAGE="JavaScript1.1">
document.write("3" == 3);
</SCRIPT>

<SCRIPT LANGUAGE="JavaScript1.2">
document.write("3" == 3);
</SCRIPT>

<SCRIPT LANGUAGE="JavaScript1.2">
document.write(("3"-0) == 3);
</SCRIPT>

<SCRIPT LANGUAGE="JavaScript1.2">

delete

112 What’s New in JavaScript 1.2

document.write(String(3) == "3");
</SCRIPT>

</HTML>

The output from the above is:

true
true
true
true
false
true
true

delete
Core operator. Deletes an object's property or an element at a specified index
in an array.

Syntax
delete objectName.property

delete objectname [index]

Parameters

property is any existing property.

index is an integer representing the location of an element in an array.

Description

If the deletion succeeds, the delete operator sets the property or element to
undefined and returns true ; otherwise, it returns false .

Chapter 10, Properties 113

C h a p t e r

10
Properties

This section list new and revised properties for:

• Function object

• navigator object

• window object

Function Property

arity

Core property. When the LANGUAGE attribute of the SCRIPT tag is
"JavaScript1.2", this property indicates the number of arguments expected by a
function.

Syntax
functionName.arity

Parameters

functionName is the name of a function.

navigator Properties

114 What’s New in JavaScript 1.2

Property of

Function object

Description

arity is external to the function, and indicates how many arguments the
function expects. The length property is internal to the function and indicates
how many arguments were passed to the function. For more information on the
length property, see the “JavaScript Guide.”

Example

The following example demonstrates the use of arity and length.

<SCRIPT LANGUAGE = "JavaScript1.2">

function addNumbers(x,y){
 document.write("length = " + arguments.length + "
")
 z = x + y

}

document.write("arity = " + addNumbers.arity + "
")

addNumbers(3,4,5)

</SCRIPT>

This writes:

arity = 2
length = 3

navigator Properties

language

Client-side property. Indicates the translation of the Navigator being used.

Syntax
navigator.language

Chapter 10, Properties 115

navigator Properties

Property of

navigator object

Description

The language property has been added for use with the JAR Manager. For more
information, see the “JAR Installation Manager Developer's Guide.”

The value for language is usually a two-letter code, such as "en" and
occasionally a five-character code to indicate a language sub-type, such as
"zh_CN".

Webpage authors would use this property when they need to determine the
language of the Navigator client software being used. For example the scripter
could display translated text for the user.

language is a read-only property.

platform

Client-side property. Indicates the machine type for which the Navigator was
compiled.

Syntax
navigator.platform

Property of

navigator object

Description

The platform property has been added for use with the JAR Manager. For more
information, see the "JAR Installation Manager Developer's Guide."

The machine type the Navigator was compiled for may differ from the actual
machine type due to version differences, emulators, or other reasons.

window Properties

116 What’s New in JavaScript 1.2

Webpage authors would use this property to ensure that their triggers
download the appropriate JAR files. The triggering page checks the Navigator
version before checking the platform property.

JAR-install writers would use this property to double-check that their package is
being installed on an appropriate machine, or for small JAR's to decide which
of several machine-specific files to install.

Platform values are Win32, Win16, Mac68k, MacPPC and various Unix.

platform is a read-only property.

window Properties

innerHeight

Client-side property. Specifies the vertical dimension, in pixels, of the window's
content area.

Syntax
[windowReference.]innerWidth

Parameters

windowReference is either the name of a window object or one of the
synonyms top or parent.

Property of

window object

Description

To create a window smaller than 100 x 100 pixels, set this property in a signed
script.

Chapter 10, Properties 117

window Properties

innerWidth

Client-side property. Specifies the horizontal dimension, in pixels, of the
window's content area.

Syntax
[windowReference.]innerWidth

Parameters

windowReference is either the name of a window object or one of the
synonyms top or parent.

Property of

window object

Description

To create a window smaller than 100 x 100 pixels, set this property in a signed
script.

locationbar

Client-side object and a property of the window object. Represents the
Navigator window's location bar.

Syntax
[windowReference .]locationbar.visible

Parameters

windowReference is either the name of a window object or one of the
synonyms top or parent.

window Properties

118 What’s New in JavaScript 1.2

Property of

window object

Description

The locationbar object has one property, visible, that allows you to hide or
show the location bar of the specified window.

This property must be set in a signed script.

Property
visible = [true, false] | [1, 0]

Example

The following example hides the location bar of myWindow.

myWindow.locationbar.visible=false

menubar

Client-side object and a property of the window object. Represents the
Navigator window's menu bar.

Syntax
[windowReference.]menubar.visible

Parameters

windowReference is either the name of a window object or one of the
synonyms top or parent.

Property of

window object

Chapter 10, Properties 119

window Properties

Description

The menubar object has one property, visible, that allows you to hide or show
the menu bar of the specified window.

This property must be set in a signed script.

Property
visible = [true, false] | [1, 0]

Example

The following example hides the menu bar of myWindow.

myWindow.menubar.visible=false

outerHeight

Client-side property. Specifies the vertical dimension, in pixels, of the window's
outside boundary.

Syntax
[windowReference.]innerWidth

Parameters

windowReference is either the name of a window object or one of the
synonyms top or parent.

Property of

window object

Description

To create a window smaller than 100 x 100 pixels, set this property in a signed
script.

window Properties

120 What’s New in JavaScript 1.2

outerWidth

Client-side property. Specifies the horizontal dimension, in pixels, of the
window's outside boundary.

Syntax
[windowReference.]innerWidth

Parameters

windowReference is either the name of a window object or one of the
synonyms top or parent.

Property of

window object

Description

To create a window smaller than 100 x 100 pixels, set this property in a signed
script.

pageXOffset

Client-side property. Provides the current x-position, in pixels, of a window's
viewed page.

Syntax
windowReference.pageXOffset

Parameters

windowReference is either the name of a window object or one of the
synonyms top or parent.

Chapter 10, Properties 121

window Properties

Property of

window object

Description

The pageXOffset property provides the current x-position of a page as it relates
to the upper-left corner of the window's content area. This property is useful
when you need to find the current location of the scrolled page before using
scrollTo or scrollBy.

This is a read-only property.

Example

The following example returns the x-position of the viewed page.

x = myWindow.pageXOffset

See Also

pageYOffset

pageYOffset

Client-side property. Provides the current y-position, in pixels, of a window's
viewed page.

Syntax
windowReference.pageYOffset

Parameters

windowReference is either the name of a window object or one of the
synonyms top or parent.

window Properties

122 What’s New in JavaScript 1.2

Property of

window object

Description

The pageYOffset property provides the current y-position of a page as it relates
to the upper-left corner of the window's content area. This property is useful
when you need to find the current location of the scrolled page before using
scrollTo or scrollBy.

This is a read-only property.

Example

The following example returns the y-position of the viewed page.

x = myWindow.pageYOffset

See Also

pageXOffset

personalbar

Client-side object and a property of the window object. Represents the
Navigator window's personal bar (also called the directories bar).

Syntax
[windowReference.]personalbar.visible

Parameters

windowReference is either the name of a window object or one of the
synonyms top or parent.

Chapter 10, Properties 123

window Properties

Property of

window object

Description

The personalbar object has one property, visible, that allows you to hide or
show the personal bar of the specified window.

This property must be set in a signed script.

Property
visible = [true, false] | [1, 0]

Example

The following example hides the personal bar of myWindow.

myWindow.personalbar.visible=false

scrollbars

Client-side object and a property of the window object. Represents the
Navigator window's scroll bars.

Syntax
[windowReference.]scrollbar.visible

Parameters

windowReference is either the name of a window object or one of the
synonyms top or parent.

Property of

window object

window Properties

124 What’s New in JavaScript 1.2

Description

The scrollbars object has one property, visible, that allows you to hide or show
the scroll bar of the specified window.

This property must be set in a signed script.

Property
visible = [true, false] | [1, 0]

Example

The following example hides the scroll bar of myWindow.

myWindow.scrollbars.visible=false

statusbar

Client-side object and a property of the window object. Represents the
Navigator window's status bar.

Syntax
[windowReference.]statusbar.visible

Parameters

windowReference is either the name of a window object or one of the
synonyms top or parent.

Property of

window object

Description

The statusbar object has one property, visible, that allows you to hide or show
the status bar of the specified window.

Chapter 10, Properties 125

window Properties

This property must be set in a signed script.

Property
visible = [true, false] | [1, 0]

Example

The following example hides the status bar of myWindow.

myWindow.statusbar.visible=false

toolbar

Client-side object and a property of the window object. Represents the
Navigator window's tool bar.

Syntax
[windowReference.]toolbar.visible

Parameters

windowReference is either the name of a window object or one of the
synonyms top or parent.

Property of

window object

Description

The toolbar object has one property, visible, that allows you to hide or show
the toolbar of the specified window.

This property must be set in a signed script.

Property
visible = [true, false] | [1, 0]

window Properties

126 What’s New in JavaScript 1.2

Example

The following example hides the tool bar of myWindow.

myWindow.toolbar.visible=false

Chapter 11, Regular Expressions 127

C h a p t e r

11
Regular Expressions

Regular expressions are patterns used to match character combinations in
strings. For example, to search for all occurrences of 'the' in a string, you create
a pattern consisting of 'the' and use the pattern to search for its match in a
string. Regular expression patterns are constructed using literal notation (/
abc/) or the RegExp constructor function (re = new RegExp("abc")).
These patterns are used with the regular expression methods, exec and test
and with the String methods, match, replace, search, and split.

This section includes:

• Constructing Regular Expressions

• Working With Regular Expressions

• A Complete Example

• Special Characters Used in Regular Expressions

For complete information on the objects, properties, and methods used with
regular expressions, see:

• The Regular Expression Object

• The RegExp Object

• The String Object

• The Array Object

Constructing Regular Expressions

128 What’s New in JavaScript 1.2

Constructing Regular Expressions
In JavaScript, a regular expression is an object that contains the pattern used to
search for a match in a string. This section describes the regular expression
syntax and how to write a pattern.

The Regular Expression Syntax

You construct a regular expression in one of two ways:

• Using literal notation,

re = /ab+c/

Literal notation provides compilation of the regular expression once only,
when the script is first loaded. When the regular expression will remain
constant, use literal notation for better performance.

• Calling the constructor function of the RegExp object,

re = new RegExp("ab+c")

• Using the constructor function provides runtime compilation of the regular
expression. Use the constructor function when you know the regular
expression pattern will be changing, or you don't know the pattern and are
getting it from another source, such as user input. Once you have a defined
regular expression, and if the regular expression is used throughout the
script, you can use the compile method to compile the regular expression
for efficient reuse.

The regular expression object is explained in detail in “Regular Expression
Object.”

The examples used in the remainder of this section are shown in literal form.

Writing a Regular Expression Pattern

A regular expression pattern is composed of simple characters, such as /abc/,
or a combination of simple and special characters, such as /ab*c/ or /Chapter
(\d+)\.\d*/. The last example includes parentheses which are used as a
memory device. The match made with this part of the pattern is remembered
for later use.

Chapter 11, Regular Expressions 129

Constructing Regular Expressions

Using Simple Patterns

Simple patterns are constructed of characters for which you want to find a
direct match. For example, the pattern /abc/ matches character combinations in
strings only when exactly the characters 'abc' occur together and in that order.
Such a match would succeed in the strings "Hi, do you know your abc's?" and
"The latest airplane designs evolved from slabcraft." In both cases the match is
with the substring 'abc'. There is no match in the string "Grab crab" because it
does not contain the substring 'abc'.

Using Special Characters

When the search for a match requires something more than a direct match,
such as finding one or more b's, or finding a whitespace, the pattern includes
special characters. For example, the pattern /ab*c/ matches any character
combination in which a single 'a' is followed by zero or more 'b's (* means zero
or more of the preceding character) and then immediately followed by 'c'. In
the string "cbbabbbbcdebc," the pattern matches the substring 'abbbbc'.

“Special Characters Used in Regular Expressions” provides a complete list and
description of the special characters that can be used in regular expressions.

Using Parentheses

Parentheses around any part of the regular expression pattern cause that part of
the matched substring to be remembered. Once remembered, the substring can
be recalled for other use.

For example, the pattern /Chapter, (\d+)\.\d*/ illustrates additional escaped
and special characters and indicates that part of the pattern should be
remembered. It matches precisely the characters 'Chapter, ' followed by one or
more numeric characters (\d means any numeric character and + means one or
more times), followed by a decimal point (which in itself is a special character;
preceding the decimal point with \ means the pattern must look for the literal
character '.'), followed by any numeric character zero or more times (\d means
numeric character, * means zero or more times). In addition, parentheses are
used to remember the first matched numeric characters.

This pattern is found in "Open Chapter 4.3, paragraph 6" and '4' is remembered.
The pattern is not found in "Chapters 3 and 4."

Working With Regular Expressions

130 What’s New in JavaScript 1.2

How you use parenthesized substring matches is described in “Using
Parenthesized Substring Matches.”

Working With Regular Expressions
Regular expressions are used with the regular expression methods test and
exec and with the String methods match, replace, search, and split. These
methods are explained in detail at their linked locations.

When you want to know whether a pattern is found in a string use the test or
search method; for more information (but slower execution) use the exec or
match methods. If you use exec or match and if the match succeeds, these
methods return an array and update properties of the regular expression object
and the global regular expression object, RegExp.

For information about the returned array and its properties, see “Working With
Regular Expressions.”

For information about the global RegExp object and its properties, see “The
RegExp Object.”

In the following example, the script uses the exec method to find a match in a
string.

<SCRIPT>

myRe=/db+d/;
myArray = myRe.exec("cdbbdbsbz");

exec A regular expression method that executes a search for a match in
a string. It returns an array of useful information.

test A regular expression method that tests for a match in a string. It
returns true or false.

match A String method that executes a search for a match in a string. It
returns an array of useful information.

search A String method that tests for a match in a string. It returns true or
false.

replace A String method that executes a search for a match in a string,
and replaces the matched substring with a replacement substring.

split A String method that uses a regular expression or a fixed string to
break a string into an array of substrings.

Chapter 11, Regular Expressions 131

Working With Regular Expressions

</SCRIPT>

The match succeeds and returns the following array and updates the following
properties:

If the match fails, the exec method returns null (which converts to Boolean
false).

Using Parenthesized Substring Matches

Including parentheses in a regular expression pattern causes the corresponding
submatch to be remembered. For example, /a(b)c/ matches the characters 'abc'
and remembers 'b'. To recall these parenthesized substring matches, use the
global RegExp properties $1, ..., $9 or the Array elements [1], ..., [n].

The number of possible parenthesized substrings is unlimited. The RegExp
object holds up to the last nine and the returned array holds all that were
found. The following examples illustrate how to use parenthesized substring
matches.

Object Property/Index Description Example

myArray all array elements dbbd

index the zero-based index of the match in the string 1

input the original string cdbbdbsbz

[0] the last matched characters dbbd

myRe lastIndex the index at which to start the next match. 5

source the text of the pattern db+d

RegExp lastMatch the last matched characters dbbd

leftContext the string up to the most recent match c

rightContext the string past the most recent match bsbz

Working With Regular Expressions

132 What’s New in JavaScript 1.2

Example 1. The following script uses the replace method to switch the
words in the string. For the replacement text, the script uses the values of the
$1 and $2 properties of the global RegExp object. Note that the RegExp object
name is not be prepended to these properties when they are passed as the
second argument to the replace method.

<SCRIPT>
re = /(\w+)\s(\w+)/;
str = "John Smith";
newstr=str.replace(re, "$2, $1");
document.write(newstr)
</SCRIPT>

This prints "Smith, John".

Example 2. In the following example, RegExp.input is set by the Change
event. In the getInfo function, the exec method uses the value of
RegExp.input as its argument. Note that RegExp must be prepended to its $
properties (since they appear outside the context of a regular expression).

<HTML>

<SCRIPT>
function getInfo(){
re = /(\w+)\s(\d+)/;
re.exec();
window.alert(RegExp.$1 + ", your age is " + RegExp.$2);
}
</SCRIPT>

Enter your first name and your age, and then press Enter.

<FORM>
<INPUT TYPE:"TEXT" NAME="NameAge" onChange="getInfo(this);">
</FORM>

</HTML>

Example 3. The following example is similar to Example 2. Instead of using
the RegExp.$1 and RegExp.$2 , this example creates an array and uses
a[1] and a[2] .

<HTML>

<SCRIPT>
function getInfo(){
re = /(\w+)\s(\d+)/;
a = re.exec();
window.alert(a[1] + ", your age is " + a[2]);
}
</SCRIPT>

Chapter 11, Regular Expressions 133

Working With Regular Expressions

Enter your first name and your age, and then press Enter.

<FORM>
<INPUT TYPE:"TEXT" NAME="NameAge" onChange="getInfo(this);">
</FORM>

</HTML>

Executing a Global Search and Ignoring
Case

Regular expressions have two optional flags that allow for global and case
insensitive searching. To indicate a global search, use the g flag. To indicate a
case insensitive search, use the i flag. These flags can be used separately or
together in either order, and are included as part of the regular expression.

To include a flag with the regular expression, use this syntax

re = / pattern /[g|i|gi]

re = new RegExp(" pattern ", [g|i|gi])

Note that the flags, i and g, are an integral part of a regular expression. They
cannot be added or removed later.

For example, re = /\w+\s/g creates a regular expression that looks for any
number of characters followed by a space, and it looks for this combination
throughout the string.

<SCRIPT>
re = /\w+\s/g;
str = "fee fi fo fum";
myArray = str.match(re);
document.write(myArray);
</SCRIPT>

This writes "fee ,fi ,fo".

A Complete Example

The following example illustrates the formation of regular expressions and the
use of string.split() and string.replace() .

Working With Regular Expressions

134 What’s New in JavaScript 1.2

It cleans a roughly-formatted input string containing names (first name first)
separated by blanks, tabs and exactly one semicolon.

Finally, it reverses the name order (last name first) and sorts the list.

<SCRIPT LANGUAGE="JavaScript1.2">

/*********
* The name string contains multiple spaces and tabs,
* and may have multiple spaces between first and last names.
*********/
names = new String ("Harry Trump ;Fred Barney; Helen Rigby ;\

 Bill Abel ;Chris Hand ")

document.write ("---------- Original String" + "
" + "
")
document.write (names + "
" + "
")

/*********
* Prepare two regular expression patterns and array storage.
* Split the string into array elements.
*********/
// pattern: possible white space then semicolon then possible white space
pattern = /\s*;\s*/
// break the string into pieces separated by the pattern above and
// and store the pieces in an array called nameList
nameList = names.split (pattern)

// new pattern: one or more characters then spaces then characters
// use parentheses to "memorize" portions of the pattern
// the memorized portions are referred to later

pattern = /(\w+)\s+(\w+)/

// new array for holding names being processed
bySurnameList = new Array;

/*********
* Display the name array and populate the new array
* with comma-separated names, last first.
*
* The replace method removes anything matching the pattern
* and replaces it by the memorized string - 2nd memorized portion
* followed by comma space followed by 1st memorized portion.
*
* The variables $1 and $2 refer to the portions
* memorized while matching the pattern.
*********/
document.write ("---------- After Split by Regular Expression" + "
")
for (i = 0; i < nameList.length; i++) {

document.write (nameList[i] + "
")
bySurnameList[i] = nameList[i].replace (pattern, "$2, $1")

}

Chapter 11, Regular Expressions 135

Special Characters Used in Regular Expressions

/*********
* Display the new array.
*********/
document.write ("---------- Names Reversed" + "
")
for (i = 0; i < bySurnameList.length; i++) {

document.write (bySurnameList[i] + "
")
}

/*********
* Sort by last name, then display the sorted array.
*********/
bySurnameList.sort()
document.write ("---------- Sorted" + "
")
for (i = 0; i < bySurnameList.length; i++) {

document.write (bySurnameList[i] + "
")
}

document.write ("---------- End" + "
")

</SCRIPT>

Special Characters Used in Regular
Expressions

The following list describes the special characters that can be used in regular
expressions.

Special Characters Used in Regular Expressions

136 What’s New in JavaScript 1.2

\ indicates that the next character is special and not to be
interpreted literally. For example, /b/ matches the
character 'b'. By placing a backslash in front of b, e.g. /\b/
, the character becomes special to mean match a word
boundary.

-or-

indicates that the next character is not special and should
be interpreted literally. For example, * is a special
character that means zero or more of the preceding
character should be matched, e.g. /a*/ means match zero
or more a's. To match * literally, precede the it with a
backslash, e.g. /a*/ matches 'a*'.

^ matches beginning of input or line, e.g. /^A/ matches only
the first 'A' in "An A+ for Kelly."

$ matches end of input or line, e.g. /t$/ matches only the
last 't' in "A cat in the hat".

* matches the preceding character zero or more times, e.g. /
bo*/ matches 'boooo' in "The ghost screamed boooo."

+ matches the preceding character one or more times
(equivalent to {1,}), e.g. /a+/ matches the 'a' in "candy" and
all the a's in "caaaaaaandy."

? matches the preceding character zero or one time, e.g. /
e?le?/ matches the 'el' in "angel" and the 'le' in "angle."

. (the decimal point) matches any single character except
new line, e.g. /.n/ matches 'an' and 'on' in "an apple is on
the tree."

(x) matches 'x' and remembers the match, e.g. /(foo)/
matches and remembers 'foo' in "foo bar." The matched
substring can be recalled from the result Array elements
[1], ..., [n], or the global RegExp properties $1, ..., $9.

x|y matches either 'x' or 'y', e.g. /green|red/ matches 'green'
in "green apple" and 'red' in "red apple."

{x} where x is a non-negative integer. Matches exactly x
times, e.g. /a{2}/ doesn't match the 'a' in "candy," matches
all of the a's in "caandy," and the first two a's in
"caaaaaaandy."

Chapter 11, Regular Expressions 137

Special Characters Used in Regular Expressions

{x,} where x is a non-negative integer. Matches at least x
times, e.g. /a{2,} doesn't match the 'a' in "candy" and
matches all of the a's in "caandy" and in "caaaaaaandy."

{x,y} where x and y are non-negative integers. Matches at least
x and at most y times, e.g. /a{1,3}/ matches the 'a' in
"candy," the first two a's in "caandy," and the first three a's
in "caaaaaaandy."

[xyz] a character set. Matches any one of the enclosed
characters, e.g. [abc] matches the 'b' in "brisket" and the 'c'
in "chop."

[^xyz] a negative character set. Matches anything that is not
enclosed in the brackets, e.g. [^abc] matches 'r' in "brisket"
and 'h' in "chop."

\b matches a word boundary, such as a space, e.g. /\bn\w/
matches the 'no' in "noonday", and /\wy\b/ matches the
'ly' in "possibly yesterday."

\B matches a non-word boundary, e.g. /\w\Bn/ matches 'on'
in "noonday", and /y\B\w/ matches 'ye' in "possibly
yesterday."

\d
[0 -9]

matches a digit character, e.g. /\d/ or /[0-9]/ matches '2' in
"B2 is the suite number."

\D
[^0-9]

matches any non-digit character, e.g. /\D/ or /[^0-9]/
matches 'B' in "B2 is the suite number."

\f matches a form-feed.

\n matches a linefeed.

\r matches a carriage return.

\s
[\f\n\r\t\v]

matches any white space including space, tab, form feed,
line feed, e.g. /\s\w*/
matches ' bar' in "foo bar."

\S
[^ \f\n\r\t\v]

matches any non-white space, e.g. /\S/\w* matches 'foo'
in "foo bar."

\t matches a tab

\v matches a vertical tab.

Special Characters Used in Regular Expressions

138 What’s New in JavaScript 1.2

Example Using Special Characters

In the following example, a user enters a phone number. When the user
presses Enter, the script checks the validity of the number. If the number is
valid (matches the character sequence specified by the regular expression), the
script posts a window thanking the user and confirming the number. If the
number is invalid, the script posts a window telling the user that the phone
number isn't valid.

The regular expression looks for zero or one open parenthesis \(?, followed by
three digits \d{3}, followed by zero or one close parenthesis \)?, followed by
one dash, forward slash, or decimal point and when found, remember the
character ([-\/\.]), followed by three digits \d{3}, followed by the remembered
match of a dash, forward slash, or decimal point \1, followed by four digits
\d{4}.

The Change event activated when the user presses Enter, sets the value of
RegExp.input .

<HTML>

<SCRIPT LANGUAGE = "JavaScript1.2">

re = /\(?\d{3}\)?([-\/\.])\d{3}\1\d{4}/

\w
[A-Za-z0-9_]

matches any word character including the underscore, e.g.
/\w/ matches 'a' in "apple," '5' in "$5.28," and '3' in "3D."

\W
[^A-Za-z0-9_]

matches any non-word character, e.g. /\W/ or /[^$A-Za-
z0-9_]/ matches '%' in "50%."

/\#/ where # is a positive integer. A back-reference to the last
substring matching the # parenthetical in the regular
expression (counting left parentheses), e.g. /
apple(,)\sorange\1/ matches 'apple, orange', in "apple,
orange, cherry, peach." A more complete example
follows this table.
Note: if the number of left parentheses is less than the
number specified in \#, the \# is taken as an octal escape
as described in the next row.

/x/ where x is an octal, hexadecimal, or decimal escape value.
Allows you to embed ASCII codes into regular
expressions.

Chapter 11, Regular Expressions 139

Special Characters Used in Regular Expressions

function testInfo() {
 OK = re.exec()
 if (!OK)

 window.alert (RegExp.input + " isn't a phone number with area code!")
 else

 window.alert ("Thanks, your phone number is " + OK[0])
}

</SCRIPT>

Enter your phone number (with area code) and then press Enter.

<FORM> <INPUT TYPE:"TEXT" NAME="Phone" onChange="testInfo(this);"> </FORM>

</HTML>

Special Characters Used in Regular Expressions

140 What’s New in JavaScript 1.2

Chapter 12, The RegExp Object 141

C h a p t e r

12
The RegExp Object

Core object. A global object with properties that are set either before a search
for a regular expression in a string, or after a match is found. (This is not to be
confused with the “Regular Expression Object” which contains the regular
expression pattern.)

Syntax
RegExp. propertyName

Parameters

propertyName is one of the properties listed below.

Properties

Note that six of the RegExp properties have both long and short (Perl-like)
names. Both names always refer to the same value. Perl is the programming
language from which JavaScript modeled its regular expressions.

142 What’s New in JavaScript 1.2

Methods

None.

input
$_

A read/write property that reflects the string against which the
regular expression is matched. This value is preset as described in
the “Description” below. If no string argument is provided to the
regular expression's exec or test methods, and if RegExp.input
has a value, its value is used as the argument.

multiline
$*

A read/write Boolean property that reflects whether or not to search
in strings across multiple lines; true if multiple lines are searched,
false if searches must stop at line breaks.

lastMatch
$&

A read-only property that specifies the last matched characters.

lastParen
$+

A read-only property that specifies the last parenthesized substring
match, if any.

leftContext
$`

A read-only property that specifies the string up to the most recent
match.

rightContext
$'

A read-only property that specifies the string past the most recent
match.

$1, ..., $9 Read-only properties that contain parenthesized substring matches,
if any. The number of possible parenthesized substrings is unlimited,
but the RegExp object can only hold the last nine. You can access all
parenthesized substrings through the returned array's indexes.

These properties can be used in the replacement text for the String
replace method. When used this way, do not prepend them with
RegExp. “Example 1” illustrates this. When parentheses are not
included in the regular expression, the script interprets $#'s literally
(where # is a positive integer).

Chapter 12, The RegExp Object 143

Description

The RegExp global object contains the properties listed above. Except for input
and multiline whose values can be preset, property values are set after
execution of the regular expression methods exec and test, and the String
methods, match, and replace.

The script or the Navigator can preset the input property. If preset and if no
string argument is explicitly provided, input's value is used as the string
argument to the exec or test methods. input is set by the Navigator in the
following cases:

• When an event handler is called for a TEXT form element, input is set to
the value of the contained text.

• When an event handler is called for a TEXTAREA form element, input is set
to the value of the contained text. Note that multiline is also set to true so
that the match can be executed over the multiple lines of text.

• When an event handler is called for a SELECT form element, input is set to
the value of the selected text.

• When an event handler is called for a Link object, input is set to the value
of the text between and .

input is cleared after each of the above calls.

The script or the Navigator can preset the multiline property. When an event
handler is called for a TEXTAREA form element, the Navigator sets multiline to
true . multiline is cleared after a call by any event handler. This means that, if
you've preset multiline to true , it is reset to false after the execution of any
event handler.

Examples

Example 1 The following script uses the replace method to switch the words
in the string. For the replacement text, the script uses the values of the $1 and
$2 properties of the global RegExp object. Note that the RegExp object name is
not be prepended to the $ properties when they are passed as the second
argument to the replace method.

<SCRIPT>

144 What’s New in JavaScript 1.2

re = /(\w+)\s(\w+)/;
str = "John Smith";
newstr=str.replace(re, "$2, $1");
document.write(newstr)
</SCRIPT>

This prints "Smith, John".

Example 2. In the following example, RegExp.input is set by the Change
event. In the getInfo function, the exec method uses the value of
RegExp.input as its argument. Note that RegExp is prepended to the $
properties.

<HTML>

<SCRIPT>
function getInfo(){
re = /(\w+)\s(\d+)/;
re.exec();
window.alert(RegExp.$1 + ", your age is " + RegExp.$2);
}
</SCRIPT>

Enter your first name and your age, and then press Enter.

<FORM>
<INPUT TYPE:"TEXT" NAME="NameAge" onChange="getInfo(this);">
</FORM>

</HTML>

Chapter 13, Regular Expression Object 145

C h a p t e r

13
Regular Expression Object

This section describes the regular expression object and its methods.

Regular Expression Object
compile method
exec method
test method

Core object. A regular expression object contains the pattern of a regular
expression. (This is not to be confused with the single global object, RegExp.)

Syntax
Note The literal text format is compiled into a compact and efficient internal

representation.

Literal notation:
regexp = / pattern /[i|g|gi]

Constructed:
regexp = new RegExp(" pattern ", ['i'|'g'|'gi'])

146 What’s New in JavaScript 1.2

Parameters

regexp is the name of the regular expression object.

pattern is the text of the regular expression.

Optional flags:

Description

The literal notation, e.g. /ab+c/ , provides compilation of the regular
expression once only, when the script is first loaded. Use literal notation when
the regular expression will remain constant. For example, if you use literal
notation to construct a regular expression used in a loop, the regular
expression won't be recompiled on each interation.

The constructor of the regular expression object, e.g. new RegExp("ab+c") ,
provides runtime compilation of the regular expression. Use the constructor
function when you know the regular expression pattern will be changing, or
you don't know the pattern and are getting it from another source, such as user
input. Once you have a defined regular expression, and if the regular
expression is used throughout the script, you can use the compile method to
compile the regular expression for efficient reuse.

Note that when using the constructor function, the normal string escape rules
(preceding special characters with \ when included in a string) are necessary.
For example, new RegExp("\\w+") is the runtime equivalent of /\w+/.
(The special pattern \w+ looks for a match of an alphanumeric character one or
more times.)

i ignore case

g global match

gi global match and ignore case

Chapter 13, Regular Expression Object 147

Properties

global A read-only Boolean property that reflects whether or not the 'g' flag is
used with the regular expression: true if used, false if not used. The
'g' flag indicates that the regular expression should be tested against all
possible matches in a string.

ignoreCase A read-only Boolean property that reflects whether or not the 'i' flag is
used with the regular expression: true if used, false if not used. The
'i' flag indicates that case should be ignored while attempting a match
in a string.

lastIndex A read/write integer property that specifies the index at which to start the
next match. The following rules apply:

• If lastIndex is greater than the length of the string, regexp.test and
regexp.exec fail, and lastIndex is set to 0.

• If lastIndex is equal to the length of the string, there are two cases:

• If the regular expression matches the empty string, it matches
input starting at lastIndex.

• if the regular expression does not match the empty string, it
mismatches input, and lastIndex is reset to 0.

• Otherwise, lastIndex is set to the next position following the most
recent match.

For example:

re = /(hi)?/g //matches empty string
re("hi") //returns ["hi", "hi"] with

 //lastIndex == 2
re("hi") //returns [""], an empty array whose

 //[0] element is the match string, in
 //this case, the empty string
 //because lastIndex was 2 (and still
 //is 2) and "hi" has length 2.

source A read-only property that contains the text of the pattern.

compile

148 What’s New in JavaScript 1.2

Methods

compile
Core method. Compiles a regular expression object during execution of a
script.

Syntax
regexp .compile(" pattern " , ['i'|'g'|'gi'])

Parameters

regexp is the name of the regular expression.

pattern is the text of the regular expression.

Optional flags:

compile Compiles a regular expression object.

exec Executes a search for a match in its string parameter.
Returns a result array.

test Tests for a match in its string parameter. Returns true or
false .

i ignore case

g global match

gi global match and ignore case

Chapter 13, Regular Expression Object 149

exec

Description

Use the compile method to compile a regular expression created with the
constructor function. This forces compilation of the regular expression once
only which means the regular expression isn't compiled each time it is
encountered. Use the compile method when you know the regular expression
will remain constant (after getting its pattern) and will be used repeatedly
throughout the script.

You can also use the compile method to change the regular expression during
execution. For example, if the regular expression changes, you can use the
compile method to recompile the object for more efficient repeated use.

exec
Core method. Executes the search for a match in a specified string.

Syntax
regexp .exec(str)

or use the shortcut version

regexp (str)

Parameters

regexp is the name of the regular expression. It can be a variable name or a
literal.

str is the string against which to match the regular expression.

Description
Note If you are executing a match simply to find true or false , use the test

method or the String search method.

exec

150 What’s New in JavaScript 1.2

To explain the exec method, look at the following example and then refer to
the table below:

<SCRIPT>
//Match one d followed by one or more b's followed by one d
//Remember matched b's and the following d
//Ignore case
myRe=/d(b+)(d)/i;
myArray = myRe.exec("cdbBdbsbz");
</SCRIPT>

If the match succeeds, the exec method returns an array and updates
properties of the regular expression object and the global regular expression
object, RegExp, as follows (the examples are the result of the above script):

Object Property/Index Description Example

myArray the contents of myArray dbBd,bB,d

index the zero-based index of the match in the
string

1

input the original string cdbBdbsbz

[0] the last matched characters dbBd

[1], ...[n] the parenthesized substring matches, if any.
The number of possible parenthesized
substrings is unlimited.

[1] = bB
[2] = d

myRe lastIndex the index at which to start the next match. 5

ignoreCase indicates if the 'i' flag was used to ignore case true

global indicates if the 'g' flag was used for a global
match

false

source the text of the pattern d(b+)d

RegExp lastMatch 1
$&

the last matched characters dbBd

leftContext
$`

the string up to the most recent match c

rightContext
$'

the string past the most recent match bsbz

Chapter 13, Regular Expression Object 151

exec

1. Note that four of the RegExp properties have both long and short (Perl-like) names. Both names always refer to the same value. Perl is the
programming language from which JavaScript modeled its regular expressions.

If the match fails, the exec method returns null (which converts to Boolean
false).

Examples

In the following example, the user enters a name and the script executes a
match against the input. It then cycles through the array to see if other names
match the user's name.

This script assumes that first names of registered party attendees are preloaded
into the array A, perhaps by gathering them from a party database.

<HTML>

<SCRIPT LANGUAGE = "JavaScript1.2">
A = ["Frank", "Emily", "Jane", "Harry", "Nick", "Beth", "Rick", \

 "Terrence", "Carol", "Ann", "Terry", "Frank", "Alice", "Rick", \
 "Bill", "Tom", "Fiona", "Jane", "William", "Joan", "Beth"]

re = /\w+/i

function lookup() {
 firstName = re.exec()
 if (!firstName)

 window.alert (RegExp.input + " isn't a name!")
 else {

 count = 0
 for (i=0; i<A.length; i++)

 if (firstName[0].toLowerCase() == A[i].toLowerCase())
 count++

 if (count ==1)
 midstring = " other has "

 else
 midstring = " others have "

$1, ...$9 the parenthesized substring matches, if any.
The number of possible parenthesized
substrings is unlimited, but RegExp can only
hold the last nine.

$1 = bB
$2 = d

lastParen
$+

the last parenthesized substring match, if any. d

Object Property/Index Description Example

test

152 What’s New in JavaScript 1.2

 window.alert ("Thanks, " + count + midstring + "the same name!")
 }

}

</SCRIPT>

Enter your first name and then press Enter.

<FORM> <INPUT TYPE:"TEXT" NAME="FirstName" onChange="lookup(this);"> </
FORM>

</HTML>

test
Core method. Executes the search for a match between a regular expression
and a specified string.

Syntax
regexp .test(str)

Parameters

regexp is the name of the regular expression.

str is the string against which to match the regular expression.

Description

When you want to know whether a pattern is found in a string use the test
method (similar to the String search method); for more information (but slower
execution) use the exec method (similar to the String match method).

Chapter 13, Regular Expression Object 153

test

Example

The following example prints a message which depends on the success of the
test.

function testinput(re, str){
 if (re.test(str))

 midstring = " contains ";
 else

 midstring = " does not contain ";
 document.write (str + midstring + re.source);

}

test

154 What’s New in JavaScript 1.2

Chapter 14, Signed Scripts 155

C h a p t e r

14
Signed Scripts

For additional functionality, scripts can gain access to restricted information.
This is achieved through signed scripts that request expanded privileges. The
digital signature allows the user to confirm the validity of the certificate used to
sign the script. It also allows the user to ensure that the script hasn't been
tampered with since it was signed. The user then can decide whether to grant
privileges based on the validated identity of the certificate owner and validated
integrity of the script.

Note This functionality provides greater security than tainting. Tainting has been
disabled.

This section contains:

• Signed Script Requirements

• Creating Signed Scripts

• JavaScript Features Requiring Privileges

• Example

• Accessing Expanded Privileges Without Signed Scripts

• Error Checking

Signed Script Requirements

156 What’s New in JavaScript 1.2

Recommended Reading

"Netscape Object Signing" provides a list of documents and resources that
provide information on Object Signing, from creating the Java applet to getting
a certificate to packaging and signing it

"Object-Signing Tools" provides information about the signing tools that allow
you to create and manipulate JAR archives and digitally sign the files they
contain. Tools include JAR Packager, JAR Packager Command Line Edition, and
Page Signer.

Signed Script Requirements
You can sign JavaScript files, in-line scripts and event handler scripts. You
cannot sign javascript: URLs or JavaScript entities .

Signed scripts require:

• An ARCHIVE attribute in the <SCRIPT> tag

• An ID Attribute (in-line and event handler scripts only)

• A request for expanded privileges

• That all scripts on the page be signed

• Re-signing if changed

ARCHIVE attribute

All signed scripts (JavaScript file, in-line, event handler) require the <SCRIPT>
tag's ARCHIVE attribute whose value is the name of the Java archive (JAR) file
containing the digital signature. For example:

<SCRIPT ARCHIVE="myArchive.jar" SRC="myJavaScript.js">
</SCRIPT>

Event handler scripts do not directly specify the ARCHIVE; instead, the handler
must be preceded by a script containing ARCHIVE. For example:

<SCRIPT ARCHIVE="myArchive.jar" ID="1">

Chapter 14, Signed Scripts 157

Signed Script Requirements

...
</SCRIPT>

<FORM>
<INPUT TYPE="button" VALUE="OK" onClick="alert('A signed script')"
ID="2">
</FORM>

Unless you are using more than one JAR file, you need only specify it once.
Include the ARCHIVE tag in the first script on the HTML page and the
remaining scripts on the page will use the same file. For example:

<SCRIPT ARCHIVE="myArchive.jar" ID="1">
document.write("This script is signed.");
</SCRIPT>

<SCRIPT ID="2">
document.write("This script is signed too.");
</SCRIPT>

ID Attribute

Signed in-line and event handler scripts require the ID attribute whose value is
a string that relates the script to its signature in the JAR file. The ID must be
unique within a JAR file.

When more than one event handler script exists in a tag, you only need one ID.
The entire tag is signed as one piece.

In the following example, the first three scripts use the same JAR file. The third
script accesses a JavaScript file so it doesn't use the ID tag. The fourth script
uses a different JAR file, and its ID of "1" is unique to that file.

<HTML>

<SCRIPT ARCHIVE="firstArchive.jar" ID="1">
document.write("This is a signed script.");
</SCRIPT>

<BODY onLoad="alert('A signed script using firstArchive.jar')"
 onLoad="alert('One ID needed for these event handler scripts')"

ID="2">

<SCRIPT SRC="myJavaScript.js">
</SCRIPT>

<SCRIPT ARCHIVE="secondArchive.jar" ID="1">
document.write("This script uses the secondArchive.jar file.");
</SCRIPT>

Signed Script Requirements

158 What’s New in JavaScript 1.2

</BODY>

</HTML>

Request Expanded Privileges

The script must include a function that calls Netscape's Java security classes and
requests expanded privileges.

This requires one line of code that asks permission to access someTarget
representing the resource you want to access. Targets are described below. For
example:

netscape.security.PrivilegeManager.enablePrivilege(" someTarget ");

When the script calls this function, the signature is verified, and if the signature
is valid, expanded privileges are granted. If necessary, a dialog displays with
information about the application's author, and gives the user the option to
grant or deny expanded privileges.

Java classes are explained in "Java Capabilities API."

Privileges are granted only in the scope of the requesting function and only
after the request has been granted. This includes any functions called by the
requesting function. When the script leaves that function, privileges no longer
apply.

The example below demonstrates this by printing:

7: disabled
5: disabled
2: disabled
3: enabled
1: enabled
4: enabled
6: disabled
8: disabled

Function g requests expanded privileges, and only the commands and
functions called after the request and within function g are granted privileges.

<SCRIPT ARCHIVE="ckHistory.jar" ID="1">

function printEnabled(i) {
 if (history[0] == "") {

Chapter 14, Signed Scripts 159

Signed Script Requirements

 document.write(i + ": disabled
");
 } else {

 document.write(i + ": enabled
");
 }

}

function f() {
 printEnabled(1);

}

function g() {
 printEnabled(2);
 netscape.security.PrivilegeManager.enablePrivilege("UniversalBrowserRead");
 printEnabled(3);
 f();
 printEnabled(4);

}

function h() {
 printEnabled(5);
 g();
 printEnabled(6);

}

printEnabled(7);
h();
printEnabled(8);

</SCRIPT>

Sign All Scripts

For any one script to request privileges, all scripts on the HTML page or layer
must be signed. If you are using layers, you can have both signed and unsigned
scripts as long as you keep them in separate layers.

You can sign JavaScript files (accessed with the <SCRIPT> SRC attribute), in-line
scripts, and event handler scripts. You cannot sign javascript: URLs or JavaScript
entities. If a javascript: URL, a JavaScript entity or an unsigned script is
included on a page with signed scripts, the signed scripts act as if they had not
been signed.

Re-sign Changed Scripts

Changed scripts must be re-signed.

Creating Signed Scripts

160 What’s New in JavaScript 1.2

Changes to a signed script's byte stream invalidate the script's signature. This
includes moving the HTML page between platforms that have different
representations of text. For example, moving an HTML page from a Windows
server to a UNIX server changes the byte stream and invalidates the signature.
(This doesn't affect viewing pages from multiple platforms.) To avoid this, you
can move the page in binary mode. Note that doing so changes the appearance
of the page in your text editor but not in the browser.

During development, you can request expanded privileges without signing the
script by activating codebased principles as explained in “Accessing Expanded
Privileges Without Signed Scripts.”

Creating Signed Scripts
1. Include the ARCHIVE and ID attributes in the <SCRIPT> tag (ID for in-line

and event handler scripts only).

2. Include calls to Java classes requesting expanded privileges.

3. Sign the script. For information see "Object-Signing Tools."

If a window with frames needs to capture events in pages loaded from different
locations (servers), use enableExternalCapture in a signed script requesting
UniversalBrowserWrite privileges. Use this method before calling the
captureEvents method.

For a signed script to provide properties, functions, and objects to other signed
or unsigned scripts, use the export statement. The script wishing to import
these exported features needs to use the import statement.

International Characters in Signed
Scripts

When used in scripts, international characters may appear in string constants
and in comments (JavaScript keywords and variables cannot include special
international characters). Scripts that include international characters cannot be
signed because the process of transforming the characters to the local character
set will invalidate the signature. To work around this limitation:

Chapter 14, Signed Scripts 161

Targets

• Escape the international characters ('0x\ea', etc.)

• Put the data containing the international characters in a hidden form
element, and access the form element through the signed script.

• Separate signed and unsigned scripts into different layers, and use the
international characters in the unsigned scripts

• Remove comments that include international characters

Note There is no restriction on international characters the HTML surrounding the
signed scripts.

Targets
The types of information you can access are called targets. These are listed
below.

For a complete list of targets, see "Introduction to the Capabilities Classes."

Target Description

UniversalBrowserRead allows reading of privileged data from the browser.

UniversalBrowserWrite allows modification of privileged data in a browser.

UniversalFileRead allows a script to set the 'file' part of a file upload widget. This allows an
arbitrary local file to be uploaded to wherever the form is submitted.

UniversalPreferencesRead allows the script to read preferences using the navigator.preference()
method.

UniversalPreferencesWrite allows the script to set preferences using the navigator.preference() method.

UniversalSendMail allows the program to send mail in the user's name.

JavaScript Features Requiring Privileges

162 What’s New in JavaScript 1.2

JavaScript Features Requiring Privileges
The following table lists the JavaScript features that require privileges and the
target used to access the feature.

Feature Target

event object: setting any property UniversalBrowserWrite

history object:
Getting the value of any property
Setting the preference property

UniversalBrowserRead
UniversalBrowserWrite

DragDrop event: getting the value of the data property UniversalBrowserRead

navigator object:
Getting the value of a preference using the preference method.
Setting the value of a preference using the preference method.

UniversalPreferencesRead
UniversalPreferencesWrite

Chapter 14, Signed Scripts 163

JavaScript Features Requiring Privileges

window object:
Adding or removing:

• directory bar

• location bar

• menu bar

• personal bar

• scroll bar

• status bar

• toolbar
Using methods:

enableExternalCapture – when a window wants to capture events
in pages loaded from different servers. Follow this method with
captureEvents.

• close – unconditional ability to close a browser window.

• moveBy – to move a window off screen

• moveTo – to move a window off screen

• open – when using

• innerWidth, innerHeight, outerWidth, and outerHeight to
create a window smaller than 100 x 100 pixels or larger than
the screen can accommodate

• screenX and screenY to place a window off screen

• titlebar to create a window without a titlebar

• alwaysRaised, alwaysLowered, z-lock for any setting

• resizeTo – to resize a window smaller than 100 x 100 pixels or
larger than the screen can accommodate

• resizeBy – to resize a window smaller than 100 x 100 pixels or
larger than the screen can accommodate

Setting properties:

• innerWidth – to set the inner width of a window to a size smaller
than 100 x 100 or larger than the screen can accommodate

• innerHeight – to set the inner height of a window to a size smaller
than 100 x 100 or larger than the screen can accommodate

UniversalBrowserWrite

Setting a file upload widget UniversalFileRead

Feature Target

Example

164 What’s New in JavaScript 1.2

Example
The following script includes a button, that, when clicked, displays an alert
dialog containing part of the URL history of the browser. To work properly, the
script must be signed.

<SCRIPT ARCHIVE="myArchive.jar" ID="1">

function getHistory(i) {
 //Attempt to access privileged information
 return history[i];

}

function getImmediateHistory() {
 //Request privilege
 netscape.security.PrivilegeManager.enablePrivilege("UniversalBrowserRead");
 return getHistory(1);

}

</SCRIPT>

...

<INPUT TYPE="button" onClick="alert(getImmediateHistory());" ID="2">

Accessing Expanded Privileges Without
Signed Scripts

Situations exist where you want to access privileged information without using
signed scripts. Such a situation might be during development when you want to
test your program, change code, retest, etc., and you don't want to sign the
script after each change. You can request expanded privileges without signing
the script by activating codebased principles. With codebase principals
activated, Communicator allows the URL of the script to function as a principal
for enabling privileges.

Submitting a form to mailto: or news: URL UniversalSendMail

Using an "about:" URL other than "about:blank" UniversalBrowserRead

Feature Target

Chapter 14, Signed Scripts 165

Accessing Expanded Privileges Without Signed Scripts

Risks

An unsigned script is vulnerable to tampering and should be used as a
temporary measure or in the confines of an intranet.

Activating Codebased Principles

To activate codebased principles:

1. Users of your program need to add the following line to their Netscape
preferences file:

user_pref("signed.applets.codebase_principal_support", true);

File location varies from platform to platform. The following are likely
locations:

• On Windows, \Program
Files\Netscape\Users\default\prefs.js

• On Windows NT, \Netscape\Users\username\prefs.js

• On UNIX, ~/.netscape/preferences.js

• On Macintosh, System Folder:Preferences:Netscape f:
(where the last f is a special script f character)

All instances of Communicator must be shut down before editing this file.
After editing, start Communicator.

2. Write the script with calls to the Java Class requesting expanded privileges.
You can include an ARCHIVE and ID, but they aren't required until you sign
the script.

When the user accesses the script, a dialog displays similar to the one displayed
with signed scripts. The difference is that this dialog asks the user to grant
privileges based on the URL and doesn't provide author verification. It advises
the user that the script has not been digitally signed and may have been
tampered with.

Error Checking

166 What’s New in JavaScript 1.2

Note If a page includes signed scripts and codebased scripts, and
signed.applets.codebase_principal_support is enabled , all of
the scripts on that page are treated as though they are unsigned and codebased
principles apply.

Error Checking
To check for errors during development, open the Java Console which displays
error messages. In the browser, choose Communicator > Java Console.

Chapter 15, Statements 167

C h a p t e r

15
Statements

Statements are core to the JavaScript language. This section includes new
statements and changed statements.

break
The break statement can now include an optional label that allows the
program to break out of a labeled statement. This type of break must be in a
statement identified by the label used by break.

The statements in a labeled statement can be of any type.

Syntax
break label

Argument

label is the identifier associated with the label of the statement.

continue

168 What’s New in JavaScript 1.2

Example

In the following example, a statement labeled checkiandj contains a
statement labeled checkj . If break is encountered, the program breaks out of
the checkj statement and continues with the remainder of the checkiandj
statement. If break had a label of checkiandj , the program would break out
of the checkiandj statement and continue at the statement following
checkiandj .

checkiandj :
 if (4==i) {

 document.write("You've entered " + i + ".
");
 checkj :

 if (2==j) {
 document.write("You've entered " + j + ".
");
 break checkj;
 document.write("The sum is " + (i+j) + ".
");

 }
 document.write(i + "-" + j + "=" + (i-j) + ".
");

 }

See Also

labeled statement

switch statement

continue
The continue statement can now include an optional label that allows the
program to terminate execution of a labeled statement and continue to the
specified labeled statement. This type of continue must be in a looping
statement identified by the label used by continue.

Syntax
continue label

Chapter 15, Statements 169

continue

Argument

label is the identifier associated with the label of the statement.

Example

In the following example, a statement labeled checkiandj contains a
statement labeled checkj . If continue is encountered, the program continues
at the top of the checkj statement. Each time continue is encountered,
checkj re-iterates until its condition returns false. When false is returned, the
remainder of the checkiandj statement is completed. checkiandj re-
iterates until its condition returns false. When false is returned, the program
continues at the statement following checkiandj .

If continue had a label of checkiandj , the program would continue at the
top of the checkiandj statement.

checkiandj :
 while (i<4) {

 document.write(i + "
");
 i+=1;
 checkj :

 while (j>4) {
 document.write(j + "
");
 j-=1;
 if ((j%2)==0);

 continue checkj;
 document.write(j + " is odd.
");

 }
 document.write("i = " + i + "
");
 document.write("j = " + j + "
");

 }

See Also

labeled statement

do while statement

170 What’s New in JavaScript 1.2

do while statement
The do while statement executes its statements until the test condition
evaluates to false. Statement is executed at least once.

Syntax
do

 statement
while (condition);

Arguments

statement is a block of statements that is executed at least once and is re-
executed each time the condition evaluates to true.

condition is evaluated after each pass through the loop. If condition evaluates
to true, the statements in the preceding block are re-executed. When condition
evaluates to false, control passes to the statement following do while.

Example

In the following example, the do loop iterates at least once and re-iterates until
i is no longer less than 5.

do {
 i+=1
 document.write(i);
 } while (i<5);

export
The export statement allows a signed script to provide properties, functions,
and objects to other signed or unsigned scripts.

Chapter 15, Statements 171

import

Syntax
export name1, name2, ..., nameN

-or-
export *

Parameters

nameN is a list of properties, functions, and objects to be exported.

* exports all properties, functions, and objects from the script.

Description

Typically, information in a signed script is available only to scripts signed by
the same principals. By exporting properties, functions, or objects, a signed
script makes this information available to any script (signed or unsigned). The
receiving script uses the companion import statement to access the
information.

See Also

import

import
The import statement allows a script to import properties, functions, and
objects from a signed script which has exported the information.

Syntax
import objectName.name1 , objectName.name2 , ..., objectName.nameN

import

172 What’s New in JavaScript 1.2

-or-
import objectName. *

Parameters

nameN is a list of properties, functions, and objects to import from the export
file.

objectName is the name of the object that will receive the imported names. For
example, if f and p have been exported, and if obj is an object from the
importing script, then

import obj.f, obj.p

will make f and p accessible in the importing script as properties of obj .

* imports all properties, functions, and objects from the export script.

Description

Typically, information in a signed script is available only to scripts signed by
the same principals. By exporting (using the export statement) properties,
functions, or objects, a signed script makes this information available to any
script (signed or unsigned). The receiving script uses the import statement to
access the information.

The script must load the export script into a window, frame, or layer before it
can import and use any exported properties, functions, and objects.

See Also

export

Chapter 15, Statements 173

labeled statement

labeled statement
A labeled statement provides an identifier that can be used with break or
continue to indicate where the program should continue execution.

In a labeled statement, break or continue must be followed with a label, and
the label must be the identifier of the labeled statement containing break or
continue.

Syntax
label :

 statement

Arguments

statement is a block of statements. break can be used with any labeled
statement, and continue can be used with looping labeled statements.

Example

For an example of a labeled statement using break, see break.

For an example of a labeled statement using continue, see continue.

See Also

break, continue

switch statement

174 What’s New in JavaScript 1.2

switch statement
A switch statement allows a program to evaluate an expression and attempt to
match the expression's value to a case label. If a match is found, the program
executes the associated statement.

The program first looks for a label matching the value of expression and then
executes the associated statement. If no matching label is found, the program
looks for the optional default statement, and if found, executes the associated
statement. If no default statement is found, the program continues execution at
the statement following the end of switch.

The optional break statement associated with each case label ensures that the
program breaks out of switch once the matched statement is executed and
continues execution at the statement following switch. If break is omitted, the
program continues execution at the next statement in the switch statement.

Syntax
switch (expression){

 case label :
 statement ;
 break;

 case label :
 statement ;
 break;

 ...
 default : statement;

}

Arguments

expression is the value matched against label.

label is an identifier used to match against expression.

statement is any statement.

Chapter 15, Statements 175

switch statement

Example

In the following example, if expression evaluates to "Bananas", the program
matches the value with case "Bananas" and executes the associated statement.
When break is encountered, the program breaks out of switch and executes
the statement following switch. If break were omitted, the statement for case
"Cherries" would also be executed.

switch (i) {
 case "Oranges" :

 document.write("Oranges are $0.59 a pound.
");
 break;

 case "Apples" :
 document.write("Apples are $0.32 a pound.
");
 break;

 case "Bananas" :
 document.write("Bananas are $0.48 a pound.
");
 break;

 case "Cherries" :
 document.write("Cherries are $3.00 a pound.
");
 break;

 default :
 document.write("Sorry, we are out of " + i + ".
");

 }

document.write("Is there anything else you'd like?
");

switch statement

176 What’s New in JavaScript 1.2

Chapter 16, Style Sheets 177

C h a p t e r

16
Style Sheets

178 What’s New in JavaScript 1.2

Chapter 17, Miscellaneous Features 179

C h a p t e r

17
Miscellaneous Features

Activating JavaScript Commands From the
Personal Toolbar

The personal toolbar, new in Navigator 4.0, provides simplified access to links,
commands, and page location information. It is located below the menu bar in
the Navigator window. Besides adding links to web pages, you can add
JavaScript methods that are activated when you click on their corresponding
button in the toolbar. For example, you can add a method that opens a new
window. To add a JavaScript method to the personal toolbar, you need to
create a bookmark and define a command for that bookmark (instead of a
link).

1. In the location bar, choose Bookmarks > Edit Bookmarks...

This opens the Bookmarks window.

2. Open the Personal Toolbar Folder, and select the Folder.

Opening and selecting the folder insures that the new bookmark appears in
the Personal Toolbar.

3. Choose File > New Bookmark...

This opens the Bookmark Properties dialog.

Activating JavaScript Commands From the Personal Toolbar

180 What’s New in JavaScript 1.2

4. In the Name field, type the name you want to appear on the toolbar.

For example, if you are writing a command that opens a window, you
might have a name of "Open Window."

5. In the Location(URL) field, type the command using the form
javascript:void(command) . Only JavaScript methods can be used.

For example, to open a window, use
javascript:void(window.open(""))

Using void ensures that the original page is left unchanged.

6. Click OK and close the Bookmarks window.

A new button appears on the Personal Toolbar. Clicking the button
activates the command.

	What’s New in Javascript 1.2
	Contents
	Introduction
	Feature Summary
	Event Model
	Functions
	Layers
	Methods
	Objects
	Operators
	Properties
	Regular Expressions
	Signed Scripts
	Statements
	Style Sheets
	Miscellaneous
	Compatibility With Earlier Versions of Navigator

	Event Model
	The event Object
	Details of the event object
	Event Capturing
	Example

	Events
	Click (revised to include new properties)
	Syntax
	Parameters
	Event of
	Event properties used
	DblClick
	Syntax
	Parameters
	Event of
	Event properties used
	DragDrop
	Syntax
	Parameters
	Event of
	Event properties used
	Description
	KeyDown
	Syntax
	Parameters
	Event of
	Event properties used
	Description
	See also
	KeyPress
	Syntax
	Parameters
	Event of
	Event properties used
	Description
	See also
	KeyUp
	Syntax
	Parameters
	Event of
	Event properties used
	MouseDown
	Syntax
	Parameters
	Event of
	Event properties used
	Description
	MouseMove
	Syntax
	Parameters
	Event of
	Event properties used
	Description
	See Also
	MouseOut (revised to include new properties)
	Syntax
	Parameters
	Event of
	Event properties used
	MouseOver (revised to include new properties)
	Syntax
	Parameters
	Event of
	Event properties used
	MouseUp
	Syntax
	Parameters
	Event of
	Event properties used
	Description
	Move
	Syntax
	Parameters
	Event of
	Event properties used
	Resize
	Syntax
	Parameters
	Event of
	Event properties used

	Functions
	Nesting Functions Within Functions
	Function Constructor
	Number
	Syntax
	Parameter
	Description
	Example
	String
	Syntax
	Parameter
	Description
	Example

	Layers
	Methods
	Document Method
	getSelection
	Navigator Method
	preference
	Window Methods
	back
	disableExternalCapture
	enableExternalCapture
	find
	forward
	home
	moveBy
	moveTo
	open (window object)
	resizeBy
	resizeTo
	scrollBy
	scrollTo
	stop
	Shared Methods
	captureEvents
	clearInterval
	handleEvent
	print
	releaseEvents
	routeEvent
	setInterval
	setTimeout
	toString

	Objects
	Creating Objects With Literal Notation
	Syntax
	Properties
	Description
	Example
	arguments
	Number
	screen
	Syntax
	Parameters
	Property of
	Properties
	Methods
	Event handlers

	The String Object
	charCodeAt
	Syntax
	Parameters
	Method of
	Example
	concat
	Syntax
	Parameters
	Method of
	Description
	Example
	fromCharCode
	Syntax
	Parameters
	Method of
	Description
	Examples
	match
	Syntax
	Parameters
	Method of
	Description
	Examples
	replace
	Syntax
	Parameters
	Method of
	Description
	Examples
	search
	Syntax
	Parameters
	Description
	Example
	slice
	Syntax
	Parameters
	Method of
	Description
	Example
	split
	Syntax
	Parameters
	Method of
	Description
	Examples
	substr
	Syntax
	Parameters
	Method of
	Description
	Example
	substring
	Syntax
	Parameters
	Method of
	Description
	Example

	The Array Object
	Creating Arrays With Literal Notation
	Syntax
	Properties
	Description
	Example
	Methods
	concat
	slice
	sort
	Creating Arrays Under JavaScript 1.2
	Working With Arrays and Regular Expressions
	Syntax
	Parameters
	Properties and Elements
	Description

	Operators
	Equality Operators
	Equality Operators Without LANGUAGE=JavaScript1.2
	Equality Operators With LANGUAGE=JavaScript1.2
	Data Conversion
	delete
	Syntax
	Parameters
	Description

	Properties
	Function Property
	arity
	navigator Properties
	language
	platform
	window Properties
	innerHeight
	innerWidth
	locationbar
	menubar
	outerHeight
	outerWidth
	pageXOffset
	pageYOffset
	personalbar
	scrollbars
	statusbar
	toolbar

	Regular Expressions
	Constructing Regular Expressions
	The Regular Expression Syntax
	Writing a Regular Expression Pattern
	Working With Regular Expressions
	Using Parenthesized Substring Matches
	Executing a Global Search and Ignoring Case
	A Complete Example
	Special Characters Used in Regular Expressions
	Example Using Special Characters

	The RegExp Object
	Syntax
	Parameters
	Properties
	Methods
	Description
	Examples

	Regular Expression Object
	Syntax
	Parameters
	Description
	Properties
	Methods
	compile
	Syntax
	Parameters
	Description
	exec
	Syntax
	Parameters
	Description
	Examples
	test
	Syntax
	Parameters
	Description
	Example

	Signed Scripts
	Recommended Reading
	Signed Script Requirements
	ARCHIVE attribute
	ID Attribute
	Request Expanded Privileges
	Sign All Scripts
	Re-sign Changed Scripts
	Creating Signed Scripts
	International Characters in Signed Scripts
	Targets
	JavaScript Features Requiring Privileges
	Example
	Accessing Expanded Privileges Without Signed Scrip...
	Risks
	Activating Codebased Principles
	Error Checking

	Statements
	break
	Syntax
	Argument
	Example
	See Also
	continue
	Syntax
	Argument
	Example
	See Also
	do while statement
	Syntax
	Arguments
	Example
	export
	Syntax
	Parameters
	Description
	See Also
	import
	Syntax
	Parameters
	Description
	See Also
	labeled statement
	Syntax
	Arguments
	Example
	See Also
	switch statement
	Syntax
	Arguments
	Example

	Style Sheets
	Miscellaneous Features
	Activating JavaScript Commands From the Personal T...

